March 28, 2013

To:	Robert Samour, Highway Operations Dallas Hammit, Highway Development Brent Cain, Valley Transportation Chaun Hill, Valley Project Management Vincent Li, Statewide Project Management Jean Nehme, Bridge Group Annette Riley, Roadway Group Barry Crockett, Engineering Technical Group Michael Denbleyker, Engineering Consultants Section
From: \quadJiann-Jong Liu Manager, Gentechnical Section Mabjerials Group (068R)	
	Geotechnical Design Policy CIP-1 Load Resistance Factor Design (LRFD) Analysis of a standard cast-in-place (CIP) wall shown as Case III in the ADOT SD 7.01 drawings.

The AASHTO (2012) LRFD Bridge Design Specifications are mandatory for all federally funded projects. This attached policy outlines the analysis of a standard cast-in-place (CIP) wall shown as Case III in the ADOT SD 7.01 drawings, based on methods specified in AASHTO (2012). The intent of this policy is to present the detailed analysis required by the bridge designer to design a typical cast-in-place wall system assuming a sloping backfill configuration.

Personnel, both within ADOT and design consultants working on projects that require LRFD for cast-inplace walls, shall follow the attached policy. The designer should contact the ADOT Materials Group for an updated version of this policy in the event any interim revisions are made to AASHTO (2012) or a new edition of AASHTO is issued.

The presented solution illustrates the application of the AASHTO LRFD principles and existing ADOT policies to analyze the external stability of the standard wall system for both the strength (bearing resistance, sliding, and limiting eccentricity), and service (settlement) limit states.

If you have any questions regarding this bulletin, please contact Norm Wetz at 602-712-8093 or JiannJong Liu at 602-712-8209.

SUBSTRUCTURE EXAMPLE

ADOT SD 7.01
Case III Walls

This example illustrates the analysis of a standard cast-in-place (CIP) wall shown as Case III in the ADOT SD 7.01 drawings. A typical section of a Case III wall is shown in Figure 1.

The following legend is used for the references shown in the left-hand column:

$[2.2 .2]$	LRFD Specification Article Number
$[2.2 .2-1]$	LRFD Specification Table or Equation Number
[C2.2.2]	LRFD Specification Commentary
[A2.2.2]	LRFD Specification Appendix
[Figure 2.2.2-1]	LRFD Specification Figure Number
[ADOT SD 2.02]	ADOT Standard Drawings Number
[ADOT SF-2]	ADOT Policy Memorandum Number

The LRFD Specification refers to the $6^{\text {th }}$ Edition (2012) of AASHTO LRFD Bridge Design Specification.

Figure 1 - ADOT SD 7.01 Case III Wall

Substructure

This example demonstrates the analysis of an ADOT SD 7.01 Case III wall with a maximum backslope of $2: 1$. Refer to Figure 1 for more detail. Figure 2 represents the applicable loads for the ADOT SD 7.01 Case III wall.

Figure 2 - ADOT SD 7.01 Case III Wall Loads

Definitions

Backfill Vertical Plane (U-V)

δ	Friction Angle Between Fill and Wall
θ	Backfill Vertical Plane Angle (Plane U-V on Figure 2)

Backslope
$\beta \quad$ Backslope Angle
$\mathrm{h}_{\text {backfill }} \quad$ Height Above Top of Wall Along Plane U-V Due to Backslope

Bearing Stresses

$\mathrm{q}_{\mathrm{nf}-\mathrm{ser}}$	Factored Net Bearing Resistance (Service I Limit State)
$\mathrm{q}_{\mathrm{nf}-\text { str }}$	Factored Net Bearing Resistance (Strength I Limit State)
$\mathrm{q}_{\text {nveu }}$	Factored Net Equivalent Uniform Vertical Bearing Stress
$\mathrm{q}_{\mathrm{nveu} \text {-ser }}$	Factored Net Equivalent Uniform Vertical Bearing Stress $\mathrm{q}_{\text {nveu-str }}$
	(Service Limit State) (Strength Limit State)

$\mathrm{q}_{\text {tveu }}$	Factored Total Equivalent Uniform Vertical Bearing Stress
$\mathrm{q}_{\mathrm{tveu} \text {-ser }}$	Factored Total Equivalent Uniform Vertical Bearing Stress (Service I Limit State)
$\mathrm{q}_{\text {tveu-str }}$	Factored Total Equivalent Uniform Vertical Bearing Stress (Strength I Limit State)
Concrete Properties	

Forces and Moments

C1 Middle of Stem Concrete Weight
C2 Toe Fillet of Stem Concrete Weight
C3 Heel Fillet of Stem Concrete Weight
C4 Footing Concrete Weight
C5 Shear Key Concrete Weight
$\mathrm{M}_{\mathrm{C} 1} \quad$ Moment about Toe Due to Force C1
$\mathrm{M}_{\mathrm{C} 3} \quad$ Moment about Toe Due to Force C3
$\mathrm{M}_{\mathrm{C} 4} \quad$ Moment about Toe Due to Force C4
$\mathrm{M}_{\mathrm{C} 5} \quad$ Moment about Toe Due to Force C5
$\mathrm{M}_{\mathrm{S} 1} \quad$ Moment about Toe Due to Force S1
$\mathrm{M}_{\mathrm{S} 2} \quad$ Moment about Toe Due to Force S2
$\mathrm{M}_{\mathrm{S} 3} \quad$ Moment about Toe Due to Force S3
$\mathrm{M}_{\mathrm{S} 4} \quad$ Moment about Toe Due to Force S4
$\mathrm{M}_{\text {Pah }} \quad$ Moment about Toe Due to Force P_{ah}
$\mathrm{M}_{\text {Pav }} \quad$ Moment about Toe Due to Force P_{av}
$\mathrm{M}_{\mathrm{Ppf}} \quad$ Moment about Toe Due to Force P_{pf}
$\mathrm{M}_{\mathrm{Rb}} \quad$ Factored Resultant Moment about the Toe for Bearing
Resistance

$\mathrm{M}_{\text {Rb-ser }}$	Factored Resultant Moment about the Toe for Settlement
$\mathrm{M}_{\mathrm{Rb} \text {-str }}$	Factored Resultant Moment about the Toe for Bearing Resistance
M_{Rl}	Factored Resultant Moment about the Toe for Limiting Eccentricity
$\mathrm{M}_{\text {Rs }}$	Factored Resultant Moment about the Toe for Sliding
P_{a}	Active Earth Pressure
$\mathrm{P}_{\text {ah }}$	Horizontal Component of P_{a}
$\mathrm{Pav}_{\text {av }}$	Vertical Component of P_{a}
P_{pf}	Passive Earth Pressure
R_{f}	Factored Friction Resistance Against Sliding
R_{hs}	Factored Horizontal Load for Sliding
R_{p}	Factored Passive Resistance
$\mathrm{R}_{\text {s }}$	Total Factored Sliding Resistance
R_{vb}	Factored Resultant Vertical Force for Bearing Resistance
$\mathrm{R}_{\mathrm{vb} \text {-ser }}$	Factored Resultant Vertical Force for Settlement
$\mathrm{R}_{\mathrm{vb} \text {-str }}$	Factored Resultant Vertical Force for Bearing Resistance
R_{vl}	Factored Resultant Vertical Force for Limiting Eccentricity
R_{vs}	Factored Resultant Vertical Force for Sliding
S1	Heel Soil Weight
S2	Heel Fillet Soil Weight
S3	Backslope Soil Weight
S4	Toe Soil Weight
S5	Toe Fillet Soil Weight
$\underline{\text { Load Factors }}$	
γ_{p}	Load Factor for Permanent Loads
Miscellaneous	
RLR	Resistance:Load Ratio
Resistance Factors	
$\Phi_{\text {ep }}$	Passive Earth Pressure Resistance Factor
Φ_{τ}	Resistance Factor for Frictional Component of Sliding
Soil Properties	
γ_{b}	Unit Weight of Backfill Soil
γ_{e}	Unit Weight of Embedment Soil
γ_{f}	Unit Weight of Foundation Soil
φ_{b}	Internal Friction Angle of Backfill Soil
φ_{e}	Internal Friction Angle of Embedment Soil
φ_{f}	Internal Friction Angle of Foundation Soil
c_{b}	Cohesion of Backfill Soil
c_{e}	Cohesion of Embedment Soil
C_{f}	Cohesion of Foundation Soil

$\mathrm{K}_{\mathrm{ab}} \quad$ Active Earth Pressure Coefficient for Backfill Soil
$\mathrm{K}_{\mathrm{pf}} \quad$ Passive Earth Pressure Coefficient for Foundation Soil
Wall Footing
$\mathrm{D}_{\mathrm{f}} \quad$ Depth of Embedment
$\mathrm{t}_{\text {footing }} \quad$ Footing Thickness (Defined as "B" in ADOT SD 7.01)
$1_{\text {toe }} \quad$ Toe Distance to Stem (Defined as "C" in ADOT SD 7.01)
$l_{\text {heel }} \quad$ Heel Distance to Stem (Defined as "E" in ADOT SD 7.01)

W Footing Width
Wall Shear Key
$w_{\text {key }} \quad$ Shear Key Width (Defined as " 1.5 ft " in ADOT SD 7.01)
$\mathrm{t}_{\text {key }} \quad$ Shear Key Thickness (Defined as " 1.25 ft " in ADOT SD 7.01)

X Shear Key Distance from Heel
Wall Stem
$\mathrm{b}_{1} \quad$ Toe Fillet Bottom Thickness
$\mathrm{b}_{2} \quad$ Middle Bottom Thickness
$\mathrm{b}_{3} \quad$ Heel Fillet Bottom Thickness
$h_{\text {wall }} \quad$ Wall Height (Defined as " H " in ADOT SD 7.01)
$\mathrm{w}_{\mathrm{b}} \quad$ Bottom Thickness. Summation of $\mathrm{b}_{1}, \mathrm{~b}_{2}$, and b_{3}
(Defined as " F " in ADOT SD 7.01)
$\mathrm{w}_{\mathrm{t}} \quad$ Top Thickness (Defined as "1 ft" for Case IV walls in ADOT SD 7.01)

Wall Properties

[ADOT SD 7.01]
The following wall properties were based on a 25 ft tall wall:
Wall Footing
$\mathrm{D}_{\mathrm{f}} \quad 6.0 \mathrm{ft}$ (ADOT SD 7.01 recommends a minimum top cover on the toe of 1.5 ft . For this example 2 ft was used)
$t_{\text {footing }} \quad 4.0 \mathrm{ft}$
$\mathrm{l}_{\text {toe }} \quad 3.667 \mathrm{ft}$
$1_{\text {heel }} \quad 10.58 \mathrm{ft}$
W
17.0 ft

Wall Shear Key

$\mathrm{w}_{\text {key }}$	1.5 ft
$\mathrm{t}_{\text {key }}$	1.25 ft
X	4.833 ft
$\mathrm{l}_{\text {key }}$	$\mathrm{W}-\mathrm{X}-\mathrm{w}_{\text {key }}=17.0 \mathrm{ft}-4.833 \mathrm{ft}-1.5 \mathrm{ft}=10.67 \mathrm{ft}$

Wall Stem

$\mathrm{h}_{\text {wall }}$	25 ft
w_{t}	$10 \mathrm{in}=0.8333 \mathrm{ft}$
b_{1}	0 in
b_{2}	$10 \mathrm{in}=0.8333 \mathrm{ft}$
b_{3}	$23 \mathrm{in}=1.917 \mathrm{ft}$
w_{b}	$33 \mathrm{in}=2.750 \mathrm{ft}$

Soil Properties
Backfill

γ_{b}	120 pcf
φ_{b}	33.25 deg
c_{b}	0 ksf

Embedment

γ_{e}	120 pcf
φ_{e}	30 deg
c_{e}	0 ksf

Foundation

γ_{f}	120 pcf
φ_{f}	34 deg
c_{f}	0 ksf

Concrete Properties
$\gamma_{c} \quad 150 \mathrm{pcf}$
Backslope Properties and Surcharge
Backslope
$\beta \quad 26.57 \mathrm{deg}$, (Assuming max backslope of 2:1)
$\mathrm{h}_{\text {backfill }} \quad\left(\mathrm{b}_{3}+\mathrm{l}_{\text {heel }}\right) \tan \beta=(1.917 \mathrm{ft}+10.58 \mathrm{ft}) \tan (26.57)=6.250 \mathrm{ft}$
Backslope Vertical Plane (U-V)
$\delta \quad 26.57 \mathrm{deg},($ since $\theta=90 \mathrm{deg}, \delta=\beta)$
$\theta \quad 90$ deg
[ADOT SF-3]
[10.5.5.2.2-1]
[10.5.5.2.2-1]

Passive Resistance Factor and Sliding Factors

Footing from Toe to Key
Method/Soil/Condition
$\Phi_{\tau 1}$
Soil on Soil
$\tan \varphi_{\mathrm{f}}=\tan (34 \mathrm{deg})$ 0.90 0.6745

Footing from Heel to Key Method/Soil/Condition $\Phi_{\tau 2}$ Cast-in-Place Concrete Placed on Sand 0.80
$\tan \varphi_{\mathrm{f}}=\tan (34 \mathrm{deg})$ 0.6745
[10.5.5.2.2-1]
[3.4.1-1] \&
[3.4.1-2]

Factored Sliding Coefficient (Weighted)
$\Phi_{\tau} \tan \varphi_{\mathrm{f}}=\left[\mathrm{l}_{\text {key }}\left(\Phi_{\tau 1}\right)\left(\tan \varphi_{\mathrm{f}}\right)+\left(\mathrm{w}_{\text {key }}+\mathrm{X}\right)\left(\Phi_{\tau 2}\right)\left(\tan \varphi_{\mathrm{f}}\right)\right] / \mathrm{W}$
$\Phi_{\tau} \tan \varphi_{\mathrm{f}}=[(10.67 \mathrm{ft})(0.90)(0.6745)+(6.333 \mathrm{ft})(0.80)(0.6745)] / 17.0 \mathrm{ft}$
$\Phi_{\tau} \tan \varphi_{\mathrm{f}}=0.5820$

Passive Earth Pressure Resistance Factor

$\Phi_{\text {ep }} \quad 0.50$

Load Factors (γ_{p})

Strength I Limit State and Service I Limit State will be used for this example. The following load factors pertain to the Strength I Limit State and Service I Limit State (in actual design all applicable limit states shall be considered):

Load Categories	Load Factors (Str I)		$\begin{array}{c}\text { Load } \\$
\end{array} Maximum			

(Ser I)\end{array}\right]\)

Unfactored Loads and Moments

First the unfactored values of loads and moments are calculated. These unfactored values will then be factored as appropriate based on the limit state being analyzed, e.g. sliding, limiting eccentricity or bearing. For the various terms in the equations for unfactored loads and moments refer to Figures 1 and 2 and definitions noted earlier.

Load Designations

A summary of the Loads for this example are as follows:

Load	Load Category
C1	DC
C2	Not used for this example since $\mathrm{b}_{1}=0$
C3	DC
C4	DC
C5	DC
S1	EV
S2	EV
S3	EV
S4	EV (only used for bearing resistance comps)
S5	EV (only used for bearing resistance comps)
P_{a}	EH
P_{pf}	Passive Resistance Force, use Passive Resistance Factors

DC Loads (Unfactored)

Stem
$\mathrm{C} 1=\mathrm{b}_{2} \mathrm{~h}_{\text {wall }} \gamma_{\mathrm{c}}=(0.8333 \mathrm{ft})(25 \mathrm{ft})(0.150 \mathrm{kcf})=3.125 \mathrm{k} / \mathrm{ft}$
$\mathrm{C} 2=1 / 2 \mathrm{~b}_{1} \mathrm{~h}_{\text {wall }} \gamma_{\mathrm{c}}=0$, since $\mathrm{b}_{1}=0$
$\mathrm{C} 3=1 / 2 \mathrm{~b}_{3} \mathrm{~h}_{\text {wall }} \gamma_{\mathrm{c}}=(0.5)(1.917 \mathrm{ft})(25 \mathrm{ft})(0.150 \mathrm{kcf})=3.594 \mathrm{k} / \mathrm{ft}$
Footing
$\mathrm{C} 4=\mathrm{W}_{\text {footing }} \gamma_{\mathrm{c}}=(17.0 \mathrm{ft})(4.0 \mathrm{ft})(0.150 \mathrm{kcf})=10.20 \mathrm{k} / \mathrm{ft}$
Shear Key
$\mathrm{C} 5=\mathrm{w}_{\text {key }} \mathrm{t}_{\text {key }} \gamma_{\mathrm{c}}=(1.5 \mathrm{ft})(1.25 \mathrm{ft})(0.150 \mathrm{kcf})=0.2813 \mathrm{k} / \mathrm{ft}$

EV Loads (Unfactored)

Heel
$\mathrm{S} 1=\mathrm{l}_{\text {heel }}\left(\mathrm{h}_{\text {wall }}\right) \gamma_{\mathrm{b}}=(10.58 \mathrm{ft})(25 \mathrm{ft})(0.120 \mathrm{kcf})=31.74 \mathrm{k} / \mathrm{ft}$
$\mathrm{S} 2=1 / 2\left(\mathrm{~h}_{\text {wall }}\right)\left(\mathrm{b}_{3}\right) \gamma_{\mathrm{b}}=(0.5)(25 \mathrm{ft})(1.917 \mathrm{ft})(0.120 \mathrm{kcf})=2.876 \mathrm{k} / \mathrm{ft}$
$\mathrm{S} 3=1 / 2\left(\mathrm{~b}_{3}+\mathrm{l}_{\text {heel }}\right)\left(\mathrm{h}_{\text {backfill }}\right) \gamma_{\mathrm{b}}$

$$
=(0.5)(1.917 \mathrm{ft}+10.58 \mathrm{ft})(6.250 \mathrm{ft})(0.120 \mathrm{kcf})=4.686 \mathrm{k} / \mathrm{ft}
$$

Toe
$\mathrm{S} 4=\mathrm{l}_{\text {toe }}\left(\mathrm{D}_{\mathrm{f}}-\mathrm{t}_{\text {footing }}\right) \gamma_{\mathrm{e}}$

$$
=(3.667 \mathrm{ft})(6.0 \mathrm{ft}-4.0 \mathrm{ft})(0.120 \mathrm{kcf})=0.8801 \mathrm{k} / \mathrm{ft}
$$

S5 $=0$, since $b_{1}=0$

EH Loads (Unfactored)

Active Earth Pressure
P_{a} can be determined by the following equation:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{a}}=1 / 2\left(\mathrm{~K}_{\mathrm{ab}} \gamma_{\mathrm{b}}\right)\left(\mathrm{h}_{\text {wall }}+\mathrm{h}_{\text {backfill }}+\mathrm{t}_{\text {footing }}\right)^{2} \\
& \mathrm{~K}_{\mathrm{a}}=\frac{\sin ^{2}(\theta+\varphi)}{\Gamma\left[\sin ^{2} \theta \sin (\theta-\delta)\right]} \\
& \Gamma=\left[1+\sqrt{\frac{\sin (\varphi+\delta) \sin (\varphi-\beta)}{\sin (\theta-\delta) \sin (\theta+\beta)}}\right]^{2}
\end{aligned}
$$

With $\delta=\beta=26.57 \mathrm{deg}, \theta=90 \mathrm{deg}$, and $\varphi_{\mathrm{b}}=33.25 \mathrm{deg}, \mathrm{K}_{\mathrm{a}}$ and Γ are determined as follows:

$$
\begin{gathered}
\Gamma=\left[1+\sqrt{\frac{\sin (33.25+26.57) \sin (33.25-26.57)}{\sin (90-26.57) \sin (90+26.57)}}\right]^{2}=1.835 \\
\mathrm{~K}_{\mathrm{a}}=\frac{\sin ^{2}(90+33.25)}{1.835\left[\sin ^{2}(90) \sin (90-26.57)\right]}=0.4261 \\
\mathrm{P}_{\mathrm{a}}=(0.5)(0.4261)(0.120 \mathrm{kcf})(25 \mathrm{ft}+6.250 \mathrm{ft}+4.0 \mathrm{ft})^{2}=31.77 \mathrm{k} / \mathrm{ft}
\end{gathered}
$$

With P_{a} at an angle of $\beta, \mathrm{P}_{\mathrm{a}}$ can be broken up into its horizontal and vertical components by the following equations:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{ah}}=\mathrm{P}_{\mathrm{a}} \cos \beta=(31.77 \mathrm{k} / \mathrm{ft}) \cos (26.57)=28.41 \mathrm{k} / \mathrm{ft} \\
& \mathrm{P}_{\mathrm{av}}=\mathrm{P}_{\mathrm{a}} \sin \beta=(31.77 \mathrm{k} / \mathrm{ft}) \sin (26.57)=14.21 \mathrm{k} / \mathrm{ft}
\end{aligned}
$$

Note that the passive earth pressure is categorized as and EH load and the EH load factors apply to both the horizontal and vertical components of the passive earth pressure. Therefore, even though the vertical component is a vertical force, the EH load factor still applies.

Passive Earth Resistance

Use passive resistance from top of footing to bottom of key. See Figure 2 for more detail. The passive earth resistance can be determined by the following equation:

$$
\mathrm{P}_{\mathrm{pf}}=\frac{\mathrm{K}_{\mathrm{pf}} \gamma_{\mathrm{f}} \mathrm{t}_{\text {key }}^{2}}{2}+\mathrm{K}_{\mathrm{pf}} \gamma_{\mathrm{f}} \mathrm{t}_{\text {key }}\left(\mathrm{t}_{\text {footing }}\right)+\frac{\mathrm{K}_{\mathrm{pf}} \gamma_{\mathrm{f}} \mathrm{t}_{\text {footing }}^{2}}{2}
$$

Since the face of the key is vertical and the passive resistance will be resisting the horizontal forces, it is conservatively assumed that for the passive wedge only, $\delta=\beta=0$.
[Figure 3.11.5.41]

To determine passive earth pressure coefficient for the foundation soils, the referenced figure was used. Using $\theta=90 \mathrm{deg}$ and $\varphi_{\mathrm{f}}=34 \mathrm{deg}$ in the referenced figure, K_{pf} was determined for the ratio of $\delta / \varphi_{\mathrm{f}}=1$.

$$
\mathrm{K}_{\mathrm{pf}}=9.25 \text { for } \delta / \varphi_{\mathrm{f}}=1
$$

Using $\delta=0$ deg for the passive wedge, the following values are established for $\delta / \varphi_{f}=0:$

$$
\begin{array}{ll}
\text { Reduction Factor for } \mathrm{K}_{\mathrm{pf}} \text { for } \varphi_{\mathrm{f}}=30 \mathrm{deg} & 0.467 \\
\text { Reduction Factor for } \mathrm{K}_{\mathrm{pf}} \text { for } \varphi_{\mathrm{f}}=35 \mathrm{deg} & 0.362
\end{array}
$$

Using linear interpolation, the reduction factor for $\varphi_{f}=34$ deg was determined as follows:

Reduction Factor for K_{pf} for $\varphi_{\mathrm{f}}=34 \mathrm{deg}$

$$
\frac{(0.467-0.362)}{5}+0.362=0.383
$$

K_{pf} for the ratio of $\delta / \varphi_{\mathrm{f}}=0$ is as follows:

$$
\mathrm{K}_{\mathrm{pf}}=0.383(9.25)=3.54
$$

The passive earth pressure can now be determined as follows:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{pf}}= \frac{(3.54)(0.120 \mathrm{kcf})(1.25 \mathrm{ft})^{2}}{2}+(3.54)(0.120 \mathrm{kcf})(1.25 \mathrm{ft})(4.0 \mathrm{ft})+ \\
& \frac{(3.54)(0.120 \mathrm{kcf})(4.0 \mathrm{ft})^{2}}{2}=5.854 \frac{\mathrm{k}}{\mathrm{ft}}
\end{aligned}
$$

Moment Arm (From Bottom of Footing at the Toe)

Before the moments due to the loads shown above can be determined, the moment arm must be determined for each load. The following table summarises the moment arms:

Load	Moment Arm Equation		Moment Arm $(f t)$
C 1	$\mathrm{l}_{\text {toe }}+\mathrm{b}_{1}+\mathrm{b}_{2} / 2$	$3.667 \mathrm{ft}+0+(0.8333 \mathrm{ft}) / 2$	4.084
C 3	$\mathrm{l}_{\text {toe }}+\mathrm{b}_{1}+\mathrm{b}_{2}+\mathrm{b}_{3} / 3$	$3.667 \mathrm{ft}+0+0.8333 \mathrm{ft}+$ $(1.917 \mathrm{ft}) / 3$	5.139
C 4	$\mathrm{~W} / 2$	$(17.0 \mathrm{ft}) / 2$	8.500
C 5	$\mathrm{~W}-\mathrm{X}-\mathrm{w}_{\text {key }} / 2$	$17.0 \mathrm{ft}-4.833 \mathrm{ft}-(1.5 \mathrm{ft}) / 2$	11.42
S 1	$\mathrm{~W}-\mathrm{l}_{\text {heel }} / 2$	$17.0 \mathrm{ft}-(10.58 \mathrm{ft}) / 2$	11.71
S 2	$\mathrm{l}_{\text {toe }}+\mathrm{b}_{1}+\mathrm{b}_{2}+2 \mathrm{~b}_{3} / 3$	$3.667 \mathrm{ft}+0+0.8333 \mathrm{ft}+$ $2(1.917 \mathrm{ft}) / 3$	5.778
S 3	$\mathrm{~W}-\left(\mathrm{b}_{3}+\mathrm{l}_{\text {heel }} / 3\right.$	$17.0 \mathrm{ft}-(1.917 \mathrm{ft}+10.58 \mathrm{ft}) / 3$	12.83
S 4	$\mathrm{l}_{\text {toe }} / 2$	$3.667 \mathrm{ft} / 2$	1.834
$\mathrm{P}_{\text {ah }}$	$\left.\mathrm{h}_{\text {backfill }}+\mathrm{h}_{\text {wall }}+\mathrm{t}_{\text {footing }}\right)$ $/ 3$	$(6.250 \mathrm{ft}+25 \mathrm{ft}+4.0 \mathrm{ft}) / 3$	11.75
P_{av}	W	17.0 ft	17.00

Moments (Unfactored) From Bottom of Footing at the Toe
Now that the unfactored loads and moment arms have been determined, the unfactored moments for each contributing force shown in Figure 2 can be determined. The unfactored moment is calculated by multiplying the moment arm with the unfactored load. A counter-clockwise moment is considered to be positive. The following table summarizes the resulting unfactored moments:

	+/-	Moment Arm (ft)	Load (Unfactored) $(\mathbf{k} / \mathbf{f t})$	Moment (Unfactored) (k-ft/ft)
$\mathrm{M}_{\mathrm{C} 1}$	-	4.084	3.125	-12.76
$\mathrm{M}_{\mathrm{C} 3}$	-	5.139	3.594	-18.47
$\mathrm{M}_{\mathrm{C} 4}$	-	8.500	10.20	-86.70
$\mathrm{M}_{\mathrm{C} 5}$	-	11.42	0.2813	-3.212
$\mathrm{M}_{\mathrm{S} 1}$	-	11.71	31.74	-371.7
$\mathrm{M}_{\mathrm{S} 2}$	-	5.778	2.876	-16.62
$\mathrm{M}_{\mathrm{S} 3}$	-	12.83	4.686	-60.12
$\mathrm{M}_{\mathrm{S} 4}$	-	1.834	0.8801	-1.614
$\mathrm{M}_{\mathrm{Pah}}$	+	11.75	28.41	333.8
$\mathrm{M}_{\mathrm{Pav}}$	-	17.00	14.21	-241.6

Check for Sliding

Factored Vertical Loads For Sliding (Strength I)

Sliding is strength limit check and therefore factored loads are used. Strength I limit state is being used for this example. In actual design, all applicable load combinations should be evaluated. For resisting loads, i.e., loads that are providing resistance to sliding, the minimum load factor will be applied. For activating loads, i.e., loads that contributing to activate sliding, the maximum load factor will be applied. Such a combination of load factors should create the critical force effect. The following tables summarize the factored loads with respect to sliding:

Factored Vertical Loads for Sliding (Str I)				
	Load Factors		Load (Unfactored) (k/ft)	Factored Load (Str I) (k/ft)
	Min	Factor		2.813
C1	Min	0.90	3.594	3.235
C3	Min	0.90	10.20	9.180
C4	Min	0.90	0.2813	0.2532
C5	Min	0.90	31.74	31.74
S1	Min	1.00	2.876	2.876
S2	Min	1.00	4.686	4.686
S3	Min	1.00	14.21	21.32
P_{av}	Max	1.50	1.2	
$\mathrm{R}_{\mathrm{vs}}=\sum$ Factored Vertical Loads				76.10

Factored Horizontal Loads for Sliding (Str I)				
	Load Factors		Load (Unfactored) (k/f)	Factored Load (Str I) k ft)
	$\begin{gathered} \text { Max / } \\ \text { Min } \end{gathered}$	Factor		
$\mathrm{P}_{\text {ah }}$	Max	1.50	28.41	42.62
$\mathrm{R}_{\mathrm{hs}}=\sum$ Factored Horizontal Loads				42.62

Factored Friction Resistance, $\mathbf{R}_{\mathbf{f}}$

$$
\mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{vs}} \Phi_{\tau} \tan \varphi_{\mathrm{f}}=(76.10 \mathrm{k} / \mathrm{ft})(0.5820)=44.29 \mathrm{k} / \mathrm{ft}
$$

Factored Passive Resistance, $\mathbf{R}_{\mathbf{p}}$

$$
\mathrm{R}_{\mathrm{p}}=\mathrm{P}_{\mathrm{pf}} \Phi_{\mathrm{ep}}=(5.854 \mathrm{k} / \mathrm{ft})(0.50)=2.927 \mathrm{k} / \mathrm{ft}
$$

Total Factored Sliding Resistance, $\mathbf{R}_{\text {s }}$

$$
\mathrm{R}_{\mathrm{s}}=\mathrm{R}_{\mathrm{f}}+\mathrm{R}_{\mathrm{p}}=44.29 \mathrm{k} / \mathrm{ft}+2.927 \mathrm{k} / \mathrm{ft}=47.22 \mathrm{k} / \mathrm{ft}
$$

Resistance:Load Ratio (RLR) Against Sliding

The RLR should be greater than 1.

$$
\begin{aligned}
\text { RLR }= & (\text { Factored Resisting Forces } / \text { Factored Activating Forces }) \\
& =\left(\mathrm{R}_{\mathrm{s}}\right) /\left(\mathrm{R}_{\mathrm{hs}}\right)=(47.22 \mathrm{k} / \mathrm{ft}) /(42.62 \mathrm{k} / \mathrm{ft})=1.108
\end{aligned}
$$

$\operatorname{RLR}=1.108$. Therefore the wall is ok with respect to sliding.

Check for Limiting Eccentricity

Factored Loads and Moments For Limiting Eccentricity (Strength I)
Limiting eccentricity is a strength limit check. The Strength I limit state is being used for this example. In actual design, all applicable load combinations should be evaluated. For resisting loads the minimum load factor will be applied. For activating loads the maximum load factor will be applied. The same load factor that is applied to each load is applied to its corresponding moment as well. The beneficial contribution of the Passive Earth Pressure (shown as P_{pf} in Figure 2) to the resisting forces and moments will be neglected for limiting eccentricity to create the critical force effect. The following tables summarize the factored loads and moments with respect to limiting eccentricity:

Factored Vertical Loads for Limiting Eccentricity (Str I)				
	Load Factors		Load (Unfactored) (k/ft)	Factored Load (Str I) (k/ft)
	Max / Min	Factor		2.813
C1	Min	0.90	3.594	3.235
C3	Min	0.90	10.20	9.180
C4	Min	0.90	0.2813	0.2532
C5	Min	0.90	31.74	31.74
S1	Min	1.00	2.876	2.876
S2	Min	1.00	4.686	4.686
S3	Min	1.00	14.21	21.32
P_{av}	Max	1.50	14	
$\mathrm{R}_{\mathrm{vl}}=\sum$ Factored Vertical Loads				76.10

Factored Horizontal Loads for (Str I)				
	Load Factors		Load	Factored Load (Unfactored) (k/ t)
	Max / Min	Factor	(Str I) (k/ft)	
	Max	1.50	28.41	42.62

Factored Moments for Limiting Eccentricity (Str I)				
	Load Factors		$\begin{gathered} \text { Moment } \\ \text { (Unfactored) } \\ (\mathbf{k}-\mathrm{ft} / \mathrm{ft}) \end{gathered}$	Moment (Factored) (k-ft/ft)
	$\begin{gathered} \text { Max/ } \\ \text { Min } \\ \hline \end{gathered}$	Factor		
M_{Cl}	Min	0.90	-12.76	-11.48
$\mathrm{M}_{\mathrm{C} 3}$	Min	0.90	-18.47	-16.62
$\mathrm{M}_{\mathrm{C} 4}$	Min	0.90	-86.70	-78.03
$\mathrm{M}_{\mathrm{C} 5}$	Min	0.90	-3.212	-2.891
$\mathrm{M}_{\text {S } 1}$	Min	1.00	-371.7	-371.7
$\mathrm{M}_{\text {S2 }}$	Min	1.00	-16.62	-16.62
$\mathrm{M}_{\text {S3 }}$	Min	1.00	-60.12	-60.12
$\mathrm{M}_{\text {Pah }}$	Max	1.50	333.8	500.7
$\mathrm{M}_{\text {Pav }}$	Max	1.50	-241.6	-362.4
$\mathrm{M}_{\mathrm{RI}}=(-1)\left(\sum\right.$ Factored Moments)				419.2

Distance from Toe to \mathbf{R}_{vl}

$$
\mathrm{D}_{\mathrm{l}}=\mathrm{M}_{\mathrm{Rl}} / \mathrm{R}_{\mathrm{vl}}=(419.2 \mathrm{k}-\mathrm{ft} / \mathrm{ft}) /(76.10 \mathrm{k} / \mathrm{ft})=5.509 \mathrm{ft}
$$

Limiting Eccentricity

If the value of computed eccentricity, e_{1}, is less than limiting eccentricity, $e_{\max }$, then the substructure meets the criteria for limiting eccentricity and is therefore safe against overturning.
$\mathrm{e}_{\mathrm{l}}=\mathrm{D}_{1}-\mathrm{W} / 2=5.509 \mathrm{ft}-(17.0 \mathrm{ft}) / 2=-2.991 \mathrm{ft}=2.991 \mathrm{ft}$ towards the toe of the wall from the middle of the footing.
$\mathrm{e}_{\max }=\mathrm{W}[1 / 3-\beta / 320]=(17.0 \mathrm{ft})[1 / 3-26.57 / 320]=4.255 \mathrm{ft}$
$\mathrm{e}_{\text {max }}=4.255 \mathrm{ft}$, which is greater than $\mathrm{e}_{1}=2.991 \mathrm{ft}$. Therefore the wall is ok with respect to limiting eccentricity.

Check For Bearing Resistance

Factored Loads and Moments For Bearing Resistance
Bearing resistance is a strength limit state check. The total equivalent uniform vertical bearing stress ($\mathrm{q}_{\text {tveu }}$) and net equivavlent uniform bearing stress ($\mathrm{q}_{\text {nveu }}$) at the base of the wall can be computed as follows:

$$
\mathrm{q}_{\text {tveu }}=\mathrm{R}_{\mathrm{vb}} / \mathrm{B}^{\prime}
$$

Where $\mathrm{R}_{\mathrm{vb}}=\sum$ Factored Vertical Loads for Bearing Resistance
$\mathrm{B}^{\prime}=\mathrm{W}-2 \mathrm{e}_{\mathrm{b}}$
$\mathrm{W}=$ Wall Footing Width
$\mathrm{e}_{\mathrm{b}}=$ Eccentricty of R_{vb}
$\mathrm{q}_{\text {nveu }}=\mathrm{q}_{\text {tveu }}-\gamma_{\mathrm{p}}\left(\gamma_{\mathrm{e}} \mathrm{D}_{\mathrm{f}}\right)$

[3.4.1-1]

> Where $\gamma_{\mathrm{p}}=$ Load Factor of Permanent Vertical Earth Pressure (EV). Use the Max EV Load Factor for this case (1.35)
> $\gamma_{\mathrm{e}}=$ Embedment Soil Unit Weight
> $\mathrm{D}_{\mathrm{f}}=$ Depth of Embedment

The Strength I limit state will be used for this example to determine the bearing resistance. In actual design, all applicable load combinations should be evaluated. It is assumed for this example that the critical combination of load factors for bearing resistance will be when the maximum load factor is applied to all loads. The same load / resistance factor that is applied to each load is applied to its corresponding moment as well. The beneficial contribution of the Passive Earth Pressure (shown as P_{pf} in Figure 2) to the resisting forces and moments will be neglected for bearing resistance. The following tables summarize the factored loads and moments with respect to bearing resistance:

Factored Vertical Loads for Bearing Resistance				
	Load Factors		Load (Unfactored) (k/ft)	Str I Factored Load (k/ft)
	Max / Min	Factor	Max	1.25

Factored Horizontal Loads for Bearing Resistance				
	Load Factors		Load (Unfactored) (k/ft)	Str I Factored Load (k/ft)
	Max / Min	Factor	(
	Max	1.50	28.41	42.62

Factored Moments for Bearing Resistance				
	Load Factors Max / Min		Load (Unfactored) (k-ft/ft)	Str I Factored Load (k-ft/ft)
	Max	1.25	-12.76	-15.95
$\mathrm{M}_{\mathrm{C} 1}$	Max	1.25	-18.47	-23.09
$\mathrm{M}_{\mathrm{C} 3}$	Max	-108.4		
$\mathrm{M}_{\mathrm{C} 4}$	Max	1.25	-86.70	-10
$\mathrm{M}_{\mathrm{C} 5}$	Max	1.25	-3.212	-4.015
$\mathrm{M}_{\mathrm{S} 1}$	Max	1.35	-371.7	-501.8
$\mathrm{M}_{\mathrm{S} 2}$	Max	1.35	-16.62	-22.44
$\mathrm{M}_{\mathrm{S} 3}$	Max	1.35	-60.12	-81.16
$\mathrm{M}_{\mathrm{S} 4}$	Max	1.35	-1.614	-2.179
$\mathrm{M}_{\text {Pah }}$	Max	1.5	333.8	500.7
$\mathrm{M}_{\text {Pav }}$	Max			
$\mathrm{M}_{\mathrm{Rb}-\text {-str }}=(-1)\left(\sum\right.$ Factored Moments)				-362.4

Distance from Toe to $\mathbf{R}_{\mathrm{vb} \text {-str }}$
$\mathrm{D}_{\mathrm{b}-\mathrm{str}}=\mathrm{M}_{\mathrm{Rb} \text {-str }} / \mathrm{R}_{\mathrm{vb} \text {-str }}=(620.7 \mathrm{k}-\mathrm{ft} / \mathrm{ft}) /(97.07 \mathrm{k} / \mathrm{ft})=6.394 \mathrm{ft}$

Eccentricity

$\mathrm{e}_{\mathrm{b} \text {-str }}=\mathrm{D}_{\mathrm{b} \text {-str }}-\mathrm{W} / 2=6.394 \mathrm{ft}-(17.0 \mathrm{ft}) / 2=-2.106 \mathrm{ft}=2.106 \mathrm{ft}$ towards the toe of the wall from the middle of the footing.

Factored Total Equivalent Uniform Vertical Bearing Stress
$\mathrm{B}_{\mathrm{str}}=\mathrm{W}-2 \mathrm{e}_{\mathrm{b} \text {-str }}=17.0 \mathrm{ft}-2(2.106 \mathrm{ft})=12.79 \mathrm{ft}$
$\mathrm{q}_{\text {tveu-str }}=\mathrm{R}_{\mathrm{vb} \text {-str }} /\left(\mathrm{B}_{\mathrm{str}}\right)=(97.07 \mathrm{k} / \mathrm{ft}) /(12.79 \mathrm{ft})$
$\mathrm{q}_{\text {tveu-str }}=7.590 \mathrm{ksf}$

Factored Net Equivalent Uniform Vertical Bearing Stress

$$
\begin{aligned}
& \mathrm{q}_{\text {nveu-str }}=\mathrm{q}_{\text {tveu-str }}-\gamma_{\mathrm{p}}\left(\gamma_{\mathrm{e}} \mathrm{D}_{\mathrm{f}}\right)=7.590 \mathrm{ksf}-1.35(0.120 \mathrm{kcf}(6.0 \mathrm{ft})) \\
& \mathrm{q}_{\text {nveu-str }}=6.618 \mathrm{ksf}
\end{aligned}
$$

Factored Net Bearing Resistance (Strength I Limit State)

For this example, it is assumed that the site specific soil profile for this example is the same as that which was used in the ADOT SF-1 policy memo. Therefore the Factored Net Bearing Resistance Chart shown as Figure 1 in the ADOT SF1 policy memo is applicable for this example (Note that a site specific Factored Net Bearing Resistance Chart will need to be generated for actual design). The Factored Net Bearing Resistance Chart shown as Figure 1 in the ADOT SF-1 policy memo has been included in this example as Figures 5 and 6.

Using Figure 3 and $\mathrm{B}_{\text {str }}$ equal to 12.79 feet, the following factored net bearing resistance was determined (Note that the solid lines with closed arrows in Figure 3 represent the estimation of $\mathrm{q}_{\mathrm{nf} \text {-str }}$):
$\mathrm{q}_{\mathrm{nf}-\mathrm{str}}=9.70 \mathrm{ksf}$
RLR $=($ Resistance $/$ Stress $)=(9.70 \mathrm{ksf}) /(6.618 \mathrm{ksf})=1.466$, therefore the wall is ok with respect to bearing resistance.

 ft (no eccentricity) and depth of embedment, $\mathrm{D}_{\mathrm{f}}=6-\mathrm{ft}$ with base elevation of $994-\mathrm{ft}$. The resistance factor of $\phi_{b}=0.45$ is included in the strength limit state curve. " S " in the legend refers to immediate settlement.

Figure 3 - Factored Net Bearing Resistance Chart Used to Determine $\mathbf{q n f - s t r}$ (ADOT SF-1)

Check For Settlement

Factored Loads and Moments For Settlement

Settlement is a service limit state check. The Service I limit state will be used for this example to determine the settlement. In actual design, all applicable load combinations should be evaluated. The beneficial contribution of the Passive Earth Pressure (shown as P_{pf} in Figure 2) to the resisting forces and moments will be neglected. The following tables summarize the factored loads and moments with respect to settlement:

Factored Vertical Loads for Settlement				
	Load Factors		Load (Unfactored) (k/ft)	Ser I Factored Load (k/ft)
	Max / Min	Factor	3.125	3.125
C1	N/A	1.00	3.594	3.594
C3	N/A	1.00	10.20	10.20
C4	N/A	1.00	1.0	0.2813
C5	N/A	1.00	0.2813	
S1	N/A	1.00	31.74	31.74
S2	N/A	1.00	2.876	2.876
S3	N/A	1.00	4.686	4.686
S4	N/A	1.00	0.8801	0.8801
P_{av}	N/A	1.00	14.21	14.21
$\mathrm{R}_{\text {vb-ser }}=\sum$ Factored Vertical Loads				71.59

Factored Horizontal Loads for Settlement				
	Load Factors		Load (Unfactored) (k/ft)	Ser I Factored Load $(\mathbf{k} / \mathbf{f t}$
	Max / Min	Factor	1.00	28.41
$\mathrm{P}_{\text {ah }}$	N/A	1.41		

Factored Moments for Settlement				
	Load Factors Max / Min			Factor
Load (Ufactored) (k-ft/ft)	Ser I Factored Load (k-ft/ft)			
$\mathrm{M}_{\mathrm{C} 1}$	N/A	1.00	-12.76	-12.76
$\mathrm{M}_{\mathrm{C} 3}$	N/A	1.00	-18.47	-18.47
$\mathrm{M}_{\mathrm{C} 4}$	N/A	1.00	-86.70	-86.70
$\mathrm{M}_{\mathrm{C} 5}$	N/A	1.00	-3.212	-3.212
$\mathrm{M}_{\mathrm{S} 1}$	N/A	1.00	-371.7	-371.7
$\mathrm{M}_{\mathrm{S} 2}$	N/A	1.00	-16.62	-16.62
$\mathrm{M}_{\mathrm{S} 3}$	N/A	1.00	-60.12	-60.12
$\mathrm{M}_{\mathrm{S} 4}$	N/A	1.00	-1.614	-1.614
$\mathrm{M}_{\text {Pah }}$	N/A	1.00	333.8	333.8
$\mathrm{M}_{\text {Pav }}$	N/A	1.00	-241.6	-241.6
$\mathrm{M}_{\mathrm{Rb}-\text {-ser }}=(-1)\left(\sum\right.$ Factored Moments)				479.0

Distance from Toe to $\mathbf{R}_{\mathbf{v b}}$
$\mathrm{D}_{\mathrm{b} \text {-ser }}=\mathrm{M}_{\mathrm{Rb} \text {-ser }} / \mathrm{R}_{\mathrm{vb} \text {-ser }}=(479.0 \mathrm{k}-\mathrm{ft} / \mathrm{ft}) /(71.59 \mathrm{k} / \mathrm{ft})=6.691 \mathrm{ft}$

Eccentricity

$\mathrm{e}_{\text {b-ser }}=\mathrm{D}_{\text {b-ser }}-\mathrm{W} / 2=6.691 \mathrm{ft}-(17.0 \mathrm{ft}) / 2=-1.809 \mathrm{ft}=1.809 \mathrm{ft}$ towards the toe of the wall from the middle of the footing.

Factored Total Equivalent Uniform Vertical Bearing Stress
$\mathrm{B}_{\text {ser }}=\mathrm{W}-2 \mathrm{e}_{\mathrm{b} \text {-ser }}=17.0 \mathrm{ft}-2(1.809 \mathrm{ft})=13.38 \mathrm{ft}$
$\left.\mathrm{q}_{\mathrm{tveu}-\text {-ser }}=\mathrm{R}_{\mathrm{vb} \text {-ser }} /\left(\mathrm{B}_{\text {ser }}\right)=(71.59 \mathrm{k} / \mathrm{ft}) /(13.38 \mathrm{ft})\right)$
$\mathrm{q}_{\text {tveu-ser }}=5.351 \mathrm{ksf}$
Factored Net Equivalent Uniform Vertical Bearing Stress
$\mathrm{q}_{\text {nveu-ser }}=\mathrm{q}_{\text {tveu-ser }}-\gamma_{\mathrm{p}}\left(\gamma_{\mathrm{e}} \mathrm{D}_{\mathrm{f}}\right)=5.351 \mathrm{ksf}-1.00(0.120 \mathrm{kcf}(6.0 \mathrm{ft}))$
$\mathrm{q}_{\text {nveu-ser }}=4.631 \mathrm{ksf}$

Estimated Settlement (Service I Limit State)

Using Figure $4, \mathrm{~B}_{\text {ser }}$ equal to 13.38 feet, and $\mathrm{q}_{\text {nveu-ser }}$ equal to 4.631 ksf , the following estimated settlement was determined (Note that the dashed lines with open arrows in Figure 4 represent the estimation of the settlement):

Estimated Settlement ≈ 0.90 in.
Therefore, the wall can be expected to settle less than 1 inch with a soil profile the same as ADOT SF-1 policy memo.

${ }^{4}$ Figure 1: Example of a Factored Bearing Resistance Chart for a footing of length, $\mathrm{L}^{\prime}=\mathrm{L}=150$ ft (no eccentricity) and depth of embedment, $\mathrm{D}_{\mathrm{f}}=6-\mathrm{ft}$ with base elevation of $994-\mathrm{ft}$. The resistance factor of $\phi_{\mathrm{b}}=0.45$ is included in the strength limit state curve. " S " in the legend refers to immediate settlement.

Figure 4 - Factored Net Bearing Resistance Chart Used To Determine Settlement (ADOT SF-1)

