2010 Annual Report

Arizona Department of Transportation Office of Environmental Services 206 South 17th Avenue, MD 102A Phoenix, Arizona 85007

Stormwater Management Plan 2010 Annual Report MS4 Permit No. AZS000018-2008

TABL	ES	.ii
APPE	NDICES	iii
ACRC	NYMNS and DEFINITIONS	iv
EXEC	UTIVE SUMMARY	vi
1 GI	ENERAL INFORMATION	.1
2 AN	NUAL REPORT CERTIFICATION	.1
3 NA	ARRATIVE SUMMARY OF SSWMP ACTIVITIES	.2
3.1	ADOT Technical Documents	.2
3.2	Outfall Inspection and Tracking	.3
3.3	Public Access to Stormwater Documents	.4
3.4	Illicit Discharges	.4
3.4.1	Illicit Discharges Eliminated	.5
3.4.2	Illicit Discharges Reported to Other Jurisdictions	. 5
3.5	Erosion Abatement Projects	. 5
3.6	Spills and Other Releases	.6
3.7	Maintenance Facility SWPPPs	.6
3.8	Construction Site Issues	.7
3.8.1	Construction Site Tracking System	.7
3.8.2	Construction Violations	.7
3.9	Industrial Facilities	.7
3.9.1	SWPPP Update	. 8
3.9.2	No Exposure Certification	. 8
3.10	Material Sources	. 8
3.10.1	Active Sites – Group A	. 8
3.10.2	Inactive Sites – Group B	.9
3.10.3	Reclaimed Sites – Group C	10
3.10.4	Non-Mining Sites – Group I	11
3.10.5	Inspection of Material Sources	11
4 NU	JMERIC SUMMARY OF SSWMP ACTIVITIES	13
5 EV	ALUATION OF THE SSWMP	13
5.1	Assessment of Program Operations	13
5.2	Assessment of Social Indicators	14
5.3	Monitoring Water Quality	15
6 SS	WMP MODIFICATIONS	15
6.1	Addition of New BMPs	16
6.2	Temporary or Experimental BMPs	16
6.3	Increase of Existing BMPs	16

6.4	Replacement of Existing BMPs	16
7 M	ONITORING LOCATION INFORMATION	16
7.1	Existing Monitoring Locations	17
7.2	Proposed Monitoring Locations	17
8 ST	FORM EVENT RECORDS	
9 SU	JMMARY OF MONITORING DATA	19
10 AS	SSESSMENT OF MONITORING RESULTS	20
10.1	MS4 Results	20
10.1.1	Stormwater Quality	20
10.1.2	Water Quality Standards	22
10.1.3	Exceedances of SWQS	22
10.1.4	Total Maximum Daily Loads	23
10.2	Industrial Results	23
10.2.1	Durango Sign Factory	23
10.3	Construction Results	23
10.3.1	Sedona SR179 Construction Project	23
10.3.2	Meadow Valley SR260 Construction Project	24
10.3.3	Marsh Station I-10 Construction Project	
10.4	Maintenance Facilities	
10.4.1	Nogales Maintenance Yard	
10.4.2	Superior Maintenance Yard	
10.4.3	Superior Fuel Yard	25
11 ES	STIMATE OF POLLUTANT LOADING	
11.1	ADOT's Phoenix Area MS4 Pollutant Loading Estimates	
11.2	ADOT's Tucson Area MS4 Pollutant Loading Estimates	27
11.3	Comparison to Previous Pollutant Loading Estimates	27
12 Al	NNUAL EXPENDITURES	
12.1	Five-Year Construction Program	
12.2	Highway Maintenance Program	
12.3	Administrative Budget	
12.4	Office of Environmental Services Budget	

TABLES

Table 1 – Group A1 Sites	9
Table 2 – Group A2 Sites	9
Table 3 – Reclamation or Utilization Schedule for Group B Sites	10
Table 4 – Group C Reclamation Schedule	10
Table 5 – Non-mining Sites	11
Table 6 – Summary of Inspection Findings, Deficiencies, and Corrective Actions	12
Table 7 – ADOT's Existing MS4 Monitoring Locations	17

Table 8 – ADOT Stormwater Monitoring Locations	
Table 9 – Phoenix MS4 Storm Event Records	19
Table 10 – Tucson MS4 Storm Event Records	19
Table 11 – ADOT's Phoenix Area MS4 Sampling Results	21
Table 12 – ADOT's Tucson Area MS4 Sampling Results	21
Table 13 – Summary of SWQS Exceedances	22
Table 14 – In-Stream Sampling Locations within Oak Creek	24
Table 15 – ADOT's Phoenix Area MS4 Pollutant Loading Estimates	
Table 16 – ADOT's Tucson Area MS4 Pollutant Loading Estimates	27
Table 17 – Comparison of MS4 Pollutant Loading Estimates	27
Table 18 – Estimated Stormwater Program Comprehensive Annual Budget	

APPENDICES

APPENDIX A:	Narrative Summary of SSWMP Activities
APPENDIX B:	Outfall Inspection and Tracking
APPENDIX C:	Notice of Illegal Discharge Letter
APPENDIX D:	Licensed Materials Sources and Stockpile Sites
APPENDIX E:	Material Sources Table (Group A, B, C, and I)
APPENDIX F:	Numeric Summary of BMPs
APPENDIX G:	Current MS4 Monitoring Locations
APPENDIX H:	Proposed MS4 Monitoring Locations
APPENDIX I:	ISCO Stormwater Sampling Equipment
APPENDIX J:	Summary of MS4 Monitoring Data (Phoenix & Tucson)
APPENDIX K:	MS4 Laboratory Data Reports (Phoenix & Tucson)
APPENDIX L:	Industrial Discharge Monitoring Reports
APPENDIX M:	Industrial Monitoring Laboratory Reports
APPENDIX N:	Construction Discharge Monitoring Reports
APPENDIX O:	SR179 In-Stream Monitoring Locations
APPENDIX P:	Phoenix MS4 Pollutant Loading Estimates
APPENDIX Q:	Tucson MS4 Pollutant Loading Estimates

ACRONYMNS and DEFINITIONS

A&Wedw – Aquatic and Wildlife (effluent-dependent water)

A&Wc – Aquatic and Wildlife (cold water)

A&Ww – Aquatic and Wildlife (warm water)

AASHTO - American Association of State Highway Transportation Officials

ADEQ - Arizona Department of Environmental Quality

ADOT – Arizona Department of Transportation

AgL – Agricultural Livestock Watering

AHLI – Adopt-a-Highway Litter Initiative

A.R.S. - Arizona Revised Statute

AZPDES – **Arizona Pollutant Discharge Elimination System** – The State program for issuing, modifying, revoking and reissuing, terminating, monitoring and enforcing permits, and imposing and enforcing pretreatment requirements, under Sections 307, 318, 402, and 405 of CWA.

BLM – Bureau of Land Management

BMP – **Best Management Practice -** Permit condition used in place of or in conjunction with effluent limitations to prevent or control the discharge of pollutants. BMPs may include, but are not limited to, treatment requirements, operating procedures, or practices to control plant/facility site runoff, spillage, leaks, sludge or waste disposal, or drainage from raw material storage. BMPs may also include schedule of activities, prohibition of practices, maintenance procedure, or other management practice.

BOD – Biological Oxygen Demand

COD - Chemical Oxygen Demand

CWA – Clean Water Act - The Clean Water Act is an act passed by the U.S. Congress to control water pollution. It was formerly referred to as the Federal Water Pollution Control Act of 1972 or Federal Water Pollution Control Act Amendments of 1972 (Public Law 92-500), 33 U.S.C. 1251 et. seq., as amended by: Public Law 96-483; Public Law 97-117; Public Laws 95-217, 97-117, 97-440, and 100-04.

DEC – District Environmental Coordinator

DMR – **Discharge Monitoring Report** - The form used (including any subsequent additions, revisions, or modifications) to report self-monitoring results by AZPDES permittees. DMRs must be used by approved states as well as by EPA.

EPA – U.S. Environmental Protection Agency

ERP – Enforcement Response Plan

FBC – Full Body Contact

FC – Fish Consumption

FIS – Features Inventories System

IDDE – Illicit Discharge Detection and Elimination

MS4 – **Municipal Separate Storm Sewer System -** A conveyance or system of conveyances (including roads with drainage systems, municipal streets, catch basins, curbs, gutters, ditches, manmade channels, or storm drains) owned by a state, city, town or other public body, that is designed or used for collecting or conveying stormwater, which is not a combined sewer, and which is not part of a publicly owned treatment works. Commonly referred to as an "MS4" [40 CFR 122.26(b)(8)].

NASPA - Northern Arizona Stormwater Pollution Alliance

NEPA –National Environmental Policy Act

NOV – Notice of Violation

NTU – Nephelometric Turbidity Units

OES – Office of Environmental Services

PAG – Pima Association of Governments

PBC – Partial Body Contact

Permittee – means the Arizona Department of Transportation.

QAM – Quality Assurance Manual

SCOE - Standing Committee on the Environment

SMP – Slope Management Program

SR – State Route

SSC – Suspended Sediment Characteristics

SSWMP – Statewide Stormwater Management Plan – A comprehensive plan for implementation of AZPDES permit requirements.

STORM – STormwater Outreach for Regional Municipalities

Stormwater – Stormwater runoff, snowmelt runoff, and surface runoff and drainage [40 CFR 122.26(b)(13)].

SWAT – Stormwater Action Team

TMDL - Total Maximum Daily Load

TSS – Total Suspended Solids

TDS - Total Dissolved Solids

TKN - Total Kjeldahl Nitrogen

SWPPP – Stormwater Pollution Prevention Plan

SWQS - Surface Water Quality Standard

Waters of the United States – All waters that are currently used, were used in the past, or may be susceptible to use in interstate or foreign commerce, including all waters subject to the ebb and flow of the tide. Waters of the United States include but are not limited to all interstate waters and intrastate lakes, rivers, streams (including intermittent streams), mudflats, sand flats, wetlands, sloughs, prairie potholes, wet meadows, playa lakes, or natural ponds. [See 40 CFR 122.2 for the complete definition.]

EXECUTIVE SUMMARY

The Arizona Department of Transportation (ADOT) is submitting this 2010 Statewide Stormwater Management Program (SSWMP) Annual Report describing activities and programs implemented from July 1, 2009 through June 30, 2010. During this time period ADOT operated under the Arizona Pollutant Discharge Elimination System (AZPDES) Permit No. AZS000018-2008 (Permit). This is the second Annual Report under ADOT's stormwater permit which expires September 18, 2013. The Statewide Permit authorizes ADOT to discharge stormwater, and other discharges as specified, Statewide (except for Indian Country) to Waters of the United States in Arizona in accordance with its terms and conditions. Specifically, the Permit covers:

- Activities associated with the Municipal Separate Storm Sewer System (MS4) operated by ADOT
- Activities associated with construction from the commencement of construction until final stabilization initiated and controlled by ADOT
- Activities associated with industrial and maintenance facilities owned and operated by ADOT

The Annual Report is divided into the following twelve categories: (1) General Information, (2) Annual Report Certification, (3) Narrative Summary of the SSWMP activities, (4) Numeric Summary of SSWMP Activities, (5) Evaluation of the SSWMP, (6) SSWMP Modifications, (7) MS4 Monitoring Location Information, (8) Storm Event Records, (9) Summary of Monitoring Data, (10) Assessment of Monitoring Data, (11) Estimate of Pollutant Loading, and (12) Annual Expenditures. This Annual Report is used by ADOT to assess the performance of its stormwater management program and establish long-term assessment strategies.

GENERAL INFORMATION 1

Permittee Name: Arizona Department of Transportation

Permit Number: <u>AZS000018-2008</u>	Reporting Period: July 1, 2009 - June 30, 2010
Stormwater Management Program Contact: <u>Wendy Terlizzi</u> Title: <u>Water Quality Manager</u>	Name of Certifying Official: <u>Todd G. Williams, M.Sc.</u> Title: <u>Director, Office of Environmental Services</u>
Mailing Address: <u>Arizona Department of Transportation</u> <u>1611 West Jackson Street, MD EM04</u> City: <u>Phoenix, Arizona</u> Zip Code: <u>85007</u>	Mailing Address: Arizona Department of Transportation 1611 West Jackson Street, MD EM04 City: Phoenix, Arizona Zip Code: 85007
Telephone Number: $(602) 712 - 8353$ Fax Number: $(602) 712 - 3492$	Telephone Number: <u>(602) 712 – 8272</u> Fax Number: <u>(602) 712 – 3492</u>
Email Address: <u>WTerlizzi@azdot.gov</u>	Email Address: <u>TGWilliams@azdot.gov</u>

2 **ANNUAL REPORT CERTIFICATION**

I certify under penalty of law, that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Todd G. Williams, M.Sc., Director, OES

12/27/10 Date

3 NARRATIVE SUMMARY OF SSWMP ACTIVITIES

Permit Section 9.1.2(c): Provide a summary of the status of the SSWMP each year, including a brief description of the implementation and progress of every individual best management practice (BMP). Also, provide an explanation of any significant developments or changes to the number or type of activities, the frequency or schedule of activities, or the priorities or procedures for implementation of specific management practices.

ADOT updated its SSWMP in March, 2010 and submitted it to the Arizona Department of Environmental Quality (ADEQ). The SSWMP outlines how ADOT will manage its stormwater discharges throughout the State. The SSWMP includes the following components:

- Description of the best management practices (BMPs) selected, implemented, maintained, and updated to minimize the discharges of pollutants that may contribute to an exceedence of any surface water quality standard
- List of narrative and/or numeric measurable goals for each BMP
- Timeframe by which ADOT will achieve each measurable goal
- Title(s) of the person(s) responsible for implementing and coordinating each measure

As required by Section 9.1.2(c) of the Permit, ADOT has provided a narrative summary of SSWMP activities in this Annual Report. This summary is provided in Appendix A and includes a brief description of the implementation and progress of individual BMPs. The summary indentifies each BMP, its location within the updated SSWMP, and Permit reference if applicable.

3.1 ADOT Technical Documents

Permit Requirement (Appendix B, Part 3): Include a short statement for each of the following documents indicating if a review was completed. Describe any major updates to each document.

ADOT reviews and updates its technical stormwater documents as needed. A status summary of each technical document is provided:

- *Erosion and Pollution Control Manual* This manual is currently being updated in accordance with Permit Section 3.2.2.1(c). Updates included revision of BMP detail drawings and the SWPPP index sheets. A final update to this manual is estimated for completion in February 2011.
- *Maintenance and Facilities Best Management Practices Manual* This manual was updated in September 2010 by ADOT in accordance with Permit Section 3.2.3.1(c). Updates include a description of the selection criteria, design, installation and maintenance of effective BMPs to minimize pollutants in ADOT's non-stormwater discharges.
- *Stormwater Monitoring Guidance Manual for MS4 Activities* This manual had no updates in the last reporting year.
- *Stormwater Monitoring Guidance Manual for Construction Activities* This manual had minor updates within the past reporting year in accordance with Permit Section 8.4.2. Updates included minor changes to the methods and procedures to properly collect and analyze stormwater samples at construction sites.

- *Stormwater Monitoring Guidance Manual for Industrial Activities* This manual had no updates in the last reporting year.
- *Post-Construction Stormwater Control BMP Manual* This manual had no updates in the last reporting year.
- *Quality Assurance Manual (QAM)* This manual had no updates in the last reporting year.
- *Enforcement Response Plan (ERP)* The ERP was updated in June 2010. Updates included clarification of the procedures necessary to enforce the requirements of the Statewide Stormwater Permit.

3.2 Outfall Inspection and Tracking

Permit Section 3.2.3.2(e): ADOT shall document that a system to track and record the findings of outfall inspections, including the conditions of outfalls, potential sources of pollutants, and maintenance needs has been implemented and is being maintained.

ADOT has developed a system to track and record the condition of major outfall. The tracking system consists of an excel spreadsheet maintained by ADOT's Office of Environmental Services (OES) that includes major outfalls as identified in ADOT's *Phase I and Phase II Stormwater System Maps* completed September, 2005 (Appendix B). Categories tracked and recorded for the major outfall inspections include:

- Outfall name
- Date of inspection
- Inspector name
- Receiving water
- Outfall type (pipe, channel, tunnel, culvert)
- Condition of outfall
- Maintenance needs
- Dry weather flows
- Potential sources of pollutants
- Follow up actions required (if any)

ADOT has also initiated a pilot program within the Kingman District to track and record the condition of its stormwater drainage features in the Lake Havasu area. This pilot program is being performed in conjunction with ADOT's development of a Features Inventories System (FIS). The FIS is a geographic information system capable of tracking and maintaining an inventory of ADOT's highway features to include stormwater and other drainage features. The FIS allows for attribute data to be stored and tracked for each feature identified and will be a useful tool in assisting with outfall inspections. It is ADOT's intent to eventually use the FIS throughout the State to track and maintain stormwater features. However, current budget issues have postponed full implementation of the FIS.

3.3 Public Access to Stormwater Documents

Permit Section 3.2.2.3(a): ADOT shall summarize the status of public access to stormwater documents.

ADOT has maintained its online Stormwater Library for use by its employees and the general public during the reporting period. The Stormwater Library is a virtual library that can be accessed via the internet at the following location:

http://www.azdot.gov/Inside_ADOT/OES/Water_Quality/Stormwater/Index.asp.

This library houses documents required by the Permit. Anyone without internet access can also view available documents by contacting OES at (602) 712-8353. The OES Water Quality Group is currently unable to track the number of hits annually to the virtual library. ADOT is in the process of updating the webpage to include software that will track the number of visits per reporting year. However, current budget issues have postponed purchase and install of such tracking software. Documents maintained in the Stormwater Library include:

- Statewide Stormwater Management Plan
- ADOT Statewide Stormwater Permit Application
- Construction SWPPP Template
- Encroachment Documents
- Interactive Maps
- Outstanding, Impaired, and Not Attaining Waters Maps by County
- Phase I & Phase II Stormwater System Maps
- Erosion and Pollution Control Manual/BMP Detail Drawings
- Maintenance and Facilities Best Management Practices Manual
- Post-Construction Best Management Practices Manual
- Stormwater Monitoring Guidance Manual for Construction Activities
- Stormwater Monitoring Guidance Manual for MS4 Activities
- Stormwater Monitoring Guidance Manual for Industrial Activities
- MS4 Permit Annual Reports

3.4 Illicit Discharges

Permit Section 3.2.3.4(d): ADOT shall summarize the status of implementation procedures to track actions taken on illicit discharges and illegal dumping. Develop and implement a procedure to track the action taken on identified illicit discharges and illegal dumping.

ADOT has developed the following enforcement provisions for tracking illicit discharges:

- Written Warning If an inspection of the drainage system identifies an illegal connection/discharge to the ADOT system, ADOT will issue a "Notice of Illegal Discharge and Demand for Corrective Action" letter to the property owner where an illegal connection/discharge is discovered. The letter will request that the connection/discharge be ceased or removed within 30 days. A follow up inspection will be performed to ensure compliance. A Notice of Illegal Discharge or Connection letter is included in Appendix C.
- 2. *Removal of Connection/Discharge* ADOT may remove the illegal connection/discharge if it has not been corrected within 30 days. If ADOT removes the illegal

connection/discharge, the responsible party is subject to an action for damages by the state brought by the attorney general or the county attorney of the county in which the act is committed on direction of the attorney general, pursuant to Arizona Revised Statute (A.R.S.) §28-7053 Misuse of Public Highway.

- *3. Civil Action* If the illegal connection/discharge is not corrected within 30 days, ADOT may forward this matter to the Arizona Office of the Attorney General so that a lawsuit may be filed.
- 4. Other Enforcement Actions Because ADOT is not a typical MS4, such as a city or county, with its own enforcement branch such as police department or sheriff. Without its own enforcement branch, ADOT relies on other jurisdictions for enforcement assistance. ADOT may request the assistance of other government entities to assist with enforcement assistance to include other MS4s, ADEQ and/or the U.S. Environmental Protection Agency (EPA).

Enforcement actions are tracked initially by the inspector/District Environmental Coordinator (DEC) that identifies an illicit discharge. The discharge is documented and includes the source, date/time, photo points, contact person (if any), description of the nature of the non-compliance or illicit discharge, and actions taken. This information is then forwarded to the OES and the action tracked. The OES coordinates/tracks enforcement action or request the assistance of the Attorney General's office.

3.4.1 Illicit Discharges Eliminated

Permit Section 3.2.3.4(b)(ii): ADOT shall report the number of illicit discharges eliminated each year in the Annual Report

ADOT was able to eliminate the one illicit discharge to its drainage system during the past reporting year. The illicit discharge occurred within the Phoenix District and consisted of a facility releasing water into ADOT's drainageway. ADOT issued a Notice of Illegal Discharge and Demand for Corrective Action letter to the facility. The facility complied with ADOT's request and eliminated the discharge immediately.

3.4.2 Illicit Discharges Reported to Other Jurisdictions

Permit Section 3.2.3.4(c)(iii): ADOT shall present the number of illicit discharges reported to other jurisdictions for follow-up in the Annual Report

There have been no illicit discharges identified within the past reporting year that required reporting to other jurisdictions for follow-up.

3.5 Erosion Abatement Projects

Permit Section 3.2.6.2(d): ADOT shall describe the tracking system used to identify, track and prioritize erosion abatement projects. Summarize erosion abatement projects conducted during each year.

ADOT has identified the existing Slope Management Program (SMP) database as a tool to identify, track and prioritize erosion abatement projects. The SMP is a Microsoft ACCESS database that allows ADOT to track and prioritize the severity of rock slopes, soil cuts and embankments throughout the state. However, current State budget cutbacks have postponed the expansion of this database as a viable tool to track erosion issues. Once the program is funded again, ADOT will utilize it in the following manner:

- Field forms will be submitted by District personnel to the SMP database manager
- SMP database manager will review data for consistency prior to entry
- District personnel will be responsible for reviewing the database and ensuring erosion abatement projects are completed according to priority level
- Completed erosion projects will be updated by SMP database manager

3.6 Spills and Other Releases

Permit Section 4.1.5.2(d): ADOT shall document that a system to track and record spills and other releases by ADOT staff and at ADOT maintenance facilities has been established.

ADOT has developed and implemented a system to track and record spills by its staff and spills at maintenance facilities. The system requires ADOT personnel to report non-emergency spills to their respective DEC. Spills requiring an emergency response are reported to the ADOT Safety and Health Section and to the DEC. The DEC documents the following when spills occur:

- Number of spills
- Location
- Date/time
- Extent of the spill
- Media impacted (if any)
- Circumstances of the release
- Names of parties involved
- Corrective actions taken
- Follow up required (if any)

Spill information is forwarded to the OES and assistance provided to the DEC if required. Records are maintained at the facility where a spill or release occurred and at the OES.

3.7 Maintenance Facility SWPPPs

Permit Section 4.2.1.1: ADOT shall document individually that the SWPPP required for each maintenance facility has been updated.

Stormwater Pollution Prevention Plans (SWPPPs) for 18 maintenance facilities have been updated as needed at the following sites:

- Avondale Maintenance Yard
- Broadway Maintenance Yard
- Douglas Maintenance Yard
- Durango Maintenance Yard
- Phoenix Equipment Services
- Flagstaff Maintenance Yard
- Grand Avenue Landscape Maintenance Yard
- Little Antelope Yard
- Mesa Country Club Maintenance Yard
- Mesa Recker Road Maintenance Yard
- Nogales Maintenance Yard
- North Phoenix Maintenance Yard
- Prescott Valley Maintenance Yard
- Statewide Striping Facility

- Superior Maintenance Yard
- Superior Storage and Fuel Yard
- Tucson Grant Road Maintenance Yard
- Yuma Maintenance Yard

SWPPPs are currently being developed for the Cordes Junction Maintenance Yard and the Camp Verde Maintenance Yard. These two facilities have discharges into a local MS4 and SWPPPs are being developed to ensure proper BMPs are being implemented.

3.8 Construction Site Issues

Permit Section 5.3.4: A list and description of all violations ADOT has determined at construction sites and their resolution, including any enforcement actions taken against ADOT contractors.

3.8.1 Construction Site Tracking System

ADOT is currently developing a system to adequately identify, track, and resolve violations at construction sites. Current State budget issues are restricting ADOT from fully developing and implementing this program. Once funded, the tracking will include the following elements:

- Track construction sites to include inspections and enforcement
- Prioritize sites for inspection based on risk to waterway, resources, and operator history
- Resolve violations as needed

3.8.2 Construction Violations

Two Notices of Violation (NOV) received from ADEQ in 2009 for construction remain open. These two NOVs are associated with the State Route (SR) 179 Village of Oak Creek to Sedona construction project. A summary of each NOV is provided:

- On March 4, 2009 ADOT received a NOV for two alleged violations: (1) failure to conduct stormwater monitoring during a storm event that caused a run-off discharge into Oak Creek; and (2) failure to identify within the SWPPP a sewage spill that occurred at a manhole along SR179 and not identifying BMPs in the SWPPP to reduce or eliminate non-stormwater discharges. ADOT responded to the ADEQ concerning this NOV on March 13, 2009 and followed up on March 23, 2009.
- On March 24, 2009 ADOT received a NOV for two alleged violations: (1) Unauthorized construction site discharge; and (2) ADOT did not provide a SWPPP to the ADEQ for the project. ADOT responded in writing to the ADEQ on March 27, 2009. A meeting was held between ADOT and ADEQ on April 15, 2009 to discuss this NOV. ADOT formally responded to ADEQ on April 24, 2009.

ADOT is currently awaiting a response from the ADEQ and fully expects both NOVs to be closed with no further action required.

3.9 Industrial Facilities

Permit Section 6.6.2 & 6.7.2: Provide a brief statement documenting that the SWPPPs for Grand Canyon National Park Airport and Durango Sign Factor were updated and on-site within 90 days of the effective date of the permit.

ADOT industrial facilities include the Grand Canyon Airport, Durango Sign Factory and the former Print Shop. These facilities are discussed below.

3.9.1 SWPPP Update

The SWPPP for the Grand Canyon National Park Airport and the Durango Sign Factory have been updated within the past reporting year and are on-site at each facility. Additionally, personnel at each facility have been trained on SWPPP requirements and procedures.

3.9.2 No Exposure Certification

Permit Requirement Section 6.9.2: Confirm the Print Shop has "no exposure" to stormwater

Printing activities at the ADOT Print Shop (1655 W. Jackson Street, Phoenix, AZ) have been discontinued and the facility is no longer in operation. ADOT requests this reporting requirement be removed from the Permit.

3.10 Material Sources

Permit Section 6.8.3: Provide a map of material sources and provide a status summary of each site.

ADOT's Materials Group maintains an inventory of regulated material sources and stockpile sites in accordance with Permit Section 6.8.3. These sites are classified into the following four categories:

- Group A Active Sites
- Group B Inactive Sites
- Group C Reclaimed Sites
- Group I Non-mining Sites

A Material Sources Site Map identifying the locations of these four groups is provided in Appendix D. The following section summarizes the status of each group and additional detail for ADOT material sources is provided in Appendix E.

3.10.1 Active Sites – Group A

Permit Section 6.8.3: Provide a status summary of each site.

Group A includes active sites where extraction, processing, removal or recovery of minerals is being conducted. This group may also include a site or portion of site where mining is inactive and the facility may or may not be covered by a mining permit issued by the landowner(s), applicable State, or Federal agency. ADOT currently has 18 sites in Group A which has been subdivided into the following two groups:

- *Group A1* Sources expected to be used annually with inspections conducted quarterly
- *Group A2* Sources used less than annually with inspections conducted annually

The reason for subdividing Group A is due to allocation of resources, reduction in State budget travel, and to ensure that sites used at least annually are evaluated for compliance. Facilities within Group A1 are typically used by ADOT Maintenance and are identified below in Table-1. Those facilities designated as Group A2 are typically used by ADOT Construction and identified in Table-2.

L L L L L L L L L L L L L L L L L L L							
Material Sources To Be Used Annually with Quarterly Inspections							
Site No.	Source Name	District	County				
1563	Pole Knoll	Globe	Apache				
5154	JMP Ranches Inc.	Globe	Apache				
8109	BVD	Holbrook	Coconino				
7810	Crabtree	Safford	Greenlee				
6662	Val Vista	Tucson	Pinal				
1662	Tanner	Yuma	Yuma				
3547	Gila Bend North	Yuma	Maricopa				

Table 1 - Group A1 Sites

|--|

Material Sources To Be Used Less than with Annually Inspections								
Site No.	Source Name	District	County					
8135	Warm Springs	Globe	Apache					
8706	Yucca	Kingman	Mohave					
8569	Dugas	Prescott	Yavapai					
2507	San Jose Wash	Safford	Graham					
6022	Bowie	Safford	Cochise					
8595	Fort Thomas	Safford	Graham					
2979	Vicksburg	Yuma	La Paz					
3543	Tiger Wash East	Yuma	Maricopa					
5474	YPG	Yuma	Yuma					
5643	Gila Bend South	Yuma	Maricopa					
8268	Tiger Wash West	Yuma	Maricopa					

Several of the sites in Group A2 are currently licensed to ADOT for mining and have been used only once in the past 10 years. Additionally, three of the sites in group A2 have never been developed. It is important to note when the sites in Group A2 are utilized for project needs, the contractor applies for AZPDES coverage under the Construction General Permit, maintains applicable documentation, implements and maintains BMPs, and provides interim stabilization at the site. Sites not covered under an active license have been moved to Group B, inactive sites.

3.10.2 Inactive Sites – Group B

Permit Section 6.8.4.1(f)(ii): In the first Annual Report, present a list of all abandoned material source sites (unreclaimed sites where final stabilization was never completed), accompanied by a four year schedule to reclaim or utilize all Group B sites statewide.

Group B includes sites or portions of sites where mining occurred in the past but is no longer active. Inactive sites will remain in this group until they can be reclaimed, at which time they will be moved to Group C. ADOT currently has 10 sites in Group B as identified in Table-3. As required by Permit Section 6.8.4.1(f)(ii)(1), a schedule is provided to reclaim or utilize Group B sites within the term of the Permit. ADOT is currently evaluating whether Group B sites with expired permits will be renewed or if reclamation will be initiated.

				Reclamation Schedule			
Site No.	District	County	Closure	Year 2 Year 3 Year 4		Year 4	Year 5
3043	Globe	Gila	No		Permit Renewal		
3044	Globe	Gila	No		Permit Renewal		
3512	Globe	Maricopa	No		Permit Renewal		
7225	Globe	Gila	No		Permit Renewal		
8763	Globe	Maricopa	No		Permit Renewal		
6125	Holbrook	Apache	Yes		To Be Sold		
8318	Holbrook	Navajo	Yes		Receive Closeout Letter		
6451	Safford	Graham	Yes		Further Evaluation		
1318	Tucson	Pima	Yes		Reclamation Plan	Initiate/Achieve Stabilization Close	
478	Yuma	Yuma	Yes		Further Evaluation		

Table 3 - Reclamation or Utilization Schedule for Group B	B Sites
---	----------------

ADOT does not have legal access to seven of the ten sites and therefore annual inspections have not been conducted. Additionally, these seven sites are not exclusive to ADOT and may be authorized for use by third parties. Likewise, implementation or maintenance of BMPs can not be verified until ADOT has been authorized to access the property.

Five sites are being considered for renewal and ADOT is completing the applicable clearances under the National Environmental Policy Act (NEPA). The ADEQ was notified of ADOT's intent to renew these permits during the scoping process in 2009. The other five are being evaluated for disposal and/or reclamation. A site no longer being used will remain in this group until the site can be reclaimed.

Other sites on the inventory that may be reclaimed and released to the land manager are listed in Group I. These sites were not used for mining and as a result do not fit into the definition for Group B. However, similar to sites in Group B, reclamation or disposal is anticipated to commence during the permit term (see Section 3.10.4).

3.10.3 Reclaimed Sites – Group C

Group C includes sites where activities are being conducted to return the land to its pre-mining condition. ADOT has five sites in Group C as identified in Table 4.

			Reclamation Schedule			
Site No.	District	County	Year 2	Year 2 Year 3 Year		
			Undergoing	Achieve		
769	Flagstaff	Coconino	Reclamation	Stabilization/Close		
3577	Flagstaff	Coconino	Released			
5585	Flagstaff	Coconino	Released			
7101	Flagstaff	Coconino	Released			
8223	Safford	Greenlee	Reclaimed	Obtain Closeout Letter		

Table 4 - Group C Reclamation Schedule

Site number 3577 was removed from Group B in 2009 due to the land owner releasing ADOT without requiring reclamation. Site number 8223 is awaiting closeout letter prior to identifying this site as reclaimed. Once a site is reclaimed, it will be removed from the Group C list.

3.10.4 Non-Mining Sites – Group I

Group I includes non-mining sites used for stockpiling of materials. ADOT currently has eight sites in Group I as identified in Table 5. These are sites that ADOT Materials Group administers and is a subset of stockpile sites throughout the state. Other stockpile sites are located in the State, however they are not covered under Permit Section 6.8. These other stockpiles may be covered under Permit Sections 4.0 or 5.0.

				Reclamation Schedule			
Site No.	District	County	Closure	Year 2	Year 3	Year 4	Year 5
1546	Globe	Navajo	No	-	Renewal		
2330	Kingman	Mohave	Yes				-
3486	Phoenix	Maricopa	Yes				
3562	Flagstaff	Coconino	Yes		Reclamation Plan	Initiate/Achieve Stabilization	Close
7525	Globe	Pinal	No		Permit Renewal		
8400	Phoenix	Gila	No		Permit Renewal		
8541	Globe	Gila	No		Permit Renewal		
8629	Globe	Gila	Yes		Reclamation Plan	Initiate/Achieve Stabilization	Close

Table 5 - Non-mining Sites

The above table includes only those sites administered by ADOT's Materials Group. Two sites on this table are located on lands managed by the Forest Service and will require authorization to conduct reclamation. Site number 3562 has recently been identified by ADOT for reclamation and will be evaluated with the land manager. Site number 8629 is currently being evaluated under NEPA in support of a Special Use Permit to conduct the reclamation activities. Site numbers 2330 and 3486 are ADOT-owned parcels of vacant land and will be transferred to ADOT Property Management for future administration. Site number 1546 will be evaluated for permit renewal during year 3 of the Permit.

3.10.5 Inspection of Material Sources

Permit Section 6.8.4.2: ADOT shall create a summary for each Annual Report of all inspections conducted. The summary shall include the inspection findings, deficiencies, and corrections made to each site.

Group A, B, C and I sites were inspected during the reporting period. Documentation for these inspections are available at 1221 North 21st Avenue, Phoenix, Arizona or at the applicable ADOT District office. Table 6 below summarizes the inspection findings, deficiencies, and corrective actions for the non-compliant sites. It is anticipated that corrective action will commence in Permit Year 3.

Table 6 - Summary of Inspection Findings, Deficiencies, and Corrective Actions

	Site No. & Name	Findings	Deficiencies	Corrective Action
	Name	i manigo	No sediment control	Remains uncorrected due to third party use of
		Sediment	measures around stockpiled material. Run-	adjacent land. Consider moving stockpiles to interior of pit; installing silt fence or other
	1662	discharge at	on from adjacent use	sediment control device along wash; work with
	Tanner	of boundary.	drainage.	adjacent permittee, as needed, to control run-on.
		j		Increase storage capacity of retention basin.
			Retention basin	Install velocity reduction measures, such as
		Sediment	Inadequately sized; no	slope roughening. Maintain drainage channels to
	3043 -	discharge along	blown out berm and	corrected until ADOT receives permission from
	Squaw Peak	eastern boundary.	ditch.	the Forest Service to enter the property.
	0500	Sediment	Berm along west side	
	3562 - Beaver	discharge at haul	needs maintenance;	ADOT will be peroviating reclamation and
	Creek	boundary.	along haul road.	closure of this site with the Forest Service.
		Sediment	Check dams too few and	Corrected between January and April 2010.
	3591 –	discharge at haul	too small for flow velocity	Reconstructed check dams and relocated highly
	Carol Spring	road.	and slope aspect.	mobile material.
		addregate	Ditch and berm that	ADOT is negotiating a permit modification to
		discharge along	convey sheet flow to a	move all materials into the existing pit and
	5781 – Blue	southwestern	retention basin have not	perform reclamation of the southern half of the
	Grade	boundary.	been maintained.	Site.
		Sediment and		control devices in ditches, or eliminate
		aggregate		impervious areas. May not be corrected until
	7525 –	discharge along	Berm not maintained; no	ADOT receives permission from the Forest
	Defiance	western boundary.	velocity control devices.	Service to enter the property.
		discharge at	Retention basin and	Increase capacity of retention basin: maintain
		southeastern	velocity reduction need to	check dams, ditches, and berms; eliminate
	8109 – BVD	boundary.	be improved.	impervious areas; roughen slopes.
		Sediment		
	8268 – Tiger	side processing		Reconstruct and maintain berm: convey sheet
	Wash West	area.	Berm breached.	flows to pit; implement ditch and check dams.
				Need to install silt fence or riprap-lined swale.
	8400	Sediment	No opdiment control	May not be corrected until ADOT receives
	6400 – Sunflower	side	devices	property
	Curnicwei	5100.		Install sediment basin at south end; perform
				slope roughening; add check dams along haul
	0544 Dad	Sediment	No codiment hosis to	road. May not be corrected until ADOT receives
	8541 – Rea Bluff	discharge at haui	no sediment basin to	property
ļ	Didil	1000.		Calculate appropriate configuration of retention
ļ				basin according to drainage area; divert run-on;
ļ	0700 51	Sediment	Retention basin	perform routine maintenance on BMPs. May not
ļ	8763 – Fish Creek	discharge at haul	inadequately sized; run-	be corrected until ADOT receives permission
I	OIGER	ioau.	on could be diverted.	I nom the rolest dervice to enter the property.

* To the extent practicable, any off-site discharges will be collected and placed within the permitted boundary

4 NUMERIC SUMMARY OF SSWMP ACTIVITIES

Permit Appendix B, Part 4: Provide a numeric summary of BMPs and activities performed each year.

A numeric summary of BMPs and activities performed by ADOT during the reporting year is provided in Appendix F. The progress of BMPs without a numerical goal is described in Section 3, Narrative Summary of SSWMP Activities.

5 EVALUATION OF THE SSWMP

Permit Section 3.1.5: Provide an evaluation of the progress and success of the SSWMP each year, including an assessment of the effectiveness of stormwater management practices in reducing the discharge of pollutants to and from the municipal storm sewer system.

An evaluation of ADOT's SSWMP has been conducted utilizing EPA's January 2008 guidance entitled *Evaluating the Effectiveness of Municipal Stormwater Programs*. This guidance provides a set of methods to assess the success of a stormwater management program. The three EPA recommended approaches to evaluate program effectiveness were used:

- Assessing of program operations
- Evaluating social indicators
- Monitoring water quality

5.1 Assessment of Program Operations

The purpose of assessing ADOT's program operation and activities is to verify basic compliance with its Permit and document that tangible efforts have been made to reduce impacts to stormwater. The following progress has been made to its program within the past reporting year:

Update of the SSWMP

ADOT completed an update to its SSWMP in March, 2010. The update consisted of restructuring the previous SSWMP and documenting current ADOT practices to comply with Permit requirements. Basic information, such as program administration and program management, was largely carried over from the 2005 SSWMP; however, one major section Chapter III: Goals, was removed in the 2010 update. Goals had been established for a wide range of areas and activities (such as design, construction, outfalls, training, etc) in an effort to define the stormwater program. These goals included specific measurable tasks, a timeline for completion, and identified the applicable Stormwater Action Team (SWAT) to oversee goal progress and execution. The 2010 update removed the "goal" concept and added the following new sections in accordance with the new MS4 Permit: Stormwater Documents (Stormwater Library), BMPs, Monitoring, and Reporting.

Section 4.0 of the updated SSWMP discusses BMPs and outlines practices in the following areas: training, public outreach and involvement, illicit discharge detection and elimination (IDDE) measures, measures to control discharges from construction and land disturbances, and measures to control discharges from roadways. Section 5.0 Monitoring, details protocols for discharges to impaired or outstanding waters, industrial facilities, and wet weather monitoring. Section 6.0 Reporting, describes the requirements for annual reporting, discharge of pollutants above water quality standards, and other planned reporting.

Guidance Manuals

ADOT updated the following number of guidance manuals during the reporting year:

- 3 guidance manuals have been updated
- 1 guidance manual is currently being updated

BMP Tracking

ADOT tracked the following BMPs:

- 17 trainings were offered to ADOT employees specifically on stormwater issues (increase from 7 in 2009)
- 129 contractors were trained and certified in erosion control
- 119 miles of drainage canals, and approximately 5,500 roadway (lane) miles and associated storm drains, catch basin, outfall structures, and basins were inspected within the Phoenix metropolitan area
- 1 illicit discharge was identified and removed
- 18 SWPPPs for ADOT facilities were updated periodically

5.2 Assessment of Social Indicators

The assessment of social indicators is an important element which tracks knowledge and awareness. It is also an important tool in tracking behavioral changes. The following social indicators were tracked:

- 1,609 participants assisted with the Adopt-a-Highway Litter Initiative (AHLI) (decrease from 1,835 in 2009)
- 2,026 miles of highway were cleaned by AHLI volunteers (decrease from 2,291 in 2009)
- 211 tons of trash were removed from ADOT highways by AHLI volunteers (decrease from 246 in 2009)
- 2,864 calls were received through the Litter Hotline (decrease from 3,389 in 2009)
- 65 public events were attended by ADOT and educational materials displayed (increase from 5 in 2009)
- 6,129 stormwater educational materials were distributed (increase from 2,600 in 2009)

ADOT is also actively involved in four separate stormwater groups as summarized below:

- <u>STormwater Outreach for Regional Municipalities (STORM)</u> Is a regional organization promoting stormwater quality education within the greater Phoenix metropolitan area. STORM was founded in 2002, in response to federal regulations requiring certain municipalities to implement measures to educate the public on ways to protect the quality of stormwater runoff. STORM educates the public on ways to keep pollutants out of the storm drain system by advertising on radio, television, theater ads, website (www.azstorm.org), and public events.
- <u>Northern Arizona Stormwater Pollution Alliance (NASPA)</u> Is a northern Arizona regional stormwater group consisting of nine regulated MS4s. NASPA was established in 2008 to open dialogue amongst the MS4s and address stormwater issues unique to the region.
- <u>Pima Association of Governments (PAG) Stormwater Management Working Group</u> Is a southern Arizona regional group that conducts stormwater outreach activities on behalf of PAG members, which are represented on the Stormwater Management Working Group. Members of the Working Group also include representatives from the building and

construction industry, state government, the University of Arizona and Davis Monthan Air Force Base.

American Association of State Highway Transportation Officials (AASHTO) - Is a • national organization that advocates transportation-related policies and provides technical services to support states in their efforts to efficiently and safely move people and goods. ADOT is a member of AASHTOs Standing Committee on the Environment (SCOE). The SCOE committee monitors federal environmental laws, regulations, procedures and guidance related to air quality, cultural resources, environmental process, and natural systems and ecological communities. As a member of SCOE, ADOT participated in the 2010 National Stormwater Peer Exchange and Practitioners Meeting. The meeting brought together state transportation departments, regulators (including EPA), and research and technology experts from across the country in a collaborative environment. The purpose of the meeting was to increase stormwater understanding nationwide by learning from each other through collaboration, gaining insight from regulators and officials, increasing knowledge as to current research and new technologies and sharing information at all levels. ADOT viewed this meeting as a unique opportunity to understands and collaborate with others on a national level to address water quality issues. ADOT plans to attend future meeting of this SCOE subgroup.

5.3 Monitoring Water Quality

ADOT conducted a comprehensive stormwater quality monitoring program throughout the reporting year to include:

- 2 MS4 sites monitored (Phoenix and Tucson)
- 3 maintenance yards monitored near impaired waterways (Nogales and Superior)
- 3 construction sites monitored at outstanding/impaired waterway (Sedona, Tucson, and Heber)
- 1 industrial facility monitored (Phoenix)

Monitoring included physical, chemical and biological dimensions of water quality. As a result, ADOT identified two sampling events in both the Phoenix and Tucson MS4 with exceedances above the Arizona Surface Water Quality Standard (SWQS). The Phoenix MS4 had exceedances for total zinc and TDS and the Tucson MS4 had two separate exceedances for TDS. These exceedances may be attributed to the long period between storm events from the winter to the summer sampling season. Approximately seven months elapsed between these two sampling events at both MS4 sampling locations. This could allow for buildup of pollutants within each contributing drainage basin. Additionally, zinc is a component of disc brakes and the increase in stop-and-go traffic within each sampling area due to construction activities may have added brake dust to the roadway and increased total zinc in the sampling. The BMPs within the Phoenix and Tucson MS4 area will be reviewed and appropriate actions taken as the State budget allows.

6 SSWMP MODIFICATIONS

Permit Section 3.1.6: Provide a description of modifications to the SSWMP each year:

ADOT completed an update to its SSWMP in March 2010 in accordance with Permit Section 3.1.3.4. The update consisted of re-structuring the SSWMP and documenting current ADOT practices. Basic information, such as program administration and program management, was largely carried over from the 2005 SSWMP; however, one major section Chapter III: Goals, was

removed in the 2010 re-write. Goals had been established for a wide range of areas and activities (such as design, construction, outfalls, training, etc) in an effort to define the Stormwater Program. These goals included specific measurable tasks, a timeline for completion, and identified the applicable SWAT to oversee goal progress and execution. The 2010 revision discontinued with the "goals" concept and added the following new sections in accordance with the new MS4 Permit: Stormwater Documents (Stormwater Library), BMPs, Monitoring, and Reporting.

Section 4.0 BMPs, outlines practices in the following areas: training, public outreach and involvement, IDDE measures, measures to control discharges from construction and land disturbances, and measures to control discharges from roadways. Section 5.0 Monitoring, details protocols for discharges to impaired or outstanding waters, industrial facilities, and wet weather monitoring. Section 6.0 Reporting, describes the requirements for annual reporting, discharge of pollutants above water quality standards, and other planned reporting.

6.1 Addition of New BMPs

Permit Section 3.1.6: Summarize the development and implementation of any new stormwater management practices or pollution controls each year.

ADOT has not developed or implemented any new BMPs during the reporting period.

6.2 Temporary or Experimental BMPs

Permit Section 3.1.6: Describe the initiation and cessation of such BMPs and the perceived success of the temporary or experimental stormwater control.

ADOT has not instituted any temporary or experimental BMPs during the reporting period.

6.3 Increase of Existing BMPs

Permit Section 3.1.6: Summarize modifications to existing stormwater management practices that increase the number of activities, increase the frequency of activities, or other increases in the level of implementation.

ADOT reports that no current BMPs have been modified that would cause an increase in the number of activities, increase the frequency of activities, or otherwise cause an increases in the level of implementation during the reporting period.

6.4 Replacement of Existing BMPs

Permit Section 3.1.6: Describe modifications to replace an ineffective stormwater management practice with an alternate practice by demonstrating that the change will continue to achieve an equivalent reduction in pollutants and will not cause or contribute to a violation of any applicable water quality standard.

ADOT has not modified or replaced any of its current BMPs during the reporting period.

7 MONITORING LOCATION INFORMATION

Permit Appendix B, Part 4: Provide a brief description of each stormwater monitoring location (outfall), including the following information: 1. The outfall identification number or name; 2. Address or physical location of the site, including the latitude and longitude of the outfall; 3. Size of outfall's drainage area; 4. Land use(s) with an estimated percentage of each use; 5. Name and description of the receiving water; and 6. Type of monitoring equipment used.

7.1 Existing Monitoring Locations

ADOT has conducted stormwater monitoring during the reporting period in accordance with Permit Section 8.7.2.1 at its two existing MS4 monitoring locations. Site maps for the two current monitoring locations are provided in Appendix G and are identified in Table 7:

Outfall Name	Physical Location	Approximate Drainage Area	Land Use	Receiving Water / Designated Use	Monitoring Equipment
32 nd Street & Loop202	Northeast quadrant of 32 nd Street and Loop 202 within retention basin Latitude: Longitude:	3.7 Acres	Urban Highway & ADOT facility	Retention Basin / No designated Use	Nalgene® Stormwater Sampler
I-10 and Grant Rd Maintenance Yard	Tucson: I-10 & Grant Rd, within Grant Rd. Maintenance Yard Latitude: 32°15'17.19"N Longitude: 110°59'49.39"W	4.8 Acres	Urban Highway & ADOT facility	Santa Cruz / A&Wedw PBC	Nalgene® Stormwater Sampler

Fable 7: ADOT's	Existing MS4	4 Monitoring	Locations

A&Wedw – Aquatic and Wildlife (effluent-dependent water)

PBC – Partial Body Contact

Stormwater sampling will be conducted at these two locations until ADOT has installed automated samplers at five new locations approved by the ADEQ.

7.2 Proposed Monitoring Locations

ADOT has identified five stormwater monitoring locations as required by Permit Section 8.7.2.1(a). This section requires the current Phoenix monitoring location be replaced with one that discharges directly to a water of the U.S. In addition, ADOT is required to monitor at the established Tucson monitoring location and select three additional monitoring locations (for a total of five). The following considerations were also required for selecting the additional sampling locations:

- Selected outfalls shall discharge to a water of the U.S.
- Selected outfall shall represent various drainage areas and land uses
- Outfalls that discharge directly to an impaired water shall be selected for monitoring
- Outfalls that discharge directly to a outstanding water shall be selected for monitoring

Using these parameters, ADOT identified the following five stormwater monitoring locations:

Outfall Name	Physical Location	Approximate Drainage Area	Land Use	Receiving Water / Designated Use	Monitoring Equipment
B40-196.14	Flagstaff: South side of intersection at Business 40 and SR180	29.30 Acres	Rural Highway (80%) &	Rio de Flag / A&Wedw	ISCO Avalanche Full-Size
	Latitude: 35°11'53.39"N Longitude: 111°39'05.48"W		Streets (20%)	PBC	Portable Sampler
101-13.68	Peoria: Loop 101 Latitude: 33°37'19.84"N Longitude: 112°14'21.61"W	17.5 Acres	Urban Highway (90%) & Commercial Streets (10%)	Skunk Creek / None	ISCO 6712 Full-Size Portable Sampler
82.0.57	Nogales: Intersect of I19 and SR82 in NE quadrant	59.5 Acres	Urban Highway (80%) & Residential Streets (20%)	Nogales Wash (Impaired waterway) /	ISCO 6712 Full-Size
	Latitude: 31°21'02.10"N Longitude: 110°55'24.48"W			A&Ww PBC	Portable Sampler
179-313.3	Sedona: At SR179 bridge over Oak Creek	7 35 Acres	State Rout/Business Route (90%) &	Oak Creek (Outstanding waterway) /	ISCO Avalanche Full-Size
	Latitude: 34°51'43.93"N Longitude: 111°45'42.68"W	1.00 / 0100	Commercial (10%)	A&Wc FBC, FC, AgL	Portable Sampler
10-255.8	Tucson: I-10 & Grant Rd, within Grant Rd. Maintenance Yard	4.8 Acres	Urban Highway (90%) & ADOT	Santa Cruz / A&Wedw	ISCO 6712 Full-Size
	Latitude: 32°15'17.19"N Longitude: 110°59'49.39"W	water) Ei	Facility (10%)	PBC	Portable Sampler

Table 8: ADOT Stormwater	Monitoring Locations
--------------------------	-----------------------------

A&Ww – Aquatic and Wildlife warmwater A&Wc - Aquatic and Wildlife coldwater

FC – Fish consumption PBC - Partial Body Contact

AgL – Agricultural Livestock Watering

Site maps of each proposed MS4 monitoring location is provided in Appendix H and information concerning the ISCO stormwater monitoring equipment is included in Appendix I. ADOT received partial approval from ADEQ of these five locations during the reporting year and recently received approval of a fifth location. ADOT is currently completing encroachment permitting for these five sites and expects installation of automated stormwater sampling equipment in early 2011.

8 STORM EVENT RECORDS

Permit Requirement: For each MS4 outfall monitoring location, provide a summary of all subsequent representative storm events necessary to collect at least one representative stormwater sample (greater than 0.1 inch rainfall) occurring within the reporting period, including the date of each event, the amount of precipitation (inches) for each event, and whether a sample was collected, or if not collected, information on the conditions that prevented sampling.

ADOT has maintained records for representative storm events that occurred within the area of existing MS4 sampling location within Phoenix and Tucson during the reporting year. As defined in Permit Section 8.7.2.2(a), a representative storm event is a rainfall in the amount of 0.10 inches or more for each sampling season. The sampling season includes the summer (June 1 - October 31) and winter (November 1 – May 31). Information on storm events and sample collection is provided in Table 9 and Table 10. If a sample was not collected for a given storm event an explanation is provided within each table.

Phoenix MS4 Location							
Win	ter Rain Ever	nts		Sumr	Summer Rain Events		
Date	Outcome	Rainfall (inches)		Date	Outcome	Rainfall (inches)	
12/8/2009	NS	0.37		7/21/2009	SC	0.55	
12/23/2009	NS	0.2		8/13/2009	NS	0.29	
1/18/2010	NS	1.01		9/5/2009	NS	0.42	
1/23/2010	NS	1.26		NE	NE	NE	
2/20/2010	NS	0.35		NE	NE	NE	
3/1/2010	SC	0.23		NE	NE	NE	
3/8/2010	NS	0.36		NE	NE	NE	
3/22/2010	NS	0.32		NE	NE	NE	

Table 9 – Phoenix MS4 Storm Event Records

SC - Sample Collected; NS - No Sample Collected; NE - No Event

Tucson MS4 Location						
Win	ter Rain Ever	nts		Summer Rain Events		
Date	Outcome	Rainfall (inches)		Date	Outcome	Rainfall (inches)
12/7/2009	NS	0.21		6/30/2009	SC*	0.10
12/23/2009	NS	0.39		7/2/2009	NS	1.02
12/20/2009	NS	0.54		7/8/2009	NS	0.45
1/27/2010	NS	0.14		7/16/2009	NS	0.11
3/8/2010	NS	0.4		8/21/2009	NS	0.32
4/23/2010	SC	0.13		9/7/2009	NS	0.21

SC - Sample Collected; NS - No Sample Collected

9 SUMMARY OF MONITORING DATA

Permit Requirement (Appendix B, Part 9): Provide the outfall identification number, the receiving water, designated uses, and the lowest surface water quality standards applicable to the receiving water. Enter the analytical results for the stormwater samples collected for each season of the reporting period for each year. Include, as an attachment, the laboratory reports for stormwater samples.

A summary of stormwater monitoring data in tabular form for each MS4 location is provided in Appendix J. Monitoring data includes the locations, outfall identifier, receiving waters, designated water use, sampling season, monitoring parameters, water quality standards and sampling data for each location. Samples were collected during each season to include the summer and winter. Laboratory reports for each storm event sampled are located in Appendix K.

ADOT's Phoenix Area MS4

Stormwater samples were collected at ADOT's Phoenix MS4 location during the winter and summer season on the following dates

- July 21, 2009 (summer season)
- February 28, 2010 (winter season)

ADOT's Tucson Area MS4

Stormwater samples were collected at ADOT's Grant Yard in Tucson, AZ during the winter and summer season on the following dates:

- June 30, 2009 (summer season)
- April 23, 2010 (winter season)

No adverse conditions occurred that prevented the sampling of stormwater discharges from either MS4 sampling location. Sampling during the summer season for the Phoenix MS4 sampling location was completed on June 30, 2009. This data was reported in the previous annual report. However, because ADOT had completed MS4 sampling within the Phoenix area for the 2009 summer season, no other data was available for this reporting period. Therefore, data collected from the June 30, 2009 event is being presented in this reporting year.

10 ASSESSMENT OF MONITORING RESULTS

10.1 MS4 Results

ADOT conducted stormwater monitoring for its MS4 at two locations within the Phoenix and Tucson area during the reporting year. Data associated with stormwater monitoring from these two locations is presented in this section. As previously described in Section 7.2, ADOT had proposed five stormwater sampling locations in the previous reporting year and received approval of four locations by the ADEQ. ADOT has recently received approval of a fifth location and is currently completing encroachment permitting of those sites. ADOT expects installation of automated stormwater sampling equipment at these five locations in early 2011.

10.1.1 Stormwater Quality

Permit Requirement (Appendix B, Part 11.A): Provide an evaluation of the sampling results for each outfall monitoring location, including an assessment of any trends, improvements, or degradation of stormwater quality from each drainage area. Discuss possible explanations for stormwater quality trends, including the implementation of stormwater management practices to reduce the discharge of pollutants to and from the storm sewer system.

ADOT conducted stormwater quality sampling within the Phoenix and Tucson area. This is the second reporting year for the required set of parameters. A discussion of the Phoenix and Tucson MS4 sampling data is provided below.

ADOT's Phoenix Sampling Location – Stormwater results were obtained for the winter and summer season during the past reporting period. A summary of the sampling results is provided in Table 11.

Parameter	Winter Season Sample Date: 2/28/10 (mg/L)	Summer Season Sample Date 7/21/09 (mg/L)	SWQS (mg/L)
BOD	<5.0	40	NNS
COD	70	350	NNS
TSS	76	NA	NNS
TDS	97	720	500
Total Nitrogen	1.12	4.77	NNS
TKN	1.5	12	NNS
Total Phosphorous	0.25	1.1	NNS
Antimony (T)	< 0.020	0.0037	0.006
Arsenic (T)	< 0.020	0.0064	0.050
Barium (T)	0.074	0.14	2.0
Copper (T)	< 0.020	0.073	1.3
Lead (T)	0.0064	0.006	0.015
Zinc (T)	4.7	0.14	2.10
Total Petroleum Hydrocarbons	0.32	2.7	NNS
Ethylbenzene	< 0.010	<0.00050	0.0050
Total Xylene	< 0.0030	<0.0015	10.0

NNS – No Numerical Standard T – Total NA – Not Analyzed SWQS – Surface Water Quality Standard

BOD – Biological Oxygen Demand COD – Chemical Oxygen Demand TSS – Total Suspended Solids TDS – Total Dissolved Solids TKN – Total Kjeldahl Nitrogen

As indicated in the table, Total Dissolved Solids (TDS) and total zinc (bolded) exceeded their applicable SWQS during the sampling event conducted.

ADOT's Tucson Sampling Location - Stormwater results were obtained for both the winter and summer season at the Tucson MS4 sampling location. Table 12 results indicate a slight increase between the winter and summer season. This may be due to the Tucson area having more rainfall events within the drainage basin and pollutants not having enough time to buildup their concentration levels.

Parameter	Winter Season Sample Date: 4/23/10 (mg/L)	Summer Season 6/30/09 (mg/L)	SWQS (mg/L)
BOD	90	44	NNS
COD	490	640	NNS
TSS	130	160	NNS
TDS	910	680	500
Total Nitrogen	7.3	7.01*	NNS
TKN	7.8	14	NNS
Total Phosphorous	0.58	0.36	NNS
Antimony (T)	<0.20	0.0046	0.006
Arsenic (T)	<0.040	0.0030	0.050
Barium (T)	0.20	0.20	2.0
Copper (T)	0.13	0.033	1.3
Lead (T)	<0.040	<0.0050	0.015
Zinc (T)	0.41	0.18	2.10
Total Petroleum			
Hydrocarbons	24	<6.7	NNS
Ethylbenzene	<0.50	<0.00050	0.700
Total Xylene	<1.50	<0.0015	10.0

 Table 12 – ADOT's Tucson Area MS4 Sampling Results

NNS – No Numerical Standard SWQS – Surface Water Quality Standard

T – Total

As indicated in the table, TDS (bolded) exceeded its applicable SWQS during both sampling events conducted at the Tucson MS4 sampling location.

10.1.2 Water Quality Standards

Permit Requirement (Appendix B, Part 11.B): Compare the sampling results for each outfall monitoring location with the applicable surface water quality standards for the receiving water. Provide an assessment of stormwater quality relative to water quality standards, including the progress towards reducing the discharge of pollutants to the maximum extent practicable and protecting receiving water quality.

MS4 stormwater sampling results were compared to applicable SWQS as identified in Table 11 and Table 12. The results indicate TDS exceed its applicable SWQS during both the summer sampling events in the Tucson MS4 area and the summer event in the Phoenix MS4 area. Additionally, results indicate that total zinc was exceeded in the winter sampling event at the Phoenix MS4 location. ADOT is reviewing its BMP within these two areas to determine an appropriate response to reduce TDS and zinc to the maximum extent practicable and to protect the receiving water quality. ADOT recognizes that street sweeping may be a primary factor in reducing both contaminants. However, due to current State budget issues an increase in street sweeping is currently not an option for ADOT. Once budget issues are resolved ADOT will review BMP activity where appropriate and adjust accordingly.

10.1.3 Exceedances of SWQS

Permit Requirement (Appendix B, Part 11.C): Describe any exceedance of a surface water quality standard during the reporting year.

Four exceedances of a SWQS occurred during the reporting year. These exceedances were for total zinc and TDS at the Phoenix MS4 sampling location and for TDS at the Tucson MS4 sampling location. Table 13 provides a summary of these exceedances:

Monitoring Location	Receiving Water	Sampling Date	ampling Date SWQS Exceeded	
Phoonix MS4: 22 nd	Salt River	February 28, 2010	Zinc = 4.7 mg/L	Zinc = 2.10 mg/L
Street & Loop202		July 21, 2009	TDS = 720 mg/L	TDS = 500 mg/L
I-10 and Grant Rd Maintenance Yard	Sonto Cruz	April 23, 2010	TDS = 910 mg/L	TDS = 500 mg/L
	Santa Cluz	June 30, 2009	TDS = 680 mg/L	TDS = 500 mg/L

Table 13 – Summary of SWQS Exceedances

SWQS – Surface Water Quality Standard

TDS – Total Dissolved Solids

Exceedances for total zinc and TDS may be due to the long period between storm events from the winter to the summer sampling season. Approximately seven months elapsed between these two sample events at both MS4 sampling locations. Additionally, a road widening project located adjacent to the Phoenix MS4 sampling location was completed within the reporting year may have increased motorist braking. Zinc is a component of disc brakes and the increase in stop-and-go traffic within the area may have added brake dust on the roadway and increased total zinc in the sampling. ADOT will make every effort to reduce zinc as well as TDS within each area. However, current State budget issues must be resolved prior to ADOT being able to properly review and adjust BMPs accordingly.

10.1.4 Total Maximum Daily Loads

Permit Requirement (Appendix B, Part 11.D): Assess the effectiveness of BMPs meeting wasteload allocation associated with TMDL.

No Total Maximum Daily Loads (TMDL) has been established for receiving water within the Phoenix MS4 or Tucson MS4 sampling location.

10.2 Industrial Results

Permit Requirement (Sections 8.3.3, 8.3.4.1, & 8.5.2.2): Provide a summary of monitoring performed at industrial and construction sites as required in the permit. Describe any adverse conditions that prevented sampling stormwater discharges. Where facility outfalls are essentially identical, justify the sampling of only one outfall.

A summary of monitoring performed at ADOT industrial sites is provided below as required by Permit Section 8.5.2.2. Discharge Monitoring Reports (DMRs) for the industrial monitoring are provided in Appendix L. The laboratory reports for industrial monitoring are included in Appendix M.

10.2.1 Durango Sign Factory

Stormwater samples were collected at the Durango Sign Factory on the following dates:

- February 23, 2010 (winter season)
- September 1, 2009 (summer season)

Samples were collected via a Nalgene® Stormwater Sampler hanging from the interior of a drywell grate. No adverse conditions occurred that prevented the sampling of stormwater discharges from this facility. The stormwater analysis indicates no SWQS was exceeded at this facility.

10.3 Construction Results

ADOT conducted in-stream monitoring at three construction projects during the reporting year and discussed further in this section. DMRs for these in-stream monitoring activities are provided in Appendix N.

10.3.1 Sedona SR179 Construction Project

ADOT conducted in-stream monitoring within Oak Creek from July 1, 2009 through June 30, 2010. This monitoring coincided with construction improvements along SR179 in the Village of Oak Creek and City of Sedona adjacent to Oak Creek. Oak Creek has been designated by the ADEQ as an Outstanding and Scenic Waterway. The monitoring consisted of in-stream data collection as identified in the following table:

Monitoring Point		Description	Latitude /	Monitoring	
ID	Source	Description	Longitude	Frequency	
MP1	In Oak Creek - Upstream of Tlaquepaque bridge construction	Oak Creek north of bridge construction at approx. Sta. 1125+00 SR89, 55' Rt.	34° 51' 59.15" N 111° 45' 42.53" W	Prior to construction every 2 weeks (baseline). During construction on weekly basis and within 24 hrs of storm event >0.5", or >10 NTU increase in daily turbidity.	
MP2	In Oak Creek - Downstream of Tlaquepaque bridge construction	Oak Creek south of bridge construction at approx. Sta. 797+00 SR179, 120' Lt.	34° 51' 42.00" N 111° 45' 43.83" W	Daily during bridge construction	
MP3	Run-on at ephemeral wash	Located in ephemeral wash at r/w east of new box culvert at approximate Sta. 765+00, 110' Rt.	34° 51' 09.10" N 111° 45' 51.91" W	When flow occurs	
MP4	Run-on ephemeral wash	Located in ephemeral wash at r/w west of existing box culvert at approximate Sta. 765+50, 68' lt.	34°51'10.19" N 111°45'53.52" W	When flow occurs	
MP5	In Oak Creek - Downstream of major road construction	Oak Creek adjacent to north side of Oak Creek Cliffs Drive	34° 50' 40.46" N 111° 46' 39.84" W	Prior to construction every 2 weeks (baseline). During construction on weekly basis and within 24 hrs of storm event >0.5", or >10 NTU increase in daily turbidity.	

Table 14 – In-Stream Sampling Locations within Oak Creek

NTU – Nephelometric Turbidity Units

A site map identifying these in-stream monitoring locations is provided in Appendix O. No instream data was collected from MP4 due to inadequate flow at this monitoring location. Parameters for in-stream monitoring included turbidity, stream flow, dissolved oxygen, pH, conductivity, suspended sediment concentration (SSC), total suspended solids, and total dissolved solids. No adverse conditions occurred that prevented in-stream monitoring of discharges associated with this project and no SWQS was exceeded.

10.3.2 Meadow Valley SR260 Construction Project

ADOT conducted in-stream monitoring within the Little Colorado River from May 5, 2010 to June 20, 2010. This monitoring was associated with pavement preservation activities associated with the SR 260 between Springerville and Greer, Arizona between mileposts 385.71 and 398.66. Parameters for in-stream monitoring included turbidity, pH, temperature, and SSC. No adverse conditions occurred that prevented in-stream monitoring of discharges associated with this project and no SWQS was exceeded.

10.3.3 Marsh Station I-10 Construction Project

ADOT conducted in-stream monitoring within Cienega Creek during the reporting year. This monitoring was associated with the Marsh Station realignment of the Union Pacific Railroad and the Marsh Station Road. Parameters for in-stream monitoring included turbidity, pH, temperature, and SSC. No adverse conditions occurred that prevented in-stream monitoring of discharges associated with this project and no SWQS was exceeded.

10.4 Maintenance Facilities

ADOT conducted monitoring at three maintenance yards during the reporting year and is discussed further in this section. DMRs for the maintenance facilities are provided in Appendix L. The laboratory reports for maintenance facilities are included in Appendix M.

10.4.1 Nogales Maintenance Yard

Stormwater samples were collected at the Nogales Maintenance Yard during the winter and summer seasons on the following dates:

- February 23, 2010 winter storm event
- June 30, 2009 summer storm event (data reported in previous reporting year)

Sampling was conducted by installing a Nalgene® Stormwater Sampler prior to the storm event. This is a type of passive sample bottle with a floating ball valve that seals off the sample collection port once the bottle is full. No adverse conditions occurred that prevented the sampling of stormwater discharges from this facility. However, an inadequate sample volume was collected during the June 30, 2009 storm event and analyses for chlorine, total coliform, and *E*. coli could not be completed. The stormwater analysis indicates no SWQS was exceeded.

10.4.2 Superior Maintenance Yard

Stormwater samples were collected at the Superior Maintenance Yard on the following dates.

- Feb 22, 2010 winter storm event
- July 21, 2009 summer storm event

Samples were collected manually from a retention basin located along the southwest portion of the yard. The retention basin discharges into Queen Creek Wash via an 18-inch corrugated metal pipe. Queen Creek is identified by the ADEQ as impaired for copper. The stormwater analysis indicates no SWQS was exceeded at this facility.

10.4.3 Superior Fuel Yard

Stormwater samples were collected at the Superior Maintenance Yard on the following dates.

- February 22, 2010 winter storm event
- July 21, 2009 summer storm event

Samples were collected manually from a bermed area along the southwest portion of the yard. This facility has the potential to discharge to Queen Creek which is identified by the ADEQ as impaired for copper. The stormwater analysis indicates no SWQS was exceeded at this facility.

11 ESTIMATE OF POLLUTANT LOADING

Permit Requirement (Section 8.7.7): Provide an estimate of the pollutant loadings each year from the storm sewer system to waters of the U.S. for each constituent detected by stormwater monitoring within the permit term.

ADOT has estimated pollutant loading as required by Permit Section 8.7.7. Constituents detected during MS4 stormwater monitoring required for pollutant loading estimation include:

- Biological Oxygen Demand (BOD)
- Chemical Oxygen Demand (COD)

- Total Suspended Solids (TSS)
- Total Dissolved Solids (TDS)
- Total Nitrogen
- Total Kjeldahl Nitrogen (TKN)
- Total Phosphorous
- Detected metals

The Simple Method was utilized for calculating the pollutant loading for each constituent identified above. This method was selected because it is best suited for small urban watersheds similar to where ADOT's current MS4 sampling locations are located. The Simple Method estimates stormwater pollutant loads as the product of mean pollutant concentrations and runoff depths over specified periods of time. The Simple Method estimates pollutant loads for chemical constituents as a product of annual runoff volume and pollutant concentration using the following equation:

L = 0.226 * R * C * A

Where: L = Annual loads (lbs); R = Runoff (inches); C = Pollutant concentration (mg/l); A = Area (acres); 0.226 = Unit conversion factor

11.1 ADOT's Phoenix Area MS4 Pollutant Loading Estimates

Pollutant loading estimates for the Phoenix area monitoring location have been calculated for the winter season, summer season, and annually. Data used to calculate pollutant loading is provided in Appendix P. A summary of pollutant loading estimates as required by Permit Section 8.7.7(a) is provided in Table 15:

Pollutant	Estimated Pollutant Loading in Pounds				
	Winter Season	Summer Season	Annual		
BOD	0.82	15.73	226.34		
COD	11.51	137.63	4,224.93		
TSS	12.50	IS	382.26		
TDS	15.95	283.12	4,109.25		
Total Nitrogen	0.18	1.88	29.52		
TKN	0.25	4.72	67.90		
Total Phosphorous	0.04	0.43	6.79		
Barium	0.01	0.06	1.08		
Copper	0.03	0.029	1.38		
Lead	0.001	0.002	0.06		
Zinc	0.77	0.06	24.34		
	700	T , 10 			

 Table 15 – ADOT's Phoenix Area MS4 Pollutant Loading Estimates

IS – Insufficient Sample

BOD – Biological Oxygen Demand COD – Chemical Oxygen Demand

TKN – Total Kjeldahl Nitrogen

TSS – Total Suspended Solids TDS – Total Dissolved Solids

11.2 ADOT's Tucson Area MS4 Pollutant Loading Estimates

Pollutant loading estimates for the Tucson area monitoring location have been calculated for the winter season, summer season, and annually. Data used to calculate pollutant loading is provided in Appendix Q. A summary of pollutant loading estimates as required by Permit Section 8.7.7(a) is provided in Table 16:

Pollutant	Estimated Pollutant Loading in Pounds				
	Winter Season	Summer Season*	Annual		
BOD	10.85	16.32	662.44		
COD	59.08	237.44	5,586.26		
TSS	15.67	59.36	1,433.64		
TDS	109.72	252.28	7,860.32		
Total Nitrogen	2.41	0.12	100.40		
TKN	0.94	5.19	107.77		
Total Phosphorous	0.07	0.13	4.65		
Barium	0.02	0.07	1.98		
Copper	0.02	0.01	0.81		
Lead	0.001	0.0019	0.05		
Zinc	0.05	0.07	2.97		
* - Data is from June 30, 2009 sampling event BOD – Biological Oxygen Demand COD – Chemical Oxygen Demand		SS – Total Suspended Sc S – Total Dissolved Solic N – Total Kjeldahl Nitrog	olids ds en		

Table 16 – ADOT's Tucson Area MS4 Pollutant Loading Estimates

11.3 Comparison to Previous Pollutant Loading Estimates

Permit Requirement (Section 8.7.7(c)): ADOT shall compare the pollutant loading estimate each year to previous estimates of pollutant loadings throughout this permit term.

A comparison of annual pollutant loading is provided below for annual pollutant loading estimates from the 2008/09 reporting year compared to this reporting years estimate:

	Phoenix			Tucson		
Pollutant	2008/09 Annual Loading	2009/10 Annual Loading	Percent Difference	2008/09 Annual Loading	2009/10 Annual Loading	Percent Difference
BOD	96.01	226.34	+135.75%	538.85	662.44	+22.94%
COD	812.40	4,224.93	+420.06%	5,932.32	5,586.26	-5.83%
TSS	627.76	382.26	-39.11%	1,334.77	1,433.64	+7.41%
TDS	2,141.78	4,109.25	+91.86%	6,723.29	7,860.32	+16.91%
Total Nitrogen	30.65	29.52	-3.69%	93.98	100.40	+6.83%
TKN	22.16	67.90	+206.41%	128.53	107.77	-16.15%
Total Phosphorous	NA	6.79	0.00%	3.86	4.65	+20.47%
Barium	0.72	1.08	+50.00%	1.98	1.98	0.00%
Copper	0.17	1.38	+711.76%	0.16	0.81	+406.25%
Lead	0.06	0.06	0.00%	0.07	0.05	-28.57%
Zinc	0.39	24.34	+6141.03%	0.89	2.97	233.71%

 Table 17 – Comparison of MS4 Pollutant Loading Estimates

BOD – Biological Oxygen Demand COD – Chemical Oxygen Demand

The comparison shows an increasing trend in most constituents, however a few have decreased. No direct correlation can be made as to an increasing or declining trend due to the limited data

TSS – Total Suspended Solids TDS – Total Dissolved Solids TKN – Total Kjeldahl Nitrogen

points. However, the Phoenix area percent difference is markedly difference be cause the 2008/09 data was based on only one sampling event. ADOT will monitor future trends and adjust BMPs as needed.

12 ANNUAL EXPENDITURES

Permit Requirement (Appendix B, Part 13): Provide a summary of the expenditures incurred each reporting period (July 1-June 30) to implement and maintain the stormwater management program, including associated monitoring and reporting activities. Provide the estimated budget for implementing and maintaining the stormwater program in the subsequent reporting period. Include a brief description of the funding sources used to support program expenditures.

ADOT does not maintain a specific fund dedicated solely for its stormwater programs. However, there are several sources available for funding of this program, which include: the Arizona Department of Transportation Five-Year Construction Program, the Highway Maintenance Program, and the Administrative Budget.

12.1 Five-Year Construction Program

ADOT's Five-Year Construction Program is a source of funding utilized when a stormwater issue or concern is related to a construction project that is in the existing program. The Program is reviewed on an annual basis, and at that time, new projects are added and modifications to existing projects are made. There are several sources identified to fund this program. These include federal, state, local, and private sources. The approval process required for incorporation of stormwater issues into the program is the identification of the project and funding requirements and submittal to the Priority Planning Committee, and then in turn, to the Transportation Board for final approval. The program is adopted July 1st of each year.

12.2 Highway Maintenance Program

Stormwater issues related to maintenance will be covered under the Highway Maintenance Program, which is funded by the State. Issues and costs are identified and submitted for approval to the legislature in August of each year. Funds for new issues are received on July 1st of the following year. Currently, there is approximately \$107,000,000 allocated to this program.

12.3 Administrative Budget

The Administrative Budget is an additional source of funding for ADOT stormwater programs and is state-funded and appropriated by the Arizona Legislature. The process is similar to the Highway Maintenance Program. As part of the Administrative Budget, ADOT receives approximately \$62,000,000 in state funds for administrative purposes.

12.4 Office of Environmental Services Budget

The OES was formed in 2006 and its budget has not been established. Currently, the OES operates under several budget accounts. Table 18 provides actual and estimated expenditures implemented under ADOT's Statewide Permit Number AZS000018-2008 requirements.

PROGRAM/ACTIVITY	FY 2009/2010 Actual	FY 2010/2011 Estimated
Street Sweeping – Phoenix and Tucson Area	\$2,140,000.00	\$2,200,000.00
Litter Pick-up and Removal – Phoenix and Tucson Area	\$4,480,000.00	\$4,500,000.00
Preparation and Implementation of Statewide Permit	\$12,834,205.00	\$15,035,519.00
Implement/ Update of SWPPPs for ADOT yards	\$112,449.00	\$95,033.00
Maintain and Update Stormwater Outfall Map to ADOT's GIS	\$147,000.00	\$147,000.00
Dry Weather Sampling – 20% of Outfalls (includes training)	\$3,141.00	\$2,872.00
Stormwater Monitoring	\$250,050.00	\$152,000.00
Preparation of Annual Report	\$35,208.00	\$29,945.00
ANNUAL TOTALS	\$20,002,053.00	\$22,162,369.00

Table 18 - Estimated Stormwater Program Comprehensive Annual Budget
APPENDIX A Narrative Summary of SSWMP Activities

Requirement: Provide a brief description of the implementation and progress of every individual best management practice (BMP). Also, provide an explanation of any significant developments or changes to the number or type of activities, the frequency or schedule of activities, or the priorities or procedures for implementation of specific management practices			
New Table of Contents	Permit Reference	2010 SSWMP Reference or Other Source	Description and Implementation of BMPs
BEST MANAGEMENT PRACTICES	3.2.1.1, 3.2.1.2, and 3.2.1.3	4.0	Section 4.0 of the 2010 SSWMP details the Best Management Practices (BMPs) to improve operations and reduce pollution at or within ADOT facilities, Statewide and District Maintenance, MS4s, industrial facilities, and material sources. This includes: Measures to control discharges through education Illicit discharge/illegal dumping detection and elimination measures Measures to control discharges from new construction and land disturbances Measures to control discharges from new development and redevelopment Measures to control discharges from new development and redevelopment
A. MEASURES TO CONTROL DISCHARGES THROUGH EDUCATION	3.2.2	4.1	ADOT's stormwater education program includes training, public education and outreach, public participation and involvement, and intra and intergovernmental coordination.
1. ADOT Employee Training	3.2.2.1(a)	4.1.1	ADOT has developed training curricula, as well as a system for administering, tracking, and providing training to all appropriate personnel. New employees receive training within the first year of hire or within the first year of the change in their responsibilities. Refresher training is required at least once every three years.
a. Stormwater Awareness Training	3.2.2.1(a) (i)	4.1.1.2	General Stormwater Training is required to educate personnel at all levels of responsibility who are involved in activities that may impact stormwater quality and those staff who may come into contact with or otherwise observe an illicit discharge or illicit connection to the storm sewer system. Five awareness classes have been conducted within the past reporting year and 60 personnel trained.

Requirement: Provide a brief description of the implementation and progress of every individual best management practice (BMP). Also, provide an explanation of any significant developments or changes to the number or type of activities, the frequency or schedule of activities, or the priorities or procedures for implementation of specific management practices			
New Table of Contents	Permit Reference	2010 SSWMP Reference or Other Source	Description and Implementation of BMPs
b. Specific Stormwater Training	3.2.2.1(a) (ii)	4.1.1.3	Specific stormwater training is required to educate personnel who are directly involved in activities that may impact stormwater quality or that may generate or manage non- stormwater discharges. Eight specific stormwater training sessions to be offered are: illicit discharges and illegal dumping, non-stormwater discharges, new construction and land disturbances, new development and significant redevelopment, storm sewer system and highway maintenance, and good housekeeping.
			ADOT has conducted 12 stormwater specific training classes within the past reporting year and 52 personnel trained
c. Stormwater Library	3.2.2.1(a) (iii)	3.3	This library is a virtual library available at: <u>http://www.azdot.gov/inside_adot/OES/Water_Quality/Stormwater/Manuals.asp</u> . The library contains the following documents: Quality Assurance Manual,
			Erosion and Pollution Control Manual, Maintenance and Facilities BMP Manual, Stormwater Monitoring Guidance Manual for MS4 Activities, Post-Construction Stormwater Control BMP Manual, Stormwater Enforcement Response Plan, Stormwater Monitoring Guidance Manual for Construction Activities, and Stormwater Guidance Manual for Industrial Activities. The SSWMP is available at http://www.azdot.gov/inside_adot/OES/Water_Quality/Stormwater/ .
			Documents within the library have been updated as-needed throughout the past reporting year. ADOT is not able to track specific hits to the stormwater library website.

Requirement: Provide a brief description of the implementation and progress of every individual best management practice (BMP). Also, provide an explanation of any significant developments or changes to the number or type of activities, the frequency or schedule of activities, or the priorities or procedures for implementation of specific management practices				
New Table of Contents	Permit Reference	2010 SSWMP Reference or Other Source	Description and Implementation of BMPs	
2. ADOT Construction Contractor Training and Certification	3.2.2.1(b)	4.1.2	ADOT requires all contractor's inspectors to participate in the Construction Contractor Training and Certification Course offered by the Arizona Association of General Contractors to become an Erosion Control Coordinator (ECC) on ADOT projects. The 16 hour ECC training course covers the erosion and sediment control BMP requirements in the AZPDES CGP and inspection and maintenance of these BMPs.	
			Training includes the erosion and sediment control BMP requirements and inspection and maintenance of BMPs.	
3. Erosion and Pollution Control Manual	3.2.2.1(c)	4.1.3	The Erosion and Pollution Control Manual addresses the selection, design, installation and maintenance of effective erosion, sediment, and waste control BMPs that ADOT uses for stormwater and non-stormwater discharges. ADOT conducts annual updates to the Manual.	
			A final update to this manual is estimated for completion in February 2011.	
4. Public Education and Outreach	3.2.2.2	4.1.4	Public education and outreach are ongoing efforts by ADOT to inform members of the general public about actions individuals can take to reduce transportation-related pollutants and improve water quality.	
a. Program Description	3.2.2.2(a)	4.1.4.1	The target audience is the construction industry and the public (highway users). Target pollutants include sedimentation from construction sites, litter, unsecured loads, and tire treads.	
			There have been no changes to the program this reporting period.	

Requirement: Provide a brief description of the implementation and progress of every individual best management practice (BMP). Also, provide an explanation of any significant developments or changes to the number or type of activities, the frequency or schedule of activities, or the priorities or procedures for implementation of specific management practices			
New Table of Contents	Permit Reference	2010 SSWMP Reference or Other Source	Description and Implementation of BMPs
b. Distribution of Materials through Public Places	3.2.2.2(b) (i)	4.1.4.2	ADOT distributes material through participation with Regional Stormwater Coalitions, Arizona Clean and Beautiful, and Don't Trash AZ.
			ADOT distributes educational material through pamphlets, posters, highway variable message boards, bus stop posters, TV advertisements, radio announcements, and booths at local events.
			ADOT has worked close with STORM and PAG to distribute educational materials.
c. Distribution of Materials through ADOT's Stormwater Web Page	3.2.2.2(b) (ii)	4.1.4.3	ADOT maintains a webpage for its stormwater program. The webpage includes a variety of stormwater related documents such as program manuals, maps, document templates, and MS4 contacts. Also included on the webpage are a number of links to other organizations who play a role in stormwater management (ADEQ, EPA, FHWA, etc).
			ADOT has updated its webpage which now has the following address:
			http://www.azdot.gov/Inside_ADOT/OES/Water_Quality/Stormwater/Index.asp
5. Public Involvement and Participation	3.2.2.3	4.1.5	Public involvement and participation are ongoing efforts by ADOT to involve members of the general public about how individuals can take become involved in the stormwater program and improve water quality.
a. Public Availability of Stormwater Documents	3.2.2.3(a)	4.1.5.1	Distribution of materials is accomplished via the Stormwater Webpage, STORM, and PAG.
b. Public Comments	3.2.2.3(b)	4.1.5.2	ADOT gathers public comments on the SSWMP via phone or the "Contact Us" link from the ADOT stormwater webpage.
			http://www.azdot.gov/Inside_ADOT/OES/Water_Quality/Stormwater/Index.asp

Requirement: Provide a brief description of the implementation and progress of every individual best management practice (BMP). Also, provide an explanation of any significant developments or changes to the number or type of activities, the frequency or schedule of activities, or the priorities or procedures for implementation of specific management practices				
New Table of Contents	Permit Reference	2010 SSWMP Reference or Other Source	Description and Implementation of BMPs	
c. Public Reporting System	3.2.2.3(c)	4.1.5.3	ADOT implemented a public reporting system so the public can report illicit discharges and illegal dumping. This system consists of the ADOT hotline and an e-mail address on the Water Quality webpage.	
			There has been no change to this system within the past reporting year.	
d. Adopt-A-Highway	3.2.2.3(d)	4.1.5.4	The Adopt-A-Highway program allows individuals to adopt a highway as a volunteer or through a maintenance provider as a sponsor. The program was updated to include a stormwater component.	
e. Litter Hotline	3.2.2.3(e)	4.1.5.5	The litter hotline includes a toll free number and an online reporting form for Arizona citizens to report litterers.	
			This is an ADOT program that is administered by Arizona Clean and Beautiful (ACB) through a procurement contract.	
6. Intra and Inter- Governmental Coordination	3.2.2.4	4.1.6	Intra and Inter-Governmental Coordination is a program that includes coordination mechanisms and program enforcement procedures among divisions, groups, sections and districts within ADOT to ensure compliance with the terms of the Permit.	
a. Internal Coordination	3.2.2.3(a)	4.1.6.1	Various departments throughout ADOT work together to achieve the goals of the Permit. The OES oversees the stormwater components from each department.	

Requirement: Provide a brief description of the implementation and progress of every individual best management practice (BMP). Also, provide an explanation of any significant developments or changes to the number or type of activities, the frequency or schedule of activities, or the priorities or procedures for implementation of specific management practices				
New Table of Contents	Permit Reference	2010 SSWMP Reference or Other Source	Description and Implementation of BMPs	
b. Intergovernmental Coordination	3.2.2.3(b)	4.1.6.2	ADOT coordinates with outside agencies such as the Federal Highway Administration, Bureau of Land Management, and the Department of Agricultural Forest Service. ADOT also works with Metropolitan Planning Organizations, Councils of Governments, and Regional Stormwater Coalitions throughout the state.	
			ADOT has maintained a working relationship[with other government entities via STORM, PAG, NASPA, and AASHTO.	
B. ILLICIT DISCHARGE/ ILLEGAL DUMPING DETECTION AND ELIMINATION MEASURES	3.2.3 3.2.3.1(a)		The IDDE program serves to minimize, detect, investigate, and eliminate illicit discharges, including unauthorized non-stormwater discharges and spills, into ADOT MS4.	
1. Minimizing Illicit Discharges and illegal Dumping	3.2.3.1		ADOT field personnel and DEC's routinely perform visual inspections for illicit discharges and performs monitoring for illegal dumping	
a. Encroachment Permit Enforcement	3.2.3.1(b)	4.2.1.1	ADOT implements and enforces encroachment permits and external party requirements for activities within ADOTs jurisdiction. There has been no changes to the encroachment permit process within the past reporting year.	
b. Maintenance and Facilities Best Management Practices (BMPs) Manual	3.2.3.1(c)	4.2.1.2	The Manual describes the selection criteria, design, installation and maintenance of effective BMPs to minimize pollutants in ADOT's non-stormwater discharges. This manual was updated in September 2010.	
c. Authorized Non-Stormwater Discharges	3.2.3.1(d)	4.2.1.3	ADOT discharges certain authorized non-stormwater discharges and implements BMPs to minimize the discharge of pollutants that may result from these flows. BMPs for reducing erosion, sedimentation, and stormwater contamination are contained within the Erosion and Pollution Control Manual and the Maintenance and Facilities BMP Manual.	

Appendix A: Page 6 of 19

Requirement: Provide a brief description of the implementation and progress of every individual best management practice (BMP). Also, provide an explanation of any significant developments or changes to the number or type of activities, the frequency or schedule of activities, or the priorities or procedures for implementation of specific management practices				
New Table of Contents	Permit Reference	2010 SSWMP Reference or Other Source	Description and Implementation of BMPs	
d. Training	3.2.3.1(e)	See 4.1.1.2 and 4.1.1.3	Training is discussed in 4.1.1.2 and 4.1.1.3 above.	
2. Detecting Potential Illicit Discharges and Illicit Connections	3.2.3.2		Implement BMPs to detect illicit discharges and illicit connections	
a. Outfall Inventory	3.2.3.2 (a)	4.2.2.1	ADOT has been in the process of developing an outfall inventory including the 71 major outfalls. ADOT has also developed a proposal and schedule to identify all outfalls in the Phase II municipalities and all Priority Outfalls statewide. The inventory should be complete in 2012.	
			Additionally, ADOT has implemented a Facilities Inventory System (FIS) to identify and track highway features using a GIS database. A pilot program has been initiated within the Kingman District using FIS to track and monitor drainage features.	
b. Storm Sewer System Map	3.2.3.2 (b)	4.2.2.2	ADOT is in the process of developing a storm sewer map identifying the location of all ADOT's major outfalls identified to date and their receiving waters. The inventory should be complete in 2012.	
			The FIS is being updated to include storm sewer mapping. Budget issues have hindered the full implementation of the FIS.	
c. Stormwater Monitoring Guidance Manual for MS4 Activities	3.2.3.2(c)	3.3.7	This guidance manual provides the procedures used by ADOT personnel to conduct Permit-required monitoring associated with MS4 activities. This monitoring includes dry weather screening for illicit connections and illicit discharges and seasonal wet weather monitoring.	
			This manual had no updates in the last reporting year.	

Requirement: Provide a brief description of the implementation and progress of every individual best management practice (BMP). Also, provide an explanation of any significant developments or changes to the number or type of activities, the frequency or schedule of activities, or the priorities or procedures for implementation of specific management practices				
New Table of Contents	Permit Reference	2010 SSWMP Reference or Other Source	Description and Implementation of BMPs	
d. Dry Weather Screening	3.2.3.2(d), (e)	4.2.2.4	ADOT implements a dry weather outfall screening and discharge characterization program and inspects major and priority outfalls during the permit term.	
			Dry weather screening has occurred throughout each District within the past reporting period. However, documentation of the screening has not been properly maintained. ADOT is attempting to maintain better records for this activity.	
e. Training	3.2.3.2(f)	See 4.1.1.3	Training is discussed in 4.1.1.3 above and ahs been on-going during the past reporting period.	
3. Investigating Potential Illicit Discharges	3.2.3.3		Implement practices and procedures to investigation potential illicit discharges	
a. Establish illicit discharge investigation procedures	3.2.3.3 (a)	4.2.3.1	ADOT's 'Dry Weather Field Screening Sites' portion of the Stormwater Monitoring Guidance Manual for MS4 Activities describes procedures to investigate potential illicit discharges to identify possible sources.	
			This manual had no updates in the last reporting year.	
b. Investigate Illicit Discharges	3.2.3.3 (b)	4.2.3.2	ADOT initiates investigations and responds to complaints within 15 days from the date	
(Source Identification)	3.2.3.3 (c) and	4.2.3.3 and	of detection or report of an illicit discharge. ADOT also implements a system to receive and track reports of illicit discharges and illegal dumping as well as ADOT's response and follow-up actions	
	3.2.3.4(d)	4.2.3.4	One illicit discharge was reported and subsequently removed within the past reporting year.	

Requirement: Provide a brief description of the implementation and progress of every individual best management practice (BMP). Also, provide an explanation of any significant developments or changes to the number or type of activities, the frequency or schedule of activities, or the priorities or procedures for implementation of specific management practices				
New Table of Contents	Permit Reference	2010 SSWMP Reference or Other Source	Description and Implementation of BMPs	
c. Incidental Dry Weather Discharge Reporting	3.2.3.3(d)	4.2.3.4	ADOT reports dry weather discharges from any ADOT outfall. Within 15 days of detection ADOT initiates appropriate follow-up action to eliminate the discharge, including reporting the discharge to ADEQ as appropriate. There have been no dry weather discharges that required follow-up action within the past reporting year	
4. Eliminating Illicit Discharges and Illegal Dumping	3.2.3.4		Eliminate Illicit Discharges and Illegal Dumping	
a. Eliminate Existing Dry Weather Flows	3.2.3.4 (a)	4.2.4.1	This temporary BMP required ADOT to investigate and eliminate (if possible) the sources of existing dry weather flows from the six major outfalls in the July 21, 2005 Summary Report – Dry Weather Screening within the first 90 days of the permit. ADOT completed this requirement in the first reporting year of the Statewide Permit.	
b. Eliminate Sources of Illicit Discharges	3.2.3.4 (b)	4.2.4.2	ADOT takes action to eliminate source(s) of illicit discharges within 90 days of detection using ADOTs legal authority (Enforcement Response Plan) to terminate illicit discharges and illegal dumping. One illicit discharge was reported and subsequently removed within the past reporting year.	
c. Coordinate with Local Jurisdictions for Complaint Response and Investigation	3.2.3.4 (c)	4.2.4.3	ADOT coordinate with other jurisdictions, including ADEQ, for assistance in enforcement where ADOT lacks legal authority to establish enforceable rules or if an illicit discharger fails to comply with procedures or policies established by ADOT. ADOT coordinates with other jurisdictions as described in the Enforcement Response Plan.	
d. Record Actions	3.2.3.4(d)	See 4.2.3.4	Record keeping is discussed in 4.2.3.4 above.	

Requirement: Provide a brief description of the implementation and progress of every individual best management practice (BMP). Also, provide an explanation of any significant developments or changes to the number or type of activities, the frequency or schedule of activities, or the priorities or procedures for implementation of specific management practices				
New Table of Contents	Permit Reference	2010 SSWMP Reference or Other Source	Description and Implementation of BMPs	
5. Responding to Spills	3.2.3.5	4.2.5	ADOT responds to spills as a result of highway accidents and emergencies and implements guidance from the Arizona Department of Emergency Management Plan, ESF-10 Oil and Hazardous Materials Annex.	
			ADOT has maintained an emergency response team and responded to 156 incidents throughout the State.	
C. MEASURES TO CONTROL DISCHARGES FROM NEW CONSTRUCTION AND LAND DISTURBANCES	3.2.4		Description of a program to reduce the discharge of pollutants from construction sites.	
1. Applicability of Construction Requirements	5.1	4.3.1	This BMP contains the requirement for all construction sites and activities that are owned, operated, or contracted by ADOT to comply with provisions of the Permit.	
			There have been no changes to construction requirements during the last reporting year.	
2. Construction Site SWPPPs	5.2	4.3.2	ADOT requires all construction sites over 1-acre of disturbance to develop a Construction SWPPP.	
			There have been no changes to construction requirements during the last reporting year.	

Requirement: Provide a brief description of the implementation and progress of every individual best management practice (BMP). Also, provide an explanation of any significant developments or changes to the number or type of activities, the frequency or schedule of activities, or the priorities or procedures for implementation of specific management practices			
New Table of Contents	Permit Reference	2010 SSWMP Reference or Other Source	Description and Implementation of BMPs
a. General Requirements	5.2.1	4.3.2	ADOT or its contractor(s) develop and implement construction site SWPPPs for certain construction sites. SWPPPs are maintained on the site as well as at the appropriate ADOT Office.
			There have been no changes to construction requirements during the last reporting year.
b. Site and Activity Description	5.2.2	4.3.2	ADOT outlines the required components of the SWPPP including a site description, map, receiving waters, monitoring program, potential pollutants sources, and off-site material storage areas.
			There have been no changes to construction requirements during the last reporting year.
c. BMPs to Reduce Pollutants	5.2.3	4.3.2	ADOT outlines the criteria for selection, installation, and maintenance of BMPs for inclusion in Construction SWPPPs. BMPs are contained in the Erosion and Pollution Control Manual, Maintenance and Facilities BMP Manual, Post-Construction Stormwater Control BMP Manual, Stormwater Monitoring Guidance Manual for Construction Activities, and Stormwater Monitoring Guidance Manual for MS4 Activities.
			There have been no changes to construction requirements during the last reporting year.

Requirement: Provide a brief description of the implementation and progress of every individual best management practice (BMP). Also, provide an explanation of any significant developments or changes to the number or type of activities, the frequency or schedule of activities, or the priorities or procedures for implementation of specific management practices			
New Table of Contents	Permit Reference	2010 SSWMP Reference or Other Source	Description and Implementation of BMPs
d. Construction Inspections	5.2.5	4.3.2	 ADOT requires routine inspections of construction sites to ensure BMPs are functional and effective and that the SWPPP is being properly implemented. Routine inspections are conducted jointly by the Resident Engineer (RE) and the Erosion Control Coordinator (ECC) and are conducted every 7-14 days or after a rain event. Following an inspection, a Construction Compliance Evaluation Report is filed documenting the findings of the inspection and basic inspector. Findings are documented and delivered to the RE who then has 14 days to address all deficiencies. Once the deficiencies are addressed, or within 14 days, the Resident Engineer sends a response to the Construction Site Inspector detailing the status of deficiencies. Responses are reviewed and scored for completeness by the Construction Site Inspector and a final report is sent to the District Engineer. Routine inspections have occurred as required throughout the last reporting year.
e. Construction BMP Maintenance	5.2.4	4.3.2	 ADOT requires a maintenance plan for all erosion and sediment control BMPs. The ECC and/or RE are responsible for oversight of the requirements of this section, including maintaining all BMPs in effective operating condition, performing maintenance on ineffective BMPs within seven days of discovery and before the next anticipated storm event, and removing sediment from sediment traps when the design capacity has been reduced by 50%. There have been no changes to this construction requirement during the last reporting year.

Requirement: Provide a brief description of the implementation and progress of every individual best management practice (BMP). Also, provide an explanation of any significant developments or changes to the number or type of activities, the frequency or schedule of activities, or the priorities or procedures for implementation of specific management practices									
New Table of Contents	Permit Reference	2010 SSWMP Reference or Other Source	Description and Implementation of BMPs						
f. SWPPP Updates	5.2.6	4.3.2	ADOT requires updates to the construction site SWPPP to be conducted within 15 calendar days following an inspection. There are two copies of the SWPPP that are updated by the ECC throughout the course of the construction project. One copy of the SWPPP is located at the construction site while the second copy is maintained at the applicable District office. Construction Site Inspectors verify both SWPPPs are being updated before beginning each site inspection.						
			Site construction SWPPPs have been updated as-needed.						
3. Operators under Contract to ADOT for Performing Construction Activities	5.3		There have been no changes to this construction requirement during the last reporting year.						
a. Compliance with Construction General Permit	5.3.1	4.3.3.1	ADOT requires it's contractors to comply with the AZPDES CGP for regulated construction projects. This requirement includes the requirement to file an NOI for each construction project or site.						
			For work on Tribal Land, NOIs are filed by both the contractor and ADOT to the EPA. For work on non-Tribal Land, an NOI is only filed by the contractor.						
			There have been no changes to this construction requirements during the last reporting year.						

Requirement: Provide a brief description of the implementation and progress of every individual best management practice (BMP). Also, provide an explanation of any significant developments or changes to the number or type of activities, the frequency or schedule of activities, or the priorities or procedures for implementation of specific management practices								
New Table of Contents	Permit Reference	2010 SSWMP Reference or Other Source	Description and Implementation of BMPs					
b. NOT - Transfer of Responsibility to ADOT	5.3.2	4.3.3.2	ADOT requires contractors to file a NOT to terminate their responsibility for site activities once a site and interim stabilization is in place. ADOT assumes responsibility for the site until final stabilization is achieved for the entire project. ADOT also removes all temporary sediment control BMPs that may impede stormwater flow as soon as practicable after final stabilization. If work is conducted on Tribal Land, ADOT files an NOT to the EPA as required.					
			There have been no changes to this construction requirement during the last reporting year.					
c. Completed Construction Site Inventory	5.3.3	4.3.3.3	Twice per year (by July 10 and January 10) ADOT provides ADEQ with an electronic list of all construction projects, including the name of the project and its associated AZCON number(s) that have achieved final stabilization and that ADOT considers to be complete. This list is compiled based on memos from the RLA who conducts the stabilization inspection.					
			The inventory has been provided to the ADEQ as required during the last reporting year.					
d. Enforcement Tracking and Reporting	5.3.4	4.3.3.4	ADOT maintains a list and description of all violations and their resolution, including any enforcement actions taken against its contractors. ADOT achieves enforcement actions through implementation of its stormwater Enforcement Response Plan. The list is generated from the inspection letters from Construction Site Inspectors. The RE is responsible for maintaining a file for all findings and report them to the Water Quality Group.					
			ADOT has maintained a list and description o violations during the last reporting year.					

Requirement: Provide a brief description of the implementation and progress of every individual best management practice (BMP). Also, provide an explanation of any significant developments or changes to the number or type of activities, the frequency or schedule of activities, or the priorities or procedures for implementation of specific management practices									
New Table of Contents	Permit Reference	2010 SSWMP Reference or Other Source	Description and Implementation of BMPs						
D. MEASURES TO CONTROL DISCHARGES FROM NEW DEVELOPMENT AND REDEVELOPMENT	3.2.5	4.4	Develop and implement a comprehensive planning procedure and BMPs to prevent or minimize water quality impacts from new highway development and development.						
1. Post-Construction Stormwater Control BMP Manual	3.2.5.1	4.4.1	This guidance manual details the post-construction BMPs ADOT uses to comply with the permit. The manual identifies factors for consideration during selection of BMPs and provides BMP design guidance						
2. Install post-construction	3.2.5.2	4.4.2	ADOT requires post-construction stormwater control BMPs be installed for all newly						
stormwater control BMPs			developed or redeveloped roadways that discharge stormwater runoff to impaired or unique waters.						
			This manual had no updates in the last reporting year.						
3. Inventory, inspect, and maintain all post-construction stormwater pollution control BMPs	3.2.5.3 and 3.2.6.1(a)	4.4.2	The Maintenance and Facilities group inventories, inspects, and maintains all post- construction BMPs. ADOT has hired a consultant to inventory all stormwater assets for which ADOT is responsible throughout the state. This survey is not anticipated to be completed until 2012. The Maintenance/Facilities SWAT is in the process of developing a uniform system to implement for conducting regular maintenance in each district.						
4. Training	3.2.5.4	See 4.1.1.3	Training is discussed in permit reference 4.1.1.3 (Page 2 of this table).						
E. MEASURES TO CONTROL DISCHARGES FROM ROADWAYS	3.2.6		Previously discussed in reference 4.1.1.3 (Page 2 of this table).						

Requirement: Provide a brief description of the implementation and progress of every individual best management practice (BMP). Also, provide an explanation of any significant developments or changes to the number or type of activities, the frequency or schedule of activities, or the priorities or procedures for implementation of specific management practices										
New Table of Contents	Permit Reference	2010 SSWMP Reference or Other Source	Description and Implementation of BMPs							
1. Maintenance and Facilities Best Management Practices Manual	3.2.6 (a) and (b)	see 4.2.1.2	The Maintenance and Facilities BMP Manual is discussed in 4.2.1.2 above.							
2. Storm Sewer System and Highway Maintenance	3.2.6.1		ADOT shall implement BMPs for operating and maintain an inventory of its post- construction stormwater pollution BMPs.							
a. Inventory Post-Construction Stormwater Pollution Control BMPs	3.2.6.1(a)	4.5.2.1	ADOT is in the process of developing a prioritized inventory of post-construction stormwater pollution control BMPs. See 4.4.2 above.							
b. Inspect Storm Sewer System	3.2.6.1 (b)	4.5.2.2	ADOT has implemented a system to inspect and record the condition of the storm sewer system. The District Engineer maintains a record of inspections and conditions found and forwards the list to the Water Quality Group annually.							
			ADOT is in the process of developing the FIS, a geographic information system capable of tracking and maintaining an inventory of ADOT's highway features to include stormwater and other drainage features. The FIS allows for attribute data to be stored and tracked for each feature identified and will be a useful tool in assisting with outfall inspections. It is ADOT's intent to eventually use the FIS throughout the State, however current budget issues has postponed full implementation of this program.							

Requirement: Provide a brief description of the implementation and progress of every individual best management practice (BMP). Also, provide an explanation of any significant developments or changes to the number or type of activities, the frequency or schedule of activities, or the priorities or procedures for implementation of specific management practices									
New Table of Contents	Permit Reference	2010 SSWMP Reference or Other Source	Description and Implementation of BMPs						
c. Develop Maintenance Schedules and Priorities	3.2.6.1 (c)	4.5.2.3	Each year ADOT conducts routine maintenance of it's storm sewer system. Maintenance schedules and priorities are evaluated annually by district. The MSLT has developed a standard method for developing a routine maintenance schedule that includes prioritization, implementation and recordkeeping. Each year the maintenance schedule is reviewed and revised as necessary.						
			A maintenance schedule will be include with ADOTs implantation of the FIS as previously described.						
d. Stormwater System Repair, Maintenance, and Cleaning	3.2.6.1(d), (e), and (f)	4.5.2.4	ADOT conducts repairs, maintains, and cleans its roadways used for stormwater conveyance and its storm sewer system to minimize the discharge of pollutants from the storm sewer system. During maintenance activities, each storm drain inlet is assessed for evidence of illicit discharges or illegal dumping in accordance with the Maintenance and Facilities BMP Manual. If evidence is discovered, illicit discharges or illegal dumping are reported and followed up according to 4.2.4.2 above. While conducting maintenance and cleaning activities ADOT implements BMPs to reduce the discharge of pollutants from unpaved roads, shoulders, parking lots, unpaved roads, and unpaved parking lots. ADOT properly disposes of all waste removed from its storm sewer system and facilities.						
			ADOT has conducted system repair, maintenance and cleaning of its stormwater conveyance system on an as-needed basis throughout the past reporting year.						
3. Training	3.2.6.1 (g)	See 4.1.1.3	Training is discussed in 4.1.1.3 above.						
3. Roadside Maintenance Program	3.2.6.2		Training is discussed in permit reference 4.1.1.3 (Page 2 of this table).						
a. Pesticide and Fertilizer Application	3.2.6.2(c)		BMPs have been maintained to manage vegetation along ADOT roadway throughout the past reporting eyar.						

Requirement: Provide a brief description of the implementation and progress of every individual best management practice (BMP). Also, provide an explanation of any significant developments or changes to the number or type of activities, the frequency or schedule of activities, or the priorities or procedures for implementation of specific management practices									
New Table of Contents	Permit Reference	2010 SSWMP Reference or Other Source	Description and Implementation of BMPs						
i. Optimize Chemical Applications	3.2.6.1 (c)(i)	4.5.3.1	ADOT requires its employees and commercial applicators to implement practices and procedures in accordance with the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) at ADOT facilities and within right-of-ways. ADOT BMPs address the timing of applications in relation to precipitation events and require applicators to use only pesticides approved for aquatic use in areas within or adjacent to a water of the US. The Stormwater Monitoring Guidance Manual for Construction Activities and the Arizona Office of Pest Management licensing requirements contain the guidelines governing pesticide, herbicide, and fertilizer application.						
			Stormwater Monitoring Guidance Manual for Construction Activities and the Arizona Office of Pest Management licensing requirements contain the guidelines for FIFRA applications; however, the existing text in this box stated: Maintenance and Facilities Best Management Practices Manual and the Vegetation Management Plan regarding insecticide, fungicide, and rodenticide applications are what ADOT follows.						
ii. FIFRA Certification	3.2.6.1 (c)(ii)	4.5.3.2	ADOT personnel have maintained their FIFRA certification as required.						
iii. Training	3.2.6.2 (c)(iii)	See 4.1.1.3	Training is discussed in permit reference 4.1.1.3 (Page 2 of this table).						

Requirement: Provide a brief description of the implementation and progress of every individual best management practice (BMP). Also, provide an explanation of any significant developments or changes to the number or type of activities, the frequency or schedule of activities, or the priorities or procedures for implementation of specific management practices									
New Table of Contents	Permit Reference	2010 SSWMP Reference or Other Source	Description and Implementation of BMPs						
b. Erosion Abatement Projects	3.2.6.2(d)	4.5.3.4	ADOT has a system to identify, track, and prioritize erosion abatement projects in areas where slopes are 3:1 or greater and actively eroding with sediment leaving ADOT's right of way. The Erosion and Pollution Control Manual contains BMPs guiding site stabilization and erosion control.						
			ADOT has identified the existing Slope Management Program (SMP) database as a tool to identify, track and prioritize erosion abatement projects. The SMP is a Microsoft ACCESS database that allows ADOT to track and prioritize the severity of rock slopes, soil cuts and embankments throughout the state. However, current State budget cutbacks have postponed the expansion of this database as a viable tool to track erosion issues. Once the budget permits, the SMP will be updated as required.						
4. Winter Storm Policies	3.2.6.3	4.5.4	ADOT implements BMPs to minimize stormwater impacts from application of salt, de- icing and anti-icing chemicals, abrasives for snow and ice removal, salt and sand storage, and snow disposal areas. These BMPs are described in the Winter Storm Management Arizona Highways Environmental Overview, Winter Storm Management of Arizona Highways Operations Manual, and Maintenance and Facilities BMP Manual. This manual has been updated as-needed throughout the past reporting period.						

APPENDIX B Outfall Inspection and Tracking

	Appendix B - Major Outfalls Inspection Database									
Route No- Mile Post	Outfall Location	Outfall Description	Receiving Water	Potential Sources of Pollutants	Inspection Date	Inspector	Outfall Condition	Maintenance Need	Dry Weather Flow Present	Follow up actions (if any)
Phoenix Area										
101-6.05	Loop 101 Agua Fria Freeway	Trapezoidal Open Channel, Concrete	New River		2008					
	300' W of 107th Ave.	TW=102' D=12'								
101-7.76	Loop 101 Agua Fria Freeway	Trapezoidal Open Channel, Concrete	New River							
	¹ / ₄ mile S. of Northern Ave. and 1000' W. of 99th Ave.	TW=82' D=8'								
101-10.84	Loop 101 Agua Fria Freeway ½ mile N. of Peoria Ave.	Trapezoidal Open Channel, Concrete & Soil Cement TW=65'	New River							
	along E. Bank of New River	D=12'								
101-11 85	Loop 101 Agua Fria Freeway	Trapezoidal Open Channel, Concrete	New River							
	1/2 Mile S. of Thunderbird Rd. and 300' West	TW=45' D=8'								
101-13.44	Loop 101 Agua Fria Freeway	Dual Circular Pipe, Concrete	Skunk Creek		2008					
	200' S. of S.B. Bridge over Skunk Creek and 80' East	DIA=42"								
101-13.68	Loop 101 Agua Fria Freeway	Trapezoidal Open Channel, Concrete	Skunk Creek							
	30 ° N of NB Bridge over Skunk Creek and 80' E	D=4'								
101-14.38	Loop 101 Agua Fria Freeway	Open Channel, Concrete	New River							
	300' West	D=10'								
101-15.18	Agua Fria Freeway	Circular Pipe, Concrete	New River							
	Loop 101	Circular Pipe, Concrete								
101-16.31	4/10 of a mile S. of Beardsley Rd. and 300' W.	DIA=48"	New River							
101-16.62	Loop 101 Agua Fria Freeway	Circular Pipe, Concrete	New River							
101-10.02	2/10 of a mile S. of Beardsley Rd. and 500' W	DIA=48"								
101-16 74	Loop 101 Agua Fria Freeway	Trapezoidal Open Channel, Concrete	New River							
	150' S of Beardsley Rd. & 2800' W. of 75 Ave	TW=56' D=11'								
101-20.19	Loop 101 Agua Fria Freeway	Circular Pipe, Concrete	Skunk Creek							
	¹ / ₂ Mile S. of Beardsley Rd. at 51st Ave	DIA=36"				ļ				
101-21.23 B	Loop 101 Agua Fria Freeway	Circular Pipe, Concrete	Skunk Creek							
	245' E of 43rd Ave & N. Side of Beardsley	DIA=42"								

	Appendix B - Major Outfalls Inspection Database									
Route No- Mile Post	Outfall Location	Outfall Description	Receiving Water	Potential Sources of Pollutants	Inspection Date	Inspector	Outfall Condition	Maintenance Need	Dry Weather Flow Present	Follow up actions (if any)
	Loop 101 Agua Fria Freeway	Trapezoidal Open Channel, Concrete								
101-21.23 A	260' E of 43rd Ave & N side of N Frontage Rd.	TW=20' D=2'	Skunk Creek							
404.04.00	Loop 101 Agua Fria Freeway	Circular Pipe, Concrete								
101-21.83	2000' W. of 35th Ave. & S. side of S. Frontage Rd.	DIA=96"	Scatter Wash							
404 04 074	Loop 101 Agua Fria Freeway	Trapezoidal Open Channel, Concrete	Cootton Missh							
101-21.87A	1500' W of 35th Ave & N side of N Frontage Rd.	TW=32' D=8'	Scaller wash							
	Loop 101	Circular Pipe, Concrete								
101-21.87B	1600' W. of 35th Ave & N side of N. Frontage Rd.	DIA=42"	Scatter Wash							
	Loop 101 Pima Freeway	2 Barrel Box Culvert, Concrete								
101 - 25.92	S. of 101, 1/4 mile west of 7th St into east bank of Cave Creek	2 - 8' x 6'	Cave Creek		2008					
101 - 50.87	Loop 101 Pima Freeway	2 Barrel Box Culvert, Concrete	Calt Diver		2000					
	N bank of Salt River in NE quadrant of 101 / 202 interchange	2 - 10' x 10'	Jan Kiver		2008					
404 54 07	Loop 101 Pima Freeway	Loop 101 3 Barrel Box Culvert, Concrete								
101-51.07	S bank of Salt River, E of 101 under 202 interchange	3 - 12' x 12'	- Salt River							
10 120 2	I-10 Papago Freeway	Circular Pipe, Concrete	Solt Divor							
10-130.2	W. bank of Agua Fria River under Van Buren St.	DIA=48"	Salt River							
10-130.3 Banaga	I-10 Papago Freeway	Trapezoidal Open Channel, Concrete	Aqua Eria Divor							
Channel	¹ / ₂ Mile W. of El Mirage Rd. & 100' N. of I- 10	TW=80' D=10'	Agua Fila River							
10-145.17	I-10 Papago Freeway	Circular Tunnel, Concrete								
West Tunnel	Central Ave. W side @ N. Bank of Salt River	DIA=21"	Salt River							
10-149.18	I-10 Papago Freeway	Circular Tunnel, Concrete	Salt River							
East Tunnel	20th St. E. side@ N. Bank of Salt River	DIA=21"								
10-150.44	I-10 Maricopa Freeway	Circular Pipe, Concrete	Salt River		2008					
	N. Bank of Salt River @ W side of I-10	D=36"								
10-150.45	I-10 Maricopa Freeway	Dual Circular Pipe, Concrete	Salt River		2008					
	N. Bank of Salt River @ E. side of I-10	D=72"								
10-151.06	I-10 Maricopa Freeway	Circular Pipe, Concrete	Tempo Drain							
10-101.00	NW Quadrant of I-10 & University Traffic Interchange	D=66"								

	Appendix B - Major Outfalls Inspection Database										
Route No- Mile Post	Outfall Location	Outfall Description	Receiving Water	Potential Sources of Pollutants	Inspection Date	Inspector	Outfall Condition	Maintenance Need	Dry Weather Flow Present	Follow up actions (if any)	
10 102 14	I-10 Maricopa Freeway	Dual Box Culverts, Concrete			2000						
10-162.44	NW quadrant of I-10 / Maricopa Road Interchange	2 - 10' x 8'	Glia Floodway		2008						
	S.R. 143 Hohokam Expressway	Circular Pipe, Concrete									
143-2.90	600' N. of Van Buren & 350' E of S.R. 143 at west bank of Old Cross Cut Canal	D=66"	Old Cross Cut Canal								
153 - 1 64	S.R. 153 Sky Harbor Expressway	Circular Pipe, Concrete	Salt River								
100 - 1.04	S. bank of Salt River west of expressway	D=72"	Sait Niver								
17 - 108 /8	I-17 Black Canyon Freeway	Circular Pipe, Concrete	Salt River		2008						
17 - 190.40	2200' S. of Buckeye Rd. & 1700' E. of 27th Ave.	D=102"	Gait Niver		2000						
17 208 2	I-17 Black Canyon Freeway	Circular Pipe, Concrete	Arizona Canal		2008						
17-200.2	¼ mile north of Dunlap, west of I-17 into Az Canal	D=36"	Diversion Channel		2008						
	Loop 202 East Papago Freeway	Dual Box Culverts, Concrete	Old Cross Cut Canal								
202-3.57	Directly under Loop 202/SR143 interchange at E. bank of Relocated Old Cross Cut Canal	2 - 3' x 4'									
202 5 14	Loop 202 East Papago Freeway	Open Channel, Earthen									
202-5.14	N of north side levee on Salt River ¼ mile west of 202 and E of 143	TW=60' D=5'	Sait River								
202 5 00	Loop 202 East Papago Freeway	Circular Pipe, Concrete	Solt Divor								
202-5.90	1000' E. of Priest Dr. and 2200' N. of 1st St.	DIA=36"									
202 7 44	Loop 202 East Papago Freeway	Circular Pipe, Concrete	Solt Divor		2008						
202-7.44	1100' W. of Rural Rd. @ N Bank of Salt River	DIA=48"			2008						
202 7 08	Loop 202 East Papago Freeway	Dual Box Culvert, Concrete	Salt River		2008						
202-7.90	1100' E. of Rural Rd. @ N. Bank of Salt River	2 - 8' x 8'			2008						
202 8 28	Loop 202 East Papago Freeway	Circular Pipe, Concrete	Salt River		2008						
202-0.20	2300' E. of Rural Rd. @ N. Bank of Salt River	D=48"			2000						
202-8 65	Loop 202 East Papago Freeway	Circular Pipe, Concrete	Salt River		2008						
202-0.03	4000' E. of Rural Rd. @ N. Bank of Salt River	D=36"			2000						

				Appendix B - Ma Inspection D	jor Outfalls atabase					
Route No- Mile Post	Outfall Location	Outfall Description	Receiving Water	Potential Sources of Pollutants	Inspection Date	Inspector	Outfall Condition	Maintenance Need	Dry Weather Flow Present	Follow up actions (if any)
	Loop 202 East Papago Freeway	Trapezoidal Open Channel, Concrete								
202 - 14.22	S bank of Salt River, 1000' W of Mesa Dr, 2200' N of 202	TW=43' D=11'	Salt River		2008					
54 5 45	S.R. 51 Squaw Peak Parkway	Circular Pipe, Concrete	Arizona Canal		0000					
51-5.45	300' N & W of Intersection @ 18th St. and Ocotillo	D=48"	Diversion Channel		2008					
51-7.04	S.R. 51 Squaw Peak Parkway	Circular Pipe, Concrete	Dreamy Draw Wash							
51-7.04	400' S and E of Intersection @ Northern and Squaw Peak Freeway	D=48"	Dreamy Draw Wash							
51-8 22	S.R. 51 Squaw Peak Parkway	Concrete Box Culvert, Concrete	Dreamy Draw Wash		2008					
51-6.22 50	500' E of Northern, 400' S of 51 @ Dreamy Draw	10' x 6'	Dreamy Draw Wash		2000					
51 - 10 01	S.R. 51 Squaw Peak Parkway	Trap Channel, Concrete	Indian Rond Wash		2008					
51 - 10.91	1/4 mile east of 51, 250' S of Sweetwater into Indian Bend Wash	TW=86' D=8'	Indian Denu Wash		2000					
51 - 11.62 -	S.R. 51 Squaw Peak Parkway	Circular Pipe and Box Culvert, Concrete	Indian Bend Wash		2008					
	400' N of Thunderbird into Indian Bend Wash	84" pipe, 10' x 6' CBC			2006					
87-178 55	S.R. 87 Mesa-Payson Hwy	Open Channel, Concrete	- Salt River							
07-170.00	S. of S.R.87 east of McDowell Rd intersection									
60, 197, 43	S.R. 60 Superstition Freeway	Trapezoidal Open Channel, Concrete	East Maricopa		2008					
00-107.43	1/2 mile E of Higley Rd. & S.R. 60 Traffic Interchange north side	TW=44' D=8'	Floodway		2000					
60, 180, 65	S.R. 60 Superstition Freeway	Trapezoidal Open Channel, Concrete	Soccomon Chanol		2008					
00-109.00	1/4 mile E of Sossman & S.R. 60 Traffic Interchange	TW=48' D=9'	Sossonian Chanel		2000					
Tucson Area	· · · ·									
	I-10	Circular Pipe, Concrete	Iulian Weeh							
10-260.7	N. Side of Julian Wash at 10th Ave, S. of I- 10	DIA = 72"	Julian wash							
	I-10	Circular Pipe, Concrete								
10-261.5	1400' W. of S. Park Ave., 1300' N. of Ajo Way- E. of SPRR	Dia = 78"	Julian Wash							
	I-10	Oval Pipe, CM								
	1200' S. of I-10 & Palo Verde Rd.		Julian Wash							
10-264.6	Interchange, W. side of Palo Verde & N. Bank Julian Wash	56" X 42"								
	I-19 Nogales Freeway	Circular Pipe, CM								
19-59.0	1200' S. of I-19 & Valencia Interchange S. of Valencia & E. bank Santa Cruz River	Dia = 36"	Santa Cruz River							
	I-19 Nogales Freeway	Trapezoidal Open Channel	_							
19-61.7	900' S. of I-19 & Ajo Way Interchange E. side of I-19 & S. Bank of rodeo Wash	TW=10' D=2'	Rodeo Wash							

				Appendix B - Ma Inspection D	ajor Outfalls Database					
Route No- Mile Post	Outfall Location	Outfall Description	Receiving Water	Potential Sources of Pollutants	Inspection Date	Inspector	Outfall Condition	Maintenance Need	Dry Weather Flow Present	Follow up actions (if any)
	S.R. 86 Ajo Highway	Circular Pipe, CM								
86-171.1	1600' S. of I-19 & Ajo Way Interchange @ W. bank of Santa Cruz River S. of Ajo Way	Dia = 36"	Santa Cruz River							
	U.S. 77 Tucson Florence Highway	Circular Pipe, CM								
77-71.74	S. Bank of Rillito River E. of Oracle Road	Dia = 72"	Rillito River		2008					
	U.S. 77 Tucson Florence Highway	Open Channel, Concrete								
77-71.8	N. Bank of Rillito River E. of Oracle Road	TW=40' D=7'	Rillito River		optional					
	U.S. 77 Tucson Florence Highway	Circular Pipe, Concrete	Tributary of Canada							
77-78.7	S.E. Quadrant of U.S. 77 & Greenock Dr	2 Dia = 36"	Del Oro		2008					
	U.S. 77 Tucson Florence Highway	Circular Pipe, Concrete	Tributary of Canada		0000					
77-78.9	N.E. Quadrant of U.S. 77 & Greenock Dr	Dia = 42"	Del Oro		2008					
	U.S. 77 Tucson Florence Highway	Open Channel, Concrete	Tributary of Canada							
77-79.9	S.E. Quadrant of U.S. 77 & Hanley Road	TW=25' D=8'	Del Oro							
	U.S. 77 Tucson Florence Highway	Open Channel, Concrete	Canada Dal Ora							
77-80.8	N.W. Quadrant of U.S. 77 & Canada Del	TW=30'	Canada Del Oro							
77-00.0	S.R. 210 Aviation Parkway	Circular Pipe, Concrete								
210-1.2	S.E. of Intersection of 10th Street & 3rd Ave.	Dia = 96"	Arroyo Chico							
	S.R. 210 Aviation Parkway	Circular Pipe, Concrete								
210-2.7	N.W. Quadrant @ Intersection of Campbell Ave. & Aviation Parkway	Dia = 108"	Railroad Wash							
Lake Havasu	Area									
1062876	S 095	Circular Pipe, CMP	Colorado River		9/29/2010		Good	Sediment	Dry	
1002010		36" - 59"			2:08:44 PM		0000	Ocdiment	Biy	
1062877	S 095	Circular Pipe, CMP 36" - 59"	Colorado River		9/29/2010 2:10:52 PM		Good	None	Dry	
1062875	S 095	Circular Pipe, HDPE 12" - 35"	Colorado River		9/29/2010 2:05:47 PM		Good	None	Dry	
1062874	S 095	4-Box Culvert, Concrete	Colorado River		9/29/2010 1:57:16 PM		Good	Sediment	Dry	
	S 095	5-Box Culvert Concrete			9/29/2010					
1062873	0.000	60" and Greater	Colorado River		1:50:43 PM		Good	Sediment	Dry	
1062872	S 095	Dual Circular Pipe, CMP	Colorado River		9/29/2010 1:40:22 PM		Good	Sediment	Dry	
	S 005	36° - 59° Dual Pay Culvert, Concrete			9/29/2010					
1062871	3 095	36" - 59"	Colorado River		1:33:23 PM		Good	Sediment	Dry	
1062870	S 095	Circular Pipe, CMP	Colorado River		9/29/2010		Good	Sediment	Dry	
1002010		36" - 59"			12:59:26 PM		0000	Ocdiment	Biy	
1062869	S 095	Circular Pipe, CMP 12" - 35"	Colorado River		9/29/2010 12:56:24 PM		Good	Sediment	Dry	
1062868	S 095	Dual Box Culvert, Concrete	Colorado River		9/29/2010		Good	Sediment	Drv	
	0.007	60" and Greater			12:50:47 PM				,	
1062867	S 095	Circular Pipe, CMP 12" - 35"	Colorado River		9/29/2010 12:45:46 PM		Good	Sediment	Dry	

	Appendix B - Major Outfalls Inspection Database														
Route No- Mile Post	Outfall Location	Outfall Description	Receiving Water	Potential Sources of Pollutants	Inspection Date	Inspector	Outfall Condition	Maintenance Need	Dry Weather Flow Present	Follow up actions (if any)					
1062866	S 095	3-Box Culvert, Concrete	Colorado River		9/29/2010		Good	Sediment	Drv						
1002000		60" and Greater			12:41:29 PM		0000	ocument	Diy						
1062865	S 095	5-Box Culvert, Concrete	Colorado River		9/29/2010		Good	Sediment	Drv						
		60" and Greater			12:36:04 PM				_ · J						
1062864	S 095	Circular Pipe, CMP	Colorado River		9/29/2010		Good	None	Dry						
		36" - 59"			12:29:41 PM				,						
1062863	S 095	Dual Box Culvert, Concrete	Colorado River		9/29/2010 12:26:22 DM		Good	Sediment	Dry						
	0.005	60" and Greater			0/20/2010										
1062862	5 095	Box Culvert, Concrete	Colorado River		12:18:45 DM		Good	Sediment	Dry						
	\$ 005	Circular Pipe, CMP			9/29/2010										
1062861	3 095	12" - 35"	 Colorado River 		12:15:35 PM		Good	Sediment	Dry						
	S 095	Circular Pipe, CMP			9/29/2010										
1062860	0 000	12" - 35"	Colorado River		12:12:41 PM		Good	Sediment	Dry						
	S 095	Dual Box Culvert, Concrete			9/29/2010				_						
1062859		60" and Greater	Colorado River		12:09:01 PM		Good	Sediment	Dry						
4000050	S 095	Circular Pipe, CMP	O dans de Dines		9/29/2010		0	Nexa	Du						
1062858		36" - 59"	Colorado River		12:04:26 PM		Good	None	Dry						
1062957	S 095 Circular Pipe, CMP	Colorado Divor		9/29/2010		Cood	None	Dec							
1002007		36" - 59"	Colorado River		12:02:46 PM		Good	none	Diy						
1062856	S 095 Circular Pipe, CMP	Colorado River		9/29/2010		Good	Sediment	Dry							
1002030		36" - 59"			12:00:49 PM		0000	Sediment	Diy						
1062855	S 095	Circular Pipe, CMP	Colorado River		9/29/2010		Good	Sediment	Drv						
1002000		36" - 59"			11:58:00 AM		0000	Countern	5.9						
1062854	S 095	Circular Pipe, CMP	Colorado River		9/29/2010		Good	None	Drv						
		36" - 59"			11:53:19 AM				,						
1062853	S 095	Dual Circular Pipe, CMP	Colorado River		9/29/2010		Good	Sediment	Dry						
	0.005	36" - 59"			11:49:07 AM				-						
1062852	5 095	3-Box Culvert, Concrete	Colorado River		9/29/2010 11:17:47 AM		Good	Sediment	Dry						
	S 005	Box Culvert, Constant			9/29/2010										
1062851	5 095	60" and Greater	Colorado River		11:11:58 AM		Good	Sediment	Dry						
	S 095	Dual Box Culvert, Concrete			9/29/2010										
1062850	0 000	60" and Greater	Colorado River		11:08:04 AM		Good	Sediment	Dry						
10000.10	S 095	Dual Box Culvert, Concrete			9/29/2010										
1062849		60" and Greater	Colorado River		11:04:33 AM		Good	Sediment	Dry						
1000040	S 095	Box Culvert, Concrete	Colorado Diver		9/29/2010		Cood	Codimont							
1062848		60" and Greater	Colorado River		10:58:31 AM		Good	Sediment	Dry						
1062946	S 095	Circular Pipe, CMP	Colorado Pivor		9/29/2010		Cood	Sodimont	Dny						
1002040		36" - 59"			10:50:59 AM		900u	Sediment	Diy						
1062847	S 095	Circular Pipe, CMP	Colorado River		9/29/2010		Good	Sediment	Dry						
1002047		12" - 35"			10:53:06 AM		0000	ocument	Diy						
1062845	S 095	Circular Pipe, CMP	Colorado River		9/29/2010		Good	None	Drv						
		12" - 35"			10:48:06 AM	-			,						
1062844	S 095	Box Culvert, Concrete	Colorado River		9/29/2010		Good	Sediment	Dry						
	0.005	60" and Greater			10:44:20 AM				,						
1062843	S 095		Colorado River		9/29/2010 10:20:47 AM		Good	Sediment	Dry						
	\$ 005				0/20/2010	-	+		 						
1062842	3 080	60" and Greater	Colorado River		10:36:49 AM		Good	None	Dry						
					10.00.407.00										

	Appendix B - Major Outfalls Inspection Database														
Route No- Mile Post	Outfall Location	Outfall Description	Receiving Water	Potential Sources of Pollutants	Inspection Date	Inspector	Outfall Condition	Maintenance Need	Dry Weather Flow Present	Follow up actions (if any)					
1062841	S 095	Circular Pipe, CMP	Colorado River		9/29/2010		Good	Sediment	Drv						
1002011		36" - 59"			10:22:24 AM		0000		5.9						
1062840	S 095	Circular Pipe, CMP	Colorado River		9/29/2010		Good	None	Dry						
		Less than 6"			9:42:45 AM				,						
1062839	S 095	Box Culvert, Concrete	Colorado River		9/29/2010		Good	Sediment	Dry						
	0.007	60" and Greater			9:35:36 AM				-						
1062838	S 095		Colorado River		9/29/2010		Good	None	Dry						
	0.005	36" - 59"			9.20.21 AW										
1062837	5 095		Colorado River		9/29/2010 0:19:43 AM		Good	Sediment	Dry						
	S 005	12 - 35 Circular Dina, HDDE			9.10.43 AM										
1062836	3 093	12" - 35"	 Colorado River 		9·14·40 AM		Good	Sediment	Dry						
	S 095	Circular Pipe, CMP			9/29/2010										
1062835	0,000	36" - 59"	Colorado River		9:11:34 AM		Good	Sediment	Dry						
	S 095	Box Culvert, Concrete			9/29/2010			•	_						
1062834		60" and Greater	Colorado River		9:05:22 AM		Good	Sediment	Dry						
1000000	S 095	Box Culvert, Concrete	Ostara la Dissa		9/29/2010		0		Du						
1062833		60" and Greater	Colorado River		9:00:31 AM		Good	Seaiment	Dry						
4000000	S 095	Circular Pipe, CMP	Colorado Diver		9/29/2010		Cood	None	Dm/						
1002032		12" - 35"			8:54:16 AM		Good	None	Dry Weather Flow PresentDry						
1062821	S 095	3-Circular Pipe, CMP	Colorado Pivor		9/29/2010		Good	Sodimont	Dry						
1002031		36" - 59"			8:29:55 AM		0000	Sediment	Dry						
1062830	S 095	5-Box Culvert, Concrete	Colorado River		9/29/2010		Good	Sediment	Drv						
1002030		60" and Greater			8:22:35 AM		0000	Ocalment	Бту						
1062829	S 095	6-Box Culvert, Concrete	Colorado River		9/29/2010		Good	Sediment	Drv						
1002020		36" - 59"			8:14:43 AM		0000		5.9						
1062828	S 095	Dual Circular Pipe, CMP	Colorado River		9/29/2010		Good	Sediment	Drv						
		36" - 59"			8:01:41 AM				,						
1062827	S 095	Dual Circular Pipe, CMP	Colorado River		9/29/2010		Good	Sediment	Dry						
		36" - 59"			7:47:50 AM				,						
1062744	S 095	3-Box Culvert, Concrete	Colorado River		9/28/2010 1:50:40 DM		Good	Sediment	Dry						
	0.005	36" - 59"			0/28/2010			<u> </u>							
1062745	S 095		Colorado River		3/20/2010 2.06.22 DM		Poor	Sediment	Dry						
├ ──── 	S 005	12" - 35" Dual Pay Culvart, Constata			Q/28/2010		+								
1062746	0000	60" and Greater	Colorado River		2.00.10 DM		Good	None	Dry						
					2.00.12110		1								

APPENDIX C Notice of Illegal Discharge Letter

Arizona Department of Transportation

Intermodal Transportation Division

206 South Seventeenth Avenue Phoenix, Arizona 85007-3213

Janice K. Brewer

John S. Halikowski Director

DATE

Floyd Roehrich Jr. State Engineer

NOTICE OF ILLEGAL DISCHARGE OR CONNECTION

Person or Business Name Address Phoenix, AZ

Dear Property Owner:

The Arizona Department of Transportation (ADOT) is responsible for maintaining not only roadways, but also the extensive storm drain network located within the State rights-of-way. The Arizona Pollutant Discharge Elimination System (AZPDES) Program, which is a component of the Clean Water Act of 1972, requires ADOT to control the amount of pollutants entering the drainage system. Part of this charge is the detection and elimination of illegal discharges or connections to the system that may contain pollutants or are otherwise not allowed. Left uncorrected, any pollutants entering the system will ultimately impact nearby streams, as storm drainage is not treated at any sort of treatment facility. In addition, neighboring property owners are not allowed to occupy, use or interfere with public right of way without permission. Any discharge/connection without permission is an illegal encroachment on ADOT right of way.

An inspection of the drainage system has occurred in the vicinity of your property and an illegal connection/discharge was discovered entering into the ADOT system. The discharge/connection was discovered on date at business name and address.

Indicators or Source include piping and staining.

Photographs of this discharge/connection are enclosed with this letter. In addition, I have enclosed an aerial photograph showing the location of this discharge/connection.

This discharge or connection must be ceased or removed within 30 days. A follow-up investigation will be conducted after that time to ensure compliance. If the situation is not corrected, ADOT will take corrective measures, including but not limited to sending this matter to the Arizona Office of the Attorney General so that a lawsuit may be filed. In the alternative, ADOT may remove the discharge/connection and bill you directly pursuant to A.R.S. § 28-7053.

If the illegal discharge/connection cannot be removed within 30 days, you do not understand this notice, or you disagree that an illegal discharge/connection exists at your property, please contact me with further details or explanation by calling 602.712.8353 or by email at wterlizzi@azdot.gov.

Sincerely,

Wendy Terlizzi ADOT Office of Environmental Services Water Quality Manager 1611 W Jackson Street, MD EM02 Phoenix, Arizona 85383

Enclosure (photographs)

cc: Todd G. Williams, M.Sc, ADOT Office of Environmental Services Director District Engineer District Environmental Coordinator

APPENDIX D Licensed Materials Sources and Stockpile Sites

Arizona Department of Transportation Licensed Materials Sources and Stockpile Sites

APPENDIX E Material Sources Table (Group A, B, C, and I)

Appendix E ADOT- Licensed Material Sources Inventory (Permit Year 2)

Material															Non-	Potential		Water	Distance	
Source		ADOT		Owner	Town-					Latitude	Longitude	Total	SIC	Site	Exclusive	Non-SW	Stockpiled	of	to Waters	U/I
(MS) No.	Source Name	District	County	Code	ship	Range	Sec	Hwy	MP	°-'-"N	° - ' - " W	Acres	Code	Use	Use	Discharge	Material	US	(miles)	Waters
GROUP A	: A materials source in t	his group will include	a place where	work or othe	r activitie	s related to	o the ext	traction,	process	ing, removal c	or recovery of r	ninerals is	being con	ducted. Gr	oup A may als	o include a site o	or portion of site	where r	nining has occ	urred in the
past, yet cu	irrently mining is not beir	ng actively undertaken	and the facili	ty may or ma	y not be a	covered by	an activ	ve mining	g permit	issued by the	landowner(s),	applicable	e State or I	-ederal gov	vernment ager	ncy.	•		Ŭ	
A1. These	sources are expected to	2				Ŭ	Ŭ				l l									
1563	Pole Knoll	Globe	Apache	3	08 N	27 E	30	260	381	34-03-24.83	109-31-55.04	32	1429	20,22	No	HH,LL	Yes	Yes	0.25	No
5154	JMP Ranches Inc.	Globe	Apache	7	13 N	28 E	30	180	366	34-30-04.52	109-24-18.65	80	1499	22	No	HH	No	Yes	<0.25	No
8109	BVD	Holbrook	Coconino	1,5	19 N	15 E	21	I-40	250	35-01-54.56	110-45-32.79	80	1499	20,22,23	No	HH,MM,NN	Yes	No	>0.50	No
7810	Crabtree	Safford	Greenlee	3	02 N	29 E	14	191	216	33-31-04.55	109-18-59.02	10	1429	20,22	Yes	HH	Yes	Yes	0.25	No
6662	Val Vista	Tucson	Pinal	4	05 S	06 E	23	I-10	187	32-58-35.18	111-43-04.41	120	1499	22,23	Yes	HH,JJ	No	Yes	On-site	No
1662	Tanner	Yuma	Yuma	4	08 S	21 W	9	95	38	32-44-35.30	114-25-33.55	95	1442	20,22,24	Yes	HH,II,JJ	Yes	Yes	On-site	No
3547	Gila Bend North	Yuma	Maricopa	4	06 S	03 W	7	I-8	124	32-54-55.14	112-35-51.77	19	1499	20,22	Yes	HH	Yes	Yes	On-site	No
A2. These	sources are used less the	an annually. Inspectio	ns are conduc	cted at least a	annually.														+	·
8135	Warm Springs	Globe	Apache	3	07 N	30 E	5	191	411	34-01-33.25	109-11-53.27	95	1429	20,24	Yes	HH	Yes	Yes	On-site	No
8706	Yucca	Kingman	Mohave	1,2,4,7	18 N	17 W	30	I-40	29	34-55-04.24	114-07-02.16	133	1442	20,23	Yes	HH	Yes	Yes	On-site	No
8569	Dugas	Prescott	Yavapai	3	12 N	03 E	27	I-17	270	34-23-29.20	112-02-26.61	40	1429	20	Yes	HH	Yes	Yes	<0.25	No
2507	San Jose Wash	Safford	Graham	4	7 S	28 E	23	191	136	32-48-52.85	109-27-2.57	28	1442	2	Yes	N/A	No	Yes	On-site	No
6022	Bowie	Safford	Cochise	2,4	13 S	28 E	32	I-10	365	32-15-20.64	109-30-02.93	134	1442	20,23	Yes	HH	Yes	Yes	On-site	No
8595	Fort Thomas	Safford	Graham	4	04 S	23 E	26	70	305	33-03-44.97	109-57-50.34	14	1442	2	Yes	N/A	No	Yes	On-site	No
2979	Vicksburg	Yuma	La Paz	4	05 N	15 W	23	72	44	33-45-45.94	113-47-39.44	60	1499	20	Yes	HH	Yes	Yes	<0.25	No
3543	Tiger Wash East	Yuma	Maricopa	4	04 N	10 W	16	I-10	73	33-41-29.35	113-17-10.02	80	1442	2	Yes	N/A	No	Yes	On-site	No
5474	YPG	Yuma	Yuma	9	06 S	20 W	3	95	53	32-56-15.13	114-18-32.26	14	1442	20,22	No	HH	Yes	Yes	0.25	No
5643	Gila Bend South	Yuma	Maricopa	4	06 S	03 W	19	I-8	123	32-53-16.92	112-36-42.77	303	1442	20,23	Yes	HH	Yes	Yes	On-site	No
8268	Tiger Wash West	Yuma	Maricopa	4	04 N	10 W	16	I-10	73	33-41-29.35	113-18-02.48	74	1442	20,23	Yes	HH,JJ	Yes	Yes	On-site	No
TOTAL SI	ES IN GROUP A =	18				1						1			· ·				<u> </u>	
GROUP B	: A material source in the	nis group will include a	a site or portio	n of a site wh	nere minir	ng occurred	d in the p	past but	is not ar	n active facility	. A site that is	no longer	being used	d will remai	n in this group	until it can be re	claimed, at whi	ch time i	t would be mo [,]	ved to
Group C.		0				•	•					Ũ	Ū		0.1					
3043	Squaw Peak	Globe	Gila	3	08 N	14 E	30	288	299	34-00-44.09	110-57-23.93	7	1499	1,20	Yes	HH	Yes	Yes	0.25	No
3044	Board Tree Saddle	Globe	Gila	3	07 N	14 E	7	288	295	33-57-37.32	110-57-11.80	15	1499	1,20	Yes	HH	Yes	Yes	<0.25	No
3512	Burnt Corral	Globe	Maricopa	3	03 N	11 E	1	88	237	33-38-04.52	111-11-18.65	11	1499	1,20	Yes	HH,JJ	Yes	Yes	0.25	No
7225	Connor Canyon	Globe	Gila	3	06 N	13 E	36	288	280	33-48-43.43	110-55-30.94	16	1499	1,20	Yes	HH	Yes	Yes	< 0.25	No
8763	Fish Creek	Globe	Maricopa	3	02 N	11 E	5	88	227	33-32-39.06	111-15-15.76	4	1429	1	Yes	HH,JJ	Yes	Yes	0.25	No
6125	Puerco River	Holbrook	Apache	1	22 N	29 E	27	I-40	345	35-16-26.59	109-14-55.43	19	1499	25	No	N/A	No	Yes	On-site	No
8318	Aztec	Holbrook	Navajo	2,7	16 N	21 E	3	77	381	34-48-33.75	110-06-18.35	45	1499	1,26	No	N/A	No	Yes	<0.25	No
6451	Slick Rock Wash	Safford	Graham	4	08 S	29 E	10	70	361	32-45-32.29	109-21-28.43	25	1442	20,26	Yes	N/A	Yes	Yes	On-site	No
1318	Quijotoa	Tucson	Pima	5	14 S	02 W	19	86	68	32-11-36.32	112-31-03.30	10	1499	1,26	Yes	N/A	No	Yes	<0.25	No
478	Mohawk	Yuma	Yuma	4	08 S	14 W	17	I-8	55	32-43-57.44	113-43-41.55	40	1499	26	Yes	N/A	No	Yes	On-site	No
TOTAL SI	ES IN GROUP B =	10	1			1						1			· ·				<u> </u>	
GROUP C	: Includes activities inte	nded to return the lan	d to its pre-mi	ining state. (C	Once a sit	e is reclain	ned, it w	vill be rer	noved fi	om this Group))									
769	Twin Arrows	Flagstaff	Coconino	3	20 N	10 E	2	I-40	217	35-09-04.61	111-18-45.07	32	1429	18	Yes	N/A	No	Yes	<0.25	No
5585	Deer Tank	Flagstaff	Coconino	3	23 N	06 E	17	180	234	35-22-53.19	111-47-12.12	20	1429	21	Yes	N/A	No	No	>0.50	No
7101	Munds	Flagstaff	Coconino	3	18 N	08 F	27	-17	320	34-54-34.06	111-32-06 73	35	1429	21	Yes	N/A	No	Yes	<0.25	No
8223	Upper Sheep Wash	Safford	Greenlee	3	02 S	28 F	2	191	190	33-17-39.07	109-26-54 60	7	Not 14XX	1,18	Yes	N/A	No	Yes	On-site	No
TOTAL SI	TES IN GROUP C =	4	0.001100							20 00101		I		.,						

Appendix E ADOT- Licensed Material Sources Inventory (Permit Year 2)

Material															Non-	Potential		Water	Distance	
Source		ADOT		Owner	Town-					Latitude	Longitude	Total	SIC	Site	Exclusive	Non-SW	Stockpiled	of	to Waters	U/I
(MS) No.	Source Name	District	County	Code	ship	Range	Sec	Hwy	MP	°-'-"N	°-'-"W	Acres	Code	Use	Use	Discharge	Material	US	(miles)	Waters
GROUP I: Non-Mining Sites. These regulated stockpile sites will be inspected at least quarterly.																				
3562	Beaver Creek	Flagstaff	Yavapai	3	15 N	05 E	12	179	302	34-42-35.03	111-46-45.18	2	Not 14XX	1,19,20	Yes	HH,MM	Yes	Yes	<0.25	No
5781	Blue Grade	Flagstaff	Yavapai	3	16 N	06 E	35	I-17	304	34-44-16.12	111-40-58.62	17	Not 14XX	20,22	Yes	HH,LL,MM	Yes	Yes	0.25	No
7625	Fort Tuthill	Flagstaff	Coconino	1,3	21 N	07 E	31	89A	400	35-09-11.40	111-41-31.75	80	Not 14XX	20,22	No	HH,LL,MM	Yes	Yes	On-site	No
1061	Second Knoll	Globe	Navajo	3	10 N	23 E	18	60	347	34-15-25.88	109-56-19.91	16	Not 14XX	20,22	Yes	HH,LL	Yes	Yes	0.25	No
1546	Kinney Mountain	Globe	Navajo	5	08 N	23 E	24	260	360	34-04-53.85	109-52-15.06	22	Not 14XX	1,20	Yes	HH,LL,MM	Yes	Yes	<0.25	No
3591	Carol Spring Mountain	Globe	Gila	3	04 N	17 E	33	60	278	33-39-05.12	110-34-06.08	6	Not 14XX	20,22	No	HH,LL,MM	Yes	Yes	<0.25	No
7525	Defiance	Globe	Pinal	3	2 S	12 E	11	177	167	33-16-04.92	111-05-38.06	25	Not 14XX	1,20	Yes	HH,MM	Yes	Yes	< 0.25	No
8541	Red Bluff	Globe	Gila	3	05 N	14 E	31	288	272	33-44-08.71	110-57-01.00	3	Not 14XX	1,20	Yes	N/A	Yes	Yes	<0.25	No
8629	Seven Mile Wash	Globe	Gila	3	03 N	16 E	23	60	268	33-35-13.16	110-38-47.23	1	Not 14XX	1,20	Yes	HH,MM	Yes	Yes	On-site	No
1245	Sunset Pass	Holbrook	Coconino	2,7	17 N	13 E	13	87	327	34-51-59.87	110-54-29.34	10	Not 14XX	20,22	No	HH,LL,MM	Yes	Yes	On-site	No
2330	Topock NWR	Kingman	Mohave	1	16 N	21 W	23	95	215	34-45-20.78	114-28-43.53	37	Not 14XX	25	No	N/A	No	Yes	On-site	No
7021	Gordon Drive	Kingman	Mohave	1	22 N	16 W	33	66	59	35-14-26.71	113-59-04.02	15	Not 14XX	20	No	HH,MM	Yes	No	N/A	No
3486	51st Ave	Phoenix	Maricopa	1	01 N	02 E	21	85	189	33-24-34.86	112-09-48.45	15	Not 14XX	25	No	N/A	No	Yes	On-site	No
8400	Sunflower	Phoenix	Maricopa	3	06 N	09 E	19	87	217	33-51-03.28	111-28-30.29	2	Not 14XX	1,20	Yes	N/A	Yes	Yes	<0.25	No
999	Tubac	Tucson	Santa Cruz	1	20 S	13 E	31	I-19	24	31-38-42.19	111-03-19.16	14	Not 14XX	20,22	No	HH	Yes	Yes	On-site	No
5058	Picacho	Tucson	Pinal	1	08 S	08 E	15	87	195	32-43-49.69	111-30-43.93	52	Not 14XX	20	No	HH,MM	Yes	Yes	On-site	No
7885	Sahuarita	Tucson	Pima	1	17 S	13 E	27	I-19	44	31-55-09.96	111-00-01.88	37	Not 14XX	20,22	No	HH,MM	Yes	Yes	<0.25	No
5002	Fortuna/Blaisedell	Yuma	Yuma	1	08 S	21 W	33	95	33	32-41-49.57	114-25-19.78	40	Not 14XX	20	No	HH,MM	Yes	Yes	On-site	No
6183	Dateland	Yuma	Yuma	2	06 S	13 W	36	I-8	67	32-51-32.30	113-33-07.68	60	Not 14XX	20,22	Yes	HH,MM	Yes	Yes	On-site	No
7287	Centennial	Yuma	La Paz	1	03 N	11 W	27	I-10	68	33-34-34.62	113-22-48.65	40	Not 14XX	20	No	HH,MM	Yes	Yes	On-site	No
TOTAL SIT	ES IN GROUP I =	20																		
APPENDIX F Numeric Summary of BMPs

		Annual Reporting Year (July1 - June 30)			0)	
Section	Stormwater BMP or Activity	2008-	2009-	2010-	2011-	2012-
Number		2009	2010	2011	2012	2013
	MEASURES TO CONTROL DISCHARGES THR	OUGH EDU	CATION			
3.2.2.1(a)(ii)(1)	Train ADOT Employees - Illicit discharges and illegal dumping					
	Number of trainings offered	7	17			
	Number of employees trained	35	112			
	(Other numeric measurable goals(s))	NA	NA			
3.2.2.1(a)(ii)(2)	Train ADOT Employees - Non-stormwater discharges					
	Number of trainings offered	7	17			
	Number of employees trained	35	112			
	(Other numeric measurable goals(s))	NA	NA			
3.2.2.1(a)(ii)(3)	Train ADOT Employees - New Construction and land disturbances					
	Number of trainings offered	7	17			
	Number of employees trained	35	112			
	(Other numeric measurable goals(s))	NA	NA			
3221(a)(ii)(A)	Train ADOT Employees - New development and significant					
5.2.2.1(a)(ii)(4)	redevelopment					
	Number of trainings offered	7	17			
	Number of employees trained	35	112			
	(Other numeric measurable goals(s))	NA	NA			
3221(a)(ii)(5)	Train ADOT Employees - Storm sewer system and highway					
5.2.2. I (a)(II)(5)	maintenance					
	Number of trainings offered	7	17			
	Number of employees trained	35	112			
	(Other numeric measurable goals(s))	NA	NA			
3.2.2.1(a)(ii)(6)	Train ADOT Employees - Good housekeeping and material BMPs					
	Spill Prevention and Response - Number of trainings offered	7	17			
	Spill Prevention and Response - Number of employees trained	35	112			
	Pesticides, Herbicides, and Fertilizer Application - Number of trainings					
	offered	7	17			
	Pesticides, Herbicides, and Fertilizer Application - Number of employees					
	trained	35	112			
	Industrial Sites - Number of trainings offered	7	17			
	Industrial Sites - Number of employees trained	35	112			
	(Other numeric measurable goals(s))	NA	NA			

		Annual Reporting Year (July1 - June 30)			0)	
Section	Stormwater BMP or Activity	2008-	2009-	2010-	2011-	2012-
Number		2009	2010	2011	2012	2013
3.2.2.1(a)(iii)	Develop Stormwater Library					
	Number of times accessed or visited	NA	NA			
	(Other numeric measurable goals(s))	NA	NA			
3.2.2.1(b)	ADOT Construction Contractor Training and Certification					
	Number of trainings offered	7	6			
	Number of ADOT employees trained/certified	35	22			
	Number of ADOT employees recertified	5	28			
	Number of ADOT contractors trained	NA	129			
3.2.2.2(b)(i)	Distribution of Educational Materials Through Public Places					
	Number of materials (posters, brochures, signs, etc.) distributed	2600	4,577			
	Number of public events ADOT attended with displays	5	65			
	Est'd Audience from tv, movie, radio, billboard, bus shelter PSAs	NA	13,534,800			
	Educational items (coloring books, wrist bands, magnets, etc). distributed	NA	6,129			
	(Other numeric measurable goals(s))	NA	NA			
3.2.2.2(b)(ii)	Distribution of Educational Materials Through ADOT's Stormwater Webpage					
	Number of hits on webpage	NA	NA			
	(Other numeric measurable goals(s))	NA	NA			
3.2.2.3 (b)	Record and Consider Public Comments					
	Number of public comments received	0	0			
	(Other numeric measurable goals(s))	NA	NA			
3.2.2.3(c)	Implement a Public Reporting System					
	Number of reports received from public	0	0			
	Number of reports investigated	0	0			
	(Other numeric measurable goals(s))	NA	NA			
3.2.2.3(d)	Develop a Stormwater Component of the Adopt-a-Highway Litter Initiative					
	Number of volunteer groups participating	1,835	1,609			
	Number of miles cleaned	2,291	2,026			
	Amount of trash collected (tons)	246	211			
	(Other numeric measurable goals(s))	NA	NA			
3.2.2.3(e)	Continue Implementation of Litter Hotline					
	Number of calls received	3,389	2864			
	(Other numeric measurable goals(s))	NA	NA			

		Annual Reporting Year (July1 - June 30)			0)	
Section	Stormwater BMP or Activity		2009-	2010-	2011-	2012-
Number		2009	2010	2011	2012	2013
		Annual Reporting Year (July1 - June 30)				
Section	Stormwater BMP or Activity	2008-	2009-	2010-	2011-	2012-
Number		2009	2010	2011	2012	2013
	ILLICIT DISCHARGE/ILLEGAL DUMPING DETECTION AI	ND ELIMINA	ATION MEASU	RES		
3.2.3.1(a)	Maintain Illicit Discharge Authority					
	(Numeric Measurable goal(s))	0	0			
3.2.3.1(b)	Enforce Standard Encroachment Permit					
	Number of enforcement actions	0	0			
	(Other numeric measurable goal(s))	0	0			
3.2.3.1(c)	Implement Non-Stormwater BMPs					
	(Numeric Measurable goal(s))	NA	NA			
3.2.3.1(d)	Inspect Outfalls for Dry Weather Discharges					
	Number of major outfalls inspected	35	35			
	Number of 71 identified major outfalls inspected	35	35			
	Number of priority outfalls inspected		0			
	Number of storm drain cross connection detected	0	0			
	Number of illicit discharges detected	1	1			
	Number of other dry weather flows detected	0	0			
	(Other numeric measurable goal(s))	NA	NA			
3.2.3.3(b)	Investigate Illicit Discharges (Source Identification)					
	Number of storm drain cross connection investigated	0	0			
	Number of illicit discharges investigated	0	0			
	Number of other dry weather flows investigated	0	0			
	(Other numeric measurable goal(s))	NA	NA			
3.2.3.3(c)	Respond to Complaints					
	Number of complaints received	0	0			
	Number of complaints responded to	0	0			
	Average response time (in days)	0	0			
	(Other numeric measurable goal(s))	NA	NA			
3.2.3.3(d)	Report Incidental Dry Weather Discharges					
	Number of discharges reported to ADEQ	1	1			
	(Other numeric measurable goal(s))	NA	NA			
3.2.3.4(a)	Take Action to Eliminate Existing Dry Weather Flows					
	Number of existing dry weather discharges eliminated	0	0			
	(Other numeric measurable goal(s))	NA	NA			

		ŀ	Annual Reporti	ng Year (Ju	ly1 - June 3	0)
Section	Stormwater BMP or Activity	2008-	2009-	2010-	2011-	2012-
Number			2010	2011	2012	2013
3.2.3.4(b)	Take Action to Eliminate Sources of Illicit Discharges					
	Number of storm drain cross connection eliminated	0	0			
	Number of illicit discharges eliminated	1	1			
	Number of dry weather discharges eliminated	1	1			
	(Other numeric measurable goal(s))	NA	NA			
3.2.3.4(c)	Coordinate with Local Jurisdictions for Complaint Response and Investigation					
	Number of illicit discharges reported to other jurisdictions for follow-up	1	0			
	(Other numeric measurable goal(s))	NA	NA			
3.2.3.5	Responding to Spills					
	Number of highway accident spills responded to	0	156			
	Number of highway accident spills prioritized (potential for discharge)	0	156			
	(Other numeric measurable goal(s))	NA	NA			

	Annual Reporting Year (July1 - June 30			0)		
Section	Stormwater BMP or Activity	2008-	2009-	2010-	2011-	2012-
Number		2009	2010	2011	2012	2013
	Annual Reporting Year (July1 - Ju			ly1 - June 3	0)	
Section	Stormwater BMP or Activity	2008-	2009-	2010-	2011-	2012-
Number		2009	2010	2011	2012	2013
	MEASURES TO CONTROL DISCHARGES FROM NEW DEVEL	OPMENT A	ND REDEVEL	OPMENT		
3.2.5.2	Install Post-Construction Stormwater Control BMPs					
	Number of new post-construction stormwater control BMPs installed		0			
	(Other numeric measurable goal(s))	NA	NA			

		Annual Reporting Year (July1 - June 30)			0)	
Section	Stormwater BMP or Activity	2008-	2009-	2010-	2011-	2012-
Number			2010	2011	2012	2013
			Annual Reporti	ng Year (Ju	ly1 - June 3	0)
Section	Stormwater BMP or Activity	2008-	2009-	2010-	2011-	2012-
Number		2009	2010	2011	2012	2013
	MEASURES TO CONTROL DISCHARGES FR	ROM ROAD	WAYS			
3.2.6.1(b)	Inspect Storm Sewer System					
	Number of inspections performed	0	54			
	(Other numeric measurable goal(s))	NA	NA			
3.2.6.1(c)	Develop Maintenance Schedules and Priorities					
	(Numeric measurable goal(s))	NA	NA			
3.2.6.1(d)	Perform Repair, Maintenance, and Cleaning					
	Number of miles of roadways repaired/maintained	0*	0*			
	Number of inlets cleaned	0*	0*			
	Number of drain inlets containing significant materials	0*	0*			
	(Other numeric measurable goal(s))	NA	NA			
3.2.6.2(c)(ii)	Require Certification/License					
	Number of licensed ADOT applicators	41	41			
3.2.6.2(d)	Stabilize Roadway Slopes (attach summary of tracking & prioritization)					
	Acres of roadway slopes stabilized	0	0			

* In a ccordance with 3.2.6.1(b), ADOT has 24 months to implement a system to inspect and record conditions of its storm sewer system

		Annual Reporting Year (July1 - June 30)			0)	
Section	Stormwater BMP or Activity	2008-	2009-	2010-	2011-	2012-
Number		2009	2010	2011	2012	2013
		Annual Reporting Year (July1 - Jun			ly1 - June 3	0)
Section	Stormwater BMP or Activity	2008-	2009-	2010-	2011-	2012-
Number		2009	2010	2011	2012	2013
	MEASURES TO CONTROL DISCHARGES FROM ADOT	MAINTENA	NCE FACILITI	ES		
4.1.5.3	Stencil Drain Inlets at ADOT Facilities					
	Number of new catch basins installed		0			
	Number of catch basins marked or stenciled		0			
	(Other numeric measurable goal(s))	NA	NA			

APPENDIX G Current MS4 Monitoring Locations

ing MS4 Site Map Exis .× F ം e, Map E 5 g Sa tial MS4 Rep la 2009 Anr \$\710 -De 2009\700 g Sa 05 V:\308032

Ν

Photograph: Outfall at basin looking South

Existing MS4 Sampling Location Phoenix, Arizona

ARIZONA DEPARTMENT OF TRANSPORTATION AZPDES STORM WATER MONITORING SITE

Yard

ADOT

Existing MS4 Sampling Location Tucson, Arizona

ARIZONA DEPARTMENT OF TRANSPORTATION AZPDES STORM WATER MONITORING SITE

APPENDIX H Proposed MS4 Monitoring Locations

Stormwater Sample Location

Ν

Photograph: Outlet from Roadway looking North

Proposed MS4 Sampling Location Flagstaff, Arizona

ARIZONA DEPARTMENT OF TRANSPORTATION AZPDES STORM WATER MONITORING SITE

Engineering and Environmental Consultants, Inc. 7878 North 16th Street, Suite 140, Phoenix, AZ 85020

Proposed MS4 Sampling Location Phoenix, Arizona

ARIZONA DEPARTMENT OF TRANSPORTATION AZPDES STORM WATER MONITORING SITE

Engineering and Environmental Consultants, Inc. 7878 North 16th Street, Suite 140, Phoenix, AZ 85020

Photograph: Approximate terminus area of ADOT outfall 82-0.57 and proposed sampling location

Proposed MS4 Sampling Location Nogales, Arizona

ARIZONA DEPARTMENT OF TRANSPORTATION AZPDES STORMWATER MONITORING SITE

Yard

Maps\Figure 5_ Ы ğ ing Sar ntial MS4 (Annual Report/Pote 2009 / ables\710 Deliv 2009\700 pling. Sar ual Report_ .05 Anr /:\308032

Prop

S

Tuc

Photograph: Outfall from Roadway looking East

Proposed MS4 Sampling Location Tucson, Arizona

ARIZONA DEPARTMENT OF TRANSPORTATION AZPDES STORM WATER MONITORING SITE

APPENDIX I ISCO Stormwater Sampling Equipment

Isco 6712 Full-size Portable Sampler

Isco's 6700 Series Portable Samplers have set the industry standard, providing the most comprehensive and durable performance available. With the introduction of our new 6712, Isco takes another step toward the ultimate by including SDI-12 interface capabilities.

The 6712 uses Isco's advanced 6700 Series Controller, a device that allows you to select from a variety of programming modes, assuring the most suitable routine for your application. Programming is fast and simple, with on-line help just a key stroke away.

The environmentally-sealed 6712 controller delivers maximum accuracy and easily handles all of your sampling applications, including:

- wastewater effluent
- stormwater monitoring
- CSO monitoring
- > permit compliance
- > pretreatment compliance

In the Standard Programming Mode, the controller walks you through the sampling sequence step-by-step, allowing you to choose all parameters specific to your application. Selecting the Extended Programming Mode lets you enter more detailed programs.

An optional telephone modem allows programming changes and data collection to be performed remotely, from a touchtone phone. It also has dial-out alarm features.

Bottle options are available for practically any sequential or composite application.

Versatile and Convenient

With eleven bottle choices, Isco's 6712 Sampler lets you quickly adapt for simple or intricate sampling routines. Up to 30 pounds (13.5 kg) of ice fits in the insulated base, preserving samples for extended periods, even in extreme conditions. A convenient drain plug aids removal of water from melted ice.

Tough and Reliable

The 6712 Portable Sampler features a vacuum-formed ABS plastic shell to withstand exposure and abuse. Its tapered design and trim 20-inch (50.8 cm) diameter result in easy manhole installation and removal. Large, comfortable handles make transporting safe and convenient—even when wearing gloves.

Isco's 6712 Portable Sampler carries a NEMA 4X, 6 (IP67) enclosure rating. It's submersible, watertight, dust-tight, and resistant to sleet and corrosion.

Superior capability, rugged construction, and unmatched reliability make the 6712 the ideal choice for portable sampling in just about any application.

All 6712 Samplers share the following features:

Advanced Delivery System

The 6712's peristaltic pump delivers samples at the EPA-recommended velocity of 2 ft/sec., even at head heights of 26 feet. At a head height of 3 feet, line velocity is 3 ft/sec. No other automatic sampler achieves this level of performance!

Our patented* pump revolution counter tells you when tubing should be replaced. Changing tubing is a snap; there are no pump covers, collars or tools to slow you down. An exclusive safety interlock removes power from the pump when it's opened.

Step-by-Step Programming

This feature walks you through the sampling sequence and allows you to choose all parameters specific to your application:

- ► When to start
- What volume to collect
- ► How to distribute samples
- ► If samples are to be time- or flow-paced.

You can easily enter complex programs to suit your unique needs. Available routines include:

- Pause and resume for intermittent discharge flow monitoring
- Sampler pacing by time, non-uniform time, flow or external event
- Random interval sample collection

Convenient Data Retrieval

Every 6712 Sampler is also a powerful data logger. Sampling, flow, rainfall, and other water quality data can be stored in its 512 KB memory.

Data may be retrieved directly into a Flowlink[®] 4 equipped PC in three ways:

- Via cable connection
- Remotely, via Isco's 2102 Wireless Communication System
- By phone, using our optional built-in modem

SDI-12 Interfacing

The 6712 functions as a SDI-12 logger and connects to any sensor that fully implements the protocol standard.

Display window showing SDI-12 connection status.

In addition, Isco has defined extended commands to enable "plug and play" communications and ease of programming. These commands are implemented by the sensor manufacturer. Data are identified and logged by their specific type.

Expand your monitoring capabilities with these products and accessories.

Contact Isco or your Isco Representative to receive specific literature and prices on the following items.

Telephone Modem

A factory-installed option that lets you set up and make programming changes, or collect data from your 6712 sampler from the comfort of your office.

581 RTD (Rapid Transfer Device)

Slim enough to fit in your shirt pocket, yet rugged enough to withstand submersion, the 581 RTD lets you quickly retrieve and transfer data without taking your laptop computer into the field.

ProPakTM Disposable Sample Bags

Isco's patented ProPak bags eliminate the expense of washing and storing bottles, while taking away worries about contamination from previous samples. The bags are available with a 1000 ml capacity, or in a 2-gallon version for composite sampling.

Flowlink Software

Isco's advanced Flowlink[®] 4 for Windows Data Management Software harnesses the power of Microsoft Windows[®] to retrieve, import, compare, and analyze data, generate advanced charts and graphs, create comprehensive reports, and more.

700 Series Modules

Our interchangeable 700 Series Modules let you adapt your 6712 sampler for a variety of jobs. These compact modules are environmentally sealed and may be added to your 6712 system at any time.

701 - pH and Temperature Module

Combines accurate pH and temperature monitoring in one module. It will also activate your 6712 Sampler at a user-elected pH or temperature range.

710 - Ultrasonic Flow Module

Uses our field-proven ultrasonic level sensor that doesn't require submersion in the flow stream.

720 - Submerged Probe Flow Module

Provides accurate measurement at sites where wind, steam, foam, turbulence, or air temperature fluctuations exist. Suitable for small channels, it accurately senses pressure even when covered with silt and sand.

730 – Bubbler Flow Module

Get the dependability and accuracy of Isco bubbler flow meters in a miniaturized package. The 730 is unaffected by changing stream conditions, and level measurement remains accurate despite temperature fluctuations or exposure to harsh chemicals.

750 - Area Velocity Flow Module

Gives greater accuracy where weirs and flumes are not practical, and where submerged, full pipe, surcharged, and reverse flow conditions may occur. And, you don't have to estimate the slope and roughness of the channel.

780 - Smart 4-20 Module

Add intelligence to a simple analog signal. Flow rates are displayed in actual volume units, not merely a percent of full scale. Any linear 4-20 mA input can be characterized by using the 780. The information can be stored and retrieved for later analysis.

Integrated Water Monitoring

Isco 6712 Samplers feature "plug and play" connection with SDI-12 compatible measuring devices - including multi-parameter sondes from leading manufacturers. Combined with the 6712's standard 512 KB of memory, enough for more than 200,000 stored readings. SDI-12 networking gives you great flexibility for logging environmental data, and for "smart sampling" event notification, triggered on any combination of up to 16 inputs.

Isco 6712 Full-size Portable Sampler Specifications

Sampler			Controller			
Height	27.0 in.	68.6 cm	Weight	13 lbs.	5.9 kg	
Diameter	20 in.	50.7 cm	Dimensions	10.3 x 12.5 x 10 in.	26 x 31.7 x 25.4 cm	
Weight (Dry/Less Battery)	32 lbs.	15 kg	Operational Temperature	32° to 120°F	0° to 49°C	
Material	High-strength ABS plast	ic outer shell	Enclosure Rating	NEMA 4X, 6	IP67	
	Stainless steel hardware)	Program Memory	Non-volatile flash memo	ory	
Power Requirements	12 VDC		Flow Meter	5 to 15 volt DC pulse or	25 millisecond isolated	
Pump			Signal Requirements	contact closure.		
Intake Purge	Adjustable air purge bef each sample.	ore and after	Number of Programmable Composite Samples	1 to 999 samples or co	ntinuous sampling	
Tubing Life Indicator	Provides a warning to cl	hange pump tubing.	Real Time Clock Accuracy	1 minute per month, typ	bical	
Intake Suction Tubing			Software	·		
Length	3 to 99 ft.	1 to 30 m				
Material	Vinyl or Teflon [®] lined		Sample Frequency	1 minute to 99 hours 59) minutes, in 1 minute	
Inside Dimension	3% in.	1 cm	Selection	Increments. Non-unifor	m times in minutes or	
Pump Tubing Life	Typically 1,000,000 pur	np counts	Sampling Modes	Uniform time non-uniform time flow		
Maximum Suction Lift	28 ft.	8.5 m		(Flow mode is controlle	d by external flow	
Typical Repeatability	±5 ml or ±5% of the ave	rage volume in a set		meter pulses.)		
Typical Line			Programmable	10 to 9,990 ml in 1 ml i	ncrements	
Iransport Velocity			Sample Volumes			
at nead neights of:	20#/2	0.01 m/o	Sample Retries	If no sample is detected	, up to 3 attempts;	
$\frac{3 \text{ II. } (0.9 \text{ III})}{10 \text{ ft} (3.1 \text{ m})}$	3.0 IL/S	0.91 III/S	Rinse Cycles	Automatic ringing of su	ction line up to 3 ringes	
$\frac{10 \text{ ft.} (0.1 \text{ ft})}{15 \text{ ft.} (4.6 \text{ m})}$	2.3 IL/S	0.07 m/s	TITISE OVERS	for each sample collecti	0N	
	Non wetted non condu		Program Storage	5 sampling programs		
Liquiu Presence Delector	when liquid sample reaches the pump to automatically compensate for changes in		Sampling Stop/Resume	Up to 24 real time/date commands	sample stop/resume	
	head heights.	č	Controller Diagnostics	Tests for RAM, ROM, pi distributor	ump display, and	

Ordering Information

Description	Part Number
6712 Portable Sampler, Full-size Includes controller with 512 KB RAM, top cover, center section, base, distributor arm, instruction manual, pocket guide.	68-6710-070
6712 Portable Sampler with Jumbo Base (as described above)	68-6710-082

Note: Power source, bottle configuration, suction line, and strainer must be ordered separately. Other options and accessories are also available. Contact Isco or your Isco Representative for complete information.

Isco, Inc.

4700 Superior St. Lincoln, NE 68504 USA Phone: (402) 464-0231 USA & Canada: (800) 228-4373 Fax: (402) 465-3022 E-Mail: info@isco.com

The 6712 Controller is an SDI-12 logger. Manual pump operations are now located on the front panel keys.

Isco Avalanche® Multi-bottle, Refrigerated Portable Sampler

Multi-function sampling and data logging with dual-power cooling

Avalanche[®] is based on Isco's industry-leading 6712 controller. You get all the advanced control, data logging, and communication features of the 6712, with cooling from either AC or battery power.

Bottle options include 5- and 2.5 gallon composites as well as 4×1 -gallon and 14×950 ml sequentials.

A 12V deep-cycle battery delivers 48 hours or more- of refrigeration. The power-saving cooling system remains on standby until the first sample is drawn, and only then switches on to preserve the collected samples for pickup.

Available routines include: pause-and-resume for intermittent-discharge flow monitoring; sampler pacing by time, non-uniform time, flow or external event; and random interval sample collection.

Standard Features

- Standard and extended programming keeps setup simple when you don't need advanced features.
- NEMA 4x, 6 (IP67) controller enclosure.
- SDI-12 interface provides "plug and play" connection with multi-parameter waterquality sondes and other compatible devices.
- 512kB memory gives you great flexibility for logging environmental data.
- Sample delivery at the EPA-recommended velocity of 2 ft/sec. at head heights up to 26 feet.
- Patented pump revolution counter ensures accurate sample volumes - and tells you when tubing should be replaced.

Optional mobility kit includes pneumatic tires for ease of transport over rough terrain, and a convenient battery platform.

Applications

- Stormwater runoff compliance
- TMDL and watershed monitoring
- Enforcement monitoring
- Advanced sampling combined with data logging and communications for flow, rainfall, and water quality parameters.

Is control technology accurately preserves samples at $3^{\circ}C$ – even under difficult conditions shown above ($40^{\circ}C$ ambient, $20^{\circ}C$ sample temperature).

Specifications

Isco Avalanche	Sampler
Size (H x W x D):	30.5 x 14 x 24 inches (78 x 36 x 60 cm)
Weight:	Dry, less battery - 76 lbs (35 kg)
Bottle configurations:	5-gallon poly bottle
	2.5-gallon glass bottle configuration
	2.5-gallon poly bottle configuration
	1-gallon poly bottle configuration (4 bottles
	950 ml poly bottle configuration (14 bottles)
Power Requirements:	12V DC (Supplied by battery or AC power converter.)
Pump	
Intake suction tubing:	
Length	3 to 99 feet (1 to 30 m)
Material	Vinyl or Teflon
Inside dimension	3/8 inch (1 cm)
Pump tubing life:	Typically 1,000,000 pump counts
Maximum lift:	28 feet (8.5 m)
Typical Repeatability	± 5 ml or $\pm 5\%$ of the average volume in a set
Typical line velocity at Head height: of	
3 ft. (0.9 m)	3.0 ft./s (0.91 m/s)
10 ft. (3.1 m)	2.9 ft./s (0.87 m/s)
15 ft. (4.6 m)	2.7 ft./s (0.83 m/s)
Liquid presence detector:	Non-wetted, non-conductive sensor detects when liquid sample reaches the pump to automatically compensate for changes in head heights.

Controller	
Weight:	13 lbs. (5.9 kg)
Size (HxWxD)	10.3 x 12.5 x 10 inches (26 x 31.7 x 25.4 cm)
Operational temperature:	32° to 120°F (0° to 49°C)
Enclosure rating:	NEMA 4X, 6 (IP67)
Program memory:	Non-volatile ROM
Flow meter signal input:	5 to 15 volt DC pulse or 25 millisecond isolated contact closure.
No. of composite samples:	Programmable from 1 to 999 samples.
Clock Accuracy:	1 minute per month, typical, for real time clock
Software	
Sample frequency:	1 minute to 99 hours 59 minutes, in 1 minute increments. Non-uniform times in minutes or clock times 1 to 9,999 flow pulses
Sampling modes:	Uniform time, non-uniform time, flow, event. (Flow mode is controlled by external flow meter pulses.)
Programmable sample volumes:	10 to 9,990 ml in 1 ml increments
Sample retries:	If no sample is detected, up to 3 attempts; user selectable
Rinse cycles:	Automatic rinsing of suction line up to 3 rinses for each sample collection
Program storage:	5 sampling programs
Sampling Stop/Resume:	Up to 24 real time/date sample stop/resume commands
Controller diagnostics:	Tests for RAM, ROM, pump, display, and distributor

Ordering Information

Note: Bottle configuration, suction line, and strainer must be ordered separately. 12 VDC operation requires external battery. Contact Isco or your Isco Representative for complete information.

Description	Part Number
Isco Avalanche Sampler (115-230 VAC/12V DC) Includes controller, distributor arm, instruction manual, pocket guide. Standard power cord.*	68-2970-003
5-gallon poly bottle	68-2970-008
2.5-gallon glass bottle configuration	68-2970-006
2.5-gallon poly bottle configuration	68-2970-009
1-gallon poly bottle configuration (4 bottles	68-2970-002
950 ml poly bottle configuration (14 bottles)	68-2970-001
Mobility Kit	68-2960-004

Teledyne Isco, Inc.

4700 Superior Street Lincoln NE 68504 USA Phone: (402) 464-0231 USA and Canada: (800) 228-4373 Fax: (402) 465-3022 E-Mail: iscoinfo@teledyne.com Internet: www.isco.com

The Avalanche controller is a powerful SDI-12 data logger, designed to work directly with Isco's advanced Flowlink® Software.

Data for flow, rainfall, and water quality can be transferred from the Avalanche controller into a Flowlink-equipped PC in three ways: via cable connection, via Isco's 2102 Wireless Communication System, or by phone, using Avalanche's optional built-in modem

Flowlink Software lets you quickly retrieve, import, compare, and analyze data, generate charts and graphs, and create comprehensive reports.

APPENDIX J Summary of MS4 Monitoring Data

Phoenix Area MS4 Monitoring Data

OUTFALL ID: 202-2.36		MONITORING SEASONS								
RECEIVING WATER: Potentian Basin				Summe	er: June 1-	October	31			
RECEIVING WATER. Retention Basin				Winter	: Novemb	er 1-May 3	31			
DESIGNATED USES: Water Retention		Winter	Summer	Winter	Summer	Winter	Summer	Winter	Summer	
SAM		2008-09	2009	2009-10	2010	2010-11	2011	2011-12	2012	
SAM		12/17/08	7/21/09	2/28/10					L	
MONITORING PARAMETERS	WQS			-	-	-	-			
Flow	NNS	1.7gpm	1.4gpm	-					ļ	
рН	5.0-9.0	7.75	7.21	8.52						
Temperature (F°)	NNS	54.4	96.9	56.5						
Hardness	NNS	180	-	60						
Specific conductance (mg/L)	NNS	550	900	1500						
Total Dissolved Solids (TDS) (mg/L)	500.00	290	720*	97						
Total Suspended Solids (TSS) (mg/L)	NNS	85	-	76						
Turbidity (NTU)	NNS	49	21	100						
Biochemical Oxygen Demand (BOD) (mg/L)	NNS	13	40	<5.0						
Chemical Oxygen Demand (COD) (mg/L)	NNS	110	350	70						
Inorganics										
Cyanide (mg/L)	0.20	<0.0050	<0.0050	<0.0050						
Sulfates (mg/L)	250.00	56	69	7.6						
Nutriants										
Nitrate (mg/L)	10.00	3.3	4	1.1						
Nitrite (mg/L)	1.00	0.19	0.77	<0.10						
Total Kjeldahl Nitrogen (TKN) (mg/L)	NNS	3	12	1.5						
Total Phosphorous (mg/L)	NNS	-	1.1	0.25						
Phosphate, Ortho (mg/L)	NNS	<0.12	0.46	0.48						
Total Nitrogen (mg/L)	NNS	-	-	1.2						
Total Amonia (mg/L)	NNS	0.66	2.6	0.48						
Sodium (mg/L)	NNS	49	85	1.3						
Calcium (mg/L)	NNS	46	64	150						
Chloride (mg/L)	NNS	69	130	6.9						

OUTFALL ID: 202-2.36				MON		SEASONS	6		
RECEIVING WATER: Potentian Basin				Summe	er: June 1-	October	31		
RECEIVING WATER. Retention Dasin		Winter: November 1-May 31							
DESIGNATED USES: Water Retention		Winter	Summer	Winter	Summer	Winter	Summer	Winter	Summer
SAM		2008-09	2009	2009-10	2010	2010-11	2011	2011-12	2012
Microbiological		12/17/00	//21/09	2/20/10					
Coliform focal (col/100 ml)	NNC	. 1 200		. 200					
	100.00	>1,200	-	>200					
	100.00	>24,200	-	-					
Antimony (mg/L)	0.000	0.000	0.0007	0.000					
	0.006	<0.020	0.0037	<0.020					
	0.050	<0.021	0.0064	<0.020					
Barium (mg/L)	2.000	0.098	0.14	0.074					
Beryllium (mg/L)	0.004	<0.0020	<0.0020	<0.0020					
Cadmium (mg/L)	0.005	<0.0050	<0.0050	<0.0050					
Chromium (mg/L)	0.100	<0.010	<0.010	<0.010					
Copper (mg/L)	1.300	0.023	0.073	<0.020					
Lead (mg/L)	0.015	0.0084	0.006	0.0064					
Mercury (mg/L)	0.002	<0.00020	<0.00020	<0.0002					
Nickel (mg/L)	0.140	<0.020	<0.020	<0.020					
Selenium (mg/L)	0.020	<0.020	<0.020	<0.020					
Silver (mg/L)	NNS	<0.010	<0.010	<0.010					
Zinc (mg/L)	2.10	0.053	0.14	4.7					
Organic Toxic Pollutnats									
Total Petroleum Hydrocarbons (TPH) (mg/L)	NNS	0.73	2.7	0.32					
Oil & Greese (Hexane Extr) (mg/L)	NNS	<5.0	<5.9	<5.3					
Chlorine, residual (mg/L)	0.70000	0.2	<0.10	<0.10					
VOCs, Semi-VOCs and Pesticides									
Benzene (mg/L)	0.0050	<0.00050	<0.00050	<0.0010					
Ethylbenzene (mg/L)	0.0050	0.00068	<0.00050	<0.0010					
Toluene (mg/L)	1.00	<0.0050	<0.0050	<0.0050					

OUTFALL ID: 202-2.36				MON		SEASONS	6			
RECEIVING WATER, Retention Regin				Summe	er: June 1-	October	31			
RECEIVING WATER: Retention Basin		Winter: November 1-May 31								
DESIGNATED USES: Water Retention		Winter	Summer	Winter	Summer	Winter	Summer	Winter	Summer	
	SAMPLING DATE	12/17/08	7/21/09	2/28/10	2010	2010-11	2011	2011-12	2012	
Total Xylene (mg/L)	10.00	0.0039	<0.0015	<0.0030						
Chromium, Trivalent (mg/L)	NNS	<0.010	<0.010	-						
MBAS (mg/L)	NNS	0.3	1.1	<1.0						
Endrin ketone (mg/L)	NNS	<0.00050	<0.000050	<0.000050						
Hexachlorobenzene (mg/L)	0.001	<0.00050	<0.000050	<0.000050						
Methoxychlor (mg/L)	0.004	<0.00050	<0.000050	<0.000050						
Benzidine (mg/L)	0.000	<0.050	<0.050	<0.010						
Bis(2-chlorethoxy)methane (mg/L)	NNS	<0.010	<0.010	<0.010						
Bis(2-chloroethyl)ether (mg/L)	0.030	<0.010	<0.010	<0.010						
Bis(2-chloroisopropyl)ether (mg/L)	0.280	<0.010	<0.010	<0.010						
4-Bromophenyl-phenylether (mg/L)	NNS	<0.010	<0.010	<0.010						
2-Chloronaphthalene (mg/L)	NNS	<0.010	<0.010	<0.0010						
4-Chlorophenyl-phenylether (mg/L)	NNS	<0.010	<0.010	<0.010						
3,3-Dichlorobenzidine (mg/L)	0.0031	<0.010	<0.010	<0.010						
2,4-Dinitrotoluene (mg/L)	0.0140	<0.010	<0.010	<0.010						
2,6-Dinitrotoluene (mg/L)	0.0001	<0.010	<0.010	<0.010						
Hexachlorobenzene (mg/L)	0.0010	<0.010	<0.010	<0.010						
Hexachloro-1,3-butadiene (mg/L)	NNS	<0.010	<0.010	<0.010						
Hexachlorocyclopentadiene (mg/L)	0.0500	<0.010	<0.010	<0.010						
Hexachloroethane (mg/L)	0.0025	<0.010	<0.010	<0.010						
Indeno(1,2,3-cd)pyrene (mg/L)	0.0005	<0.0010	<0.010	<0.0010						
Isophorone (mg/L)	0.0370	<0.010	<0.010	<0.010						
Nitrobenzene (mg/L)	0.0035	<0.010	<0.010	<0.010						
n-Nitrosodimethylamine (mg/L)	0.0080	<0.050	<0.050	<0.010						
n-Nitrosodiphenylamine (mg/L)	0.0071	<0.010	<0.010	<0.010						
n-Nitrosodi-n-propylamine (mg/L)	0.0050	<0.010	<0.010	<0.010						

OUTFALL ID: 202-2.36				MON		SEASONS	6			
RECEIVING WATER: Retention Resin				Summe	er: June 1-	-October	31			
RECEIVING WATER. Retention Basin		Winter: November 1-May 31								
DESIGNATED USES: Water Retention		Winter 2008-09	Summer 2009	Winter 2009-10	Summer 2010	Winter 2010-11	Summer 2011	Winter 2011-12	Summer 2012	
SA	MPLING DATE	12/17/08	7/21/09	2/28/10						
Benzylbutyl phthalate (mg/L)	NNS	<0.010	<0.010	<0.0010						
Bis(2-ethylhexyl)phthalate (mg/L)	NNS	<0.010	<0.010	<0.0010						
1,2,4-Trichlorobenzene (mg/L)	0.070	<0.010	<0.010	<0.010						
4-Chloro-3-methylphenol (mg/L)	NNS	<0.010	<0.010	<0.010						
4,6-Dinitro-2-methylphenol (mg/L)	NNS	<0.010	<0.010	<0.010						
Acid Compounds										
2-Chlorophenol (mg/L)	0.035	<0.010	<0.010	<0.010						
2,4-Dichlorophenol (mg/L)	0.021	<0.010	<0.010	<0.010						
2,4-Dimethylphenol (mg/L)	0.140	<0.010	<0.010	<0.010						
2,4-Dinitrophenol (mg/L)	0.014	<0.010	<0.010	<0.010						
2-Nitrophenol (mg/L)	NNS	<0.010	<0.010	<0.010						
4-Nitrophenol (mg/L)	NNS	<0.010	<0.010	<0.010						
Pentachlorophenol (mg/L)	0.001	<0.010	<0.010	<0.010						
Phenol (mg/L)	4.20	<0.010	<0.010	<0.010						
2,4,6-Trichlorophenol (mg/L)	0.00320	<0.010	<0.010	<0.010						
Bases/Neutrals										
Acenaphthene (mg/L)	0.42	<0.0010	<0.010	<0.0010						
Acenaphthylene (mg/L)	NNS	<0.0010	<0.010	<0.0010						
Anthracene (mg/L)	2.10	<0.0010	<0.010	<0.0010						
Benzo(a)anthracene (mg/L)	0.00190	<0.0010	<0.010	<0.0010						
Benzo(a)pyrene (mg/L)	0.00020	<0.0010	<0.010	<0.0010						
Benzo(b)fluoranthene (mg/L)	NNS	<0.0010	<0.010	<0.0010						
Benzo(g,h,i)perylene (mg/L)	NNS	<0.0010	<0.010	<0.0010						
Benzo(k)fluoranthene (mg/L)	0.0480	<0.0010	<0.010	<0.0010						
Chrysene (mg/L)	0.00479	<0.0010	<0.010	<0.0010						
Dibenzo(a,h)anthracene (mg/L)	0.00190	<0.0010	<0.010	<0.0010						

OUTFALL ID: 202-2.36				MON		SEASONS	5			
RECEIVING WATER: Retention Regin				Summe	er: June 1-	October	31			
RECEIVING WATER: Retention Basin		Winter: November 1-May 31								
DESIGNATED USES: Water Betention		Winter	Summer	Winter	Summer	Winter	Summer	Winter	Summer	
DESIGNATED USES: Water Retention		2008-09	2009	2009-10	2010	2010-11	2011	2011-12	2012	
SAM	PLING DATE	12/17/08	7/21/09	2/28/10						
Diethyl phthalate (mg/L)	5.60	<0.010	<0.010	<0.0010						
Dimethyl phthalate (mg/L)	NNS	<0.010	<0.010	<0.0010						
Di-n-butyl phthalate (mg/L)	NNS	<0.010	<0.010	<0.0010						
Di-n-octyl phthalate (mg/L)	2.80	<0.010	<0.010	<0.0010						
Fluoranthene (mg/L)	0.28	<0.0010	<0.010	<0.0010						
Fluorene (mg/L)	0.28	<0.0010	<0.010	<0.0010						
Naphthalene (mg/L)	0.14	<0.0010	<0.010	<0.0010						
Phenanthrene (mg/L)	NNS	<0.0010	<0.010	<0.0010						
Pyrene (mg/L)	0.21	<0.0010	<0.010	<0.0010						
Pesticides										
Aldrin (mg/L)	0.0020	<0.00050	<0.00051	<0.000050						
Alpha BHC (mg/L)	NNS	<0.00050	<0.000050	<0.000050						
Beta BHC (mg/L)	NNS	<0.00050	<0.000050	<0.000050						
Delta BHC (mg/L)	NNS	<0.00050	<0.000050	<0.000050						
Gamma BHC (mg/L)	NNS	<0.00050	<0.000050	<0.000050						
Chlordane (mg/L)	0.0020	<0.0050	<0.00050	<0.00050						
4,4-DDD (mg/L)	NNS	<0.00050	<0.000050	<0.000050						
4,4-DDE (mg/L)	NNS	<0.00050	<0.000050	<0.000050						
4,4-DDT (mg/L)	NNS	<0.00050	<0.000050	<0.000050						
Dieldrin (mg/L)	0.0020	<0.00050	<0.000050	<0.000050						
Endosulfan I (mg/L)	NNS	<0.00050	<0.000050	<0.000050						
Endosulfan II (mg/L)	NNS	<0.00050	<0.000050	<0.000050						
Endosulfan sulfate (mg/L)	NNS	<0.00050	<0.000050	<0.000050						
Endrin (mg/L)	0.0020	< 0.00050	< 0.000050	< 0.000050						
Endrin aldehyde (mg/L)	NNS	< 0.00050	0.000088	< 0.000050						
Heptachlor (mg/L)	0.00040	<0.00050	< 0.000050	< 0.000050						
Heptachlor epoxide (mg/L)	0.00020	<0.00050	<0.000050	<0.000050						
Toxaphene (mg/L)	NNS	<0.010	< 0.00050	< 0.00050						

Tucson Area MS4 Monitoring Data

OUTFALL ID: Tucson MS4 Grant Road				MON		SEASONS			
DECEIVING WATER, Sonto Cruz				Summ	er: June 1	-October 3	51		
RECEIVING WATER. Santa Cruz				Winte	r: Novemb	er 1-May 3	1		
DESIGNATED USES: ADOT Facility		Winter	Summer	Winter	Summer	Winter	Summer	Winter	Summer
		2008-09	2009	2009-10	2010	2010-11	2011	2011-12	2012
SAN	IPLING DATE	12/1/08	6/30/09	4/23/10					<u> </u>
MONITORING PARAMETERS	WQS								
Flow	NNS	-	-	-					
рН	6.5-8.5	-	-	7.3					
Temperature (F°)	NNS	62.3	88.1	64.4					
Hardness	NNS	250		470					
Total Dissolved Solids (TDS) (mg/L)	500	680*	680*	910					
Total Suspended Solids (TSS) (mg/L)	NNS	110	160	130					
Turbidity (NTU)	NNS	94	-	58					
Biochemical Oxygen Demand (BOD) (mg/L)	NNS	65	44	90					
Chemical Oxygen Demand (COD) (mg/L)	NNS	560	640	490					
Inorganics									
Cyanide, total (mg/L)	0.2	0.0059	<0.0050	<0.10					
Sulfates (mg/L)	250	110	68	-					
Nutriants									
Nitrate (mg/L)	1	<0.10	0.21	9.9					
Nitrite (mg/L)	10	<0.10	<0.10	1.9					
Total Ammonia (mg/L)	NNS	6.2	6.7	<0.50					
Total Kjeldahl Nitrogen (TKN) (mg/L)	NNS	12	14	7.8					
Total Phosphorous (mg/L)	NNS	0.42	0.36	0.58					
Phosphate, Ortho (mg/L)	NNS	0.62	<0.12	310					
Sodium (mg/L)	NNS	-	18	18					
Calcium (mg/L)	NNS	-	100	150					
Chloride (mg/L)	10	26	19	14					
Microbiological									
Coliform, fecal (col/100 ml)	NNS	-	-	2400*					
E.Coli (cfu/100 ml)	100.00	-	-	390					

OUTFALL ID: Tucson MS4 Grant Road				MON	ITORING	SEASONS			
				Summ	er: June 1	-October 3	1		
RECEIVING WATER. Santa Cruz				Winte	r: Novemb	er 1-May 3 [°]	1		
DESIGNATED USES: ADOT Facility		2008-09	2009	2009-10	2010	2010-11	2011	2011-12	2012
SAN	IPLING DATE	12/1/08	6/30/09	4/23/10					
Total Metals									
Antimony (mg/L)	0.00600	-	0.0046	<0.20					
Arsenic (mg/L)	0.05000	<0.020	0.003	<0.040					
Barium (mg/L)	2.0T	0.2	0.2	0.2					
Beryllium (mg/L)	0.00400	<0.0050	<0.0020	<0.0020					
Cadmium (mg/L)	0.00500	-	<0.0050	<0.0020					
Chromium (mg/L)	0.1T	<0.010	<0.010	<0.030					
Copper (mg/L)	1.3T	-	0.033	0.13					
Lead (mg/L)	0.015T	0.015	<0.0050	<0.040					
Mercury (mg/L)	0.00200	<0.00020	<0.00020	<0.0010					
Nickel (mg/L)	0.14000	-	<0.020	<0.050					
Selenium (mg/L)	0.02000	<0.020	0.02	<0.040					
Silver (mg/L)	NNS	<0.010	<0.010	<0.010					
Zinc (mg/L)	2.1T	-	0.18	0.41					
Organic Toxic Pollutnats									
Total Petroleum Hydrobarbons (TPH) (mg/L)	NNS	6.2	-	-					
Oil & Greese (Hexane Extr) (mg/L)	NNS	<5.6	<6.7	9.2					
Chlorine, residual (mg/L)	0.7	<0.10	-	<0.10					
VOCs, Semi-VOCs and Pesticides									
Benzene (mg/L)	0.005	<0.0010	<0.00050	<0.50					
Ethylbenzene (mg/L)	0.70000	<0.0010	<0.00050	<0.50					
Toluene (mg/L)	1.00000	<0.0050	<0.0050	<0.50					
Total Xylene (mg/L)	10.00000	<0.0030	<0.0015	<0.50					
Chromium, Hexavalent (mg/L)	NNS	-	<0.010	-					
Chromium, Trivalent (mg/L)	NNS	-	<0.010	-					
MBAS (mg/L)	NNS	-	11	-					
Specific conductance (mg/L)	NNS	720	690	1000					

OUTFALL ID: Tucson MS4 Grant Road				MON	IITORING	SEASONS			
RECEIVING WATER: Santa Cruz				Summ	er: June 1	-October 3	1		
RECEIVING WATER. Santa Cruz				Winte	r: Novemb	er 1-May 3	1		
DESIGNATED USES: ADOT Facility		2008-09	2009	2009-10	2010	2010-11	2011	2011-12	2012
	SAMPLING DATE	12/1/08	6/30/09	4/23/10					
Total Nitrogen (mg/L)	NNS	12	-	11.8					
Toluene - d8 (mg/L)	NNS	99	-	<0.50					
Dibromofluoromethane (mg/L)	TTHM	100	-	-					
Endrin ketone (mg/L)	NNS	-	<0.000050	<0.96					
Hexachlorobenzene (mg/L)	0.00100	-	<0.000050	<96					
Methoxychlor (mg/L)	0.00400	-	<0.000050	<96					
Benzidine (mg/L)	0.00020	-	<0.050	<96					
Bis(2-chlorethoxy)methane (mg/L)	NNS	-	<0.010	<96					
Bis(2-chloroethyl)ether (mg/L)	0.03000	-	<0.010	<96					
Bis(2-chloroisopropyl)ether (mg/L)	0.28000	-	<0.010	<96					
4-Bromophenyl-phenylether (mg/L)	NNS	-	<0.010	<96					
2-Chloronaphthalene (mg/L)	NNS	-	<0.010	<96					
4-Chlorophenyl-phenylether (mg/L)	NNS	-	<0.010	<96					
3,3-Dichlorobenzidine (mg/L)	0.00310	-	<0.010	<190					
2,4-Dinitrotoluene (mg/L)	0.01400	-	<0.010	<96					
2,6-Dinitrotoluene (mg/L)	0.00005	-	<0.010	<96					
Hexachlorobenzene (mg/L)	0.00100	-	<0.010	<96					
Hexachloro-1,3-butadiene (mg/L)	NNS	-	<0.010	<96					
Hexachlorocyclopentadiene (mg/L)	0.05000	-	<0.010	<96					
Hexachloroethane (mg/L)	0.00250	-	<0.010	<96					
Isophorone (mg/L)	0.03700	-	<0.010	<96					
Nitrobenzene (mg/L)	0.00350	-	<0.010	<96					
n-Nitrosodimethylamine (mg/L)	0.00800	-	<0.050	<96					
n-Nitrosodiphenylamine (mg/L)	0.00710	-	<0.010	<96					
n-Nitrosodi-n-propylamine (mg/L)	0.00500	-	<0.010	<96					
Benzylbutyl phthalate (mg/L)	NNS	-	<0.010	<96					
Bis(2-ethylhexyl)phthalate (mg/L)	NNS	-	<0.010	<96					

OUTFALL ID: Tucson MS4 Grant Road				MON	ITORING	SEASONS			
RECEIVING WATER: Santa Cruz				Summ	er: June 1	-October 3	1		
RECEIVING WATER. Santa Cluz				Winte	r: Novemb	er 1-May 3	1		
DESIGNATED USES: ADOT Facility		2008-09	2009	2009-10	2010	2010-11	2011	2011-12	2012
	SAMPLING DATE	12/1/08	6/30/09	4/23/10					
1,2,4-Trichlorobenzene (mg/L)	0.07000	-	<0.010	<96					
4-Chloro-3-methylphenol (mg/L)	NNS	-	<0.010	<96					
4,6-Dinitro-2-methylphenol (mg/L)	NNS	-	<0.010	<190					
Acid Compounds									
2-Chlorophenol (mg/L)	0.03500	-	<0.010	<96					
2,4-Dichlorophenol (mg/L)	0.02100	-	<0.010	<96					
2,4-Dimethylphenol (mg/L)	0.14000	-	<0.010	<96					
2,4-Dinitrophenol (mg/L)	0.01400	-	<0.010	<480					
2-Nitrophenol (mg/L)	NNS	-	<0.010	<96					
4-Nitrophenol (mg/L)	NNS	-	<0.010	<480					
Pentachlorophenol (mg/L)	0.00100	-	<0.010	<290					
Phenol (mg/L)	4.20000	-	<0.010	<96					
2,4,6-Trichlorophenol (mg/L)	0.00320	-	<0.010	<96					
Bases/Neutrals									
Acenaphthene (mg/L)	0.42000	-	<0.010	<48					
Acenaphthylene (mg/L)	NNS	-	<0.010	<48					
Anthracene (mg/L)	2.10000	-	<0.010	<48					
Benzo(a)anthracene (mg/L)	0.00190	-	<0.010	<48					
Benzo(a)pyrene (mg/L)	0.00020	-	<0.010	<48					
Benzo(b)fluoranthene (mg/L)	NNS	-	<0.010	<96					
Benzo(g,h,i)perylene (mg/L)	NNS	-	<0.010	<48					
Benzo(k)fluoranthene (mg/L)	0.04800	-	<0.010	<96					
Chrysene (mg/L)	0.00479	-	<0.010	<48					
Dibenz(a,h)anthracene (mg/L)	0.00190	-	<0.010	<48					
Diethyl phthalate (mg/L)	5.60000	-	<0.010	<96					
Dimethyl phthalate (mg/L)	NNS	-	<0.010	<96					
Di-n-butyl phthalate (mg/L)	NNS	-	<0.010	<96					
OUTFALL ID: Tucson MS4 Grant Road				MON	ITORING	SEASONS			
-----------------------------------	---------------	---------	------------	-----------	------------	-------------------------	------	---------	------
				Summ	er: June 1	-October 3	1		
RECEIVING WATER: Santa Gruz				Winter	r: Novemb	er 1-Mav 3 [.]	1		
DESIGNATED USES: ADOT Facility		2008-09	2009	2009-10	2010	2010-11	2011	2011-12	2012
	SAMPLING DATE	12/1/08	6/30/09	4/23/10					
Di-n-octyl phthalate (mg/L)	2.80000	-	<0.010	<96					
Fluoranthene (mg/L)	0.28000	-	<0.010	<48					
Fluorene (mg/L)	0.28000	-	<0.010	<48					
Indeno(1,2,3-cd)pyrene (mg/L)	0.00048	-	<0.010	<48					
Naphthalene (mg/L)	0.14000	-	<0.010	<48					
Phenanthrene (mg/L)	NNS	-	<0.010	<48					
Pyrene (mg/L)	0.21000	-	<0.010	<48					
Pesticides									
Aldrin (mg/L)	0.00200	-	<0.000050	<96					
Alpha BHC (mg/L)	NNS	-	<0.000050	<96					
Beta BHC (mg/L)	NNS	-	<0.000050	<96					
Delta BHC (mg/L)	NNS	-	<0.000050	<96					
Gamma BHC (mg/L)	NNS	-	<0.000050	<96					
Chlordane (mg/L)	0.00200	-	<0.00050	<96					
4,4-DDD (mg/L)	NNS	-	<0.000050	<96					
4,4-DDE (mg/L)	NNS	-	<0.000050	<96					
4,4-DDT (mg/L)	NNS	-	<0.000050	<96					
Dieldrin (mg/L)	0.00200	-	<0.000050	<96					
Endosulfan I (mg/L)	NNS	-	<0.000050	<96					
Endosulfan II (mg/L)	NNS	-	<0.000050	<96					
Endosulfan sulfate (mg/L)	NNS	-	<0.000050	<96					
Endrin (mg/L)	0.00200	-	<0.000050	<96					
Endrin aldehyde (mg/L)	NNS	-	< 0.000050	<96					
Heptachlor (mg/L)	0.00040	-	< 0.000050	<96					
Heptachlor epoxide (mg/L)	0.00020	-	<0.000050	<96					
Toxaphene (mg/L)	NNS	-	< 0.00050	< 0.00096					

*Total Coliform

APPENDIX K MS4 Laboratory Reports

Phoenix Area MS4 Laboratory Reports

Tax I.D. 62-0814289

Est. 1970

Gary Hoffmann Engineering & Env. Consultants, INC. -AZ 7878 N. 16th Street, Suite 140

Phoenix, AZ 85020

Report Summary

Tuesday July 28, 2009

Report Number: L413348 Samples Received: 07/22/09 Client Project:

Description: Phoenix MS4 Site

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Entire Report Reviewed By:

Laboratory Certification Numbers

A2LA - 1461-01, AIHA - 100789, AL - 40660, CA - I-2327, CT - PH-0197, FL - E87487 GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - ENV375,DW21704, ND - R-140 NJ - TN002, NJ NELAP - TN002, SC - 84004, TN - 2006, VA - 00109, WV - 233 AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910

Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

This report may not be reproduced, except in full, without written approval from Environmental Science Corp. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

> 1 Samples Reported: 07/28/09 14:56 Printed: 07/28/09 14:56 Page 1 of 7

Richards, **ESC

Tax I.D. 62-0814289

Est. 1970

Gary Hoffmann Engineering & Env. Consultants, INC 7878 N. 16th Street, Suite 140 Phoenix, AZ 85020	REPORT	OF ANALYSIS	J	uly 28, 2009		
Date Received : July 22, 200 Description : Phoenix MS4 Site)9		E	SC Sample # :	L413348-01	
- Sample ID : MS4			S	ite ID :		
Collected By : Phillip Collection Date : 07/21/09 13:30			P	roject # :		
Parameter	Result	Det. Limit	Units	Method	Date	Dil.
pH (On Site) Temperature (on-site)	7.21 96.9		su Deg. F			
Miscellaneous AT	ГТАСН ТО СОС				07/21/09	1
Chloride Nitrate Nitrite Sulfate	130 4.0 0.77 69.	1.0 0.10 0.10 5.0	mg/l mg/l mg/l mg/l	9056 9056 9056 9056	07/22/09 07/22/09 07/22/09 07/22/09	1 1 1 1
BOD	40.	5.0	mg/l	SM5210B	07/22/09	1
Chlorine, residual	BDL	0.10	mg/l	4500Cl-G	07/22/09	1
COD	350	10.	mg/l	410.4	07/23/09	1
Cyanide	BDL	0.0050	mg/l	9012B	07/27/09	1
Chromium,Hexavalent	BDL	0.010	mg/l	7196A	07/22/09	1
Chromium, Trivalent	BDL	0.010	mg/l	Calc	07/23/09	1
MBAS	1.1	0.10	mg/l	5540C	07/23/09	1
Ammonia Nitrogen	2.6	0.10	mg/l	350.1	07/27/09	1
Oil & Grease (Hexane Extr)	BDL	5.9	mg/l	1664A	07/28/09	1
Phosphate, Ortho	0.46	0.025	mg/l	4500P-E	07/23/09	1
Phosphorus, Total	1.1	0.10	mg/l	365.1	07/25/09	1
Specific Conductance	900		umhos/cm	9050A	07/23/09	1
Kjeldahl Nitrogen, TKN	12.	0.10	mg/l	351.2	07/27/09	1
Turbidity	21.	0.10	NTU	SM2130B	07/22/09	1
Dissolved Solids	720	10.	mg/l	2540C	07/25/09	1
Antimony Arsenic Thallium	0.0037 0.0064 BDL	0.0010 0.0010 0.0010	mg/l mg/l mg/l	6020 6020 6020	07/27/09 07/23/09 07/23/09	1 1 1

BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL) L413348-01 (MISC-SUB) - subcontracted to Legend Techn Services

Page 2 of 7

Tax I.D. 62-0814289

Est. 1970

Gary Hoffmann Engineering & Env. Consultants, INC 7878 N. 16th Street, Suite 140 Phoenix, AZ 85020	REPORT	G OF ANALYSIS		July 28, 2009		
Date Received : July 22, 2009 Description : Phoenix MS4 Site	9			ESC Sample # :	L413348-01	
Sample ID : MS4				Site ID :		
Collected By : Phillip Collection Date : 07/21/09 13:30				Project # :		
Parameter	Result	Det. Limit	Units	Method	Date	Dil.
Mercury	BDL	0.00020	mg/l	7470A	07/23/09	1
Barium	0.14	0.0050	mg/l	6010B	07/23/09	1
Beryllium	BDL	0.0020	mg/l	6010B	07/23/09	1
Cadmium	BDL	0.0050	mg/l	6010B	07/23/09	1
Calcium	64.	0.50	mg/l	6010B	07/23/09	1
Chromium	BDL	0.010	mg/l	6010B	07/23/09	1
Copper	0.073	0.020	mg/l	6010B	07/23/09	1
Lead	0.0060	0.0050	mg/l	6010B	07/23/09	1
Nickel	BDL	0.020	mg/l	6010B	07/23/09	1
Selenium	BDL	0.020	mg/l	6010B	07/23/09	1
Silver	BDL	0.010	mg/l	6010B	07/23/09	1
Sodium	85.	0.50	mg/l	6010B	07/23/09	1
Zinc	0.14	0.030	mg/l	6010B	07/23/09	1
2	221	0 00050	(]	00015		-
Benzene	BDL	0.00050	mg/l	8021B	07/23/09	1
Toluene	BDL	0.0050	mg/l	8021B	07/23/09	1
Ethylbenzene	BDL	0.00050	mg/l	8021B	07/23/09	1
Total Xylene	BDL	0.0015	mg/l	8021B	07/23/09	1
Surrogate Recovery(%)						
a,a,a-Trifluorotoluene(PID)	98.7		% Rec.	8021B	07/23/09	1
TPH (GC/FID) High Fraction	2.7	0.10	mg/l	3510/DRO	07/23/09	1
o-Terphenyl	71.7		% Rec.	3510/DRO	07/23/09	1
Desticides						
Aldrin	BDI.	0 000050	ma / 1	8081 4	07/23/09	1
Alpha BHC	BDL.	0 000050	$m\alpha/1$	80812	07/23/09	1
Beta BHC	BDI.	0.000050	$m\alpha/1$	80812	07/23/09	1
Delta BHC	BDI.	0.000050	mg/1	8081A	07/23/09	1
Camma BHC	BDI.	0.000050	mg/1	80817	07/23/09	1
Chlordano	ותם	0.0000000	mg/l	0001A 0001A	07/23/05	1
	ותם	0.00050	mg/1	0001A 0001A	07/23/09	1
	ותם	0.000050	mg/1	0001A 0001A	07/23/09	1
יד, ד 4 4 - חתת	BDL.	0.000050	mg/1	8081A	01/23/09	⊥ 1
	וועם	0.000050	mg/1	0001A 0001A	01/23/09	1
Dieigilfon I	BDT	0.000050	mg/1	0U01A 0001a	07/23/09	⊥ 1
Endosultan I	BDT	0.000050	mg/1	8U81A	07/23/09	1
Encosulian II	RDT	0.000050	mg/1	SUSIA 00017	07/23/09	1
Endosulian sullate	RDL	0.000050	mg/l	ALSUS	07/23/09	1
Endrin	BDL	0.000050	mg/l	8081A	07/23/09	Ţ
Endrin aldehyde	0.000088	0.00050	mg/l	8081A	07/23/09	1
Endrin ketone	BDL	0.000050	mg/l	8081A	07/23/09	1
Hexachlorobenzene	BDL	0.000050	mg/l	8081A	07/23/09	1

BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL) L413348-01 (MISC-SUB) - subcontracted to Legend Techn Services

Page 3 of 7

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS Gary Hoffmann Engineering & Env. Consultants, INC 7878 N. 16th Street, Suite 140 Phoenix, AZ 85020

July 28, 2009

Site ID : Project # :

ESC Sample # : L413348-01

Date Received Description	: :	July 22, 2009 Phoenix MS4 Site
Sample ID	:	MS4
Collected By Collection Date	:	Phillip 07/21/09 13:30

Parameter	Result	Det. Limit	Units	Method	Date	Dil.
Heptachlor	BDL	0.000050	mq/l	8081A	07/23/09	1
Heptachlor epoxide	BDL	0.000050	mg/l	8081A	07/23/09	1
Methoxychlor	BDL	0.000050	mg/l	8081A	07/23/09	1
Toxaphene	BDL	0.00050	mg/l	8081A	07/23/09	1
Pesticides Surrogates					.,,	
Decachlorobiphenvl	36.3		% Rec.	8081A	07/23/09	1
Tetrachloro-m-xylene	26.4		% Rec.	8081A	07/23/09	1
Base/Neutral Extractables						
Acenaphthene	BDL	0.010	mg/l	8270C	07/24/09	1
Acenaphthylene	BDL	0.010	mg/l	8270C	07/24/09	1
Anthracene	BDL	0.010	mg/l	8270C	07/24/09	1
Benzidine	BDL	0.050	mq/1	8270C	07/24/09	1
Benzo(a)anthracene	BDL	0.010	mg/1	8270C	07/24/09	1
Benzo(b)fluoranthene	BDL	0.010	$m\alpha/1$	8270C	07/24/09	1
Benzo(k)fluoranthene	BDL	0 010	mg/1	8270C	07/24/09	1
Benzo(g h i)pervlene	BDL	0 010	mg/1	8270C	07/24/09	1
Benzo(a)pyrene	BDL.	0.010	$m\alpha/1$	8270C	07/24/09	1
Bis(2-chlorethoxy)methane	BDL	0.010	mg/l	8270C	07/24/09	1
Bis(2-chloroethyl)ether	BDL.	0.010	$m\alpha/1$	8270C	07/24/09	1
Bis(2-chloroisopropyl)ether	BDI.	0.010	$m\alpha/1$	8270C	07/24/09	1
A-Bromonhenyl-phenylether		0.010	$m\alpha/1$	8270C	07/24/09	1
2-Chloronaphthalene		0.010	mg/l	8270C	07/24/09	1
4-Chlorophenyl-phenylether	BDI.	0.010	$m\alpha/1$	8270C	07/24/09	1
Chrysene		0.010	$m\alpha/1$	8270C	07/24/09	1
Dibenz(a, h)anthracene		0.010	mg/l	8270C	07/24/09	1
2 2 Dichlorobongidino	ותפ	0.010	mg/1	0270C	07/24/09	1
2 4-Dinitrotoluono	ותפ	0.010	mg/1	8270C	07/24/09	1
2,4-Dimitrotoluene	ותפ	0.010	mg/1	0270C	07/24/09	1
Z, 0-DINICIOLOIUENE	עם	0.010	$m\alpha/1$	0270C	07/24/09	1
Fluoranchene		0.010	1119/1 mg/1	0270C	07/24/09	1
Fluorene	עם	0.010	$m\alpha/1$	0270C	07/24/09	1
Hexaciitoropenzene		0.010	1119/1 mg/1	0270C	07/24/09	1
Hexachioro-1,3-butadiene	BDL	0.010	mg/l	8270C	07/24/09	1
Hexachlorocyclopentadlene	BDL	0.010	mg/1	82700	07/24/09	1
Hexachloroethane	BDL	0.010	mg/1	8270C	07/24/09	1
Indeno(1,2,3-cd)pyrene	BDL	0.010	mg/1	8270C	07/24/09	1
Isophorone	BDL	0.010	mg/l	8270C	07/24/09	1
Naphthalene	BDL	0.010	mg/l	8270C	07/24/09	1
Nitrobenzene	BDL	0.010	mg/l	8270C	07/24/09	1
n-Nitrosodimethylamine	BDL	0.050	mg/l	8270C	07/24/09	1
n-Nitrosodiphenylamine	BDL	0.010	mg/l	8270C	07/24/09	1
n-Nitrosodi-n-propylamine	BDL	0.010	mg/l	8270C	07/24/09	1
Phenanthrene	BDL	0.010	mg/l	8270C	07/24/09	1
Benzylbutyl phthalate	BDL	0.010	mg/l	8270C	07/24/09	1

BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL) L413348-01 (MISC-SUB) - subcontracted to Legend Techn Services

Page 4 of 7

Tax I.D. 62-0814289

Est. 1970

Gary Hoffmann Engineering & Env. Consultants, INC 7878 N. 16th Street, Suite 140 Phoenix, AZ 85020	REPORI	COF ANALYSIS		July 28, 2009		
Date Received : July 22, 2009 Description : Phoenix MS4 Site Sample ID : MS4 Collected By : Phillip Collection Date : 07/21/09 13:30	9			ESC Sample # : Site ID : Project # :	L413348-01	
Parameter	Result	Det. Limit	Units	Method	Date	Dil.
Bis(2-ethylhexyl)phthalate Di-n-butyl phthalate Diethyl phthalate Dimethyl phthalate Di-n-octyl phthalate Pyrene 1,2,4-Trichlorobenzene Acid Extractables 4-Chloro-3-methylphenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol 4-Nitrophenol Pentachlorophenol Phenol 2,4,6-Trichlorophenol	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	0.010 0.	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	8270C 8270C	07/24/09 07/24/09 07/24/09 07/24/09 07/24/09 07/24/09 07/24/09 07/24/09 07/24/09 07/24/09 07/24/09 07/24/09 07/24/09 07/24/09 07/24/09 07/24/09 07/24/09 07/24/09	1 1 1 1 1 1 1 1 1 1 1 1 1 1
2-Fluorophenol Phenol-d5 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophenol p-Terphenyl-d14	30.2 19.5 43.8 45.2 79.8 45.5		<pre>% Rec. % Rec. % Rec. % Rec. % Rec. % Rec.</pre>	8270C 8270C 8270C 8270C 8270C 8270C 8270C	07/24/09 07/24/09 07/24/09 07/24/09 07/24/09 07/24/09	1 1 1 1 1

BDL - Below Detection Limit
Det. Limit - Practical Quantitation Limit(PQL)
Note:
The reported analytical results relate only to the sample submitted.
This report shall not be reproduced, except in full, without the written approval from ESC.
.
Reported: 07/28/09 14:56 Printed: 07/28/09 14:56
L413348-01 (MISC-SUB) - subcontracted to Legend Techn Services

Page 5 of 7

Attachment A List of Analytes with QC Qualifiers

Sample Number	Work Group	Sample Type	Analyte	Run ID 	Qualifier
L413348-01	WG432625	SAMP	Chlorine, residual	R833089	Т8
	WG432667	SAMP	Cyanide	R835326	W
	WG432647	SAMP	Phenol	R833087	J4
	WG432660	SAMP	Kjeldahl Nitrogen, TKN	R835166	Т2

Page 6 of 7

Attachment B Explanation of QC Qualifier Codes

Qualifier	Meaning
J4	The associated batch QC was outside the established quality control range for accuracy.
Т2	(ESC) - Additional method/sample information: The laboratory analysis was from an unpreserved or improperly preserved sample.
Т8	(ESC) - Additional method/sample information: Sample(s) received past/too close to holding time expiration.
W	(ESC)-The laboratory analysis was from a sample collected in an improper container

Qualifier Report Information

ESC utilizes sample and result qualifiers as set forth by the EPA Contract Laboratory Program and as required by most certifying bodies including NELAC. In addition to the EPA qualifiers adopted by ESC, we have implemented ESC qualifiers to provide more information pertaining to our analytical results. Each qualifier is designated in the qualifier explanation as either EPA or ESC. Data qualifiers are intended to provide the ESC client with more detailed information concerning the potential bias of reported data. Because of the wide range of constituents and variety of matrices incorporated by most EPA methods, it is common for some compounds to fall outside of established ranges. These exceptions are evaluated and all reported data is valid and useable unless qualified as 'R' (Rejected).

Definitions

- Accuracy The relationship of the observed value of a known sample to the true value of a known sample. Represented by percent recovery and relevant to samples such as: control samples, matrix spike recoveries, surrogate recoveries, etc.
- Precision The agreement between a set of samples or between duplicate samples. Relates to how close together the results are and is represented by Relative Percent Differrence.
- Surrogate Organic compounds that are similar in chemical composition, extraction, and chromotography to analytes of interest. The surrogates are used to determine the probable response of the group of analytes that are chemically related to the surrogate compound. Surrogates are added to the sample and carried through all stages of preparation and analyses.
- TIC Tentatively Identified Compound: Compounds detected in samples that are not target compounds, internal standards, system monitoring compounds, or surrogates.

Page 7 of 7

Summary of Remarks For Samples Printed $07/28/09 \mbox{ at } 14{:}56{:}55$

TSR Signing Reports: 288 R5 - Desired TAT

Sample: L413348-01 Account: ENGENVPAZ Received: 07/22/09 07:45 Due Date: 07/29/09 00:00 RPT Date: 07/28/09 14:56 Misc-sub for FC subbed directly to Legend jlc 7/21/09 PO#S12098

														-		
Company Name/Address			Alternate Bil	ling				Analy	/sis/Co	ontain	er/Pre	serva	tive			Page 1 of 32
EEC						•										
7878 N. 16th St., Suite 140									:						Prepared by:	
Phoenix, AZ 05020							ľ				ž			S	MA ENVIRON	MENTAL
										03				Pre	Science cor	p
			Report to: GP	RY HOP	FMAN					НИ		res		å	12065 Lebar	ion Road
			E-mail to: 4Ho	FEMAN	PEECA	, Χ. <	bm			Щ	bec	ЧΟ		Ц	Mt. Juliet TN	37122
Project Description: Phoenix MS4 Sit	e		<u>.</u>	City/S	state Collected:					HDF	No F	Ш		LHD	Phone (615)	758-5858
PHONE:602-248-7702	Client Project N	0.		Lab Project #			1 2	s	л С	ГШ ОШ	Ш	Ē		с- С-	Phone (800) 767-5859
FAX: 602-248-7851							qu	Pre	Pre	50	НD	E	res	oride	. FAX (61	5)758-5859
contract of the Q	Site/Facility ID#	:		P.O.#			A Im	No No	No l	a, Na	00ml	\$ 500	No F	Chic	CoCode	(lab use only)
Collected by(signature):	Rush? (L	ab MUST be	e Notified)	Date Result	s Needed	No	4	Amb	Amt	ŭ	5 5	RF	ΡE	Ч Ч	ENGENVPAZ	
	<u> </u>	lext Day	100%			4	Ш Ш	1	JL.	s Ba	ΪĎ	ΗĽ	ЧD	臣	Template/Prelogin	
	TT	WO Day		Email?N	lo_X_Yes	of	- m	2	81	snlq	Ň	ů Č	1	e, C		
Packed on Ice NY		I firee Day			01es		<u>302</u>	/82	/80	Σ		JRE	Q	ulfat	Shipped Via:	
Sample ID	Comp/@fab	Matrix	Depth	Date	Time	Cntrs	12	٥ آ	б	ā	S	F	ĕ	ທີ	Remarks/contaminant	Sample # (lab only)
MSY	LON?	SW		7/21/09	1:30P	12	X	X	X	X	X	X	X	X		<u>L413348-01</u>
																
					<u> </u>											
						_										
									-							
							~									
						+										
	<u> </u>				L	<u> </u>					:	1				
Matrix: SS-Soil/Solid GW-Groundwa	ater WW-Wa	stewater D	W-Drinking V	Vater OT-O	ther								pH_	7.	<u>2]</u> 76.	<u>, 4</u>
Remarks:												Fŀ	w		Other	-
Relinguisher by:(Signature	Date:	Time:	Received)by:(S	Signature)	Trank.		Samp	les retu	imed via	a: FedE	x_UF	°S_0	her		Condition	(lab use only)
Chilliphie	7/21/09	3:11 pm	10A	211	\$ v iz_		<u> </u>								- K 1	$\widehat{\mathcal{A}}$
Relinquisher by:(Signature	Date:	Time: *	Received by (Signaturé) [×]	2.5		Temp 7	1.5			Bottle	$\mathcal{P}^{\mathcal{L}}$	1+1	TR		
Relinquisher by:(Signature	Date:	Time:	Received for I	lab by: (Signatur	e)	× 65	Date:	y in the second s	<u></u>	4900 - 1000 - 1000 7227 (S. 2011)	Time.	- 802.4. cj	<u>.</u>		pH Checked:	NCF
			1 ang	h/uc	<u> </u>		7	122	09	2013 - 2 ⁵ - 1	. (07	45	and and a second se	Winattana	
		Į														

Company Name/Address			Alternate Bill	ing				Analy	sis/Co	ontain	er/Pre	serva	tive			Chain of Custody
EEC																- میں <u>میں میں میں میں میں میں میں میں میں میں </u>
7878 N. 16th St., Suite 140															Prepared by:	
Phoenix, AZ 85020															ENVIRON Science cor	MENTAL p
			Report to:	toffma	<u></u>		4.1								12065 Lebar	non Road
			E-mail to:	manne	EECPhx		1								Mt. Juliet TN	37122
Project Description: Phoenix MS4 Sit	e		0	City/S	tate Collected:				S S	S			ŝ.,		Phone (615)	758-5858
PHONE:602-248-7702	Client Project N	lo.		Lab Project #			04	es	Ъ	Рге	4	64	T	4	Phone (800)) 767-5859
FAX: 602-248-7851					<u> </u>		H2S	Pr	ž	Š	125(H2S	aOF	2SO	A1	50
Dollected by	Site/Facility ID#			P.O.#			Ш	ž	DPE	Ц	Ш	Щ Ш		Ϊ	CoCode	(lab use only)
Collected by(signature):	Rush? (L	ab MUST be	e Notified)	Date Result	s Needed	No	Q H		H	H	ΗDΗ	ЦЦ	DPE	DPE	ENGENVPAZ	
		lext Day	100%				ШС		25n	25m		L L		<u> </u>	Template/Prelogin	
	Rush? (Lab MUST be Notified) Date Results Needed No GH H <t< td=""><td></td></t<>															
Packed on Ice NY		·····ee Day				Cotre	0	IBA(itrat	itrite	НЗ	ΧX	z			Complet # data and A
Sample ID	Comp Grab	Matrix	Depth	Date	Time			∑ v	Z v						Remarks/contaminant	Sample # (lab only)
MSY	· · · · · · · · · · · · · · · · · · ·	ي ر		1/2/0	7:30			$ ^{\wedge}$								10-01070-01
			<u> </u>											 		
	1															
									2							
													С ^а л			
														1		
	 		 								1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1					
	<u> </u>				 	_				<u> </u>	11.000			1		
							1997 1997		24 C	1	1			<u> </u>	l	
Matrix: SS-Soil/Solid_GW-Groundwa	ater WW-Wa	stewater D)W-Drinkina V	Vater OT-O	ther								pH_	7.2	21	9
Remarks:												Fl	ow		Other	-
Relignuis/er by:(Signature	Date:	Time:	Reseiven by:(S		M.		Samp	ies retu	med via	a: Fedi	ExUF	2 <u>0</u> 0	ther (S)	197	Condition	(lab use only)
Relinquisher by (Signature	Date:	Time:	Received by (Signature)	5.5		Temp	3			Bottle	s Rece	U U	TR	(or	6051
Relinquisher by:(Signature	Date:	Time:	Received for	ab by: (Signatur	e)		Date:	1	<u>، رد</u> ا	<u>- Charri</u> Maria	Time:		$\frac{1}{2}$		pH Checked:	NCF:
	1	1	101110	11.11.1	2/	· · · · · ·	17	アウコ	1.00	1. 	$ \Delta $	74	· < ~~~	5.8	1-210	

Company,Name/Address			Altomate	Dillina		_								·····	
r ⁱ Fo			Automate	omny				An	alysis/	Conta	ainer/P	reser	vative		Chain of Oustant
EEC			1					7 Î			5.5	1			Page 3 of 3
7878 N. 16th St. Suite	440									i	8 . S	ě.			·····
Phoenix A7 95000	140											Č.			
1 HOEIIIX, AZ 85020							1	<u>.</u>						Prepared by:	
							×.				2	<u> </u>	.		
							\$. ·.	3			- R.			ENVIRO	NMENTAL
			Report to:	HACEma						4	29) }``	М I	Science c	orp
			E-mail to:				-		1 (1	0	?	12065 Let	anon Road
Project Description: Phoenix MS4	Site		<u>– gnot</u>	(monno	EECPhr.	con			1. X X		車	`	J	Mt_Juliet1	TN 27100
DI KOLUE ANA ANA ANA			•	Cit	y/State Collected	:	1		1. 1. 1.		Į				14 37 122
PHONE:602-248-7702	Client Proje	ct No.		Lab Project	#		- ⁶ . *				Ē	₩	161	Phone (61	5)758-5858
FAX: 602-248-7851							\$. J		l es	[<u>ਹ</u>	2	15	1.	Phone (80	0) 767-5859
Collected by	Site/Facility	ID#					2 - 2		L C	ပြီ	- Nor	ΙĔ	<i>#</i> ##	FAX (6	015)758-5859
				P.O.#] #å	님	Ž) ;;	qq	μĽ	1.		A A A A A A A A A A A A A A A A A A A
	Rush?	(Lab MUST b	e Notified)	Date Resu	Its Needed		十도	Ĭ	L L L	aler	Z	2		CoCode	(lab use only)
	P1	Next Day	100%			No	l e	능	₫	Liši	έ	ğ		ENGENVPAZ	
		Two Day		Email2	No V V	-	۲Ę	1	Ē	÷	ifor	^d		Template/Pretorgin	
Packed on Ice NY		Three Day			NO_X_Yes	of	÷	×	50	iun	0	0,		,	
Sample ID			T		T	4	0	품	N	E.	<u>a</u>	i.		Shipped Via:	
A c i i	Comp/Grab	Matrix	Depth	Date	Time	Cntrs	Б	8	8	-HC	မို	0			
<u> </u>	Cond	5-5		1/21/0	1 2300	6	x	x	$\overline{\mathbf{v}}$	v		<u> </u>		Remarks/contaminant	Sample # (lab only)
										^		<u> </u>			12413348-01
		+		+	<u> </u>		<u> </u>		<u></u>						
										· [
							1 A A 4								
					f	┨──┤	1 2 3						<u> </u>		
				+							Ê Z Z		1.1		
	+	+		<u> </u>							ý i i				
															<u></u>
							**+			_					
										_			Û,		
											8 8 3 		1		
atrix: SS-Soil/Solid GW-Groundw	ater WW-Wa	stewater DM	-Drinking 14	ator OT or	L										
emarks:			Conking W	ater UI-Ot	ner							I	рН	Temp	
inquisher Ma(Signature			\sim									Flow			
ALT &	Date:	Time: F	Reported by:(Si	nature)	Z	ls	amples	return	ed via F	edEv	Lipe	0/5			
inquisher by (Signature	1/21/09	5.Hpm	$ \Delta $		pn,	ľ				-u_1_	_ 085_		FSWD	Condition	lab use only)
	Jale.	Time:	eceived by Si	gnadare) 🏹	s A s	h	emp;			180	otties R	eceive		- (20)	
nquisher by:(Signature	Date:	Time:	H	/			3	.47	ê c î		~~~~ X	D 4	计的		locar
		- #ric, 🛉	seceived for lat	by: (Signature)	,	D	ate: /	J.S.	1	Ti	më:			pH Checked	IDE.
		<u>/</u>	<u>TES PULL</u>	<u>[]] &</u>	2		<u>7 (</u>	221	109	. 10	97	40	5	122712	
			//								_		the setter starter of	<u></u>	and the second of the second

Address Addres	Phoer. I, Ste 42 C C O O	nix, AZ 23 • Tu Contact	ample Type	3. of Containers 2. of Contai	4-6100 · 1 (520) 32; = +	Fax (60; 7-1234 • State	2) 324-6 Fax (52 Zip 37/ 0. No.		0518 Phone SUJ Fax I Emai REQUE	- 76 7 Results [# Results]		ses	e n d - g of_ ax Numbe 2/5 - QC Rep Special	r or Email A 755 - Prort ED Detection Li
Address <u>IZOGS Lebron Rd</u> Project Number TURN AROUND TIME Laboratory Authorization Required for Rush dard 10 - 15 Day T ne Sample Location Project X, AZ	Composite	Contact Contact	ample Type	. of Containers	(520) 32 , e+f	State	Fax (52		Phone SOD Fax I Emai REQUE	- <u>76 7</u> Results [# Results] STED		• <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	of	er or Email / 755 - xort ED Detection Li
Address <u>ICOGS Lebran Rd</u> TURN AROUND TIME Laboratory Authorization Required for Rush dard 10 - 15 Day r ne Sample Location <u>Dan</u> Maca. X, A.Z.	Composite		ample Type	. of Containers	<u>e+</u> E 27 	State	Zip 37/ 0. No.		Phone SUJ Fax I Emai REQUE	- 76 7 Results [# Results] STED #	7 <u>-53:</u>	ses	ax Numbe 2/5 - QC Rep Special	er or Email / 755 - xort [] ED Detection Li
TURN AROUND TIME Laboratory Authorization Required for Rush dard 10 - 15 Day	Composite	Contact	ample Type	. of Containers	<u>e+</u> 27 	State	Zip 37/ 0. No.		Phone SUJ Fax I Emai REQUE	- 76 1 Results [# Results STED #	7.53 : 	ses	ax Numbr 2/5 - QC Rep Special	er or Email / 755 - Port ED Detection Li
TURN AROUND TIME Laboratory Authorization Required for Rush dard 10 - 15 Day r ne Sample Location Dan Mach. X, A.Z.	Composite	Contaci J G V	ample Type	. of Containers	e+ [37 0. No.		SOJ Fax 1 Emai	- 76 j Results [# Results STED 4	7-53: INALY:	se č	ax Numbi 2/5 - QC Rep Special	er or Email / 755 - xort EE Detection Li
TURN AROUND TIME Laboratory Authorization Required for Rush dard 10 - 15 Day ne Sample Location	Composite	Contac J Gr quad Quad	ample Type	. of Containers	~ 7 7 7		0. No.			Results [# Results]		SES	QC Rep Special	755 Port ED Detection Li
TURN AROUND TIME Laboratory Authorization Required for Rush Idard 10 - 15 Day T ne Sample Location	Composite	Crab Crab	ample Type	. of Containers								SES	QC Rep	
Laboratory Authorization Required for Rush Indard 10 - 15 Day	Composite	Grab	ample Type ompliance	. of Containers		-	¹ u			STED /	INALY:	SES	Special	
Laboratory Authorization Required for Rush Inderd 10 - 15 Day T ne Sample Location Dan Procent X, A 72	Composite	Grab	ample Type ompliance	. of Containers			ru,				NALT:	SES	7/	177
ndard 10 - 15 Day r ne Sample Location Dan Procent X, A 72	Composite	Grab	ample Type ompliance	. of Containers	1									[]
ne Sample Location	Composite	Grab	ample Type omplianno	. of Container	1/3									' / /
me Sample Location	Composite	Grab	ample Type		13) ;	' / ,			///	/ /	//	/ /	1 1
me Sample Location	Composi	Grab	ample T	D. of Co	1/9	KY.	11	/ /	11	//	/ /	11	1 1	/ /
me Sample Location	Com	Grab	amb	بر الم الح	図 く	1.51	1 1	-				1 1	/	11
Dan Prisen X, AZ		1 9 1	to .	110	44 J	19	/ /	1,	/ /	/ /	1 /	/ /	/ /	'
Men KAZ			<u> v</u> U	<u>, ž t</u> i	<u> </u>	Y_1	' /	1	11	/ /	11	/	/ /	1 1
		X	\hat{O}	121	XX	ŤŢ	-1	[╶┼╌┼		/_/_	-{{	₋	<u>4 </u>
I		*	4-	1-10	rr	╫╌┼	-+	├ }_		/	\vdash	44		
	-+-+	╄╌┼		+	+] [1-1-
		↓_↓					1					+-+		┼-┼
		1				$\uparrow \uparrow$	-1-1	┝╼┟╸	┽╌┼	-+-+	├──┼──	╶┼╌╌╁	-+	╉╍╋
{	1-	\square	+		~+-'	╂╌╂╴	-+		-∔∔-			\downarrow	11-22	this g
	+-+	r-+-		+-	/ _'	┶╌┾╴						7 - 1	7-1-	121
	+-+	←_	'		. <u> </u> '		Ĩ	1		11		1-1	-+	┠─┼──
	1	(]	- '			 	+-+	-+-	┿╌┼╴	-+-+		╉╾┽		└─┼──
ļ	++	·	+		-+-+	┟╌┼╴	-+-+		┵╌┼╴			L		
	╉╾╋	·+-	+'	<u>∔-</u> ₩	-+/	\vdash	++					T	\top	
	+-+		<u> </u>						TT	17	-1-1	╞╼┼╴	-+-+	
1			11		17		++		╀╌╁╴	┿┽	-+	┝─┼╴		
ANALTSIS, SAMPLES MUST BE RE	CEIVE	EDA	fiet	AST 3 HC	JURST	BOIRS								
	-				<u></u>		<u>, 190</u> 90	TE CIN	<u>11 D 111</u>	MEEA	PIRAT	<u>10N</u>	<u> SEE</u>	
REUNQUIS	HED B'	IN ST		S.C. CARLES	जिल्ला	यह स्टब्स्	<u>ः स्टब्द्र</u> स्ट							
D Sampler Signature		<u> 260/080</u>	<u>888869</u>	**************************************	<u>**</u> *	00000000000000000000000000000000000000		$\overline{\gamma}$	SAMPI	LES RE	CEIVE	DYBY		1
Sampler Printed Name	$\overline{\Gamma}$			Date /	1 <u>21/</u> 91	2 ^{Signatur}	re 	Sky	aro	n Il	(Ce j	$\overline{l(c)}$:	/Date /	11/0
Samples Simple	$\underline{1}$				600	Printed {	Name	<;/.	17. 17	* - 作す 514 上)	7771	12 J 10 H 1	Time /	2110
i oaniblei signatiira (Date]	Signatur	re	\rightarrow	HLL	<u>281 p.s</u>	104.1	CA	4	<u>600</u>
3			-	Time	1-	Printed #	Name	•		·			Date	
Sampler Signature					+-	Ciapatup					<u></u>		Time	
Sampler Signature Sampler Signature Sampler Signature				Date		OlUlianos	a)シシー		Date	
Q	Sampler Printed Name Sampler Signature Sampler Printed Name	Sampler Printed Name Sampler Signature Sampler Signature Sampler Signature	U Sampler Printed Name CGS CY LST I N Sampler Signature Sampler Signature Sampler Signature	U Sampler Printed Name Sampler Printed Name Sampler Signature Sampler Signature	U Sampler Printed Name Date 7 Sampler Signature Date Sampler Printed Name Time Sampler Signature Time	Date 7/2/2 Sampler Printed Name Time Sampler Signature Date Sampler Printed Name Time Sampler Signature Date Date Date	Date Date Signature Sampler Printed Name Date Signature Sampler Printed Name Date Signature Sampler Printed Name Time Printed Name Sampler Signature Date Signature Sampler Signature Date Signature	Date 7/2/2/2/3/Signature Sampler Printed Name Date Sampler Signature Date Sampler Printed Name Time Printed Name Date Sampler Printed Name Time Printed Name Date Sampler Printed Name Date Sampler Signature Date Sampler Printed Name Date	Date 7/2/2/3 Signature Sampler Printed Name Time Sampler Signature Date Sampler Printed Name Time Sampler Signature Date Sampler Signature Date Sampler Signature Date Sampler Signature Date Sampler Printed Name Date Sampler Printed Name Date Sampler Printed Name Date	Date 7/2/2/3 Signature Sampler Printed Name Time Sampler Signature Date Sampler Printed Name Date Sampler Signature Date Sampler Printed Name Time Sampler Signature Date Sampler Signature Date Sampler Printed Name Time Printed Name Time	Date 72/2/3 Signature Sampler Printed Name Time /60 Sampler Signature Date Sampler Printed Name Date Sampler Signature Date Sampler Signature Date Sampler Signature Date Sampler Signature Date Sampler Printed Name Time Printed Name Date	Date 7/2/2/3 Signature Sampler Printed Name Time Sampler Signature Date Sampler Printed Name Date Sampler Signature Date Sampler Printed Name Time Printed Name Date	Date 7/2/2/3 Signature Sampler Printed Name Date Sampler Signature Date Sampler Printed Name Date Sampler Signature Date Sampler Printed Name Time Printed Name Date	Date 72/9/Signature Marce Date Date

www.legend-group.com

24 July 2009

Janice Cozby Environmental Science Corp. (ESC) 12065 Lebanon Rd. Mt. Juliet, TN 37122

RE: Analytical Services

Legend ID: 9071446

Legend Technical Services of Arizona, Inc. is pleased to provide the enclosed analytical results for the aforementioned project. These results relate only to the items tested. This cover letter and the accompanying pages represent the full report for these analyses and should only be reproduced in full. Samples for this project were received by the laboratory on 07/21/09 16:00.

The samples were processed in accordance with the Chain of Custody document and the results presented relate only to the samples tested. The Chain of Custody is considered part of this report.

All samples will be retained by LEGEND for 30 days from the date of this report and then discarded unless other arrangements are made.

This entire report was reviewed and approved for release by the undersigned. If you have any questions concerning this report, please feel free to contact me.

Sincerely, LEGEND TECHNICAL SERVICES OF ARIZONA, INC.

Stichelle Shins

Michelle Thompson Client Services Representative

This laboratory report is confidential and is intended for the sole use of LEGEND and it's client.

Reported: 07/24/09 15:00

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Туре	Date Sampled	Date Received
MS4 Site (Phx, AZ)	9071446-01	Water	Grab	07/21/09 13:30	07/21/09 16:00

Case Narrative:

Holding Times:	All holding times were met unless otherwise qualified.
QA/QC Criteria:	All analyses met method requirements unless otherwise qualified.
Comments:	There were no problems encountered during the processing of the samples, unless otherwise noted.

MS4 Site (Phx, AZ) (9071446-01) Water (Grab) Sampled: 07/21/09 13:30 Received: 07/21/09 16:00

Analyte	Result	PQL Ur	nits	Dilution	Batch	Prepared	Analyzed	Method	Notes	
Legend Technical Services of Arizona, Inc.										
Microbiology										
E. coli, MPN (WW-Colilert)	1600	1 MPN/ ml	/100 L	1	B9G0620	07/21/09 16:50	07/21/09 16:50	SM 9223B		
Fecal Coliforms, MF	>200	1 CFU/ ml	/100 L	1	B9G0643	07/21/09 17:20	07/21/09 17:20	SM 9222D	A1	

Microbiology - Quality Control

Legend Technical Services of Arizona, Inc.

		Reporting	Spike	Source		%REC		RPD	
Analyte	Result	Limit Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B9G0620 - micro_prep									
Blank (B9G0620-BLK1)			Prepared	& Analyzed:	07/21/09				
E. coli, MPN (WW-Colilert)	<1	1 MPN/10	0 mL						
Duplicate (B9G0620-DUP1)	Sour	ce: 9071394-01	Prepared	& Analyzed:	07/21/09				
E. coli, MPN (WW-Colilert)	<1	1 MPN/10	0 mL	<1				100	
Duplicate (B9G0620-DUP2)	Sour	ce: 9071395-01	Prepared	& Analyzed:	07/21/09				
E. coli, MPN (WW-Colilert)	5	1 MPN/10	0 mL	8			38.1	100	
Batch B9G0643 - micro_prep									
Blank (B9G0643-BLK1)			Prepared	& Analyzed:	07/21/09				
Fecal Coliforms, MF	<1	1 CFU/10	0 mL						

Notes and Definitions

A1 Too numerous to count.

BLK Method Blank

LCS/Dup Laboratory Control Sample/Laboratory Fortified Blank/Duplicate

- MS/Dup Matrix Spike/Duplicate
- Dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

and .			CHAIN OF	сι	JS	TO	DY	RE	co	RD				:	L Te	E	G cal S	E	N es,	D Inc.	
4071446			147631 N. 25th Avenue - Pr	hoenix, v 423 -	AZ (15023 •	(602) 8571/	324-6100	• Fax #	502) 324 4 • Fax (-6101 52013	27.051	8		Pa	ce	7	cé	1	çeu	
Print Clearly		1000		ALC: N	100		00110		NAL CALL	WALKS-	20078	1000	1000		14 AV	100		1409		1000	- P
INario J < c	and levels	Address	VSLain RI	LANGERS	10	* 	τ.	liat	Star	8 Z)	717	- 4	tore Total	<i>x</i> -	7 < 1	e co	Eux I	lumber	or Ena	I Address	C I
anima mental acience	2000	Project N	165 Lebanin rol .	Co	ntact		~	ne-	ΠŢ	P.O. No		20	FaxF	(A) Iosuits		107	- -	C Repor	10	EDD 0	7 8
NORIK MS4 Dite	-			J	Ġr	<u>i ce</u>	<u>ھ)</u>	zby Reelise	ACC STAN	92:03445	ANGE:	.01	Enel	Rosult	D ANA	VSF	5	peoclel D	elactics Region	Linita 🗌	
SAMPLE TYPE CODES			Laboratory Authorization	8				2	\int	15/	7	/	11	7	77	//	1	1.1	7	77	- 90
r T=Travel Black Wastawater F=Food		/	Required for Rush				and and	10 4	1	K)	1	[]	/	/ /	'/	/	/ /	'/	/	📓	- 5
Surface Water G=Studge/Biosolids oundwatige		Standard 10	- 15 Day	#		Type	ontail	0.00	K	Ø /	[]	/	/ /	1	Ε	[1]	'/	/ /	[]		
Client's				- Sodu	e.	mole	15	$\gtrsim 7$	Yð	7/	1		1	/ /	'/	/	/ /	[]	/	146 NO	1
Sample Identification	Date	Time	Sample Location	8	ŝ	88	32	<u></u> (1)	124	4-	4	4	4	4	+	H	4	+	Ĥ		· · .
54 - Dite	યચ્ચાબ્ધ	1:329	Phoenix, AZ	+-	r	4	۴		M		H	-	+	+	┿	\mathbb{H}	+		H	-01	
				+	\vdash	\vdash	╈		+	+	H	+	\square	÷	╈	H	+	+-	H		1
				+	\vdash	\vdash	+		\square	+		+	Ħ		+	Ħ		-	Ħ		·**.
		_																			
														_				+			
				1	_				\square	+	\square	_	+	+	+			+	\square		
				_		\vdash	+		$\left \right $	+	\vdash	+	+	+	+-	Н		+	$\left \cdot \right $		
				+	-	\vdash			+	+	\vdash	-	+	-	+	\mathbb{H}		+	H		ŝ
TO ENSURE COM	PLETIC	N OF A	ALYSIS, SAMPLES MUST BE RI	ECEN	VED	ATU	EAS	T3 HOL	JRS P	RIOR	TOT	HE H	OLD	TIME	EXP	IRAT	ION	1000		200 C	1 23
nents / Special Instructions:											_										100
PLE CONDITION UPON RECEIPT (L	ab Use)		RIPUNQUE	SHED	BY	3.13					Sec.	o.	SAM	IPLE:	REC	ENE	φвγ	a an	1	a de la comercia	
of Containers		o	EuroperSignation (Ag. /	~				0.057/	2]/0	Signaha		لملاح	pi	071	R	1a	pr	10.00	lp.	1/09	11
iperature X	5		Earyter Printed Name CASCY LOA	r li r	<u>\</u>		_	Tene 16	0	Printed N Signal.ut	iane e	ال	sa.	d	μ	шų	UN	Date	16		
is infact Y	- CM N	0	Sampler Printed Neme				_	Time		Printed N	Reme							Tre		_	
served (Y)	N	®	Sampler Signature		-			Oate		Signatur								Cata			
LAB YELLOW-CLIENT		~	Sampler Plinted Nume					Time		Printed N	iane				-	_		Time	-		. š
FORM GEN-170 (05/06)																					

Quality Control Summary SDG: L447268

Quality Control Summary

SDG: L447268 Consultants, INC. -AZ

For: Engineering & Env. Consultants, INC. -AZ Project: ADOT-Superior March 11, 2010

Sample Receiving and Handling

All sample aliquots were received at the correct temperature, in the proper containers, and with the appropriate preservatives except Pesticides. All specified holding times were met except for MBAS, Chlorine, residual, BOD, Phosphate, Ortho, and Turbidity.

Anions by Method 9056

Laboratory Control Sample

Sample L447268-01 was analyzed in analytical batch WG465712. The laboratory control sample associated with this sample was within the laboratory control limits for all compounds.

Sample Duplicate Analysis

For analytical batch WG465712 sample duplicate analysis was performed on sample L446587-06. The relative percent differences were within the method limits.

For analytical batch WG465712 sample duplicate analysis was performed on sample L447121-02. The relative percent differences were within the method limits.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG465712 matrix spike/matrix spike duplicate analysis was performed on sample L447289-01. The matrix spike recoveries and relative percent differences were within laboratory control limits for all target analytes.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

BOD by Method SM5210B

Laboratory Control Sample

Sample L447268-01 was analyzed in analytical batch WG465702. The laboratory control sample associated with this sample was within the laboratory control limits.

Sample Duplicate Analysis

For analytical batch WG465702 sample duplicate analysis was performed on sample L447107-02. The relative percent differences were within the method limits.

For analytical batch WG465702 sample duplicate analysis was performed on sample L447189-02. The relative percent difference exceeded the method limits for BOD.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Suspended Solids by Method 2540D

Laboratory Control Sample

Sample L447268-01 was analyzed in analytical batch WG465780. The laboratory control sample associated with this sample was within the laboratory control limits.

Quality Control Summary

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

SDG: L447268 For: Engineering & Env. Consultants, INC. -AZ Project: ADOT-Superior March 11, 2010

Sample Duplicate Analysis

For analytical batch WG465780 sample duplicate analysis was performed on sample L447272-04. The relative percent difference exceeded the method limits for Suspended Solids.

For analytical batch WG465780 sample duplicate analysis was performed on sample L447130-03. The relative percent difference exceeded the method limits for Suspended Solids.

Matrix Spike/Matrix Spike Duplicate

Precision for batch WG465780 was evaluated using the LCS / LCSD. The RPDs were within method limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Dissolved Solids by Method 2540C

Laboratory Control Sample

Sample L447268-01 was analyzed in analytical batch WG465783. The laboratory control sample associated with this sample was within the laboratory control limits.

Sample Duplicate Analysis

For analytical batch WG465783 sample duplicate analysis was performed on sample L447225-08. The relative percent differences were within the method limits.

Matrix Spike/Matrix Spike Duplicate

Precision for batch WG465783 was evaluated using the LCS / LCSD. The RPDs were within method limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Turbidity by Method SM2130B

Laboratory Control Sample

Sample L447268-01 was analyzed in analytical batch WG465790. The laboratory control sample associated with this sample was within the laboratory control limits.

Sample Duplicate Analysis

For analytical batch WG465790 sample duplicate analysis was performed on sample L447268-01. The relative percent differences were within the method limits.

Matrix Spike/Matrix Spike Duplicate

Precision for batch WG465790 was evaluated using the LCS / LCSD. The RPDs were within method limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary

SDG: L447268 Consultants, INC. -AZ

For: Engineering & Env. Consultants, INC. -AZ Project: ADOT-Superior March 11, 2010

Phosphate, Ortho by Method 4500P-E

Laboratory Control Sample

Sample L447268-01 was analyzed in analytical batch WG465791. The laboratory control sample associated with this sample was within the laboratory control limits.

Sample Duplicate Analysis

For analytical batch WG465791 sample duplicate analysis was performed on sample L447268-01. The relative percent differences were within the method limits.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG465791, matrix spike/matrix spike duplicate analysis was performed on sample L447268-01. The spike recoveries and relative percent differences were within laboratory control limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Chlorine, residual by Method 4500Cl-G

Laboratory Control Sample

Sample L447268-01 was analyzed in analytical batch WG465800. The laboratory control sample associated with this sample was within the laboratory control limits.

Sample Duplicate Analysis

For analytical batch WG465800 sample duplicate analysis was performed on sample L447268-01. The relative percent differences were within the method limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

MBAS by Method 5540C

Laboratory Control Sample

Sample L447268-01 was analyzed in analytical batch WG465938. The laboratory control sample associated with this sample was within the laboratory control limits.

Sample Duplicate Analysis

For analytical batch WG465938 sample duplicate analysis was performed on sample L447349-01. The relative percent differences were within the method limits.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG465938, matrix spike/matrix spike duplicate analysis was performed on sample L447341-01. The spike recoveries and relative percent differences were within laboratory control limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Quality Control Summary

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

SDG: L447268

For: Engineering & Env. Consultants, INC. -AZ Project: ADOT-Superior March 11, 2010

Specific Conductance by Method 9050A

Laboratory Control Sample

Sample L447268-01 was analyzed in analytical batch WG465956. The laboratory control sample associated with this sample was within the laboratory control limits.

Sample Duplicate Analysis

For analytical batch WG465956 sample duplicate analysis was performed on sample L446774-06. The relative percent differences were within the method limits.

Matrix Spike/Matrix Spike Duplicate

Precision for batch WG465956 was evaluated using the LCS / LCSD. The RPDs were within method limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Oil & Grease (Hexane Extr) by Method 1664A

Laboratory Control Sample

Sample L447268-01 was analyzed in analytical batch WG466048. The laboratory control sample associated with this sample was within the laboratory control limits.

Matrix Spike/Matrix Spike Duplicate

Precision for batch WG466048 was evaluated using the LCS / LCSD. The RPDs were within method limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Cyanide by Method 9012B

Laboratory Control Sample

Sample L447268-01 was analyzed in analytical batch WG466201. The laboratory control sample associated with this sample was within the laboratory control limits.

Sample Duplicate Analysis

For analytical batch WG466201 sample duplicate analysis was performed on sample L447257-02. The relative percent differences were within the method limits.

For analytical batch WG466201 sample duplicate analysis was performed on sample L447572-02. The relative percent differences were within the method limits.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG466201, matrix spike/matrix spike duplicate analysis was performed on sample L447240-02. The spike recoveries and relative percent differences were within laboratory control limits.

Quality Control Summary

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

SDG: L447268 For: Engineering & Env. Consultants, INC. -AZ Project: ADOT-Superior

March 11, 2010

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

COD by Method 410.4

Laboratory Control Sample

Sample L447268-01 was analyzed in analytical batch WG466207. The laboratory control sample associated with this sample was within the laboratory control limits.

Sample Duplicate Analysis

For analytical batch WG466207 sample duplicate analysis was performed on sample L447525-01. The relative percent difference exceeded the method limits for COD.

For analytical batch WG466207 sample duplicate analysis was performed on sample L447477-01. The relative percent difference was within the method limits.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG466207, matrix spike/matrix spike duplicate analysis was performed on sample L447480-01. The spike recoveries and relative percent differences were within laboratory control limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Hardness, Total (mg/L as CaCO3) by Method 130.1

Laboratory Control Sample

Sample L447268-01 was analyzed in analytical batch WG466348. The laboratory control sample associated with this sample was within the laboratory control limits.

Sample Duplicate Analysis

For analytical batch WG466348 sample duplicate analysis was performed on sample L447204-01. The relative percent differences were within the method limits.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG466348, matrix spike/matrix spike duplicate analysis was performed on sample L447569-01. The spike recoveries and relative percent differences were within laboratory control limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Phosphorus, Total by Method 365.1

Laboratory Control Sample

Sample L447268-01 was analyzed in analytical batch WG466519. The laboratory control sample associated with this sample was within the laboratory control limits.

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary

SDG: L447268 For: Engineering & Env. Consultants, INC. -AZ Project: ADOT-Superior

March 11, 2010

Sample Duplicate Analysis

For analytical batch WG466519 sample duplicate analysis was performed on sample L447285-01. The relative percent differences were within the method limits.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG466519, matrix spike/matrix spike duplicate analysis was performed on sample L447268-01. The spike recoveries and relative percent differences were within laboratory control limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Ammonia Nitrogen by Method 350.1

Laboratory Control Sample

Sample L447268-01 was analyzed in analytical batch WG466679. The laboratory control sample associated with this sample was within the laboratory control limits.

Sample Duplicate Analysis

For analytical batch WG466679 sample duplicate analysis was performed on sample L448158-02. The relative percent differences were within the method limits.

For analytical batch WG466679 sample duplicate analysis was performed on sample L447569-01. The relative percent differences were within the method limits.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG466679, matrix spike/matrix spike duplicate analysis was performed on sample L447722-01. The spike recoveries and relative percent differences were within laboratory control limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Kjeldahl Nitrogen, TKN by Method 351.2

Laboratory Control Sample

Sample L447268-01 was analyzed in analytical batch WG466820. The laboratory control sample associated with this sample was within the laboratory control limits.

Sample Duplicate Analysis

For analytical batch WG466820 sample duplicate analysis was performed on sample L447064-01. The relative percent differences were within the method limits.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG466820, matrix spike/matrix spike duplicate analysis was performed on sample L447066-01. The spike recoveries and relative percent differences were within laboratory control limits.

Quality Control Summary

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

SDG: L447268 For: Engineering & Env. Consultants, INC. -AZ Project: ADOT-Superior March 11, 2010

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Mercury by Method 7470A

Laboratory Control Sample

Sample L447268-01 was analyzed in analytical batch WG465907. The laboratory control sample associated with this sample was within the laboratory control limits.

Sample Duplicate Analysis

For analytical batch WG465907 sample duplicate analysis was performed on sample L447225-09. The relative percent differences were within the method limits.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG465907, matrix spike/matrix spike duplicate analysis was performed on sample L447225-09. The spike recoveries and relative percent differences were within laboratory control limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Trace Metals by Method 6010B

Laboratory Control Sample

Sample L447268-01 was analyzed in analytical batch WG465776. The laboratory control sample associated with this sample was within the laboratory control limits for all compounds.

Sample Duplicate Analysis

For analytical batch WG465776 sample duplicate analysis was performed on sample L447272-03. The relative percent differences were within the method limits.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG465776 matrix spike/matrix spike duplicate analysis was performed on sample L447272-03. The matrix spike recoveries and relative percent differences were within laboratory control limits for all target analytes.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Volatile Organic Compounds by Method 8260B

Laboratory Control Sample

Sample L447268-01 was analyzed in analytical batch WG466042. The laboratory control sample associated with this sample was within the laboratory control limits for all compounds. Bromomethane, Chloroethane, 1,1-Dichloroethene, and 1,1,2-Trichloro-1,2,2-trifluoroethane exceeded RPD control limits.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG466042 matrix spike/matrix spike duplicate analysis was performed on sample L447265-24. The matrix spike recoveries were within laboratory control limits for all target analytes. The relative percent difference exceeded laboratory limits for 1,1-Dichloroethene and 1,1,2-Trichloro-1,2,2-trifluoroethane.

Quality Control Summary

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

SDG: L447268 For: Engineering & Env. Consultants, INC. -AZ Project: ADOT-Superior

March 11, 2010

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Chlorinated Pesticides by Method 8081A

Laboratory Control Sample

Sample L447268-01 was analyzed in analytical batch WG465744. The laboratory control sample associated with this sample was within the laboratory control limits for all compounds.

Matrix Spike/Matrix Spike Duplicate

Precision for batch WG465744 was evaluated using the LCS / LCSD. The RPDs were within method limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Semi-volatile Organic Compounds by Method 8270C

Laboratory Control Sample

Sample L447268-01 was analyzed in analytical batch WG465743. The laboratory control sample associated with this sample had all target compounds within method limits except for 2,4-Dinitrotoluene, 2,6-Dinitrotoluene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzylbutyl phthalate, Diethyl phthalate, Dimethyl phthalate, Di-n-butyl phthalate, and Isophorone.

Matrix Spike/Matrix Spike Duplicate

Precision for batch WG465743 was evaluated using the LCS / LCSD. The RPDs exceeded laboratory control limits for 2,6-Dinitrotoluene, Benzidine, Benzo(a)anthracene, Diethyl phthalate, and Di-n-butyl phthalate. The other target analytes were within limits

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Diesel Range Organics by Method 8015

Laboratory Control Sample

Sample L447268-01 was analyzed in analytical batch WG465740. The laboratory control sample associated with this sample was within the laboratory control limits.

Matrix Spike/Matrix Spike Duplicate

Precision for batch WG465740 was evaluated using the LCS / LCSD. The RPDs were within method limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Laboratory analysis for Chlorinated Pesticides by Method 8081A was from an unpreserved or improperly preserved sample.

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary

SDG: L447268 For: Engineering & Env. Consultants, INC. -AZ Project: ADOT-Superior March 11, 2010

Nancy F. Winters ESC Representative ESC Lab Sciences

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Gary Hoffmann Engineering & Env. Consultants, INC. -AZ 7878 N. 16th Street, Suite 140 Phoenix, AZ 85020

Report Summary

Thursday March 11, 2010

Report Number: L447268 Samples Received: 03/02/10 Client Project: 308032.05

Description: ADOT-Superior

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Entire Report Reviewed By:

Ward 0

Daphne Richards , ESC Representative

Laboratory Certification Numbers

A2LA - 1461-01, AIHA - 100789, AL - 40660, CA - I-2327, CT - PH-0197, FL - E87487 GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - ENV375/DW21704, ND - R-140 NJ - TN002,NJ NELAP - TN002, SC - 84004, TN - 2006, VA - 00109, WV - 233 AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910, NV - TN000032008A

Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

Note: The use of the preparatory EPA Method 3511 is not approved or endorsed by the CA ELAP.

This report may not be reproduced, except in full, without written approval from ESC Lab Sciences. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Page 1 of 9

Quality Control Summary SDG: L447268

SAMPLE NUMBER

32/202

Customer :Engineering & Env.Source :Location :ADOT-SuperiorLab Sample ID :L447268-01		ngineering & Env. Consultants, INC Proje Date DOT-Superior Sam 447268-01 Date				<u>5</u>) 9:00 AM f <u>mann</u>
	L44/200-01		Date Ket	erveu.	3/2/2010	
Analytic Batch: WG Instrument: NONE Method:	466775	Analysis Date: 3/1/20 Analyst: 485 Dilution: 1	010	Analysis Preparat	s Time: 1:40 l tion Date:	PM
CAS NO	Analyte		RL	R	ESULTS	FLAG
	Miscellaneous			A	TTACH TO	COC
SM9222D						
Analytic Batch: WG466775 Instrument: NONE Method: SM9222D		Analysis Date: 3/1/20 Analyst: 485 Dilution: 1	010	Analysis Preparat	s Time: 12:50 tion Date:	
CAS NO	Analyte		RL col/100ml	R	ESULTS bl/100ml	FLAG
	Coliform,fecal			>	200	
9056 Analytic Batch: WG465712 Instrument: IC4 Method: 9056		Analysis Date: 3/2/20 Analyst: 245 Dilution: 1	010	Analysis Preparat	s Time: 4:50 l tion Date: 3/2	PM /2010 11:18
CAS NO	Analyte		RL mg/l	R m	ESULTS 1g/l	FLAG
16887-00-6	Chloride		1.0	6.	9	
14797-55-8	Nitrate		0.10	1.	.1	
14797-65-0	Nitrite		0.10	<	0.10	
14808-79-8	Sulfate		5.0	7.	6	

Comments:

1) Sample results are reported as rounded values.

2) These results are applicable only to the items tested.

SAMPLE NUMBER

32/202

Customer :	Engineering & Env	v. Consultants, INC	Project	:	<u>308032.05</u>			
Source :			Date Sa	mpled :	<u>2/28/2010</u>) 9:00 AM		
Location :	ADOT-Superior		Sample	d By :	Gary Hof	<u>fmann</u>		
Lab Sample ID	: L447268-01		Date Re	eceived :	3/2/2010			
Analytic Batch: W	G465702	Analysis Date: 3/2/20)10	Analysi	s Time [,] 2.15	PM		
Instrument: NONF		Analyst: 285	,10	Preparat	tion Date:			
Method: SM5210E	3	Dilution: 1		Topara				
CAS NO	Analyte		RL	R	ESULTS	FLAG		
			mg/l	m	ig/l			
	BOD		5.0	<	5.0	H3		
4500Cl-G								
Analytic Batch: W	Analytic Batch: WG465800		010	Analysi	s Time: 4:06	PM		
Instrument: HANN	IAH HI9	Analyst: 477		Preparat	tion Date:			
Method: 4500Cl-G	ł	Dilution: 1						
CAS NO	Analyte		RL	R	ESULTS	FLAG		
			mg/l	m	ıg/l	_		
7782-50-2	Chlorine, residual		0.10	<	0.10	H3		
410.4								
Analytic Batch: W	G466207	Analysis Date: 3/5/20	010	Analysi	s Time: 4:51	PM		
Instrument: HACH	Instrument: HACH 4000			Preparation Date: 3/4/2010 4:				
Method: 410.4		Dilution: 1						
CAS NO	Analyte		RL	R	ESULTS	FLAG		
	-		mg/l	m	ıg/l			
E-10117	COD		10	7	0			

Comments:

1) Sample results are reported as rounded values.

2) These results are applicable only to the items tested.

SAMPLE NUMBER

32/202

Customer :	Engineering & Env	v. Consultants, INC	Project :		<u>308032.0</u>	<u>5</u>			
Source :			Date Sa	mpled :	2/28/2010) 9:00 AM			
Location :	ADOT-Superior		Sampled	l By :	Gary Hof	<u>fmann</u>			
Lab Sample ID	: L447268-01		Date Re	ceived :	3/2/2010				
9012B									
Analytic Batch: W	G466201	Analysis Date: 3/5/2	010	Analysis	s Time: 5:26	PM			
Instrument: LACH	AT4	Analyst: 234		Preparat	tion Date: 3/5	/2010 6:01 PM			
Method: 9012B		Dilution: 1		-					
CAS NO	Analyte		RL	R	ESULTS	FLAG			
			mg/l	m	g/l				
57-12-5	Cyanide		0.0050	<	0.0050				
130.1									
Analytic Batch: W	Analytic Batch: WG466348		010	Analysis Time: 5:57 PM					
Instrument: LACH	IAT3	Analyst: 236		Preparat	tion Date: 3/5	/2010 6:19 PM			
Method: 130.1		Dilution: 1							
CAS NO	Analyte		RL	R	ESULTS	FLAG			
			mg/l	m	g/l				
471-34-1	Hardness, Total (mg/L	as CaCO3)	30	6)				
5540C									
Analytic Batch: W	Analytic Batch: WG465938		010	Analysis Time: 3:47 PM					
Instrument: HACH	I 4000	Analyst: 477		Preparat	tion Date: 3/3	/2010 1:30 PM			
Method: 5540C		Dilution: 10							
CAS NO	Analyte		RL	R	ESULTS	FLAG			
	-		mg/l	m	g/l				
	MBAS		1.0	<	1.0	H3D1			

Comments:

1) Sample results are reported as rounded values.

2) These results are applicable only to the items tested.

SAMPLE NUMBER

32/202

Customer :	Engineering & Env	v. Consultants, INC	Project :	:	<u>308032.0</u>	<u>5</u>
Source :			Date Sa	mpled :	2/28/2010) 9:00 AM
Location :	ADOT-Superior		Sampleo	d By :	Gary Hof	fmann
Lab Sample ID :	L447268-01		Date Re	ceived :	3/2/2010	
350.1						
Analytic Batch: WG	466679	Analysis Date: 3/11/2	2010	Analysi	s Time: 12:20	
Instrument: LACHA	AT3	Analyst:	Preparation Date: 3/9/2010 12:5			/2010 12:51
Method: 350.1		Dilution: 1				
CAS NO	Analyte		RL mg/l	R	ESULTS	FLAG
7664-41-7	Ammonia Nitrogen		0.10	0.	48	
1664A						
Analytic Batch: WG	466048	Analysis Date: 3/4/20	010	Analysis	s Time: 11:32	
Instrument: BAL		Analyst: 078		Preparat	tion Date: 3/4	/2010 4:18 AM
Method: 1664A		Dilution: 1				
CAS NO	Analyte		RL mg/l	R	ESULTS 1g/l	FLAG
	Oil & Grease (Hexane	Extr)	5.3	<	5.3	
4500Р-Е						
Analytic Batch: WG	465791	Analysis Date: 3/3/20	010	Analysis	s Time: 10:46	
Instrument: HACH	4000	Analyst: 477		Preparat	tion Date: 3/2	/2010 3:59 PM
Method: 4500P-E		Dilution: 1				
CAS NO	Analyte		RL	R	ESULTS	FLAG
	v		mg/l	m	g/l	
	Phosphate,Ortho		0.025	0.	48	H3

Comments:

1) Sample results are reported as rounded values.

SAMPLE NUMBER

32/202

Customer :	Engineering & Env. C	Consultants, INC	Project :		<u>308032.0</u>	<u>5</u>
Source :			Date Sampled :		2/28/2010	<u>9:00 AM</u>
Location :	ADOT-Superior		Sampled By : 0		Gary Hof	fmann
Lab Sample ID :	L447268-01		Date Reco	eived :	3/2/2010	
365.1						
Analytic Batch: WG	466519	Analysis Date: 3/8/20)10	Analysis	Time: 12:42	2
Instrument: LACHA	T2	Analyst: 234		Preparat	ion Date: 3/7	/2010 1:56 PM
Method: 365.1		Dilution: 1		1		
CAS NO	Analyte		RL	R	ESULTS	FLAG
	v		mg/l	m	g/l	
7723-14-0	Phosphorus, Total		0.10	0.	25	
9050A						
Analytic Batch: WG4	465956	Analysis Date: 3/4/20)10	Analysis	Time: 4:30	PM
Instrument: ORION1	70	Analyst: 500		Preparat	ion Date:	
Method: 9050A		Dilution: 1				
CAS NO	Analyte		RL	R	ESULTS	FLAG
	-		umhos/cm	ur	nhos/cm	
	Specific Conductance			15	50	
351.2						
Analytic Batch: WG4	466820	Analysis Date: 3/9/20)10	Analysis	Time: 1:00	PM
Instrument: LACHA	T4	Analyst: 236		Preparat	ion Date: 3/8	/2010 4:16 PM
Method: 351.2		Dilution: 1				
CAS NO	Analyte		RL	R	ESULTS	FLAG
			mg/l	m	g/l	
7727-37-9	Kjeldahl Nitrogen, TKN		0.10	1.	5	

Comments:

1) Sample results are reported as rounded values.

SAMPLE NUMBER

32/202

Customer :	Engineering & Env	. Consultants, INC	Project :		<u>308032.05</u>	
Source :			Date Sampled :		<u>2/28/2010</u>	9:00 AM
Location :	ADOT-Superior		Sampled	By :	<u>Gary Hoff</u>	mann
Lab Sample ID :	L447268-01		Date Rec	eived :	3/2/2010	
SM2130B						
Analytic Batch: WG	465790	Analysis Date: 3/3/20	010	Analysis	s Time: 8:45	
Instrument: NONE		Analyst: 477		Preparat	tion Date:	
Method: SM2130B		Dilution: 1				
CAS NO	Analyte		RL NTU	R	ESULTS	FLAG
	Turbidity		0.10	1)0	Н3
2540C						
Analytic Batch: WG	465783	Analysis Date: 3/4/20	010	Analysis	s Time: 1:24 P	М
Instrument: BAL		Analyst: 036		Preparat	tion Date: 3/2/2	2010 3:56 PM
Method: 2540C		Dilution: 1				
CAS NO	Analyte		RL	R	ESULTS	FLAG
			mg/l	m	g/l	
DSOLIDS	Dissolved Solids		10	97	7	
2540D						
Analytic Batch: WG	465780	Analysis Date: 3/3/20	010	Analysis	s Time: 9:41	
Instrument: BAL		Analyst: 036		Preparat	tion Date: 3/2/2	2010 3:56 PM
Method: 2540D		Dilution: 1				
CAS NO	Analyte		RL	R	ESULTS	FLAG
	• 		mg/l	<u> </u>	g/l	
SSOLIDS	Suspended Solids		1.0	70	5	

Comments:

1) Sample results are reported as rounded values.

SAMPLE NUMBER

32/202

Customer : Source : Location : Lab Sample ID :	Engineering & Env. ADOT-Superior L447268-01	<u>Consultants, INC</u>	Project : Date Sampled : Sampled By : Date Received :		<u>308032.0</u> <u>2/28/2010</u> <u>Gary Hof</u> <u>3/2/2010</u>	<u>5</u> 0 9:00 AM <u>fmann</u>
7470A Analytic Batch: WG Instrument: CVAA3 Method: 7470A	465907	Analysis Date: 3/4/20 Analyst: 448 Dilution: 1	010	Analysis Preparat	s Time: 12:44 ion Date: 3/3	4 5/2010 11:09
CAS NO	Analyte		RL mg/l	R m	ESULTS g/l	FLAG
7439-97-6	Mercury		0.00020	<	0.00020	
<i>6010B</i> Analytic Batch: WG Instrument: ICP6 Method: 6010B	465776	Analysis Date: 3/6/20 Analyst: 338 Dilution: 1	010	Analysis Preparat	s Time: 9:18 ion Date: 3/2	2/2010 3:27 PM
CAS NO	Analyte		RL mg/l	R	ESULTS g/l	FLAG
7440-36-0	Antimony		0.020	<	0.020	
7440-38-2	Arsenic		0.020	<	0.020	
7440-39-3	Barium		0.0050	0.	074	
7440-43-9	Cadmium		0.0050	<	0.0050	
7440-70-2	Calcium		0.50	15	50	
7440-47-3	Chromium		0.010	<	0.010	
7440-50-8	Copper		0.020	<	0.020	
7440-02-0	Nickel		0.020	<	0.020	
7782-49-2	Selenium		0.020	<	0.020	
7440-22-4	Silver		0.010	<	0.010	
7440-23-5	Sodium		0.50	<u> </u>	3	
7440-66-6	Zinc		0.030	4.	7	

Comments:

1) Sample results are reported as rounded values.

SAMPLE NUMBER

32/202

Customer : Source :	Engineering & Env. (<u>Consultants, INC</u>	Project : Date Sampled :		<u>308032.0</u> 2/28/2010	<u>5</u> 0 9:00 AM
Location :	ADOT-Superior		Sampled	Bv :	Gary Hof	fmann
Location : Lab Sample ID ·	I 447268-01		Date Received ·		$\frac{00091101}{3/2/2010}$	IIIIuiiii
	LHH/200-01		Date Ree	civcu.	<i>J 2 2</i> 010	
6010B			10		T : 11.00	
Analytic Batch: WG	465776	Analysis Date: 3/9/20)10	Analysis	s Time: 11:02	20010 2.07 DM
Instrument: ICP6		Analyst: 338		Preparat	tion Date: $3/2$	/2010 3:27 PM
Method: 6010B		Dilution: 1				
CASNO	Analyte		RI	R	FSUI TS	FLAG
CABINO	Analyte		mg/l	m	ESCE15 	TLAO
7440-41-7	Bervllium		0.0020	<	0.0020	
7439-92-1	Lead		0.0050	0.	0064	
0160D						
0200D	166012	Analysis Data: 3/5/20	10	Analyci	Time: 6:05	DM
Instrument: VOCMS	400042	Analysis Date. 5/5/20	510	Droporot	tion Data: 3/5	$\frac{1}{2}$ (2010 6.05 DM
Method: 8260B	14	Dilution: 1		перага	non Date. 5/5	2010 0.05 I WI
Withild, 8200D		Dilution. 1				
CAS NO	Analvte		RL	R	ESULTS	FLAG
			mg/l	m	 g/l	
67-64-1	Acetone		0.050	<	0.050	
107-02-8	Acrolein		0.050	<	0.050	
107-13-1	Acrylonitrile		0.010	<	0.010	
71-43-2	Benzene		0.0010	<	0.0010	
108-86-1	Bromobenzene		0.0010	<	0.0010	
75-27-4	Bromodichloromethane		0.0010	<	0.0010	
75-25-2	Bromoform		0.0010	<	0.0010	
74-83-9	Bromomethane		0.0050	<	0.0050	R7
104-51-8	n-Butylbenzene		0.0010	<	0.0010	
135-98-8	sec-Butylbenzene		0.0010	<	0.0010	
98-06-6	tert-Butylbenzene		0.0010	<	0.0010	
56-23-5	Carbon tetrachloride		0.0010	<	0.0010	
108-90-7	Chlorobenzene		0.0010	<	0.0010	
124-48-1	Chlorodibromomethane		0.0010	<	0.0010	
/5-00-3	Chloroethane		0.0050	<	0.0050	<u> </u>
67-66-3	Chloroform		0.0050	<	0.0050	
/4-8/-3	Chloromethane		0.0025	<	0.0025	
95-49-8	2-Chlorotoluene		0.0010	<	0.0010	
100-43-4	4-Chiorotoluene		0.0010	<	0.0010	
<u>90-12-8</u>	1,2-Dibromo-3-Chloropro	opane	0.0050	<	0.0050	
100-93-4	1,2-Dibromoethane		0.0010	<	0.0010	
<u>14-93-3</u> 05 50 1	1.2 Dichlorohanzona		0.0010	<	0.0010	
73-30-1	1,2-Dicinorobenzene		0.0010	<	0.0010	

Comments:

1) Sample results are reported as rounded values.

SAMPLE NUMBER

32/202

Cu: Sou Loo	stomer : urce : cation :	Engineering & Env. Consultants, INCPro DatADOT-SuperiorSan		Project : Date Samp Sampled H	pled : By :	<u>308032.05</u> led : <u>2/28/2010 9:00 AM</u> y : <u>Gary Hoffmann</u>	
Lał	b Sample ID :	L447268-01		Date Rece	ived :	3/2/2010	
826	60R						
Ana	alvtic Batch [•] WG4	166042	Analysis Date: 3/5/20)10	Analysis	Time: 6.05	PM
Inst	rument: VOCMS4	4	Analyst: 498		Preparat	ion Date: 3/5	/2010 6:05 PM
Met	thod: 8260B		Dilution: 1				
CA	S NO	Analyte		RL	R	ESULTS	FLAG
				mg/l	m	g/l	
541	-73-1	1,3-Dichlorobenzene		0.0010	<	0.0010	
106	-46-7	1,4-Dichlorobenzene		0.0010	<	0.0010	
75-7	71-8	Dichlorodifluoromethane		0.0050	<	0.0050	
75-3	34-3	1,1-Dichloroethane		0.0010	<	0.0010	
107	-06-2	1,2-Dichloroethane		0.0010	<	0.0010	
75-3	35-4	1,1-Dichloroethene		0.0010	<	0.0010	R7
156	-59-2	cis-1,2-Dichloroethene		0.0010	<	0.0010	
156	-60-5	trans-1,2-Dichloroethene		0.0010	<	0.0010	
	87-5	1,2-Dichloropropane		0.0010	<	0.0010	
563	-58-6	1,1-Dichloropropene		0.0010	<	0.0010	
142	-28-9	1,3-Dichloropropane		0.0010	<	0.0010	
100	61-01-5	cis-1,3-Dichloropropene		0.0010	<	0.0010	
100	61-02-6	trans-1,3-Dichloropropene		0.0010	<	0.0010	
594	-20-7	2,2-Dichloropropane		0.0010	<	0.0010	
108	-20-3	Di-isopropyl ether		0.0010	<	0.0010	
100	-41-4	Ethylbenzene		0.0010	<	0.0010	
87-6	68-3	Hexachloro-1,3-Butadiene		0.0010	<	0.0010	
98-8	82-8	Isopropylbenzene		0.0010	<	0.0010	
99-8	87-6	p-lsopropyltoluene		0.0010	<	0.0010	
	93-3	2-Butanone (MEK)		0.010	<	0.010	
<u> </u>	09-2	Methylene Chloride		0.0050	<	0.0050	
108	-10-1	4-Methyl-2-pentanone (M	IBK)	0.010	<	0.010	
163	4-04-4	Methyl tert-butyl ether		0.0010	<	0.0010	
91-2	20-3	Naphthalene		0.0050	<	0.0050	
103	-65-1	n-Propylbenzene		0.0010	<	0.0010	
100	-42-5	Styrene		0.0010	<	0.0010	
630	-20-6	1,1,1,2-Tetrachloroethane		0.0010	<	0.0010	
	54-5	1,1,2,2-Tetrachloroethane	.1	0.0010	<	0.0010	
/6-	13-1	<u>1,1,2-Trichloro-1,2,2-triflu</u>	ioroethane	0.0010	<	0.0010	<u>R</u> /
127	-18-4	Tetrachloroethene		0.0010	<	0.0010	
108	-88-3	Toluene		0.0050	<	0.0050	
87-6	<u>61-6</u>	1,2,3-Trichlorobenzene		0.0010	<	0.0010	
- 120	-82-1	1 2 4-1 richlorobenzene		0 0010	<	0 0010	

Comments:

1) Sample results are reported as rounded values.

SAMPLE NUMBER

32/202

Customer :	Engineering & Env. (Consultants, INC	Project	:	<u>308032.0</u>	<u>5</u>
Source :			Date Sa	mpled :	<u>2/28/2010</u>) 9:00 AM
Location :	ADOT-Superior		Sample	d By :	Gary Hof	fmann
Lab Sample ID :	L447268-01		Date Re	eceived :	3/2/2010	
8260B						
Analytic Batch: WG	466042	Analysis Date: 3/5/20)10	Analysis	Time: 6:05	РМ
Instrument: VOCMS	54	Analyst: 498		Preparat	ion Date: 3/5	/2010 6:05 PM
Method: 8260B		Dilution: 1		.1		
CAS NO	Analyte		RL	R	ESULTS	FLAG
	-		mg/l	m	g/l	
71-55-6	1,1,1-Trichloroethane		0.0010	<	0.0010	
79-00-5	1,1,2-Trichloroethane		0.0010	<	0.0010	
79-01-6	Trichloroethene		0.0010	<	0.0010	
75-69-4	Trichlorofluoromethane		0.0050	<	0.0050	
96-18-4	1,2,3-Trichloropropane		0.0010	<	0.0010	
95-63-6	1,2,4-Trimethylbenzene		0.0010	<	0.0010	
526-73-8	1,2,3-Trimethylbenzene		0.0010	<	0.0010	
108-67-8	1,3,5-Trimethylbenzene		0.0010	<	0.0010	
75-01-4	Vinyl chloride		0.0010	<	0.0010	
1330-20-7	Xylenes, Total		0.0030	<	0.0030	
Surrogates						
Surrogues	Analyte	PERCENT		IAT IFIFD	2	FLAG
	Analyte	RECOVE	RY QC		,	FLAG
	Toluene-d8	99.5				
	Dibromofluoromethane	101				
	4-Bromofluorobenzene	104				

Comments:

1) Sample results are reported as rounded values.

SAMPLE NUMBER

32/202

Customer :	Engineering & Env.	Consultants, INC	Project :		308032.0	5
Source :			Date San	npled :	2/28/2010	09:00 AM
Location ·	ADOT-Superior		Sampled	By ·	Gary Hot	fmann
Location . Lab Sample ID ·	<u>I 447268-01</u>		Date Rec	by . Dy .	$\frac{0 \text{ ary 1101}}{3/2/2010}$	IIIIdiiii
			Date Ket	<u></u>	<i>JI 2 2</i> 010	
3510/DRO						
Analytic Batch: WG	G465740	Analysis Date: 3/4/20	010	Analysis	Time: 2:21	
Instrument: SVGC7		Analyst: 280		Preparat	ion Date: 3/2	2/2010 1:27 PM
Method: 3510/DRO		Dilution: 1				
CAS NO	Analyta		DI	D	FSIII TS	FLAC
CASINO	Analyte		KL mg/l	m	α/l	TLAG
68334-30-5	TPH (GC/FID) High Fra	oction	0.10	 	32	
)))		0110		-	
Surrogates					~	
	Analyte	PERCENT	r QUA	ALIFIERS	8	FLAG
		RECOVE	RY			
	o-Terphenyl	91.9				
8081A						
Analytic Batch: WG	G465744	Analysis Date: 3/4/20	010	Analysis	Time: 2:23	PM
Instrument: SVGC2	0	Analyst: 377		Preparat	ion Date: 3/2	2/2010 1:33 PM
Mathad: 8081A		Dilution: 1		-		
Methou. 8081A		Dilution. 1				
Method. 8081A		Dilution. 1				
CAS NO	Analyte	Dilution. 1	RL	R	ESULTS	FLAG
CAS NO	Analyte	Dilution. 1	RL mg/l	RI m	ESULTS g/l	FLAG
CAS NO 309-00-2	Analyte Aldrin		RL mg/l 0.000050	R) 	ESULTS g/l 0.000050	FLAG
CAS NO 309-00-2 319-84-6	Analyte Aldrin Alpha BHC Duty DUC		RL mg/l 0.000050 0.000050	R) 	ESULTS g/l 0.000050 0.000050	FLAG
CAS NO 309-00-2 319-84-6 319-85-7 210.86 8	Analyte Aldrin Alpha BHC Beta BHC		RL mg/l 0.000050 0.000050 0.000050	R] 	ESULTS g/l 0.000050 0.000050 0.000050	FLAG
CAS NO 309-00-2 319-84-6 319-85-7 319-86-8 58 80 0	Analyte Aldrin Alpha BHC Beta BHC Delta BHC		RL mg/l 0.000050 0.000050 0.000050 0.000050	RJ m <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	ESULTS g/l 0.000050 0.000050 0.000050 0.000050	FLAG
Source Source 309-00-2 319-84-6 319-85-7 319-86-8 58-89-9 57-74.0	Analyte Aldrin Alpha BHC Beta BHC Delta BHC Gamma BHC Chlordana		RL mg/l 0.000050 0.000050 0.000050 0.000050 0.000050	R] 	ESULTS g/l 0.000050 0.000050 0.000050 0.000050 0.000050	FLAG
Memoul. 8081A CAS NO 309-00-2 319-84-6 319-85-7 319-86-8 58-89-9 57-74-9 72-54-8	Analyte Aldrin Alpha BHC Beta BHC Delta BHC Gamma BHC Chlordane 4 4-DDD		RL mg/l 0.000050 0.000050 0.000050 0.000050 0.00050 0.00050	R) 	ESULTS g/l 0.000050 0.000050 0.000050 0.000050 0.000050 0.00050 0.00050	FLAG
Memoul. 8081A CAS NO 309-00-2 319-84-6 319-85-7 319-86-8 58-89-9 57-74-9 72-54-8 72-55-9	Analyte Aldrin Alpha BHC Beta BHC Delta BHC Gamma BHC Chlordane 4,4-DDD 4 4-DDE		RL mg/l 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050	R) 	ESULTS g/l 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050	FLAG
309-00-2 319-84-6 319-85-7 319-86-8 58-89-9 57-74-9 72-54-8 72-55-9 50-29-3	Analyte Aldrin Alpha BHC Beta BHC Delta BHC Gamma BHC Chlordane 4,4-DDD 4,4-DDE 4 4-DDT		RL mg/l 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050	R) 	ESULTS g/l 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050	FLAG
309-00-2 319-84-6 319-85-7 319-86-8 58-89-9 57-74-9 72-54-8 72-55-9 50-29-3 60-57-1	Analyte Aldrin Alpha BHC Beta BHC Delta BHC Gamma BHC Chlordane 4,4-DDD 4,4-DDE 4,4-DDT Dieldrin		RL mg/l 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050	R 	ESULTS g/l 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050	FLAG
CAS NO 309-00-2 319-84-6 319-85-7 319-86-8 58-89-9 57-74-9 72-54-8 72-55-9 50-29-3 60-57-1 959-98-8	Analyte Aldrin Alpha BHC Beta BHC Delta BHC Gamma BHC Chlordane 4,4-DDD 4,4-DDE 4,4-DDT Dieldrin Endosulfan I		RL mg/l 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050	R m < < < < < < < < < < < < <	ESULTS g/l 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050	FLAG
CAS NO 309-00-2 319-84-6 319-85-7 319-86-8 58-89-9 57-74-9 72-54-8 72-55-9 50-29-3 60-57-1 959-98-8 33213-65-9	Analyte Aldrin Alpha BHC Beta BHC Delta BHC Gamma BHC Chlordane 4,4-DDD 4,4-DDD 4,4-DDT Dieldrin Endosulfan I Endosulfan I		RL mg/l 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050	R) m <br <br </td <td>ESULTS g/l 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050</td> <td>FLAG</td>	ESULTS g/l 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050	FLAG
309-00-2 319-84-6 319-85-7 319-86-8 58-89-9 57-74-9 72-54-8 72-55-9 50-29-3 60-57-1 959-98-8 33213-65-9 1031-07-8	Analyte Aldrin Alpha BHC Beta BHC Delta BHC Gamma BHC Chlordane 4,4-DDD 4,4-DDD 4,4-DDE 4,4-DDT Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate		RL mg/l 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050	R) 	ESULTS g/l 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050	FLAG
309-00-2 319-84-6 319-85-7 319-86-8 58-89-9 57-74-9 72-54-8 72-55-9 50-29-3 60-57-1 959-98-8 33213-65-9 1031-07-8 72-20-8	Analyte Aldrin Alpha BHC Beta BHC Delta BHC Gamma BHC Chlordane 4,4-DDD 4,4-DDE 4,4-DDT Dieldrin Endosulfan I Endosulfan I Endosulfan sulfate Endrin		RL mg/l 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050	R 	ESULTS g/l 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050	FLAG
CAS NO 309-00-2 319-84-6 319-85-7 319-86-8 58-89-9 57-74-9 72-54-8 72-55-9 50-29-3 60-57-1 959-98-8 33213-65-9 1031-07-8 72-20-8 7421-93-4	Analyte Aldrin Alpha BHC Beta BHC Delta BHC Gamma BHC Chlordane 4,4-DDD 4,4-DDE 4,4-DDT Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde		RL mg/l 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050	R m 	ESULTS g/l 0.000050	FLAG
CAS NO 309-00-2 319-84-6 319-85-7 319-86-8 58-89-9 57-74-9 72-54-8 72-55-9 50-29-3 60-57-1 959-98-8 33213-65-9 1031-07-8 72-20-8 7421-93-4 53494-70-5	Analyte Aldrin Alpha BHC Beta BHC Delta BHC Gamma BHC Chlordane 4,4-DDD 4,4-DDD 4,4-DDT Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone		RL mg/l 0.000050	R) m <) <) <) <) <) <) <) <) <) <) <) <) <)	ESULTS g/l 0.000050 0.00000000	FLAG
Method: 3081A CAS NO 309-00-2 319-84-6 319-85-7 319-86-8 58-89-9 57-74-9 72-54-8 72-55-9 50-29-3 60-57-1 959-98-8 33213-65-9 1031-07-8 72-20-8 7421-93-4 53494-70-5 118-74-1	Analyte Aldrin Alpha BHC Beta BHC Delta BHC Gamma BHC Chlordane 4,4-DDD 4,4-DDD 4,4-DDT Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone Hexachlorobenzene		RL mg/l 0.000050	Ri m 	ESULTS g/l 0.000050 0.00000000	FLAG
309-00-2 319-84-6 319-85-7 319-86-8 58-89-9 57-74-9 72-54-8 72-55-9 50-29-3 60-57-1 959-98-8 33213-65-9 1031-07-8 72-20-8 7421-93-4 53494-70-5 118-74-1 76-44-8	AnalyteAldrinAlpha BHCBeta BHCDelta BHCGamma BHCChlordane4,4-DDD4,4-DDTDieldrinEndosulfan IEndosulfan IIEndosulfan sulfateEndrinEndrin aldehydeEndrin ketoneHexachlorobenzeneHeptachlor		RL mg/l 0.000050	R m 	ESULTS g/l 0.000050 0.00000000	FLAG

Comments:

1) Sample results are reported as rounded values.

SAMPLE NUMBER

32/202

Customer :	Engineering & Env. (Consultants, INC	Proj	ject :	308032.0)5	
Source :	UU		Date Sampled :		$\frac{1}{2/28/201}$	<u>2/28/2010</u> 9:00 AM	
Location ·	ADOT-Superior		Sam	nled By	Gary Hot	ffmann	
Location .	<u>1/17768_01</u>		Data Received :		$d \cdot \frac{3}{2}$	IIIIdiiii	
	L++/200-01		Dat		<u>u. <i>3/2/2</i>010</u>		
8081A							
Analytic Batch: WG	465744	Analysis Date: 3/4/20	010	An	alysis Time: 2:23	PM	
Instrument: SVGC20	0	Analyst: 377		Pre	paration Date: 3/2	2/2010 1:33 PM	
Method: 8081A		Dilution: I					
CASNO	Analyta		DT		DESIII TS	FLAC	
CABINO	Analyte		κL mg/l		mg/l	TLAG	
72-43-5	Methoxychlor		0.00	0050	< 0.000050		
8001-35-2	Toxaphene		0.00	050	< 0.00050		
Surrogates			_		a		
	Analyte	PERCEN	ľ dv	QUALIF	IERS	FLAG	
	~	<u>KECUVE</u>	K I				
	Decachlorobiphenyl	72.1					
	Tetrachloro-m-xylene	50.8					
8270C							
Analytic Batch: WG	465743	Analysis Date: 3/4/20	010	Ana	alysis Time: 11:1'	7	
Instrument: BNAMS	82	Analyst: 145		Pre	paration Date: 3/2	2/2010 4:32 PM	
Method: 8270C		Dilution: 1					
CASNO	A allerta		ы		DECH TC	FLAC	
CAS NO	Analyte		KL ma/l	l	KESUL15	FLAG	
83-32-9	Acenanhthene		0.00	10	< 0.0010		
208-96-8	Acenaphthylene		0.00	10	< 0.0010		
120-12-7	Anthracene		0.00	10	< 0.0010		
92-87-5	Benzidine		0.01	0	< 0.010	R7	
56-55-3	Benzo(a)anthracene		0.00	10	< 0.0010	R7	
205-99-2	Benzo(b)fluoranthene		0.00	10	< 0.0010	L2	
207-08-9	Benzo(k)fluoranthene		0.00	10	< 0.0010	L2	
191-24-2	Benzo(g,h,i)perylene		0.00	10	< 0.0010		
50-32-8	Benzo(a)pyrene		0.00	10	< 0.0010	L2	
111-91-1	Bis(2-chlorethoxy)methan	ne	0.01	0	< 0.010		
111-44-4	Bis(2-chloroethyl)ether		0.01	0	< 0.010		
108-60-1	Bis(2-chloroisopropyl)eth	ner	0.01	0	< 0.010		
101-55-3	4-Bromophenyl-phenylet	her	0.01	0	< 0.010		
91-58-7	2-Chloronaphthalene		0.00	10	< 0.0010		
7005-72-3	4-Chlorophenyl-phenylet	her	0.01	0	< 0.010		
218-01-9	Chrysene		0.00	10	< 0.0010		
53-70-3	Dibenz(a,h)anthracene		0.00	10	< 0.0010		

Comments:

1) Sample results are reported as rounded values.

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

SAMPLE NUMBER

32/202

Customer : Source : Location :	Engineering & Env. C	<u>Consultants, INC</u>	Project : Date Sampled : Sampled By :		<u>308032.05</u> <u>2/28/2010 9:00 AM</u> <u>Gary Hoffmann</u>	
Lab Sample ID :	L447268-01		Date Rece	eived :	3/2/2010	
<i>8270C</i> Analytic Batch: WG- Instrument: BNAMS Method: 8270C	465743 2	Analysis Date: 3/4/20 Analyst: 145 Dilution: 1)10	Analysi Prepara	s Time: 11:17 tion Date: 3/2	7 2/2010 4:32 PM
CAS NO	Analyte		RL mg/l	R m	ESULTS 1g/l	FLAG
91-94-1	3,3-Dichlorobenzidine		0.010	<	0.010	
121-14-2	2,4-Dinitrotoluene		0.010	<	0.010	L2
606-20-2	2,6-Dinitrotoluene		0.010	<	0.010	L2R2
206-44-0	Fluoranthene		0.0010	<	0.0010	
86-73-7	Fluorene		0.0010	<	0.0010	
118-74-1	Hexachlorobenzene		0.0010	<	0.0010	
87-68-3	Hexachloro-1,3-butadiene		0.010	<	0.010	
77-47-4	Hexachlorocyclopentadier	ne	0.010	<	0.010	
67-72-1	Hexachloroethane		0.010	<	0.010	
193-39-5	Indeno(1,2,3-cd)pyrene		0.0010	<	0.0010	
78-59-1	Isophorone		0.010	<	0.010	L2
91-20-3	Naphthalene		0.0010	<	0.0010	
98-95-3	Nitrobenzene		0.010	<	0.010	
62-75-9	n-Nitrosodimethylamine		0.010	<	0.010	
86-30-6	n-Nitrosodiphenylamine		0.010	<	0.010	
621-64-7	n-Nitrosodi-n-propylamin	e	0.010	<	0.010	
85-01-8	Phenanthrene		0.0010	<	0.0010	
85-68-7	Benzylbutyl phthalate		0.0010	<	0.0010	L2
117-81-7	Bis(2-ethylhexyl)phthalate	9	0.0010	<	0.0010	
84-74-2	Di-n-butyl phthalate		0.0010	<	0.0010	L2R2
84-66-2	Diethyl phthalate		0.0010	<	0.0010	L2R2
131-11-3	Dimethyl phthalate		0.0010	<	0.0010	L2
117-84-0	Di-n-octyl phthalate		0.0010	<	0.0010	
129-00-0	Pyrene		0.0010	<	0.0010	
120-82-1	1,2,4-Trichlorobenzene		0.010	<	0.010	
59-50-7	4-Chloro-3-methylphenol		0.010	<	0.010	
95-57-8	2-Chlorophenol		0.010	<	0.010	
120-83-2	2,4-Dichlorophenol		0.010	<	0.010	
105-67-9	2,4-Dimethylphenol		0.010	<	0.010	
534-52-1	4,6-Dinitro-2-methylphen	ol	0.010	<	0.010	
51-28-5	2,4-Dinitrophenol		0.010	<	0.010	
88-75-5	2-Nitrophenol		0.010	<	0.010	
100-02-7	4-Nitrophenol		0.010	<	0.010	

Comments:

1) Sample results are reported as rounded values.

SAMPLE NUMBER

32/202

Customer : Source : Location : Lab Sample ID :	Engineering & Env. ADOT-Superior L447268-01	<u>Consultants, INC</u>	Project Date Sa Sample Date Re	: ampled : ed By : eceived :	<u>308032.0</u> <u>2/28/2010</u> <u>Gary Hof</u> <u>3/2/2010</u>	<u>5</u>) 9:00 AM <u>fmann</u>
<i>8270C</i> Analytic Batch: WG Instrument: BNAMS Method: 8270C	465743 32	Analysis Date: 3/4/20 Analyst: 145 Dilution: 1	010	Analysis Preparat	s Time: 11:17 ion Date: 3/2	/2010 4:32 PM
CAS NO	Analyte		RL mg/l	R m	ESULTS g/l	FLAG
87-86-5	Pentachlorophenol		0.010	<	0.010	
108-95-2	Phenol		0.010	<	0.010	
88-06-2	2,4,6-Trichlorophenol		0.010	<	0.010	
Surrogates	Analyte	PERCENT RECOVE	r QI RY	UALIFIER	8	FLAG
	2-Fluorophenol	56.6				
	Phenol-d5	39.0				
	Nitrobenzene-d5	68.3				
	2-Fluorobiphenyl	97.0				
	2,4,6-Tribromophenol	113				
	p-Terphenyl-d14	129				
LEGEND						
RL -	Reporting Limit					
diluted du subcontrac	e to emulsion eted to Legend Techn Servi	ces Inc				
QUALIFIERS				·		

-		
	R7 -	LFB/LFBD RPD exceeded the laboratory acceptance limit. Recovery met acceptance criteria.
	R2 -	RPD/RSD exceeded the laboratory acceptance limit.
	L2 -	The associated blank spike recovery was below laboratory acceptance limits.
	H3 -	Sample was received and analyzed past holding time.
	D1 -	Sample required dilution due to matrix.

Comments:

1) Sample results are reported as rounded values.

Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Test:	Anions by Method 9056		
Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG465712
Analysis Date:	3/2/2010	Analyst:	245
Instrument ID:	IC4		
Sample Numbers:	L447268-01		

Method Blank

Analyte	CAS	PQL	Qualifiers
Chloride		<1.00	
Nitrate		< 0.100	
Nitrite		< 0.100	
Sulfate		<5.00	

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Chloride	40.0	39.5	98.8	90 - 110	
Nitrate	8.00	8.08	101	90 - 110	
Nitrite	8.00	7.80	97.5	90 - 110	
Sulfate	40.0	39.1	97.8	90 - 110	

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Chloride	40.0	39.8	99.5	90 - 110	
Nitrate	8.00	8.12	101	90 - 110	
Nitrite	8.00	7.83	97.9	90 - 110	
Sulfate	40.0	39.4	98.5	90 - 110	

Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Anions by Method 9056
308032.05
ADOT-Superior
2/28/2010
3/2/2010
IC4
L447268-01

Matrix:Water - mg/LEPA ID:TN00003Analytic Batch:WG465712Analyst:245

Laboratory Control Sample/ Laboratory Control Sample Duplicate

			%		%	Control	%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier RPD	Limits	Qualifier
Chloride	40.0	39.5	98.8	39.8	99.5	90-110	0.8	20	
Nitrate	8.00	8.08	101	8.12	101	90-110	0.5	20	
Nitrite	8.00	7.80	97.5	7.83	97.9	90-110	0.4	20	
Sulfate	40.0	39.1	97.8	39.4	98.5	90-110	0.8	20	

Sample Duplicate

L446587-06

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
Sulfate	0.000	0.000			

Sample Duplicate

L447121-02

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
Nitrate	0.540	0.549	1.7	20	
Nitrite	0.043	0.000			
Sulfate	18.0	18.4	2.2	20	

CE Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ nions by Method 9056

Test:	Anions by Method
Project No:	308032.05
Project:	ADOT-Superior
Collection Date:	2/28/2010
Analysis Date:	3/2/2010
Instrument ID:	IC4
Sample Numbers:	L447268-01

Matrix:	Water - mg/L
EPA ID:	TN00003
Analytic Batch:	WG465712

Matrix Spike/Matrix Spike Duplicate

L447289-01

Analyte	Spike Value	Sample	MS	% Rec	MSD	% Rec	Control Limits	% Rec Qualifier	% RPD	Control Limits	RPD Qual
Nitrate Nitrite	5.00 5.00	1.30 0.000	6.18 4.98	97.6 99.6	6.22 5.02	98.4 100	80-120 80-120		0.6 0.8	20 20	

Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Test:	Ammonia Nitrogen by Method 350.1		
Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG466679
Analysis Date:	3/11/2010 12:20:00 AM	Analyst:	
Instrument ID:	LACHAT3	Extraction Date:	3/8/2010
Sample Numbers:	L447268-01		

Method BlankAnalyteCASPQLQualifiersAmmonia Nitrogen<0.100</td>

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Ammonia Nitrogen	7.50	6.94	92.5	90 - 110	

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Ammonia Nitrogen	7.50	6.77	90.3	90 - 110	

Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Test:	Ammonia Nitrogen by Method 350.1		
Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG466679
Analysis Date:	3/11/2010 12:20:00 AM	Analyst:	
Instrument ID:	LACHAT3	Extraction Date:	3/8/2010
Sample Numbers:	L447268-01		

Laboratory Control Sample/ Laboratory Control Sample Duplicate

			%		%	Control		%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
Ammonia Nitrogen	7.50	6.94	92.5	6.77	90.3	90-110		2.5	20	

Sample Duplicate L448158-02

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
Ammonia Nitrogen	0.0960	0.102			

Sample Duplicate

L447569-01

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
Ammonia Nitrogen	0.170	0.179	5.2	20	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Ammonia Nitrogen by Method 350.1

Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG466679
Analysis Date:	3/11/2010 12:20:00 AM	Analyst:	
Instrument ID:	LACHAT3	Extraction Date:	3/8/2010
Sample Numbers:	L447268-01		

		Matrix	Spike	/Matri	ix Spik	e Dupl	licate					
]	L44772	22-01							
	Spike			%		%	Control	% Rec	%	Control	RPD	
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual	
Ammonia Nitrogen	5.00	2.60	7.78	104	8.05	109	90-110		3.4	20		_

Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Test:	BOD by Method SM5210B		
Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG465702
Analysis Date:	3/2/2010 2:15:00 PM	Analyst:	285
Instrument ID:	NONE	Extraction Date:	3/2/2010
Sample Numbers:	L447268-01		

Method Blank

Analyte	CAS	PQL	Qualifiers
BOD		0.0000	

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
BOD	198	186	93.9	84.6 - 115.4	
BOD	198	200	101	84.6 - 115.4	
BOD	198	190	96.0	84.6 - 115.4	
BOD	198	179	90.4	84.6 - 115.4	

Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Test:	BOD by Method SM5210B		
Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG465702
Analysis Date:	3/2/2010 2:15:00 PM	Analyst:	285
Instrument ID:	NONE	Extraction Date:	3/2/2010
Sample Numbers:	L447268-01		

Sample Duplicate

L447107-02

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
BOD	0.0000	0.0000			

Sample Duplicate L447189-02

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
BOD	950	760	22	5	R8

VOUR LAB OF CHOICE Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Test:	COD by Method 410.4		
Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG466207
Analysis Date:	3/5/2010 4:51:00 PM	Analyst:	397
Instrument ID:	HACH 4000	Extraction Date:	3/4/2010
Sample Numbers:	L447268-01		

	Method Blank		
Analyte	CAS	PQL	Qualifiers
COD		<10.0	

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
COD	375	387	103	90 - 110	

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
COD	375	382	102	90 - 110	

VOUR LAB OF CHOICE Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Test:	COD by Method 410.4		
Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG466207
Analysis Date:	3/5/2010 4:51:00 PM	Analyst:	397
Instrument ID:	HACH 4000	Extraction Date:	3/4/2010
Sample Numbers:	L447268-01		

	Laboratory Control Sample/ Laboratory Control Sample Duplicate										
	·	-	%	·	%	Control	-	%	Control		
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier	
COD	375	387	103	382	102	90-110		1.3	5		

Sample Duplicate L447525-01

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
COD	77.0	83.0	7.5	5	R8

Sample Duplicate

L447477-01

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
COD	420	437	4.0	5	

Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Test:	COD by Method 410.4		
Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG466207
Analysis Date:	3/5/2010 4:51:00 PM	Analyst:	397
Instrument ID:	HACH 4000	Extraction Date:	3/4/2010
Sample Numbers:	L447268-01		

	Matrix Spike/Matrix Spike Duplicate										
	L447480-01										
	Spike			%		%	Control	% Rec	%	Control	RPD
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual
COD	400	450	851	100	880	108	90-110		3.4	5.0	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Chlorine, residual by Method 4500Cl-G

Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG465800
Analysis Date:	3/2/2010 4:06:00 PM	Analyst:	477
Instrument ID:	HANNAH HI9	Extraction Date:	3/2/2010
Sample Numbers:	L447268-01		

Analyte	CAS	PQL	Qualifiers
Chlorine, residual		< 0.100	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Chlorine, residual by Method 4500Cl-G

Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG465800
Analysis Date:	3/2/2010 4:06:00 PM	Analyst:	477
Instrument ID:	HANNAH HI9	Extraction Date:	3/2/2010
Sample Numbers:	L447268-01		

Sample Duplicate

L447268-01

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
Chlorine, residual	0.0000	0.0000			

Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Test:	Cyanide by Method 9012B		
Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG466201
Analysis Date:	3/5/2010 5:26:00 PM	Analyst:	234
Instrument ID:	LACHAT4	Extraction Date:	3/4/2010
Sample Numbers:	L447268-01		

Method BlankAnalyteCASPQLQualifiersCyanide<0.0050</td>

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Cyanide	0.100	0.0935	93.5	90 - 110	

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Cyanide	0.100	0.0952	95.2	90 - 110	

Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Test:	Cyanide by Method 9012B	,	
Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG466201
Analysis Date:	3/5/2010 5:26:00 PM	Analyst:	234
Instrument ID:	LACHAT4	Extraction Date:	3/4/2010
Sample Numbers:	L447268-01		

Laboratory Control Sample/ Laboratory Control Sample Duplicate

			%		%	Control		%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
Cyanide	0.100	0.0935	93.5	0.0952	95.2	90-110		1.8	20	

Sample Duplicate

L447257-02

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
Cyanide	0.0000	0.0000			

Sample Duplicate

L447572-02

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
Cyanide	0.0000	0.0000			

Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Test:	Cyanide by Method 9012B		
Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG466201
Analysis Date:	3/5/2010 5:26:00 PM	Analyst:	234
Instrument ID:	LACHAT4	Extraction Date:	3/4/2010
Sample Numbers:	L447268-01		

Matrix Spike/Matrix Spike Duplicate												
L447240-02												
	Spike			%		%	Control	% Rec	%	Control	RPD	
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual	
Cyanide	0.200	0.0000	0.182	91.0	0.181	90.5	90-110		0.6	20		_

Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Test:	Dissolved Solids by Method 2540C		
Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG465783
Analysis Date:	3/4/2010 1:24:00 PM	Analyst:	036
Instrument ID:	BAL	Extraction Date:	3/2/2010
Sample Numbers:	L447268-01		

Method Blank

Analyte	CAS	PQL	Qualifiers
Dissolved Solids		<10.0	

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Dissolved Solids	8800	8720	99.0	85 - 115	

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Dissolved Solids	8800	8670	98.5	85 - 115	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

VOUR LAB OF CHOICE Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Dissolved Solids by Method 2540C

Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG465783
Analysis Date:	3/4/2010 1:24:00 PM	Analyst:	036
Instrument ID:	BAL	Extraction Date:	3/2/2010
Sample Numbers:	L447268-01		

Laboratory Control Sample/ Laboratory Control Sample Duplicate

Analyte	Spike	LCS	% Rec	LCSD	% Rec	Control Limits	Qualifier	% RPD	Control Limits	Qualifier
Dissolved Solids	8800	8720	99.0	8670	98.5	85-115		0.6	20	

Sample Duplicate L447225-08

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
Dissolved Solids	0.0000	0.0000			

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

CE Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

	Hardness, Total (mg/L as	s CaCO3) by Method 130.1
o:	308032.05	Matrix:

Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG466348
Analysis Date:	3/5/2010 5:57:00 PM	Analyst:	236
Instrument ID:	LACHAT3	Extraction Date:	3/5/2010
Sample Numbers	: L447268-01		

	Method Blank		
Analyte	CAS	PQL	Qualifiers
Hardness		<30.0	

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Hardness	200	210	105	85 - 115	

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Hardness	200	211	106	85 - 115	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

VOUR LAB OF CHOICE Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Hardness, Total (mg/L as CaCO3) by Method 130.1

Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG466348
Analysis Date:	3/5/2010 5:57:00 PM	Analyst:	236
Instrument ID:	LACHAT3	Extraction Date:	3/5/2010
Sample Numbers	: L447268-01		

Laboratory Control Sample/ Laboratory Control Sample Duplicate										
	·	•	%	·	%	Control	•	%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
Hardness	200	210	105	211	106	85-115		0.5	20	

Sample Duplicate

L447204-01

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
Hardness	720	739	2.6	20	

Matrix Spike/Matrix Spike Duplicate

			L	44756	9-01						
	Spike			%		%	Control	% Rec	%	Control	RPD
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual
Hardness	150	140	274	89.3	274	89.3	80-120		0.0	20	

VOUR LAB OF CHOICE Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Test:	Kjeldahl Nitrogen, TKN by Method 351.2		
Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG466820
Analysis Date:	3/9/2010 1:00:00 PM	Analyst:	236
Instrument ID:	LACHAT4	Extraction Date:	3/9/2010
Sample Numbers:	L447268-01		

Method BlankAnalyteCASPQLQualifiersKjeldahl Nitrogen, TKN<0.100</td>

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Kjeldahl Nitrogen, TKN	15.4	16.8	109	85 - 115	

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Kjeldahl Nitrogen, TKN	15.4	16.6	107	85 - 115	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

VOUR LAB OF CHOICE Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Kjeldahl Nitrogen, TKN by Method 351.2

Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG466820
Analysis Date:	3/9/2010 1:00:00 PM	Analyst:	236
Instrument ID:	LACHAT4	Extraction Date:	3/9/2010
Sample Numbers:	L447268-01		

Laboratory	Control Sample	/ Laboratory	Control Sam	ple Duplicate

			%		%	Control		%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
Kjeldahl Nitrogen, TKN	15.4	16.8	109	16.6	107	85-115		1.2	20	

Sample Duplicate

L447064-01

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
Kjeldahl Nitrogen, TKN	58.0	57.3	1.2	20	

Matrix Spike/Matrix Spike Duplicate

L447066-01											
	Spike			%		%	Control	% Rec	%	Control	RPD
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual
Kjeldahl Nitrogen, TKN	5.00	72.0	96.6	492	95.8	476	80-120	M3	0.8	20	

Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Test:	MBAS by Method 5540C		
Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG465938
Analysis Date:	3/3/2010 3:47:00 PM	Analyst:	477
Instrument ID:	HACH 4000	Extraction Date:	3/3/2010
Sample Numbers:	L447268-01		

Method BlankAnalyteCASPQLQualifiersMBAS<0.100</td>

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
MBAS	1.00	0.984	98.4	85 - 115	

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
MBAS	1.00	0.960	96.0	85 - 115	

VOUR LAB OF CHOICE Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Test:	MBAS by Method 5540C		
Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG465938
Analysis Date:	3/3/2010 3:47:00 PM	Analyst:	477
Instrument ID:	HACH 4000	Extraction Date:	3/3/2010
Sample Numbers:	L447268-01		

Laboratory Control Sample/ Laboratory Control Sample Duplicate

Analyte	Spike	LCS	% Rec	LCSD	% Rec	Control Limits	Oualifier	% RPD	Control Limits	Qualifier
MBAS	1.00	0.984	98.4	0.960	96.0	85-115	C	2.5	20	

Sample Duplicate

L447349-01

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
MBAS	35.0	33.4	4.7	20	

Matrix Spike/Matrix Spike Duplicate

L447341-01											
	Spike			%		%	Control	% Rec	%	Control	RPD
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual
MBAS	1.00	0.140	1.07	93.0	1.08	94.0	80-120		0.9	20	

VOUR LAB OF CHOICE Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Test:	MBAS by Method 5540C			
Project No:	308032.05	Ν	latrix:	Water - mg/L
Project:	ADOT-Superior	E	PA ID:	TN00003
Collection Date:	2/28/2010	A	nalytic Batch:	WG465938
Analysis Date:	3/3/2010 3:47:00 PM	A	nalyst:	477
Instrument ID:	HACH 4000	E	xtraction Date:	3/3/2010
Sample Numbers:	L447268-01			

Method Blank Summary

Client Sample ID	Laboratory Sample ID	Lab Filename	Date Analyzed	Time Analyzed	
Blank WG465938	Blank WG465938		HACH 4000	3/3/2010	3:41 PM
LCS WG465938	LCS WG465938		HACH 4000	3/3/2010	3:44 PM
LCSD WG465938	LCSD WG465938		HACH 4000	3/3/2010	3:46 PM
32/202	L447268-01		HACH 4000	3/3/2010	3:47 PM
MS WG465938	MS WG465938		HACH 4000	3/3/2010	3:51 PM
MSD WG465938	MSD WG465938		HACH 4000	3/3/2010	3:52 PM
DUP WG465938	DUP WG465938		HACH 4000	3/3/2010	3:54 PM

Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Test:	Oil & Grease (Hexane Extr) by Method 1664A	,	
Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG466048
Analysis Date:	3/4/2010 11:32:00 AM	Analyst:	078
Instrument ID:	BAL	Extraction Date:	3/4/2010
Sample Numbers:	: L447268-01		

Method Blank

Analyte	CAS	PQL	Qualifiers
Oil & Grease (Hexane Extr)		<5.00	

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Oil & Grease (Hexane Extr)	40.0	37.0	92.5	78 - 114	

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Oil & Grease (Hexane Extr)	40.0	38.0	95.0	78 - 114	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

VOUR LAB OF CHOICE Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Oil & Grease (Hexane Extr) by Method 1664A

Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG466048
Analysis Date:	3/4/2010 11:32:00 AM	Analyst:	078
Instrument ID:	BAL	Extraction Date:	3/4/2010
Sample Numbers:	L447268-01		

Laboratory Control Sample/ Laboratory Control Sample Duplicate												
	·	•	%	·	%	Control	-	%	Control			
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier		
Oil & Grease (Hexane Extr)	40.0	37.0	92.5	38.0	95.0	78-114		2.7	20			

Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Test:	Phosphate, Ortho by Method 4500P-E		
Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG465791
Analysis Date:	3/3/2010 10:46:00 AM	Analyst:	477
Instrument ID:	HACH 4000	Extraction Date:	3/2/2010
Sample Numbers:	L447268-01		

Method BlankAnalyteCASPQLQualifiersPhosphate,Ortho<0.0250</td>

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Phosphate,Ortho	0.750	0.842	112	85 - 115	

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Phosphate,Ortho	0.750	0.825	110	85 - 115	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

VOUR LAB OF CHOICE Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Phosphate,Ortho by Method 4500P-E

Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG465791
Analysis Date:	3/3/2010 10:46:00 AM	Analyst:	477
Instrument ID:	HACH 4000	Extraction Date:	3/2/2010
Sample Numbers:	L447268-01		

Laboratory Control Sample/ Laboratory Control Sample Duplicate

			%		%	Control		%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
Phosphate,Ortho	0.750	0.842	112	0.825	110	85-115		2.0	20	

Sample Duplicate

L447268-01

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
Phosphate,Ortho	0.480	0.488	1.7	20	

Matrix Spike/Matrix Spike Duplicate

			L	44726	8-01						
	Spike			%		%	Control	% Rec	%	Control	RPD
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual
Phosphate,Ortho	0.500	0.480	1.03	110	1.02	108	80-120		1.0	20	

Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Test:	Phosphorus, Total by Method 365.1		
Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG466519
Analysis Date:	3/8/2010 12:42:00 PM	Analyst:	234
Instrument ID:	LACHAT2	Extraction Date:	3/7/2010
Sample Numbers:	L447268-01		

Method BlankAnalyteCASPQLQualifiersPhosphorus,Total<0.100</td>

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Phosphorus, Total	1.00	0.922	92.2	85 - 115	

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Phosphorus,Total	1.00	0.920	92.0	85 - 115	

Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Test:	Phosphorus, Total by Method 365.1		
Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG466519
Analysis Date:	3/8/2010 12:42:00 PM	Analyst:	234
Instrument ID:	LACHAT2	Extraction Date:	3/7/2010
Sample Numbers:	L447268-01		

Laboratory Control Sample/ Laboratory Control Sample Duplicate

Analyte	Spike	LCS	% Rec	LCSD	% Rec	Control Limits	Qualifier	% RPD	Control Limits	Qualifier
Phosphorus, Total	1.00	0.922	92.2	0.920	92.0	85-115		0.2	20	

Sample Duplicate

L447285-01

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
Phosphorus, Total	18.0	18.2	1.1	20	

Matrix Spike/Matrix Spike Duplicate

			L	.44726	8-01						
	Spike			%		%	Control	% Rec	%	Control	RPD
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual
Phosphorus, Total	2.50	0.250	2.62	94.8	2.57	92.8	80-120		1.9	20	

VOUR LAB OF CHOICE Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Test:	Specific Conductance by Method 9050A		
Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG465956
Analysis Date:	3/4/2010 4:30:00 PM	Analyst:	500
Instrument ID:	ORION170	Extraction Date:	3/3/2010
Sample Numbers:	L447268-01		

Method BlankAnalyteCASPQLQualifiersSpecific Conductance6.20

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Specific Conductance	406	410	101	85 - 115	

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Specific Conductance	406	400	98.5	85 - 115	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Specific Conductance by Method 9050A

Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG465956
Analysis Date:	3/4/2010 4:30:00 PM	Analyst:	500
Instrument ID:	ORION170	Extraction Date:	3/3/2010
Sample Numbers:	L447268-01		

Laboratory Co	ontrol Sample/]	Laboratory (Control Sample	Duplicate
---------------	------------------	--------------	----------------	-----------

			%		%	Control		%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
Specific Conductance	406	410	101	400	98.5	85-115		2.5	20	

Sample Duplicate L446774-06

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
Specific Conductance	470	470	0.0	20	

VOUR LAB OF CHOICE Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Suspended Solids by Method 2540D		
308032.05	Matrix:	Water - mg/L
ADOT-Superior	EPA ID:	TN00003
2/28/2010	Analytic Batch:	WG465780
3/3/2010 9:41:00 AM	Analyst:	036
BAL	Extraction Date:	3/2/2010
L447268-01		
	Suspended Solids by Method 2540D 308032.05 ADOT-Superior 2/28/2010 3/3/2010 9:41:00 AM BAL L447268-01	Suspended Solids by Method 2540D308032.05Matrix:ADOT-SuperiorEPA ID:2/28/2010Analytic Batch:3/3/2010 9:41:00 AMAnalyst:BALExtraction Date:L447268-01Extraction Date:

Method Blank

Analyte	CAS	PQL	Qualifiers
Suspended Solids		<1.00	

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Suspended Solids	773	716	92.6	85 - 115	

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Suspended Solids	773	724	93.7	85 - 115	

CE Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Test:	Suspended Solids by Method 2540D		
Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG465780
Analysis Date:	3/3/2010 9:41:00 AM	Analyst:	036
Instrument ID:	BAL	Extraction Date:	3/2/2010
Sample Numbers:	: L447268-01		

Laboratory Control Sample/ Laboratory Control Sample Duplicate

			%		%	Control		%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
Suspended Solids	773	716	92.6	724	93.7	85-115		1.1	20	

Sample Duplicate

L447272-04	•
------------	---

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
Suspended Solids	120	138	14	5	R8

Sample Duplicate L447130-03

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
Suspended Solids	3100	2920	6.0	5	R8

Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Test:	Turbidity by Method SM2130B		
Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG465790
Analysis Date:	3/3/2010 8:45:00 AM	Analyst:	477
Instrument ID:	NONE	Extraction Date:	3/2/2010
Sample Numbers:	L447268-01		

Method Blank

Analyte	CAS	PQL	Qualifiers
Turbidity		< 0.100	

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Turbidity	40.0	41.0	102	85 - 115	

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Turbidity	40.0	41.0	102	85 - 115	

Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Test:	Turbidity by Method SM2130B		
Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG465790
Analysis Date:	3/3/2010 8:45:00 AM	Analyst:	477
Instrument ID:	NONE	Extraction Date:	3/2/2010
Sample Numbers:	L447268-01		

Laboratory Control Sample/ Laboratory Control Sample Duplicate

			%		%	Control		%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
Turbidity	40.0	41.0	102	41.0	102	85-115		0.0	20	

Sample Duplicate L447268-01

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
Turbidity	100	106	5.8	20	

Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Test:	Mercury by Method 7470A		
Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic B	atch: WG465907
Analysis Date:	3/4/2010 12:44:00 AM	Analyst:	448
Instrument ID:	CVAA3	Extraction	Date: 3/3/2010
Sample Numbers:	L447268-01		

Method Blank

Analyte	CAS	PQL	Qualifiers
Mercury		< 0.0002	

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Mercury	0.0030	0.0026	87.3	85 - 115	

Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Test:	Mercury by Method 7470A		
Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG465907
Analysis Date:	3/4/2010 12:44:00 AM	Analyst:	448
Instrument ID:	CVAA3	Extraction Date:	3/3/2010
Sample Numbers:	L447268-01		

Sample Duplicate

L447225-09

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
Mercury	0.0000	0.0000			

Matrix Spike/Matrix Spike Duplicate

L447225-09												
	Spike			%		%	Control	% Rec	%	Control	RPD	
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual	
Mercury	0.0030	0.0000	0.0028	92.7	0.0026	87.7	70-130		5.5	20		

Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Test:	Trace Metals by Method 6010B		
Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG465776
Analysis Date:	3/5/2010	Analyst:	338
Instrument ID:	ICP6	Extraction Date:	3/2/2010
Sample Numbers:	L447268-01		

Method Blank

Analyte	CAS	PQL	Qualifiers
Antimony	7440-36-0	< 0.0200	
Arsenic	7440-38-2	< 0.0200	
Barium	7440-39-3	< 0.00500	
Beryllium	7440-41-7	< 0.00200	
Cadmium	7440-43-9	< 0.00500	
Calcium	7440-70-2	< 0.500	
Chromium	7440-47-3	< 0.0100	
Copper	7440-50-8	< 0.0200	
Lead	7439-92-1	< 0.00500	
Nickel	7440-02-0	< 0.0200	
Selenium	7782-49-2	< 0.0200	
Silver	7440-22-4	< 0.0100	
Sodium	7440-23-5	<0.500	
Zinc	7440-66-6	< 0.0300	

Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Test:	Trace Metals by Method 6010B		
Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG465776
Analysis Date:	3/5/2010	Analyst:	338
Instrument ID:	ICP6	Extraction Date:	3/2/2010
Sample Numbers:	L447268-01		

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Antimony	1.13	1.10	97.3	85 - 115	
Arsenic	1.13	1.10	97.3	85 - 115	
Barium	1.13	1.08	95.6	85 - 115	
Beryllium	1.13	1.10	97.3	85 - 115	
Cadmium	1.13	1.12	99.1	85 - 115	
Calcium	11.3	11.2	99.1	85 - 115	
Chromium	1.13	1.12	99.1	85 - 115	
Copper	1.13	1.13	100	85 - 115	
Lead	1.13	1.15	102	85 - 115	
Nickel	1.13	1.16	103	85 - 115	
Selenium	1.13	1.05	92.9	85 - 115	
Silver	1.13	1.12	99.1	85 - 115	
Sodium	11.3	11.4	101	85 - 115	
Zinc	1.13	1.12	99.1	85 - 115	

Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Test:	Trace Metals by Method 6010B		
Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG465776
Analysis Date:	3/5/2010	Analyst:	338
Instrument ID:	ICP6	Extraction Date:	3/2/2010
Sample Numbers:	L447268-01		

Sample Duplicate

L447272-03

Nomo	Sample	Duplic		Limit	Qualifian
Name	Results	Results	%RPD	LIIIII	Quanners
Antimony	0.00000	0.0000			
Arsenic	0.00000	0.0000			
Barium	0.0310	0.0360	15	20	
Beryllium	0.00000	0.0002			
Cadmium	0.00000	0.0000			
Calcium	7.66	7.64	0.3	20	
Chromium	0.00000	0.0000			
Copper	0.00000	0.0094			
Lead	0.00000	0.0000			
Nickel	0.00000	0.0000			
Selenium	0.00000	0.0000			
Silver	0.00000	0.0000			
Sodium	1.31	1.31	0.0	20	
Zinc	0.00000	0.0312			

Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

	0 0	
Test:	Trace Metals by Method 6010B	
Project No:	308032.05	Ν
Project:	ADOT-Superior	E
Collection Date:	2/28/2010	A
Analysis Date:	3/5/2010	A
Instrument ID:	ICP6	E
Sample Numbers:	L447268-01	

Matrix:	Water - mg/L
EPA ID:	TN00003
Analytic Batch:	WG465776
Analyst:	338
Extraction Date:	3/2/2010

Matrix Spike/Matrix Spike Duplicate

L447272-03

	Spike		-		- 00	%	Control	% Rec	%	Control	RPD
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual
Antimony	1.13	0.00000	1.06	93.8	1.07	94.7	75-125		0.9	20	
Arsenic	1.13	0.00000	1.09	96.5	1.10	97.3	75-125		0.9	20	
Barium	1.13	0.0360	1.12	95.9	1.11	95.0	75-125		0.9	20	
Beryllium	1.13	0.00000	1.09	96.5	1.09	96.5	75-125		0.0	20	
Cadmium	1.13	0.00000	1.12	99.1	1.11	98.2	75-125		0.9	20	
Calcium	11.3	7.64	18.8	98.8	18.8	98.8	75-125		0.0	20	
Chromium	1.13	0.00000	1.13	100	1.13	100	75-125		0.0	20	
Copper	1.13	0.00940	1.15	101	1.15	101	75-125		0.0	20	
Lead	1.13	0.00000	1.15	102	1.16	103	75-125		0.9	20	
Nickel	1.13	0.00000	1.16	103	1.17	104	75-125		0.9	20	
Selenium	1.13	0.00000	1.04	92.0	1.05	92.9	75-125		1.0	20	
Silver	1.13	0.00000	1.07	94.7	1.07	94.7	75-125		0.0	20	
Sodium	11.3	1.31	12.3	97.3	12.4	98.1	75-125		0.8	20	
Zinc	1.13	0.0312	1.14	98.1	1.13	97.2	75-125		0.9	20	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

VOUR LAB OF CHOICE Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Volatile Organic Compounds by Method 8260B

	U
Project No:	308032.05
Project:	ADOT-Superior
Collection Date:	2/28/2010
Analysis Date:	3/5/2010
Instrument ID:	VOCMS4
Sample Numbers:	L447268-01

Matrix:Water - mg/LEPA ID:TN00003Analytic Batch:WG466042Analyst:498

Method Blank

Analyte	CAS	PQL	Qualifiers
Dichlorodifluoromethane	75-71-8	< 0.0050	
Chloromethane	74-87-3	< 0.0025	
Vinyl chloride	75-01-4	< 0.0010	
Bromomethane	74-83-9	< 0.0050	
Chloroethane	75-00-3	< 0.0050	
Trichlorofluoromethane	75-69-4	< 0.0050	
Acrolein	107-02-8	< 0.0500	
1,1-Dichloroethene	75-35-4	< 0.0010	
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	< 0.0010	
Acetone	67-64-1	< 0.0500	
Methylene Chloride	75-09-2	< 0.0050	
Acrylonitrile	107-13-1	< 0.0100	
trans-1,2-Dichloroethene	156-60-5	< 0.0010	
Methyl tert-butyl ether	1634-04-4	< 0.0010	
1,1-Dichloroethane	75-34-3	< 0.0010	
Di-isopropyl ether	108-20-3	< 0.0010	
2,2-Dichloropropane	594-20-7	< 0.0010	
cis-1,2-Dichloroethene	156-59-2	< 0.0010	
2-Butanone (MEK)	78-93-3	< 0.0100	
Chloroform	67-66-3	< 0.0050	
1,1,1-Trichloroethane	71-55-6	< 0.0010	
Carbon tetrachloride	56-23-5	< 0.0010	
1,1-Dichloropropene	563-58-6	< 0.0010	
Benzene	71-43-2	< 0.0010	
1,2-Dichloroethane	107-06-2	< 0.0010	
Trichloroethene	79-01-6	< 0.0010	
1,2-Dichloropropane	78-87-5	< 0.0010	
Dibromomethane	74-95-3	< 0.0010	
Bromodichloromethane	75-27-4	< 0.0010	
cis-1,3-Dichloropropene	10061-01-5	< 0.0010	
4-Methyl-2-pentanone (MIBK)	108-10-1	< 0.0100	
Toluene	108-88-3	< 0.0050	
trans-1,3-Dichloropropene	10061-02-6	< 0.0010	
1,1,2-Trichloroethane	79-00-5	< 0.0010	
Tetrachloroethene	127-18-4	< 0.0010	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

VOUR LAB OF CHOICE Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Volatile Organic Compounds by Method 8260B

	0	-	
Project No:	308032.05		
Project:	ADOT-Superior		
Collection Date:	2/28/2010		
Analysis Date:	3/5/2010		
Instrument ID:	VOCMS4		
Sample Numbers:	L447268-01		

Matrix:	Water - mg/L
EPA ID:	TN00003
Analytic Batch:	WG466042

Method Blank

CAS	PQL	Qualifiers
142-28-9	< 0.0010	
124-48-1	< 0.0010	
106-93-4	< 0.0010	
108-90-7	< 0.0010	
630-20-6	< 0.0010	
100-41-4	< 0.0010	
1330-20-7	< 0.0030	
1330-20-7	< 0.0030	
100-42-5	< 0.0010	
75-25-2	< 0.0010	
98-82-8	< 0.0010	
108-86-1	< 0.0010	
79-34-5	< 0.0010	
96-18-4	< 0.0010	
103-65-1	< 0.0010	
95-49-8	< 0.0010	
106-43-4	< 0.0010	
108-67-8	< 0.0010	
98-06-6	< 0.0010	
95-63-6	< 0.0010	
135-98-8	< 0.0010	
541-73-1	< 0.0010	
99-87-6	< 0.0010	
106-46-7	< 0.0010	
526-73-8	< 0.0010	
95-50-1	< 0.0010	
104-51-8	< 0.0010	
96-12-8	< 0.0050	
120-82-1	< 0.0010	
87-68-3	< 0.0010	
91-20-3	< 0.0050	
87-61-6	< 0.0010	
	$\begin{array}{c} \text{CAS} \\ 142-28-9 \\ 124-48-1 \\ 106-93-4 \\ 108-90-7 \\ 630-20-6 \\ 100-41-4 \\ 1330-20-7 \\ 1330-20-7 \\ 100-42-5 \\ 75-25-2 \\ 98-82-8 \\ 108-86-1 \\ 79-34-5 \\ 96-18-4 \\ 103-65-1 \\ 95-49-8 \\ 106-43-4 \\ 108-67-8 \\ 98-06-6 \\ 95-63-6 \\ 135-98-8 \\ 541-73-1 \\ 99-87-6 \\ 106-46-7 \\ 526-73-8 \\ 95-50-1 \\ 104-51-8 \\ 96-12-8 \\ 120-82-1 \\ 87-68-3 \\ 91-20-3 \\ 87-61-6 \\ \end{array}$	CASPQL $142-28-9$ <0.0010

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

VOUR LAB OF CHOICE Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Volatile Organic Compounds by Method 8260B

	U
Project No:	308032.05
Project:	ADOT-Superior
Collection Date:	2/28/2010
Analysis Date:	3/5/2010
Instrument ID:	VOCMS4
Sample Numbers:	L447268-01

Matrix:Water - mg/LEPA ID:TN00003Analytic Batch:WG466042Analyst:498

Laboratory Control Sample (LCS)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Dichlorodifluoromethane	0.0250	0.0262	105	39 - 189	
Chloromethane	0.0250	0.0249	99.5	45 - 152	
Vinyl chloride	0.0250	0.0252	101	55 - 153	
Bromomethane	0.0250	0.0333	133	45 - 175	
Chloroethane	0.0250	0.0268	107	49 - 155	
Trichlorofluoromethane	0.0250	0.0316	126	54 - 156	
Acrolein	0.125	0.149	119	6 - 182	
1,1-Dichloroethene	0.0250	0.0199	79.5	60 - 130	
1,1,2-Trichloro-1,2,2-trifluoroethane	0.0250	0.0255	102	51 - 149	
Acetone	0.125	0.133	107	48 - 134	
Methylene Chloride	0.0250	0.0253	101	64 - 125	
Acrylonitrile	0.125	0.125	99.9	60 - 140	
trans-1,2-Dichloroethene	0.0250	0.0282	113	67 - 129	
Methyl tert-butyl ether	0.0250	0.0247	98.6	51 - 142	
1,1-Dichloroethane	0.0250	0.0265	106	67 - 133	
Di-isopropyl ether	0.0250	0.0246	98.5	63 - 139	
2,2-Dichloropropane	0.0250	0.0236	94.4	46 - 151	
cis-1,2-Dichloroethene	0.0250	0.0266	106	72 - 128	
2-Butanone (MEK)	0.125	0.131	105	53 - 132	
Chloroform	0.0250	0.0256	102	66 - 126	
1,1,1-Trichloroethane	0.0250	0.0264	105	67 - 137	
Carbon tetrachloride	0.0250	0.0267	107	64 - 141	
1,1-Dichloropropene	0.0250	0.0271	109	68 - 132	
Benzene	0.0250	0.0253	101	67 - 126	
1,2-Dichloroethane	0.0250	0.0254	101	63 - 137	
Trichloroethene	0.0250	0.0263	105	74 - 126	
1,2-Dichloropropane	0.0250	0.0243	97.0	74 - 122	
Dibromomethane	0.0250	0.0260	104	73 - 125	
Bromodichloromethane	0.0250	0.0244	97.8	68 - 133	
cis-1,3-Dichloropropene	0.0250	0.0245	98.1	73 - 131	
4-Methyl-2-pentanone (MIBK)	0.125	0.123	98.1	60 - 142	
Toluene	0.0250	0.0238	95.3	72 - 122	
trans-1,3-Dichloropropene	0.0250	0.0238	95.3	66 - 137	
1,1,2-Trichloroethane	0.0250	0.0252	101	79 - 123	
Tetrachloroethene	0.0250	0.0259	104	67 - 135	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

VOUR LAB OF CHOICE Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Volatile Organic Compounds by Method 8260B

	Ũ
Project No:	308032.05
Project:	ADOT-Superior
Collection Date:	2/28/2010
Analysis Date:	3/5/2010
Instrument ID:	VOCMS4
Sample Numbers:	L447268-01

Matrix:Water - mg/LEPA ID:TN00003Analytic Batch:WG466042Analyst:498

Laboratory Control Sample (LCS)

A 1.	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
1,3-Dichloropropane	0.0250	0.0245	97.9	77 - 119	
Chlorodibromomethane	0.0250	0.0247	98.6	73 - 138	
1,2-Dibromoethane	0.0250	0.0258	103	75 - 126	
Chlorobenzene	0.0250	0.0253	101	77 - 125	
1,1,1,2-Tetrachloroethane	0.0250	0.0250	100	75 - 134	
Ethylbenzene	0.0250	0.0259	104	76 - 129	
m&p-Xylene	0.0500	0.0507	101	74 - 128	
o-Xylene	0.0250	0.0253	101	78 - 128	
Styrene	0.0250	0.0262	105	78 - 130	
Bromoform	0.0250	0.0255	102	60 - 139	
Isopropylbenzene	0.0250	0.0260	104	73 - 132	
Bromobenzene	0.0250	0.0256	103	76 - 123	
1,1,2,2-Tetrachloroethane	0.0250	0.0260	104	72 - 128	
1,2,3-Trichloropropane	0.0250	0.0267	107	68 - 130	
n-Propylbenzene	0.0250	0.0264	106	71 - 132	
2-Chlorotoluene	0.0250	0.0244	97.7	74 - 128	
4-Chlorotoluene	0.0250	0.0254	102	74 - 130	
1,3,5-Trimethylbenzene	0.0250	0.0254	101	73 - 134	
tert-Butylbenzene	0.0250	0.0260	104	72 - 134	
1,2,4-Trimethylbenzene	0.0250	0.0259	103	72 - 135	
sec-Butylbenzene	0.0250	0.0266	106	70 - 135	
1,3-Dichlorobenzene	0.0250	0.0254	102	73 - 131	
p-Isopropyltoluene	0.0250	0.0266	106	68 - 138	
1,4-Dichlorobenzene	0.0250	0.0244	97.8	70 - 121	
1,2,3-Trimethylbenzene	0.0250	0.0238	95.2	70 - 127	
1,2-Dichlorobenzene	0.0250	0.0252	101	75 - 122	
n-Butylbenzene	0.0250	0.0262	105	63 - 142	
1,2-Dibromo-3-Chloropropane	0.0250	0.0214	85.7	55 - 134	
1,2,4-Trichlorobenzene	0.0250	0.0260	104	65 - 137	
Hexachloro-1,3-Butadiene	0.0250	0.0261	104	67 - 135	
Naphthalene	0.0250	0.0241	96.2	56 - 145	
1,2,3-Trichlorobenzene	0.0250	0.0249	99.4	63 - 138	

Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Volatile Organic Compounds by Method 8260B

Test:	Volatile Organic
Project No:	308032.05
Project:	ADOT-Superior
Collection Date:	2/28/2010
Analysis Date:	3/5/2010
Instrument ID:	VOCMS4
Sample Numbers:	L447268-01

Matrix:Water - mg/LEPA ID:TN00003Analytic Batch:WG466042Analyst:498

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Dichlorodifluoromethane	0.0250	0.0232	93.0	39 - 189	
Chloromethane	0.0250	0.0243	97.2	45 - 152	
Vinyl chloride	0.0250	0.0217	86.6	55 - 153	
Bromomethane	0.0250	0.0271	108	45 - 175	
Chloroethane	0.0250	0.0200	79.9	49 - 155	
Trichlorofluoromethane	0.0250	0.0269	108	54 - 156	
Acrolein	0.125	0.106	85.0	6 - 182	
1,1-Dichloroethene	0.0250	0.0293	117	60 - 130	
1,1,2-Trichloro-1,2,2-trifluoroethane	0.0250	0.0343	137	51 - 149	
Acetone	0.125	0.115	91.7	48 - 134	
Methylene Chloride	0.0250	0.0245	97.9	64 - 125	
Acrylonitrile	0.125	0.113	90.6	60 - 140	
trans-1,2-Dichloroethene	0.0250	0.0274	110	67 - 129	
Methyl tert-butyl ether	0.0250	0.0251	100	51 - 142	
1,1-Dichloroethane	0.0250	0.0267	107	67 - 133	
Di-isopropyl ether	0.0250	0.0251	100	63 - 139	
2,2-Dichloropropane	0.0250	0.0246	98.3	46 - 151	
cis-1,2-Dichloroethene	0.0250	0.0264	106	72 - 128	
2-Butanone (MEK)	0.125	0.127	102	53 - 132	
Chloroform	0.0250	0.0259	104	66 - 126	
1,1,1-Trichloroethane	0.0250	0.0262	105	67 - 137	
Carbon tetrachloride	0.0250	0.0265	106	64 - 141	
1,1-Dichloropropene	0.0250	0.0274	109	68 - 132	
Benzene	0.0250	0.0260	104	67 - 126	
1,2-Dichloroethane	0.0250	0.0255	102	63 - 137	
Trichloroethene	0.0250	0.0260	104	74 - 126	
1,2-Dichloropropane	0.0250	0.0249	99.7	74 - 122	
Dibromomethane	0.0250	0.0253	101	73 - 125	
Bromodichloromethane	0.0250	0.0249	99.7	68 - 133	
cis-1,3-Dichloropropene	0.0250	0.0255	102	73 - 131	
4-Methyl-2-pentanone (MIBK)	0.125	0.120	96.0	60 - 142	
Toluene	0.0250	0.0245	98.1	72 - 122	
trans-1,3-Dichloropropene	0.0250	0.0251	100	66 - 137	
1,1,2-Trichloroethane	0.0250	0.0253	101	79 - 123	
Tetrachloroethene	0.0250	0.0265	106	67 - 135	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

VOUR LAB OF CHOICE Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Volatile Organic Compounds by Method 8260B

	0
Project No:	308032.05
Project:	ADOT-Superior
Collection Date:	2/28/2010
Analysis Date:	3/5/2010
Instrument ID:	VOCMS4
Sample Numbers:	L447268-01

Matrix:Water - mg/LEPA ID:TN00003Analytic Batch:WG466042Analyst:498

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
1,3-Dichloropropane	0.0250	0.0249	99.7	77 - 119	
Chlorodibromomethane	0.0250	0.0249	99.6	73 - 138	
1,2-Dibromoethane	0.0250	0.0260	104	75 - 126	
Chlorobenzene	0.0250	0.0256	102	77 - 125	
1,1,1,2-Tetrachloroethane	0.0250	0.0248	99.0	75 - 134	
Ethylbenzene	0.0250	0.0254	101	76 - 129	
m&p-Xylene	0.0500	0.0502	100	74 - 128	
o-Xylene	0.0250	0.0252	101	78 - 128	
Styrene	0.0250	0.0257	103	78 - 130	
Bromoform	0.0250	0.0245	98.2	60 - 139	
Isopropylbenzene	0.0250	0.0256	103	73 - 132	
Bromobenzene	0.0250	0.0251	100	76 - 123	
1,1,2,2-Tetrachloroethane	0.0250	0.0250	99.9	72 - 128	
1,2,3-Trichloropropane	0.0250	0.0258	103	68 - 130	
n-Propylbenzene	0.0250	0.0256	102	71 - 132	
2-Chlorotoluene	0.0250	0.0246	98.5	74 - 128	
4-Chlorotoluene	0.0250	0.0248	99.4	74 - 130	
1,3,5-Trimethylbenzene	0.0250	0.0247	98.7	73 - 134	
tert-Butylbenzene	0.0250	0.0258	103	72 - 134	
1,2,4-Trimethylbenzene	0.0250	0.0250	100.0	72 - 135	
sec-Butylbenzene	0.0250	0.0256	103	70 - 135	
1,3-Dichlorobenzene	0.0250	0.0247	98.9	73 - 131	
p-Isopropyltoluene	0.0250	0.0256	102	68 - 138	
1,4-Dichlorobenzene	0.0250	0.0251	100	70 - 121	
1,2,3-Trimethylbenzene	0.0250	0.0241	96.5	70 - 127	
1,2-Dichlorobenzene	0.0250	0.0254	102	75 - 122	
n-Butylbenzene	0.0250	0.0263	105	63 - 142	
1,2-Dibromo-3-Chloropropane	0.0250	0.0205	81.9	55 - 134	
1,2,4-Trichlorobenzene	0.0250	0.0264	106	65 - 137	
Hexachloro-1,3-Butadiene	0.0250	0.0259	104	67 - 135	
Naphthalene	0.0250	0.0241	96.3	56 - 145	
1,2,3-Trichlorobenzene	0.0250	0.0255	102	63 - 138	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

VOUR LAB OF CHOICE Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Volatile Organic Compounds by Method 8260B

Project No:308032.05Project:ADOT-SuperiorCollection Date:2/28/2010Analysis Date:3/5/2010Instrument ID:VOCMS4Sample Numbers:L447268-01

Matrix:Water - mg/LEPA ID:TN00003Analytic Batch:WG466042Analyst:498

Surrogate Summary

Laboratory	Dibromo	Dibromofluoromethane		Toluene-d8		4-Bromofluorobenzene		Alternate Surrogate a,a,a-Trifluorotoluene	
Sample ID	ppb	% Rec	ppb	% Rec	ppb	% Rec	ppb	% Rec	
LCS WG466042	41.9	105	39.9	99.9	43.1	108	40.2	100	
LCSD WG466042	41.2	103	41.3	103	41.3	103	40.9	102	
MS WG466042	40.9	102	40.7	102	40.1	100	40.5	101	
MSD WG466042	40.2	101	41.3	103	41.4	103	40.7	102	
Blank WG466042	41.4	103	39.6	99.0	41.5	104	40.5	101	
L447268-01	40.4	101	39.8	99.5	41.7	104	41.0	102	
	Dibromot	fluoromethane		40 ppb	79 - 125				
	Toluene -	- d8		40 ppb	87 - 114				
	4-Bromot	fluorobenzene		40 ppb	75 - 128				

a,a,a-Trifluorotoluene	40 ppb	84 - 114

Alternate Surrogate

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

VOUR LAB OF CHOICE Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Volatile Organic Compounds by Method 8260B

	0
Project No:	308032.05
Project:	ADOT-Superior
Collection Date:	2/28/2010
Analysis Date:	3/5/2010
Instrument ID:	VOCMS4
Sample Numbers:	L447268-01
Analysis Date: Instrument ID: Sample Numbers:	3/5/2010 VOCMS4 L447268-01

Matrix:Water - mg/LEPA ID:TN00003Analytic Batch:WG466042Analyst:498

Matrix Spike/Matrix Spike Duplicate

L447265-24

	Spike			%		%	Control	% Rec	%	Control	RPD
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual
Dichlorodifluoromethane	0.0250	0.0000	0.0185	74.0	0.0178	71.0	0-200		4.1	26	
Chloromethane	0.0250	0.0000	0.0182	72.8	0.0178	71.0	10-174		2.4	28	
Vinyl chloride	0.0250	0.0000	0.0171	68.5	0.0171	68.4	0-179		0.1	26	
Bromomethane	0.0250	0.0000	0.0245	98.0	0.0219	87.6	0-191		11	35	
Chloroethane	0.0250	0.0000	0.0200	79.9	0.0191	76.5	4-176		4.3	27	
Trichlorofluoromethane	0.0250	0.0000	0.0238	95.2	0.0231	92.3	10-177		3.1	24	
Acrolein	0.125	0.0000	0.121	96.6	0.110	87.8	0-179		9.5	39	
1,1-Dichloroethene	0.0250	0.0000	0.0155	62.1	0.0222	88.9	10-162		35	23	R5
1,1,2-Trichloro-1,2,2-	0.0250	0.0000	0.0185	74.0	0.0272	109	14-168		38	24	R5
Acetone	0.125	0.0000	0.119	95.2	0.121	96.9	25-157		1.7	26	
Methylene Chloride	0.0250	0.0000	0.0224	89.4	0.0211	84.2	23-151		5.9	21	
Acrylonitrile	0.125	0.0000	0.113	90.2	0.111	88.9	37-162		1.5	24	
trans-1,2-Dichloroethene	0.0250	0.0000	0.0229	91.7	0.0220	88.0	11-160		4.0	23	
Methyl tert-butyl ether	0.0250	0.0000	0.0241	96.5	0.0235	93.9	24-167		2.7	22	
1,1-Dichloroethane	0.0250	0.0000	0.0239	95.5	0.0229	91.7	30-159		4.1	21	
Di-isopropyl ether	0.0250	0.0000	0.0235	94.0	0.0224	89.6	39-160		4.7	21	
2,2-Dichloropropane	0.0250	0.0000	0.0214	85.8	0.0217	86.7	14-158		1.0	23	
cis-1,2-Dichloroethene	0.0250	0.0007	0.0244	94.9	0.0233	90.2	29-156		4.9	22	
2-Butanone (MEK)	0.125	0.0000	0.117	93.4	0.118	94.1	32-151		0.7	26	
Chloroform	0.0250	0.0006	0.0241	94.0	0.0230	89.9	37-147		4.4	21	
1,1,1-Trichloroethane	0.0250	0.0000	0.0230	91.9	0.0229	91.7	31-161		0.2	23	
Carbon tetrachloride	0.0250	0.0000	0.0221	88.5	0.0224	89.5	22-168		1.1	24	
1,1-Dichloropropene	0.0250	0.0000	0.0221	88.4	0.0218	87.1	14-162		1.4	23	
Benzene	0.0250	0.0000	0.0226	90.5	0.0215	86.2	16-158		4.9	21	
1,2-Dichloroethane	0.0250	0.0000	0.0234	93.5	0.0222	88.6	29-167		5.4	21	
Trichloroethene	0.0250	0.0029	0.0253	89.8	0.0248	87.6	18-163		2.1	21	
1,2-Dichloropropane	0.0250	0.0000	0.0227	90.8	0.0225	90.0	39-148		0.9	20	
Dibromomethane	0.0250	0.0000	0.0237	95.0	0.0229	91.5	36-152		3.8	20	
Bromodichloromethane	0.0250	0.0000	0.0234	93.4	0.0228	91.2	45-147		2.5	20	
cis-1,3-Dichloropropene	0.0250	0.0000	0.0236	94.2	0.0227	91.0	35-148		3.6	21	
4-Methyl-2-pentanone	0.125	0.0000	0.115	92.1	0.112	89.4	40-160		3.0	28	
Toluene	0.0250	0.0000	0.0221	88.5	0.0216	86.2	22-152		2.6	22	
trans-1,3-Dichloropropene	0.0250	0.0000	0.0228	91.3	0.0226	90.3	33-153		1.1	22	
1,1,2-Trichloroethane	0.0250	0.0000	0.0246	98.5	0.0246	98.5	46-145		0.0	20	
Tetrachloroethene	0.0250	0.0081	0.0284	81.0	0.0289	82.9	13-157		1.7	24	
1,3-Dichloropropane	0.0250	0.0000	0.0235	93.9	0.0234	93.7	44-142		0.2	20	
Chlorodibromomethane	0.0250	0.0000	0.0237	95.0	0.0240	95.8	48-151		0.9	21	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Volatile Organic Compounds by Method 8260B

U
308032.05
ADOT-Superior
2/28/2010
3/5/2010
VOCMS4
L447268-01

Matrix:Water - mg/LEPA ID:TN00003Analytic Batch:WG466042Analyst:498

Matrix Spike/Matrix Spike Duplicate

L447265-24

	Spike			%		%	Control	% Rec	%	Control	RPD
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual
1,2-Dibromoethane	0.0250	0.0000	0.0238	95.2	0.0239	95.4	41-149		0.2	21	
Chlorobenzene	0.0250	0.0000	0.0238	95.1	0.0237	94.6	33-148		0.5	22	
1,1,1,2-Tetrachloroethane	0.0250	0.0000	0.0238	95.1	0.0235	94.2	45-152		0.9	21	
Ethylbenzene	0.0250	0.0027	0.0248	88.3	0.0254	90.7	29-150		2.4	24	
m&p-Xylene	0.0500	0.0119	0.0543	84.7	0.0551	86.4	24-151		1.5	23	
o-Xylene	0.0250	0.0033	0.0261	91.3	0.0261	91.3	32-151		0.0	23	
Styrene	0.0250	0.0000	0.0235	94.0	0.0235	94.2	38-149		0.2	23	
Bromoform	0.0250	0.0000	0.0232	92.6	0.0232	92.8	38-152		0.1	20	
Isopropylbenzene	0.0250	0.0006	0.0239	93.5	0.0242	94.6	35-147		1.1	25	
Bromobenzene	0.0250	0.0000	0.0234	93.5	0.0232	92.8	37-147		0.7	23	
1,1,2,2-Tetrachloroethane	0.0250	0.0000	0.0243	97.3	0.0246	98.6	49-149		1.3	22	
1,2,3-Trichloropropane	0.0250	0.0000	0.0242	97.0	0.0241	96.5	48-148		0.5	23	
n-Propylbenzene	0.0250	0.0000	0.0228	91.3	0.0232	92.6	26-150		1.5	25	
2-Chlorotoluene	0.0250	0.0000	0.0228	91.3	0.0225	90.2	35-147		1.3	24	
4-Chlorotoluene	0.0250	0.0000	0.0224	89.5	0.0225	90.0	33-147		0.5	25	
1,3,5-Trimethylbenzene	0.0250	0.0003	0.0230	90.7	0.0232	91.5	33-149		0.9	26	
tert-Butylbenzene	0.0250	0.0000	0.0243	97.1	0.0244	97.4	36-149		0.3	26	
1,2,4-Trimethylbenzene	0.0250	0.0010	0.0242	92.6	0.0240	92.1	29-153		0.6	27	
sec-Butylbenzene	0.0250	0.0000	0.0232	93.0	0.0241	96.6	32-149		3.8	26	
1,3-Dichlorobenzene	0.0250	0.0000	0.0236	94.4	0.0226	90.5	32-148		4.1	24	
p-Isopropyltoluene	0.0250	0.0000	0.0235	93.9	0.0237	95.0	28-151		1.1	27	
1,4-Dichlorobenzene	0.0250	0.0000	0.0234	93.5	0.0225	90.2	32-136		3.7	23	
1,2,3-Trimethylbenzene	0.0250	0.0008	0.0239	92.2	0.0232	89.4	36-141		3.0	25	
1,2-Dichlorobenzene	0.0250	0.0000	0.0244	97.5	0.0238	95.1	40-139		2.5	23	
n-Butylbenzene	0.0250	0.0000	0.0235	94.0	0.0231	92.5	22-151		1.5	29	
1,2-Dibromo-3-	0.0250	0.0000	0.0211	84.5	0.0215	86.1	37-148		1.9	27	
1,2,4-Trichlorobenzene	0.0250	0.0000	0.0246	98.3	0.0244	97.6	27-142		0.7	30	
Hexachloro-1,3-Butadiene	0.0250	0.0000	0.0245	97.8	0.0246	98.3	28-144		0.5	33	
Naphthalene	0.0250	0.0000	0.0234	93.6	0.0241	96.3	24-160		2.8	37	
1,2,3-Trichlorobenzene	0.0250	0.0000	0.0241	96.2	0.0248	99.4	32-143		3.2	33	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

VOUR LAB OF CHOICE Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Volatile Organic Compounds by Method 8260B

0
308032.05
ADOT-Superior
2/28/2010
3/5/2010
VOCMS4
L447268-01

Matrix:Water - mg/LEPA ID:TN00003Analytic Batch:WG466042Analyst:498

Laboratory Control Sample/ Laboratory Control Sample Duplicate

		r	%		%	Control		%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
Dichlorodifluoromethane	0.0250	0.0262	105	0.0232	93.0	39-189		12	24	
Chloromethane	0.0250	0.0249	99.5	0.0243	97.2	45-152		2.4	20	
Vinyl chloride	0.0250	0.0252	101	0.0217	86.6	55-153		15	20	
Bromomethane	0.0250	0.0333	133	0.0271	108	45-175		21	20	R7
Chloroethane	0.0250	0.0268	107	0.0200	79.9	49-155		29	20	R7
Trichlorofluoromethane	0.0250	0.0316	126	0.0269	108	54-156		16	20	
Acrolein	0.125	0.149	119	0.106	85.0	6-182		33	39	
1,1-Dichloroethene	0.0250	0.0199	79.5	0.0293	117	60-130		38	20	R7
1,1,2-Trichloro-1,2,2-	0.0250	0.0255	102	0.0343	137	51-149		29	20	R7
Acetone	0.125	0.133	107	0.115	91.7	48-134		15	20	
Methylene Chloride	0.0250	0.0253	101	0.0245	97.9	64-125		3.5	20	
Acrylonitrile	0.125	0.125	99.9	0.113	90.6	60-140		9.8	20	
trans-1,2-Dichloroethene	0.0250	0.0282	113	0.0274	110	67-129		2.9	20	
Methyl tert-butyl ether	0.0250	0.0247	98.6	0.0251	100	51-142		1.7	20	
1,1-Dichloroethane	0.0250	0.0265	106	0.0267	107	67-133		0.5	20	
Di-isopropyl ether	0.0250	0.0246	98.5	0.0251	100	63-139		1.9	20	
2,2-Dichloropropane	0.0250	0.0236	94.4	0.0246	98.3	46-151		4.0	20	
cis-1,2-Dichloroethene	0.0250	0.0266	106	0.0264	106	72-128		0.6	20	
2-Butanone (MEK)	0.125	0.131	105	0.127	102	53-132		3.3	20	
Chloroform	0.0250	0.0256	102	0.0259	104	66-126		1.2	20	
1,1,1-Trichloroethane	0.0250	0.0264	105	0.0262	105	67-137		0.8	20	
Carbon tetrachloride	0.0250	0.0267	107	0.0265	106	64-141		0.6	20	
1,1-Dichloropropene	0.0250	0.0271	109	0.0274	109	68-132		0.8	20	
Benzene	0.0250	0.0253	101	0.0260	104	67-126		2.8	20	
1,2-Dichloroethane	0.0250	0.0254	101	0.0255	102	63-137		0.4	20	
Trichloroethene	0.0250	0.0263	105	0.0260	104	74-126		1.1	20	
1,2-Dichloropropane	0.0250	0.0243	97.0	0.0249	99.7	74-122		2.7	20	
Dibromomethane	0.0250	0.0260	104	0.0253	101	73-125		2.6	20	
Bromodichloromethane	0.0250	0.0244	97.8	0.0249	99.7	68-133		2.0	20	
cis-1,3-Dichloropropene	0.0250	0.0245	98.1	0.0255	102	73-131		3.9	20	
4-Methyl-2-pentanone	0.125	0.123	98.1	0.120	96.0	60-142		2.1	20	
Toluene	0.0250	0.0238	95.3	0.0245	98.1	72-122		2.9	20	
trans-1,3-Dichloropropene	0.0250	0.0238	95.3	0.0251	100	66-137		5.0	20	
1,1,2-Trichloroethane	0.0250	0.0252	101	0.0253	101	79-123		0.1	20	
Tetrachloroethene	0.0250	0.0259	104	0.0265	106	67-135		2.1	20	

Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Volatile Organic Compounds by Method 8260B

Test:	Volatile Organic
Project No:	308032.05
Project:	ADOT-Superior
Collection Date:	2/28/2010
Analysis Date:	3/5/2010
Instrument ID:	VOCMS4
Sample Numbers:	L447268-01

Matrix:Water - mg/LEPA ID:TN00003Analytic Batch:WG466042Analyst:498

Laboratory Control Sample/ Laboratory Control Sample Duplicate

200010		, sumpre,	%	14001	%	Control	ie Dupiie	%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
1,3-Dichloropropane	0.0250	0.0245	97.9	0.0249	99.7	77-119		1.8	20	
Chlorodibromomethane	0.0250	0.0247	98.6	0.0249	99.6	73-138		0.9	20	
1,2-Dibromoethane	0.0250	0.0258	103	0.0260	104	75-126		1.0	20	
Chlorobenzene	0.0250	0.0253	101	0.0256	102	77-125		1.0	20	
1,1,1,2-Tetrachloroethane	0.0250	0.0250	100	0.0248	99.0	75-134		1.2	20	
Ethylbenzene	0.0250	0.0259	104	0.0254	101	76-129		2.1	20	
m&p-Xylene	0.0500	0.0507	101	0.0502	100	74-128		0.8	20	
o-Xylene	0.0250	0.0253	101	0.0252	101	78-128		0.4	20	
Styrene	0.0250	0.0262	105	0.0257	103	78-130		1.6	20	
Bromoform	0.0250	0.0255	102	0.0245	98.2	60-139		3.7	20	
Isopropylbenzene	0.0250	0.0260	104	0.0256	103	73-132		1.4	20	
Bromobenzene	0.0250	0.0256	103	0.0251	100	76-123		2.1	20	
1,1,2,2-Tetrachloroethane	0.0250	0.0260	104	0.0250	99.9	72-128		4.1	20	
1,2,3-Trichloropropane	0.0250	0.0267	107	0.0258	103	68-130		3.5	20	
n-Propylbenzene	0.0250	0.0264	106	0.0256	102	71-132		3.1	20	
2-Chlorotoluene	0.0250	0.0244	97.7	0.0246	98.5	74-128		0.8	20	
4-Chlorotoluene	0.0250	0.0254	102	0.0248	99.4	74-130		2.2	20	
1,3,5-Trimethylbenzene	0.0250	0.0254	101	0.0247	98.7	73-134		2.8	20	
tert-Butylbenzene	0.0250	0.0260	104	0.0258	103	72-134		0.8	20	
1,2,4-Trimethylbenzene	0.0250	0.0259	103	0.0250	100.0	72-135		3.4	20	
sec-Butylbenzene	0.0250	0.0266	106	0.0256	103	70-135		3.7	20	
1,3-Dichlorobenzene	0.0250	0.0254	102	0.0247	98.9	73-131		2.6	20	
p-Isopropyltoluene	0.0250	0.0266	106	0.0256	102	68-138		3.7	20	
1,4-Dichlorobenzene	0.0250	0.0244	97.8	0.0251	100	70-121		2.7	20	
1,2,3-Trimethylbenzene	0.0250	0.0238	95.2	0.0241	96.5	70-127		1.3	20	
1,2-Dichlorobenzene	0.0250	0.0252	101	0.0254	102	75-122		0.8	20	
n-Butylbenzene	0.0250	0.0262	105	0.0263	105	63-142		0.3	20	
1,2-Dibromo-3-	0.0250	0.0214	85.7	0.0205	81.9	55-134		4.6	20	
1,2,4-Trichlorobenzene	0.0250	0.0260	104	0.0264	106	65-137		1.8	20	
Hexachloro-1,3-Butadiene	0.0250	0.0261	104	0.0259	104	67-135		0.8	20	
Naphthalene	0.0250	0.0241	96.2	0.0241	96.3	56-145		0.1	20	
1,2,3-Trichlorobenzene	0.0250	0.0249	99.4	0.0255	102	63-138		2.5	20	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Volatile Organic Compounds by Method 8260B

	Ũ
Project No:	308032.05
Project:	ADOT-Superior
Collection Date:	2/28/2010
Analysis Date:	3/5/2010
Instrument ID:	VOCMS4
Sample Numbers:	L447268-01

Matrix:Water - mg/LEPA ID:TN00003Analytic Batch:WG466042Analyst:498

Internal Standard Response and Retention Time Summary

FileID:0305_02.D		Date:3/5/201	0		Time:11:51 AM				
	IS1		IS2		IS3		IS4		
	Response	RT	Response	RT	Response	RT	Response	RT	
12 Hour Std	407081	5 67	683438	615	101673	7 82	304838	11	
Upper Limit	814162	6.17	1366876	6.65	203346	8.32	609676	11.5	
Lower Limit	203540.5	5.17	341719	5.65	50836.5	7.32	152419	10.5	
Sample ID	Response	RT	Response	RT	Response	RT	Response	RT	
Diamite WC 466042	110020	5.67	721796	6 15	107121	7 02	241114	11	
Blank w G400042	448800	5.07 5.67	722630	0.15 6.15	107121	7.82 7.81	341114	11	
LCS WG466042	405829	5.67	674511	6.15	97839	7.81	308071	10.99	
LCSD WG466042	412977	5.67	705455	6.15	104138	7.81	312204	11	
MS WG466042	429778	5.67	713714	6.15	103870	7.81	311852	10.99	
MSD WG466042	447743	5.67	736892	6.15	105638	7.81	322316	10.99	

CE Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Test:	Diesel Range Organics by Method 8015		
Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG465740
Analysis Date:	3/3/2010	Analyst:	280
Instrument ID:	SVGC7	Extraction Date:	3/2/2010
Sample Numbers:	L447268-01		

Method Blank

Analyte	CAS	PQL	Qualifiers
Diesel Range Organics		< 0.10	

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Diesel Range Organics	1.50	1.01	67.6	50 - 150	

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Diesel Range Organics	1.50	1.03	68.8	50 - 150	

Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Diesel Range Organics by Method 8015

Test:	Diesel Range Or
Project No:	308032.05
Project:	ADOT-Superior
Collection Date:	2/28/2010
Analysis Date:	3/3/2010
Instrument ID:	SVGC7
Sample Numbers:	L447268-01

Matrix:	Water - mg/L
EPA ID:	TN00003
Analytic Batch:	WG465740
Analyst:	280
Extraction Date:	3/2/2010

Surrogate Summary

Laboratory Sample ID	o-terphenylD ppm	% Rec
Blank WG465740	0.0161	80.6
LCS WG465740	0.0155	77.4
LCSD WG465740	0.0159	79.4
L447268-01	0.0184	91.9

o-terphenyl Limits - 50 - 150

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

VOUR LAB OF CHOICE Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Diesel Range Organics by Method 8015

Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG465740
Analysis Date:	3/3/2010	Analyst:	280
Instrument ID:	SVGC7	Extraction Date:	3/2/2010
Sample Numbers:	L447268-01		

Laboratory Control Sample/ Laboratory Control Sample Duplicate

			%		%	Control	%	6 Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier RF	D Limits	Qualifier
Diesel Range Organics	1.50	1.01	67.6	1.03	68.8	50-150	1.	7 25	

Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

	8 8		
Test:	Semi-Volatiles by Method 8270C		
Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG465743
Analysis Date:	3/4/2010	Analyst:	145
Instrument ID:	BNAMS2	Extraction Date:	3/2/2010
Sample Numbers:	L447268-01		

Method Blank

Analyte	CAS	PQL	Qualifiers
n-Nitrosodimethylamine	62-75-9	< 0.0100	
Bis(2-chloroethyl)ether	111-44-4	< 0.0100	
Phenol	108-95-2	< 0.0100	
2-Chlorophenol	95-57-8	< 0.0100	
Bis(2-chloroisopropyl)ether	108-60-1	< 0.0100	
Hexachloroethane	67-72-1	< 0.0100	
n-Nitrosodi-n-propylamine	621-64-7	< 0.0100	
Nitrobenzene	98-95-3	< 0.0100	
Isophorone	78-59-1	< 0.0100	
2-Nitrophenol	88-75-5	< 0.0100	
2,4-Dimethylphenol	105-67-9	< 0.0100	
Bis(2-chlorethoxy)methane	111-91-1	< 0.0100	
2,4-Dichlorophenol	120-83-2	< 0.0100	
1,2,4-Trichlorobenzene	120-82-1	< 0.0100	
Naphthalene	91-20-3	< 0.0010	
Hexachloro-1,3-butadiene	87-68-3	< 0.0100	
4-Chloro-3-methylphenol	59-50-7	< 0.0100	
Hexachlorocyclopentadiene	77-47-4	< 0.0100	
2,4,6-Trichlorophenol	88-06-2	< 0.0100	
2-Chloronaphthalene	91-58-7	< 0.0010	
Acenaphthylene	208-96-8	< 0.0010	
Dimethyl phthalate	131-11-3	< 0.0010	
2,6-Dinitrotoluene	606-20-2	< 0.0100	
Acenaphthene	83-32-9	< 0.0010	
2,4-Dinitrophenol	51-28-5	< 0.0100	
2,4-Dinitrotoluene	121-14-2	< 0.0100	
4-Nitrophenol	100-02-7	< 0.0100	
Fluorene	86-73-7	< 0.0010	
4-Chlorophenyl-phenylether	7005-72-3	< 0.0100	
Diethyl phthalate	84-66-2	< 0.0010	
4,6-Dinitro-2-methylphenol	534-52-1	< 0.0100	
n-Nitrosodiphenylamine	86-30-6	< 0.0100	
4-Bromophenyl-phenylether	101-55-3	< 0.0100	
Hexachlorobenzene	118-74-1	< 0.0010	
Pentachlorophenol	87-86-5	< 0.0100	

Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Test:	Semi-Volatiles by Method 8270C	·	
Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG465743
Analysis Date:	3/4/2010	Analyst:	145
Instrument ID:	BNAMS2	Extraction Date:	3/2/2010
Sample Numbers:	L447268-01		

Method Blank

Analyte	CAS	PQL	Qualifiers
Phenanthrene	85-01-8	< 0.0010	
Anthracene	120-12-7	< 0.0010	
Di-n-butyl phthalate	84-74-2	< 0.0010	
Fluoranthene	206-44-0	< 0.0010	
Benzidine	92-87-5	< 0.0100	
Pyrene	129-00-0	< 0.0010	
Benzylbutyl phthalate	85-68-7	< 0.0010	
3,3-Dichlorobenzidine	91-94-1	< 0.0100	
Benzo(a)anthracene	56-55-3	< 0.0010	
Chrysene	218-01-9	< 0.0010	
Bis(2-ethylhexyl)phthalate	117-81-7	< 0.0010	
Di-n-octyl phthalate	117-84-0	< 0.0010	
Benzo(b)fluoranthene	205-99-2	< 0.0010	
Benzo(k)fluoranthene	207-08-9	< 0.0010	
Benzo(a)pyrene	50-32-8	< 0.0010	
Indeno(1,2,3-cd)pyrene	193-39-5	< 0.0010	
Dibenz(a,h)anthracene	53-70-3	< 0.0010	
Benzo(g,h,i)perylene	191-24-2	< 0.0010	

Quality Control Summary YOUR LAB OF CHOICE SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Semi-volatile Organic Compounds by Method 8270C

Test:	Semi-volatile Organic Compounds by Method	8270C
Project No:	308032.05	Matrix:
Project:	ADOT-Superior	EPA ID:
Collection Date:	2/28/2010	Analytic Bate
Analysis Date:	3/4/2010 11:17:00 PM	Analyst:
Instrument ID:	BNAMS2	Extraction Dat
Sample Numbers:	L447268-01	

Matrix:	Water - mg/L
EPA ID:	TN00003
Analytic Batch:	WG465743
Analyst:	145
Extraction Date:	3/2/2010

Laboratory Control Sample (LCS)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
1,2,4-Trichlorobenzene	0.0100	0.00474	47.4	26 - 103	
2,4,6-Trichlorophenol	0.0100	0.00565	56.5	49 - 118	
2,4-Dichlorophenol	0.0100	0.00574	57.4	46 - 115	
2,4-Dimethylphenol	0.0100	0.00721	72.1	40 - 124	
2,4-Dinitrophenol	0.0100	0.00456	45.6	10 - 125	
2,4-Dinitrotoluene	0.0100	0.00641	64.1	56 - 128	
2,6-Dinitrotoluene	0.0100	0.00676	67.6	56 - 121	
2-Chloronaphthalene	0.0100	0.00598	59.8	44 - 110	
2-Chlorophenol	0.0100	0.00529	52.9	38 - 114	
2-Nitrophenol	0.0100	0.00567	56.7	35 - 118	
3,3-Dichlorobenzidine	0.0100	0.00594	59.4	46 - 145	
4,6-Dinitro-2-methylphenol	0.0100	0.00452	45.2	24 - 119	
4-Bromophenyl-phenylether	0.0100	0.00758	75.8	45 - 105	
4-Chloro-3-methylphenol	0.0100	0.00532	53.2	47 - 116	
4-Chlorophenyl-phenylether	0.0100	0.00697	69.7	49 - 116	
4-Nitrophenol	0.0100	0.00164	16.4	10 - 66	
Acenaphthene	0.0100	0.00670	67.0	48 - 110	
Acenaphthylene	0.0100	0.00695	69.5	48 - 113	
Anthracene	0.0100	0.00750	75.0	55 - 127	
Benzidine	0.0100	0.000106	1.1	0 - 46	
Benzo(a)anthracene	0.0100	0.00720	72.0	57 - 115	
Benzo(a)pyrene	0.0100	0.00701	70.1	63 - 125	
Benzo(b)fluoranthene	0.0100	0.00380	38.0	50 - 123	L2
Benzo(g,h,i)perylene	0.0100	0.00611	61.1	39 - 143	
Benzo(k)fluoranthene	0.0100	0.00425	42.5	45 - 126	L2
Benzylbutyl phthalate	0.0100	0.000462	4.6	22 - 154	L2
Bis(2-chlorethoxy)methane	0.0100	0.00592	59.2	42 - 116	
Bis(2-chloroethyl)ether	0.0100	0.00591	59.1	26 - 115	
Bis(2-chloroisopropyl)ether	0.0100	0.00544	54.4	32 - 115	
Bis(2-ethylhexyl)phthalate	0.0100	0.00763	76.3	47 - 143	
Chrysene	0.0100	0.00734	73.4	58 - 113	
Dibenz(a,h)anthracene	0.0100	0.00604	60.4	39 - 144	
Diethyl phthalate	0.0100	0.000552	5.5	36 - 128	L2
Dimethyl phthalate	0.0100	0.000040	0.4	10 - 135	L2
Di-n-butyl phthalate	0.0100	0.00250	25.0	51 - 131	L2

Quality Control Summary YOUR LAB OF CHOICE SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Semi-volatile Organic Compounds by Method 8270C

Test:	Semi-volatile Organic Compounds by Method 8270C						
Project No:	308032.05	Matrix:	Water - mg/L				
Project:	ADOT-Superior	EPA ID:	TN00003				
Collection Date:	2/28/2010	Analytic Batch:	WG465743				
Analysis Date:	3/4/2010 11:17:00 PM	Analyst:	145				
Instrument ID:	BNAMS2	Extraction Date:	3/2/2010				
Sample Numbers:	L447268-01						

Laboratory Control Sample (LCS)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Di-n-octyl phthalate	0.0100	0.00786	78.6	51 - 138	
Fluoranthene	0.0100	0.00747	74.7	53 - 119	
Fluorene	0.0100	0.00694	69.4	49 - 116	
Hexachloro-1,3-butadiene	0.0100	0.00491	49.1	21 - 116	
Hexachlorobenzene	0.0100	0.00737	73.7	51 - 121	
Hexachlorocyclopentadiene	0.0100	0.00316	31.6	4 - 126	
Hexachloroethane	0.0100	0.00348	34.8	15 - 109	
Indeno(1,2,3-cd)pyrene	0.0100	0.00606	60.6	40 - 143	
Isophorone	0.0100	0.00532	53.2	48 - 126	
Naphthalene	0.0100	0.00565	56.5	29 - 103	
Nitrobenzene	0.0100	0.00425	42.5	31 - 105	
n-Nitrosodimethylamine	0.0100	0.00219	21.9	11 - 69	
n-Nitrosodi-n-propylamine	0.0100	0.00568	56.8	47 - 122	
n-Nitrosodiphenylamine	0.0100	0.00725	72.5	59 - 143	
Pentachlorophenol	0.0100	0.00398	39.8	20 - 122	
Phenanthrene	0.0100	0.00715	71.5	54 - 112	
Phenol	0.0100	0.00263	26.3	17 - 52	
Pyrene	0.0100	0.00665	66.5	46 - 130	

Quality Control Summary YOUR LAB OF CHOICE SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Semi-volatile Organic Compounds by Method 8270C

Test:	Semi-volatile Organic Compounds by Method 8270C						
Project No:	308032.05	Matrix:	Water - mg/L				
Project:	ADOT-Superior	EPA ID:	TN00003				
Collection Date:	2/28/2010	Analytic Batch:	WG465743				
Analysis Date:	3/4/2010 11:17:00 PM	Analyst:	145				
Instrument ID:	BNAMS2	Extraction Date:	3/2/2010				
Sample Numbers:	L447268-01						

Laboratory Control Sample Duplicate (LCSD)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
1,2,4-Trichlorobenzene	0.0100	0.00432	43.2	26 - 103	
2,4,6-Trichlorophenol	0.0100	0.00609	60.9	49 - 118	
2,4-Dichlorophenol	0.0100	0.00638	63.8	46 - 115	
2,4-Dimethylphenol	0.0100	0.00822	82.2	40 - 124	
2,4-Dinitrophenol	0.0100	0.00470	47.0	10 - 125	
2,4-Dinitrotoluene	0.0100	0.00531	53.1	56 - 128	L2
2,6-Dinitrotoluene	0.0100	0.00529	52.9	56 - 121	L2
2-Chloronaphthalene	0.0100	0.00499	49.9	44 - 110	
2-Chlorophenol	0.0100	0.00556	55.6	38 - 114	
2-Nitrophenol	0.0100	0.00634	63.4	35 - 118	
3,3-Dichlorobenzidine	0.0100	0.00470	47.0	46 - 145	
4,6-Dinitro-2-methylphenol	0.0100	0.00477	47.7	24 - 119	
4-Bromophenyl-phenylether	0.0100	0.00652	65.2	45 - 105	
4-Chloro-3-methylphenol	0.0100	0.00590	59.0	47 - 116	
4-Chlorophenyl-phenylether	0.0100	0.00582	58.2	49 - 116	
4-Nitrophenol	0.0100	0.00193	19.3	10 - 66	
Acenaphthene	0.0100	0.00583	58.3	48 - 110	
Acenaphthylene	0.0100	0.00592	59.2	48 - 113	
Anthracene	0.0100	0.00620	62.0	55 - 127	
Benzidine	0.0100	0.000058	0.6	0 - 46	
Benzo(a)anthracene	0.0100	0.00579	57.9	57 - 115	
Benzo(a)pyrene	0.0100	0.00586	58.6	63 - 125	L2
Benzo(b)fluoranthene	0.0100	0.00317	31.7	50 - 123	L2
Benzo(g,h,i)perylene	0.0100	0.00521	52.1	39 - 143	
Benzo(k)fluoranthene	0.0100	0.00369	36.9	45 - 126	L2
Benzylbutyl phthalate	0.0100	0.000385	3.9	22 - 154	L2
Bis(2-chlorethoxy)methane	0.0100	0.00537	53.7	42 - 116	
Bis(2-chloroethyl)ether	0.0100	0.00507	50.7	26 - 115	
Bis(2-chloroisopropyl)ether	0.0100	0.00478	47.8	32 - 115	
Bis(2-ethylhexyl)phthalate	0.0100	0.00646	64.6	47 - 143	
Chrysene	0.0100	0.00611	61.1	58 - 113	
Dibenz(a,h)anthracene	0.0100	0.00519	51.9	39 - 144	
Diethyl phthalate	0.0100	0.000400	4.0	36 - 128	L2
Dimethyl phthalate	0.0100	0.000044	0.4	10 - 135	L2
Di-n-butyl phthalate	0.0100	0.00173	17.3	51 - 131	L2

Quality Control Summary YOUR LAB OF CHOICE SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Semi-volatile Organic Compounds by Method 8270C

Test:	Semi-volatile Organic Compounds by Method 8270C						
Project No:	308032.05	Matrix:	Water - mg/L				
Project:	ADOT-Superior	EPA ID:	TN00003				
Collection Date:	2/28/2010	Analytic Batch:	WG465743				
Analysis Date:	3/4/2010 11:17:00 PM	Analyst:	145				
Instrument ID:	BNAMS2	Extraction Date:	3/2/2010				
Sample Numbers:	L447268-01						

Laboratory Control Sample Duplicate (LCSD)

Analyta	True	Found	Recovery	Control Limits	Qualifiers
Anaryte	value	Touliu	/0	Linits	Quanners
Di-n-octyl phthalate	0.0100	0.00636	63.6	51 - 138	
Fluoranthene	0.0100	0.00596	59.6	53 - 119	
Fluorene	0.0100	0.00582	58.2	49 - 116	
Hexachloro-1,3-butadiene	0.0100	0.00440	44.0	21 - 116	
Hexachlorobenzene	0.0100	0.00606	60.6	51 - 121	
Hexachlorocyclopentadiene	0.0100	0.00271	27.1	4 - 126	
Hexachloroethane	0.0100	0.00329	32.9	15 - 109	
Indeno(1,2,3-cd)pyrene	0.0100	0.00508	50.8	40 - 143	
Isophorone	0.0100	0.00458	45.8	48 - 126	L2
Naphthalene	0.0100	0.00476	47.6	29 - 103	
Nitrobenzene	0.0100	0.00374	37.4	31 - 105	
n-Nitrosodimethylamine	0.0100	0.00226	22.6	11 - 69	
n-Nitrosodi-n-propylamine	0.0100	0.00474	47.4	47 - 122	
n-Nitrosodiphenylamine	0.0100	0.00621	62.1	59 - 143	
Pentachlorophenol	0.0100	0.00424	42.4	20 - 122	
Phenanthrene	0.0100	0.00584	58.4	54 - 112	
Phenol	0.0100	0.00213	21.3	17 - 52	
Pyrene	0.0100	0.00539	53.9	46 - 130	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

VOUR LAB OF CHOICE Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Semi-Volatiles by Method 8270C

Project No:	308032.05
Project:	ADOT-Superior
Collection Date:	2/28/2010
Analysis Date:	3/4/2010
Instrument ID:	BNAMS2
Sample Numbers:	L447268-01

Matrix:	Water - mg/L
EPA ID:	TN00003
Analytic Batch:	WG465743
Analyst:	145
Extraction Date:	3/2/2010

Surrogate Summary

Laboratory	N	ΒZ	F	BP	TI	PH	2F	P	PF	IL	TB	Р
Sample ID	ppb	% Rec	ppb	% Rec	ppb	% Rec	ppb	% Rec	ppb	% Rec	ppb	% Rec
LCS WG465743	4600	46.0	6370	63.7	7450	74.5	6910	34.6	4310	21.6	14400	71.8
LCSD WG465743	4100	41.0	5360	53.6	6210	62.1	7020	35.1	4470	22.3	15600	78.0
Blank WG465743	3720	37.2	5340	53.4	7070	70.8	3790	18.9	2450	12.2	7570	37.8
L447268-01	6830	68.3	9700	97.0	12900	129	11300	56.6	7790	39.0	22700	113

NBZ - Nitrobenzene-d5	12-120
FBP - 2-Fluorobiphenyl	26-122
TPH - Terphneyl-d14	34-149
2FP - 2-Fluorophenol	10-87
PHL - Phenol-d5	10-67
TBP - 2,4,6-Tribromophenol	10-148

Quality Control Summary YOUR LAB OF CHOICE SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Semi-volatile Organic Compounds by Method 8270C

Test:	Semi-volatile Organic Compounds by Method 8270C						
Project No:	308032.05	Matrix:	Water - mg/L				
Project:	ADOT-Superior	EPA ID:	TN00003				
Collection Date:	2/28/2010	Analytic Batch:	WG465743				
Analysis Date:	3/4/2010 11:17:00 PM	Analyst:	145				
Instrument ID:	BNAMS2	Extraction Date:	3/2/2010				
Sample Numbers:	L447268-01						

Laboratory Control Sample/ Laboratory Control Sample Duplicate

			%		%	Control		%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
1,2,4-Trichlorobenzene	0.0100	0.00474	47.4	0.00432	43.2	26-103		9.3	38	
2,4,6-Trichlorophenol	0.0100	0.00565	56.5	0.00609	60.9	49-118		7.5	28	
2,4-Dichlorophenol	0.0100	0.00574	57.4	0.00638	63.8	46-115		11	28	
2,4-Dimethylphenol	0.0100	0.00721	72.1	0.00822	82.2	40-124		13	36	
2,4-Dinitrophenol	0.0100	0.00456	45.6	0.00470	47.0	10-125		3.1	50	
2,4-Dinitrotoluene	0.0100	0.00641	64.1	0.00531	53.1	56-128	L2	19	24	
2,6-Dinitrotoluene	0.0100	0.00676	67.6	0.00529	52.9	56-121	L2	24	23	R7
2-Chloronaphthalene	0.0100	0.00598	59.8	0.00499	49.9	44-110		18	30	
2-Chlorophenol	0.0100	0.00529	52.9	0.00556	55.6	38-114		5.0	36	
2-Nitrophenol	0.0100	0.00567	56.7	0.00634	63.4	35-118		11	35	
3,3-Dichlorobenzidine	0.0100	0.00594	59.4	0.00470	47.0	46-145		23	31	
4,6-Dinitro-2-methylphenol	0.0100	0.00452	45.2	0.00477	47.7	24-119		5.5	50	
4-Bromophenyl-phenylether	0.0100	0.00758	75.8	0.00652	65.2	45-105		15	26	
4-Chloro-3-methylphenol	0.0100	0.00532	53.2	0.00590	59.0	47-116		10	22	
4-Chlorophenyl-phenylether	0.0100	0.00697	69.7	0.00582	58.2	49-116		18	26	
4-Nitrophenol	0.0100	0.00164	16.4	0.00193	19.3	10-66		16	37	
Acenaphthene	0.0100	0.00670	67.0	0.00583	58.3	48-110		14	26	
Acenaphthylene	0.0100	0.00695	69.5	0.00592	59.2	48-113		16	28	
Anthracene	0.0100	0.00750	75.0	0.00620	62.0	55-127		19	24	
Benzidine	0.0100	0.00010	1.1	0.00005	0.6	0-46		58	50	R6
Benzo(a)anthracene	0.0100	0.00720	72.0	0.00579	57.9	57-115		22	20	R6
Benzo(a)pyrene	0.0100	0.00701	70.1	0.00586	58.6	63-125	L2	18	22	
Benzo(b)fluoranthene	0.0100	0.00380	38.0	0.00317	31.7	50-123	L2	18	32	
Benzo(g,h,i)perylene	0.0100	0.00611	61.1	0.00521	52.1	39-143		16	31	
Benzo(k)fluoranthene	0.0100	0.00425	42.5	0.00369	36.9	45-126	L2	14	37	
Benzylbutyl phthalate	0.0100	0.00046	4.6	0.00038	3.9	22-154	L2	18	29	
Bis(2-chlorethoxy)methane	0.0100	0.00592	59.2	0.00537	53.7	42-116		9.7	38	
Bis(2-chloroethyl)ether	0.0100	0.00591	59.1	0.00507	50.7	26-115		15	50	
Bis(2-chloroisopropyl)ether	0.0100	0.00544	54.4	0.00478	47.8	32-115		13	47	
Bis(2-ethylhexyl)phthalate	0.0100	0.00763	76.3	0.00646	64.6	47-143		17	24	
Chrysene	0.0100	0.00734	73.4	0.00611	61.1	58-113		18	21	
Dibenz(a,h)anthracene	0.0100	0.00604	60.4	0.00519	51.9	39-144		15	30	
Diethyl phthalate	0.0100	0.00055	5.5	0.00040	4.0	36-128	L2	32	27	R7
Dimethyl phthalate	0.0100	0.00004	0.4	0.00004	0.4	10-135	L2	9.7	33	
Di-n-butyl phthalate	0.0100	0.00250	25.0	0.00173	17.3	51-131	L2	36	22	R7

Quality Control Summary YOUR LAB OF CHOICE SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Semi-volatile Organic Compounds by Method 8270C

Test:	Semi-volatile Organic Compounds by Method	8270C	
Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG465743
Analysis Date:	3/4/2010 11:17:00 PM	Analyst:	145
Instrument ID:	BNAMS2	Extraction Date:	3/2/2010
Sample Numbers:	L447268-01		

Laboratory Control Sample/ Laboratory Control Sample Duplicate

			%		%	Control		%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
Di-n-octyl phthalate	0.0100	0.00786	78.6	0.00636	63.6	51-138		21	22	
Fluoranthene	0.0100	0.00747	74.7	0.00596	59.6	53-119		23	28	
Fluorene	0.0100	0.00694	69.4	0.00582	58.2	49-116		18	25	
Hexachloro-1,3-butadiene	0.0100	0.00491	49.1	0.00440	44.0	21-116		11	50	
Hexachlorobenzene	0.0100	0.00737	73.7	0.00606	60.6	51-121		20	23	
Hexachlorocyclopentadiene	0.0100	0.00316	31.6	0.00271	27.1	4-126		15	50	
Hexachloroethane	0.0100	0.00348	34.8	0.00329	32.9	15-109		5.8	50	
Indeno(1,2,3-cd)pyrene	0.0100	0.00606	60.6	0.00508	50.8	40-143		18	30	
Isophorone	0.0100	0.00532	53.2	0.00458	45.8	48-126	L2	15	31	
Naphthalene	0.0100	0.00565	56.5	0.00476	47.6	29-103		17	45	
Nitrobenzene	0.0100	0.00425	42.5	0.00374	37.4	31-105		13	43	
n-Nitrosodimethylamine	0.0100	0.00219	21.9	0.00226	22.6	11-69		3.3	50	
n-Nitrosodi-n-propylamine	0.0100	0.00568	56.8	0.00474	47.4	47-122		18	33	
n-Nitrosodiphenylamine	0.0100	0.00725	72.5	0.00621	62.1	59-143		16	23	
Pentachlorophenol	0.0100	0.00398	39.8	0.00424	42.4	20-122		6.5	50	
Phenanthrene	0.0100	0.00715	71.5	0.00584	58.4	54-112		20	22	
Phenol	0.0100	0.00263	26.3	0.00213	21.3	17-52		21	33	
Pyrene	0.0100	0.00665	66.5	0.00539	53.9	46-130		21	28	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

VOUR LAB OF CHOICE Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Semi-Volatiles by Method 8270C

Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG465743
Analysis Date:	3/4/2010	Analyst:	145
Instrument ID:	BNAMS2	Extraction Date:	3/2/2010
Sample Numbers:	L447268-01		

Internal Standard Response and Retention Time Summary

FileID:0304_05.D		Date:3/4/2	2010		Time:12:39 PM		
	IS1		IS2		IS3		
	Response	RT	Response	RT	Response	RT	_
12 Hour Std	32396	4.89	125292	5.65	66947	6.68	
Upper Limit	64792	5.39	250584	6.15	133894	7.18	
Lower Limit	16198	4.39	62646	5.15	33473.5	6.18	
Sample ID	Response	RT	Response	RT	Response	RT	_
Blank WG465743	36624	4.89	143175	5.65	78147	6.68	
L447268-01	25264	4.90	101716	5.65	55425	6.68	
LCS WG465743	38144	4.89	150469	5.65	78551	6.68	
LCSD WG465743	40164	4.89	152885	5.65	81809	6.68	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

VOUR LAB OF CHOICE Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Semi-Volatiles by Method 8270C

Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG465743
Analysis Date:	3/4/2010	Analyst:	145
Instrument ID:	BNAMS2	Extraction Date:	3/2/2010
Sample Numbers	: L447268-01		

Internal Standard Response and Retention Time Summary

FileID:0304_05.D		Date:3/4/2	2010		Time:12:39 PM		
	IS4		IS5		IS6		
	Response	RT	Response	RT	Response	RT	
12 Hour Std	104601	7.56	97067	9.11	95791	10.28	
Upper Limit	209202	8.06	194134	9.61	191582	10.78	
Lower Limit	52300.5	7.06	48533.5	8.61	47895.5	9.78	
Sample ID	Response	RT	Response	RT	Response	RT	
Blank WG465743	116834	7.56	114230	9.11	108695	10.28	
L447268-01	86229	7.56	82183	9.12	42080	10.29	*
LCS WG465743	121499	7.56	119639	9.11	118063	10.28	
LCSD WG465743	125473	7.56	121286	9.11	114365	10.28	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Chlorinated Pesticides by Method 8081A

Project No:	308032.05	Matrix:	Water - mg/L
Project:	ADOT-Superior	EPA ID:	TN00003
Collection Date:	2/28/2010	Analytic Batch:	WG465744
Analysis Date:	3/4/2010	Analyst:	377
Instrument ID:	SVGC20	Extraction Date:	3/2/2010
Sample Numbers	: L447268-01		

Method Blank

Analyte	CAS	PQL	Qualifiers
4,4-DDD	72-54-8	< 0.000050	
4,4-DDE	72-55-9	< 0.000050	
4,4-DDT	50-29-3	< 0.000050	
Aldrin	309-00-2	< 0.000050	
Alpha BHC	319-84-6	< 0.000050	
Beta BHC	319-85-7	< 0.000050	
Chlordane	57-74-9	< 0.000500	
Delta BHC	319-86-8	< 0.000050	
Dieldrin	60-57-1	< 0.000050	
Endosulfan I	959-98-8	< 0.000050	
Endosulfan II	33213-65-9	< 0.000050	
Endosulfan sulfate	1031-07-8	< 0.000050	
Endrin	72-20-8	< 0.000050	
Endrin aldehyde	7421-93-4	< 0.000050	
Endrin ketone	53494-70-5	< 0.000050	
Gamma BHC	58-89-9	< 0.000050	
Heptachlor	76-44-8	< 0.000050	
Heptachlor epoxide	1024-57-3	< 0.000050	
Hexachlorobenzene	118-74-1	< 0.000050	
Methoxychlor	72-43-5	< 0.000050	
Toxaphene	8001-35-2	< 0.000500	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

VOUR LAB OF CHOICE Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Chlorinated Pesticides by Method 8081A

Project No:	308032.05
Project:	ADOT-Superior
Collection Date:	2/28/2010
Analysis Date:	3/4/2010
Instrument ID:	SVGC20
Sample Numbers:	L447268-01

Matrix:	Water - mg/L
EPA ID:	TN00003
Analytic Batch:	WG465744
Analyst:	377
Extraction Date:	3/2/2010

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
4,4-DDD	0.000200	0.000184	92.1	37 - 142	
4,4-DDE	0.000200	0.000173	86.4	33 - 124	
4,4-DDT	0.000200	0.000208	104	32 - 143	
Aldrin	0.000200	0.000167	83.6	25 - 115	
Alpha BHC	0.000200	0.000154	76.8	38 - 119	
Beta BHC	0.000200	0.000177	88.5	42 - 126	
Delta BHC	0.000200	0.000168	83.8	24 - 141	
Dieldrin	0.000200	0.000186	92.8	37 - 130	
Endosulfan I	0.000200	0.000177	88.7	37 - 125	
Endosulfan II	0.000200	0.000183	91.3	38 - 131	
Endosulfan sulfate	0.000200	0.000201	100	38 - 131	
Endrin	0.000200	0.000175	87.7	37 - 126	
Endrin aldehyde	0.000200	0.000151	75.4	24 - 154	
Endrin ketone	0.000200	0.000172	86.2	37 - 139	
Gamma BHC	0.000200	0.000163	81.7	35 - 114	
Heptachlor	0.000200	0.000162	81.0	21 - 123	
Heptachlor epoxide	0.000200	0.000172	86.2	38 - 121	
Hexachlorobenzene	0.000200	0.000153	76.6	28 - 115	
Methoxychlor	0.000200	0.000197	98.4	55 - 150	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

VOUR LAB OF CHOICE Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Chlorinated Pesticides by Method 8081A

Project No:	308032.05
Project:	ADOT-Superior
Collection Date:	2/28/2010
Analysis Date:	3/4/2010
Instrument ID:	SVGC20
Sample Numbers:	L447268-01

Matrix:	Water - mg/L
EPA ID:	TN00003
Analytic Batch:	WG465744
Analyst:	377
Extraction Date:	3/2/2010

Laboratory Control Sample Duplicate (LCSD)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
4,4-DDD	0.000200	0.000153	76.5	37 - 142	
4,4-DDE	0.000200	0.000143	71.5	33 - 124	
4,4-DDT	0.000200	0.000163	81.5	32 - 143	
Aldrin	0.000200	0.000134	67.2	25 - 115	
Alpha BHC	0.000200	0.000127	63.6	38 - 119	
Beta BHC	0.000200	0.000147	73.6	42 - 126	
Delta BHC	0.000200	0.000131	65.3	24 - 141	
Dieldrin	0.000200	0.000155	77.7	37 - 130	
Endosulfan I	0.000200	0.000148	73.9	37 - 125	
Endosulfan II	0.000200	0.000152	76.1	38 - 131	
Endosulfan sulfate	0.000200	0.000158	78.8	38 - 131	
Endrin	0.000200	0.000144	71.8	37 - 126	
Endrin aldehyde	0.000200	0.000122	61.1	24 - 154	
Endrin ketone	0.000200	0.000141	70.4	37 - 139	
Gamma BHC	0.000200	0.000133	66.6	35 - 114	
Heptachlor	0.000200	0.000132	65.8	21 - 123	
Heptachlor epoxide	0.000200	0.000144	71.8	38 - 121	
Hexachlorobenzene	0.000200	0.000122	61.0	28 - 115	
Methoxychlor	0.000200	0.000154	77.0	55 - 150	

VOUR LAB OF CHOICE Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Test:Pesticides by Method 8081Project No:308032.05Project:ADOT-SuperiorCollection Date:2/28/2010Analysis Date:3/4/2010Instrument ID:SVGC20Sample Numbers:L447268-01

Matrix:	Water - mg/L
EPA ID:	TN00003
Analytic Batch:	WG465744
Analyst:	377
Extraction Date:	3/2/2010

Surrogate Summary

Laboratory	TC	X Col 1	TC	X Col 2	DC	CB Col 1	DCB Col 2		
Sample ID	ppm	% Rec	ppm	% Rec	ppm	% Rec	ppm	% Rec	
Blank WG465744	0.00012	60.1	0.0001	62.7	0.0001	79.5	0.0001	84.5	
LCS WG465744 LCSD WG465744 L447268-01	0.00015 0.00012 0.00010	75.5 62.7 50.8	0.0001 0.0001 0.0001	77.3 64.5 58.1	0.0001 0.0001 0.0001	94.9 78.1 72.1	0.0002 0.0001 0.0001	102 86.6 74.4	

Column 1 TCMX DCB	Limits -15 - 114 Limits -10 - 123
Column 2 TCMX DCB	Limits -15 - 114 Limits -10 - 123

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

VOUR LAB OF CHOICE Quality Control Summary SDG: L447268 Engineering & Env. Consultants, INC. -AZ

Chlorinated Pesticides by Method 8081A

Project No:	308032.05
Project:	ADOT-Superior
Collection Date:	2/28/2010
Analysis Date:	3/4/2010
Instrument ID:	SVGC20
Sample Numbers:	L447268-01

Matrix:	Water - mg/L
EPA ID:	TN00003
Analytic Batch:	WG465744
Analyst:	377
Extraction Date:	3/2/2010

Laboratory Control Sample/ Laboratory Control Sample Duplicate

	Laboratory Controls	Jumpic	Lun	i acor y	Contra	or Samp	ic Dupiic	uu		
	•	-	%	v	%	Control	-	%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
4,4-DDD	0.00020	0.00018	92.1	0.00015	76.5	37-142		18	39	
4,4-DDE	0.00020	0.00017	86.4	0.00014	71.5	33-124		19	37	
4,4-DDT	0.00020	0.00020	104	0.00016	81.5	32-143		24	42	
Aldrin	0.00020	0.00016	83.6	0.00013	67.2	25-115		22	45	
Alpha BHC	0.00020	0.00015	76.8	0.00012	63.6	38-119		19	30	
Beta BHC	0.00020	0.00017	88.5	0.00014	73.6	42-126		18	31	
Delta BHC	0.00020	0.00016	83.8	0.00013	65.3	24-141		25	41	
Dieldrin	0.00020	0.00018	92.8	0.00015	77.7	37-130		18	36	
Endosulfan I	0.00020	0.00017	88.7	0.00014	73.9	37-125		18	35	
Endosulfan II	0.00020	0.00018	91.3	0.00015	76.1	38-131		18	36	
Endosulfan sulfate	0.00020	0.00020	100	0.00015	78.8	38-131		24	37	
Endrin	0.00020	0.00017	87.7	0.00014	71.8	37-126		20	37	
Endrin aldehyde	0.00020	0.00015	75.4	0.00012	61.1	24-154		21	36	
Endrin ketone	0.00020	0.00017	86.2	0.00014	70.4	37-139		20	36	
Gamma BHC	0.00020	0.00016	81.7	0.00013	66.6	35-114		20	30	
Heptachlor	0.00020	0.00016	81.0	0.00013	65.8	21-123		21	38	
Heptachlor epoxid	e 0.00020	0.00017	86.2	0.00014	71.8	38-121		18	33	
Hexachlorobenzen	e 0.00020	0.00015	76.6	0.00012	61.0	28-115		23	29	
Methoxychlor	0.00020	0.00019	98.4	0.00015	77.0	55-150		24	40	

							ARC							
Company Name/Address			Alternate Bi	illing			Ē	Analysis/Co	ontaine	er/Pres	servativ	e	E066	Chain of Custody
EEC				Ū				NK						Pageof
7878 N. 16th St., Suite 140 Phoenix A7 85020						-	20	N N N N	155		X V		Prepared by:	
							10.10 XX	Nita	- - - - -) د د	داح		ENVIRON Science cor	MENTAL D
			Report to:	oary Hoff	mann		M	404	E E	PI Q	47		12065 Lebar	ion Road
			E-mail to:	afferenn (e eccph,	x.com	1 0	A m	5	U U	2		Mt. Juliet TN	37122
Project Description:		lan		Dhy City/S	itate Collected	:	18	3	-म्	-7	Æ		Phone (615)	758-5858
PHONE:602-248-7702	lient Project N	10.		Lab Project #	TE.			n l	p:	40	. J		Phone (800	767-5859
FAX: 602-248-7851	309	032	05				3	des.	13	Š	*		. FAX (61	5)758-5859
Collected by: Gary Hoffmann Si	ite/Facility ID#	1		P.O.#			1 3	210	- 50	, <u>त</u>	- :,		CoCode	(lab use only)
Collected by(signature):	Rush? (La	ab MUST be lext Day	• Notified) 100%	Date Result	s Needed	No	Fe	lotal ss C	·F	2rH2C	chla		ENGENVPAZ Template/Prelogin	
CANT	T	WO Day		Email?N	o_X_Yes	of	S [.	2 yes	30	Ā	177			
Packed on Ice NY X					0 <u></u> 1es	Cintrs	U.	Rec.	22	ð	<u> 55 i</u>		Shipped Via: Phoenix S	Service Center
Sample ID C	comp/Grab	Matrix	Depth	Date	Time	16.			~~				Remarks/contaminant	Sample # (lab only)
36/2000 (oray	0	<i>p</i>	12910	7:00	19	X	<u> </u>	×	*	X0			6997668-01
										<u>.</u>				
										3 a 2 4 4				
						+								
						+								
											d,			
						wet	4.~				17.44		52 - 61	c—
Remarks:	vvv-vvas	stewater D	VV-Drinking V	Vater 01-01	ther_ <u>3787</u>	-	()				Flaur	н <u>о</u>		
Relinguisher by:(Stanzture)	ate:	Time	Received by 4	Signature)			Sample	s returned via	EedF	y LIP:			Other	(lah use only)
ALL MADE	3/1/0	11: Am	MA S	Γ	5mz									
Relinquisher by for a standard	ate:	Time:	Received by	(Signature)	20		Temp:			Bottles		6		
Relinquisher by:(Signature	ate:	Time:	Received for I	lab by: (Signature)	68. S.A.	Date:	1		Time:			pH Checked:	NCF:

CHAIN OF CUSTODY RECORD

☐ 17631 N. 25th Avenue • Phoenix, AZ 85023 • (602) 324-6100 • Fax (602) 324-6101 ☐ 4585 S. Palo Verde Rd, Ste 423 • Tucson, AZ 85714 • (520) 327-1234 • Fax (520) 327-0518

Please Print Clearly	na nana alamana atau 1988	and a star to see the second star	AND THE ARE ALL AND AND A COMPANY AND A C	R. (Date: No.	PRIMA P	- MERCELO	STOCK IN STOCK	AND SALES	CONCERCION OF	60 CM			Personal States		STATES AV		State Sec			Service of	Course and a	
CLIENT OR OBBILITON									1.	19 Y 1		£. (4
Client Name		Address			Cì	Ø				State	Zip	500	Pho	ne	~	ie e	-	Fax Nu	imber o	or Emai	I Address	1.
ESC LabSames		120	65 Lebanon Rd.		ΙŴ	<u>i+.</u> -	Ju	lict	T	N	51	12.2	66	> 75	5 - 1	5857	<u>x</u> [<u>ງ ເວະ</u>	<u>.by6</u>	<u>) es</u>	.14650	times
Project Name		Project N	umber	Co	ntact					P.	0. No.		F	ax Res	ults [1		QC	керог	ι L	-00 []	1
ADOT Stormwater		30	8032.05	5	51	ice	<u> </u>	JZK	1	10000			E	mail Re	esults		states and	Sp	ecial De	etection	Limits	
SAMPLE PYPECODES			WHIN ANOUND THE	ŝ					1	-		<u> </u>		1	1		<u>iineisedene</u>	\overline{T}	7 1	r - r	-1-1	
DW=Drinking S=Soil/Solid Water T=Travel Blank			Laboratory Authorization Required for Rush		. 1	3		ers e Oniyn				/ /			/ /		/ /		' /			and the second se
WW=Wastewater F=Food SW=Surface Water G=Sludge/Biosolids 'G=Groundwater		Standard 10	0 - 15 Day	fe		Type *	g	ontain Let U	\mathbb{N}	YY	/ /	1			/ /		' [.	/	/ /	F		
0=Other Stormwater		Other		l Sosi	1	e	pliar	ů Č	M (Y J		/ /		/ /	' /		1	[+ - [' /		LAB	appender.
Client's Sample Identification	Date	Time	Sample Location	Com	Grab	Sam	Com	No. o	Vu/	44	[]		$\lfloor \rfloor$	<u> </u>		\square	/ /	/-		<u>[] [</u>	/ NO	and the second se
32/202	2/28/10	0900	Phoenix AZ		X	0		Z	X	<					_		_		<u> </u>	\downarrow		4
	1		· · · · · · · · · · · · · · · · · · ·																	\square		1
			· · · · · · · · · · · · · · · · · · ·														- 1					
¥-				1				1]
		1. 										4										
				1	L.										,				Τ			
			· · · · · · · · · · · · · · · · · · ·									-							1	\square		1
				<u> </u>															1	\square		1
				-			-	 											+	\square		1
				+								+							+	\square		1
CHARLES CONTRACTOR		N OZA	NATOYSIS, SAMPLES MUSI BERE	CEN	VE P	AT	DEA	5131	OUR	SPRI	OFFIC		1101	D TI		XPIE	ATI) N				
Comments / Special Instructions:																i.						
· · · · · · · · · · · · · · · · · · ·																107 MAL 200 A	1.1					æ
SAMPLE CONDITION UPON RECEIPT (RELINQUIS	HED	BY	Se	e					i tr	<u>к</u> 5 Ил.	SAMP	LESI		IVED	BY	<u></u>		<u> </u>	
No. of Containers 2		Ū	Sampler Signature					Date	3/1/1	2 ^{Siç}	inature		M	æl	ons		_/		Date	<u>91</u>	110	
Temperature 5.0	t°C~		Sampler Printed Name	<u>El 1</u>	۱			Time	1140	Pri	nted Nam	<u> </u>	40	D	nf	Uu	40	ne	Time	Ĥ	40	-
Circledy Seels Y		2	Sampler Signature				<u> </u>	Date		Sig	inature								Date			
Seals intact Y	<u>N</u>		Sampler Printed Name					Date) 		næa Nam						,	Date				4
Herevado	N	3	Sampler Printed Name					Time		Pri	nted Nam	e							Time			-
WHITE-LAB YELLOW-CLIENT						S	\leftarrow								•				<u> </u>			1

		· ·				ple	,		Try Row HCV	- POWWW
CORD.						fication Needed reservation d not intact mperature uiner: sufficient sam	ourier)		8%. ime: 14:30	
	MANCE FORM					Login Clar Improper p Container Ii Improper te Broken conta	ial around container al inside cooler er (FedEx / UPS / C		TSR Initials:	
S IEINI	E NON-CONFOR			2	tble items)	missing ype ncomplete Iding time see below	ient packing materi ient packing materi er handling by carri was frozen	amples 00H	/ voice mail dat de ooH, gualifi de JCr, Cu, Pb, H	
VIRONN	SAMPL	8/2/10	k.Wallace	ENGENVPA	ance (check applic	Chain of Custody is Improper container t Chain of custody is i Parameter(s) past ho Broken container(s)	Insuffic Insuffic Imprope Sample	Peccimd S	ns: JB JB Xun all sam Sb, Ar, Ra, Re, uplace of BTE	() HOLD OLDONO
	د دیار ۱۳۹۹ - ۲۰۰۵ ۱۳۹۹ - ۲۰۰۹ - ۲۰۰۹ - ۲۰۰۹ - ۲۰۰۹ - ۲۰۰۹ - ۲۰۰۹ - ۲۰۰۹ - ۲۰۰۹ - ۲۰۰۹ - ۲۰۰۹ - ۲۰۰۹ - ۲۰۰۹ - ۲۰۰۹ - ۲	Date:	Evaluated by:	Client:	Non-Conform			Comments:	Login Instruction Client informed to Client contact Druw Nithits Metals = Nay Ca	Add MBAS

103 of 109

www.legend-group.com

08 March 2010

Janice Cozby Environmental Science Corp. (ESC) 12065 Lebanon Rd. Mt. Juliet, TN 37122

RE: Water Analysis

Laboratory Work Order No.: 0030040

Legend Technical Services of Arizona, Inc. is pleased to provide the enclosed analytical results for the aforementioned project. These results relate only to the items tested. This cover letter and the accompanying pages represent the full report for these analyses and should only be reproduced in full. Samples for this project were received by the laboratory on 03/01/10 11:40.

The samples were processed in accordance with the Chain of Custody document and the results presented relate only to the samples tested. The Chain of Custody is considered part of this report.

All samples will be retained by LEGEND for 30 days from the date of this report and then discarded unless other arrangements are made.

This entire report was reviewed and approved for release by the undersigned. If you have any questions concerning this report, please feel free to contact me.

Sincerely, LEGEND TECHNICAL SERVICES OF ARIZONA, INC.

Michelle Shing

Michelle Thompson Client Services Representative (602) 324-6100

This laboratory report is confidential and is intended for the sole use of LEGEND and it's client.

Reported: 03/08/10 11:58

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Туре	Date Sampled	Date Received		
32/202 (Phoenix, AZ)	0030040-01	Storm Water	Grab	02/28/10 09:00	03/01/10 11:40		

Sample Condition Upon Receipt:

Temperature: 5.40 C

All samples were received in acceptable condition unless noted otherwise in the case narrative.

Case Narrative:

Holding Times:	All holding times were met unless otherwise qualified.
QA/QC Criteria:	All analyses met method requirements unless otherwise qualified.
Comments:	There were no problems encountered during the processing of the samples, unless otherwise noted.
	All samples were analyzed on a "wet" basis unless designated as "dry weight".

Reported: 03/08/10 11:58

32/202 (Phoenix, AZ) (0030040-01) Storm Water (Grab) Sampled: 02/28/10 09:00 Received: 03/01/10 11:40

Analyte	Result	PQL Units	Dilution Batch	Prepared	Analyzed	Method	Notes			
	Legend Te	Legend Technical Services of Arizona, Inc.								
Microbiology										
E. coli, MPN (WW-Colilert)	2000	1 MPN/100 mL	1 B0C003	9 03/01/10 13:40	03/01/10 13:40	SM 9223B				
Fecal Coliforms, MF	>200	1 CFU/100 mL	1 B0C004	1 03/01/10 12:50	03/01/10 12:50	SM 9222D	A1, H3			

Microbiology - Quality Control

Legend Technical Services of Arizona, Inc.

Analyta	Popult	Reporting	Spike	Source	% REC	%REC	חסס	RPD Limit	Notoo
Analyte	Result	Limit Units	Level	Result	%REC	Limits	RPD	LIMIL	notes
Batch B0C0039 - micro_prep									
Blank (B0C0039-BLK1)			Prepared	& Analyzed:	03/01/10				
E. coli, MPN (WW-Colilert)	<1	1 MPN/10) mL						
Duplicate (B0C0039-DUP1)	Sour	ce: 0030014-01	Prepared	& Analyzed:	03/01/10				
E. coli, MPN (WW-Colilert)	<1	1 MPN/10) mL	<1				100	
Duplicate (B0C0039-DUP2)	Sour	ce: 0030027-01	Prepared	& Analyzed:	03/01/10				
E. coli, MPN (WW-Colilert)	25	1 MPN/10) mL	26			5.09	100	
Batch B0C0041 - micro_prep									
Blank (B0C0041-BLK1)			Prepared	& Analyzed:	03/01/10				
Fecal Coliforms, MF	<1	1 CFU/10) mL						

Notes and Definitions

- H3 Sample was received and analyzed past holding time.
- A1 Too numerous to count.
- BLK Method Blank
- LCS/Dup Laboratory Control Sample/Laboratory Fortified Blank/Duplicate
- MS/Dup Matrix Spike/Duplicate
- Dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- Font Use of the "Modern No. 20" font in this report indicates that the laboratory is accredited for the field of testing (FOT) by Minnesota Department of Health. If the FOT is not in the "Modern No. 20" font, then the laboratory is not accredited for that FOT by Minnesota Department of Health.

W36040													www.legend-group.com																	
			17631 N. 25th Avenue • Pt	ioenix e 423	AZ 8 Tuci	35023 son, A	i - (60 VZ 85	2) 324- 714 - ()	6100 • 520) 32	Fax (7-123	602) 32 4 • Fax	4-610 (520)	1 327-0	518			Pace	. /		of	/									
ease Print Clearly LIENT, INFORMATION	1955	14 - 1 - 2 - 6 - C - 7 - 6 - C - 7 - 6 - C - 7 - 7 - 7 - C - 7 - 7 - C - 7 - C - 7 - C - 7 - C - 7 - C - 7 - C - 7 - C - 7 - 7		Dot frage	******		CHE N	3-12-142	02020	19473	61213	100819	000001	200	and the second	-			1010070				1							
Client Namo		Address		4.00%	Ca	i i i i i i i i i i i i i i i i i i i	10.14		1000	Sta	la 2	ip Ip	2002	Phon	•	036	5,613	1	Fax N	umber	or Erre	Address	-							
ESC LabSamas		120	65 Lebinon Rd.		m	\$	Ju	liet	- 1	瓜	1 3	717	24	615	-75	8 - 5	585	5	ìœ	byb	l es	19650	à							
Project Name		Project N	lumber ダムネターハイ	10	intact.			÷.,			P.O. N	ö.		Fa	o Risu	ês 🗆	1		90	Répor	•	EDO 🗆	101							
SAMPLE TYPE CODES	100004	00		2	24	12	4	<u>02</u> k	4	122	020582	10100		E-	neil Ra		b	/SES	5p	ecia/ D	etecso	Limits 🗌	4							
			Laboratory Authorization	2						Ť	E.	17	7	7	7	77	7	7	7	1 1	-7	11								
Water T=Travel Blank			Required for Rush					2	200		1	KI	1	/	11111				////											
WW+Wastewater F=Food SW+Surface Water G+Studge/Bibeolica		Standard 1	0 - 16 Day				8	8 .				181	8	8 .	8		Sine		ŀJ	(0/	0///		'/	[]]		11		11	11	/ /
0-Other Stormwater		CENIT		- He		Ę	Bho	E Con		7	J I	[]	/	/	/ /	' /	1	/	/	/ /	'/									
Client's Sample Identification	Date	Time	Sample Location	Comp	Grab	Sampl	Compl	No. of BRW	J_{ψ}	14	1/	/	$\left \right $	//	/	/	/	$\left(\right)$	//	/	/	(LAB 95								
32/202	elestio	0900	Philenis, AZ		X	0		2	X	র্ম									T	1	1 -	0	1							
	,		·····					1		T				\top	+		Π	\top	1				1							
				\top				200		1		Н	1		+-			-	-	┮	H		1							
				+-	\square	H	-	1		+	+	\square	1	+	+			+	+	+	H		1							
				+		H	+			+	+		-+	+	+	\vdash		+	+	+	\vdash									
				┢	\vdash	H	+	100	8	-+			+	+	+	\vdash		+	+	+	+		1							
				+	\vdash	\square	-+			+	+	\vdash	+	+	┢				+	+	H		1							
				+	\vdash	\vdash	+	- 38	8	+	+	+	+	+	+	\vdash	\square	+	+	+	+		1							
				⊢				- 25	8	+	+	\vdash	+	+	+-				+	╋	\vdash		1							
				⊢	\vdash	\vdash	+			+	+	$\left \right $	+		+	\vdash	\square	+	+	+-	\vdash		{							
TO ENSURE CON	APLETIC	NOFA	NALVSIS SAMPLES MUST BE DE	CEN			FEA	ST 1	HOUR	20.0	PIOP	703			DTIN			ATU		0.00		7755.7	-							
Comments / Special Instructions:	Sam	ALOS	WIT TO HT. AW	2/1	176	21	u	u	(n)0	u.	00	u (2.0	eu	11	:4	1 18	21e	3/	In	>									
	1000	2	en curre		Ŭ,			1		1	-	~		4					- /	110			1							
SAMPLE CONDITION UPON RECEIPT (L	Lab Uso)		RELINQUIS	HED	BY	HÈ.	30	25	34	2	965 à	875) 1768)	~	5,	AMPL	ES F	ECE	IVEC	BY	80	\sim	γ	1							
No. of Containers	1.8.4	0	sandre signare Graft					044	•3/-/	10	Signatu	10	Ľ	ųа	ell	m	2	/-		Cite	3/1	110								
Temperature 5,9	ĽÇ	-	Samphon Private Norme VC9584 Lo	fЦr	۱			Tin	•114	24	Printed	Nami ,	න	ha	107	<u>1 /1</u>	La	40	ne	. Tire	Ĥ	40								
Custody Seals Y	<u></u>	0	Sampler Signature /				Dut	0		Signutu								Cata												
Preserved V	N		sampler Hillion Halle					100	•	+	Printed	Nano								Tirrio Cuto										
	in the	٢	Sampler Printed Name					Tes		+	Printed	Name								Tire										
TELLOW-CUENT									_														1							

Tucson Area MS4 Laboratory Reports

(615) 758-5858 1-800-767-5859 Fax (615) 758-5859

For: Engineering & Env. Consultants, INC. -AZ Project: Tucson/Grant Rd. MS4 Site L410136

SDG: L410136

July 10, 2009

Sample Receiving and Handling

All sample aliquots were received at the correct temperature, in the proper containers, and with the appropriate preservatives. All method specified holding times were met except for Chromium,Hexavalent.

Anions by Method 9056

Laboratory Control Sample

Sample L410136-01 was analyzed in analytical batch WG429351. The laboratory control sample associated with this sample was within the laboratory control limits for all compounds.

Sample Duplicate Analysis

For analytical batch WG429351 sample duplicate analysis was performed on sample L409585-04. The relative percent differences were within the method limits.

For analytical batch WG429351 sample duplicate analysis was performed on sample L409772-01. The relative percent differences were within the method limits.

For analytical batch WG429351 sample duplicate analysis was performed on sample L409939-02. The relative percent differences were within the method limits.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG429351 matrix spike/matrix spike duplicate analysis was performed on sample L410085-01. The matrix spike recoveries and relative percent differences were within laboratory control limits for all target analytes.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Cyanide by Method 9012B

Laboratory Control Sample

Sample L410136-01 was analyzed in analytical batch WG429238. The laboratory control sample associated with this sample was within the laboratory control limits.

Sample Duplicate Analysis

For analytical batch WG429238 sample duplicate analysis was performed on sample L410231-02. The relative percent difference was within the method limits.

For analytical batch WG429238 sample duplicate analysis was performed on sample L410035-09. The relative percent difference was within the method limits.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG429238, matrix spike/matrix spike duplicate analysis was performed on sample L410149-04. The spike recoveries were above the laboratory control limits. The relative percent difference was within control limits.

For: Engineering & Env. Consultants, INC. -AZ Project: Tucson/Grant Rd. MS4 Site L410136

SDG: L410136

July 10, 2009

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

BOD by Method SM5210B

Laboratory Control Sample

Sample L410136-01 was analyzed in analytical batch WG429358. The laboratory control sample associated with this sample was within the laboratory control limits.

Sample Duplicate Analysis

For analytical batch WG429358 sample duplicate analysis was performed on sample L410123-01. The relative percent difference was within the method limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Chromium, Hexavalent by Method 7196A

Laboratory Control Sample

Sample L410136-01 was analyzed in analytical batch WG429396. The laboratory control sample associated with this sample was within the laboratory control limits.

Sample Duplicate Analysis

For analytical batch WG429396 sample duplicate analysis was performed on sample L410168-01. The relative percent difference was within the method limits.

For analytical batch WG429396 sample duplicate analysis was performed on sample L410116-01. The relative percent difference was within the method limits.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG429396, matrix spike/matrix spike duplicate analysis was performed on sample L410116-03. The spike recoveries and relative percent differences were within laboratory control limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

MBAS by Method 5540C

Laboratory Control Sample

Sample L410136-01 was analyzed in analytical batch WG429431. The laboratory control sample associated with this sample was within the laboratory control limits.

Sample Duplicate Analysis

For analytical batch WG429431 sample duplicate analysis was performed on sample L410328-02. The relative percent difference was within the method limits.

For: Engineering & Env. Consultants, INC. -AZ Project: Tucson/Grant Rd. MS4 Site L410136

July 10, 2009

For analytical batch WG429431 sample duplicate analysis was performed on sample L410431-01. The relative percent difference was within the method limits.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG429431, matrix spike/matrix spike duplicate analysis was performed on sample L410149-03. The spike recoveries and relative percent differences were within laboratory control limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Phosphate,Ortho by Method 4500P-E

Laboratory Control Sample

Sample L410136-01 was analyzed in analytical batch WG429432. The laboratory control sample associated with this sample was within the laboratory control limits.

Sample Duplicate Analysis

For analytical batch WG429432 sample duplicate analysis was performed on sample L410153-01. The relative percent difference was within the method limits.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG429432, matrix spike/matrix spike duplicate analysis was performed on sample L410136-01. The spike recoveries and relative percent differences were within laboratory control limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Kjeldahl Nitrogen, TKN by Method 351.2

Laboratory Control Sample

Sample L410136-01 was analyzed in analytical batch WG429456. The laboratory control sample associated with this sample was within the laboratory control limits.

Sample Duplicate Analysis

For analytical batch WG429456 sample duplicate analysis was performed on sample L410595-01. The relative percent difference exceeded the method limits.

For analytical batch WG429456 sample duplicate analysis was performed on sample L409101-19. The relative percent difference was within the method limits.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG429456, matrix spike/matrix spike duplicate analysis was performed on sample L410085-01. The spike recoveries and relative percent differences were within laboratory control limits.

SDG: L410136

For: Engineering & Env. Consultants, INC. -AZ Project: Tucson/Grant Rd. MS4 Site L410136

SDG: L410136

July 10, 2009

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Phosphorus, Total by Method 365.1

Laboratory Control Sample

Sample L410136-01 was analyzed in analytical batch WG429461. The laboratory control sample associated with this sample was within the laboratory control limits.

Sample Duplicate Analysis

For analytical batch WG429461 sample duplicate analysis was performed on sample L410077-01. The relative percent difference was within the method limits.

For analytical batch WG429461 sample duplicate analysis was performed on sample L410260-01. The relative percent difference was within the method limits.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG429461, matrix spike/matrix spike duplicate analysis was performed on sample L410078-01. The spike recoveries and relative percent differences were within laboratory control limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Ammonia Nitrogen by Method 350.1

Laboratory Control Sample

Sample L410136-01 was analyzed in analytical batch WG429462. The laboratory control sample associated with this sample was within the laboratory control limits.

Sample Duplicate Analysis

For analytical batch WG429462 sample duplicate analysis was performed on sample L410119-01. The relative percent difference exceeded the method limits.

For analytical batch WG429462 sample duplicate analysis was performed on sample L410148-01. The relative percent difference was within the method limits.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG429462, matrix spike/matrix spike duplicate analysis was performed on sample L410119-02. The spike recoveries were above the laboratory control limits. The relative percent difference was within control limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

For: Engineering & Env. Consultants, INC. -AZ Project: Tucson/Grant Rd. MS4 Site L410136

SDG: L410136

July 10, 2009

COD by Method 410.4

Laboratory Control Sample

Sample L410136-01 was analyzed in analytical batch WG429473. The laboratory control sample associated with this sample was within the laboratory control limits.

Sample Duplicate Analysis

For analytical batch WG429473 sample duplicate analysis was performed on sample L410224-03. The relative percent difference was within the method limits.

For analytical batch WG429473 sample duplicate analysis was performed on sample L410113-01. The relative percent difference was within the method limits.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG429473, matrix spike/matrix spike duplicate analysis was performed on sample L410224-02. The spike recoveries and relative percent differences were within laboratory control limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Specific Conductance by Method 9050A

Laboratory Control Sample

Sample L410136-01 was analyzed in analytical batch WG429485. The laboratory control sample associated with this sample was within the laboratory control limits.

Sample Duplicate Analysis

For analytical batch WG429485 sample duplicate analysis was performed on sample L410098-01. The relative percent difference was within the method limits.

For analytical batch WG429485 sample duplicate analysis was performed on sample L410166-01. The relative percent difference was within the method limits.

Matrix Spike/Matrix Spike Duplicate

Precision for batch WG429485 was evaluated using the LCS / LCSD. The RPDs were within method limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Dissolved Solids by Method 2540C

Laboratory Control Sample

Sample L410136-01 was analyzed in analytical batch WG429498. The laboratory control sample associated with this sample was within the laboratory control limits.

For: Engineering & Env. Consultants, INC. -AZ Project: Tucson/Grant Rd. MS4 Site L410136

SDG: L410136

July 10, 2009

Sample Duplicate Analysis

For analytical batch WG429498 sample duplicate analysis was performed on sample L410008-01. The relative percent difference was within the method limits.

Matrix Spike/Matrix Spike Duplicate

Precision for batch WG429498 was evaluated using the LCS / LCSD. The RPDs were within method limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Suspended Solids by Method 2540D

Laboratory Control Sample

Sample L410136-01 was analyzed in analytical batch WG429504. The laboratory control sample associated with this sample was within the laboratory control limits.

Sample Duplicate Analysis

For analytical batch WG429504 sample duplicate analysis was performed on sample L410252-01. The relative percent difference was within the method limits.

For analytical batch WG429504 sample duplicate analysis was performed on sample L410099-01. The relative percent difference was within the method limits.

Matrix Spike/Matrix Spike Duplicate

Precision for batch WG429504 was evaluated using the LCS / LCSD. The RPDs were within method limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Oil & Grease (Hexane Extr) by Method 1664A

Laboratory Control Sample

Sample L410136-01 was analyzed in analytical batch WG429997. The laboratory control sample associated with this sample was within the laboratory control limits.

Matrix Spike/Matrix Spike Duplicate

Precision for batch WG429997 was evaluated using the LCS / LCSD. The RPDs were within method limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Mercury by Method 7470A

Laboratory Control Sample

Sample L410136-01 was analyzed in analytical batch WG429402. The laboratory control sample associated with this sample was within the laboratory control limits.

For: Engineering & Env. Consultants, INC. -AZ Project: Tucson/Grant Rd. MS4 Site L410136

SDG: L410136

July 10, 2009

Sample Duplicate Analysis

For analytical batch WG429402 sample duplicate analysis was performed on sample L410116-11. The relative percent difference was within the method limits.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG429402, matrix spike/matrix spike duplicate analysis was performed on sample L410116-11. The spike recoveries and relative percent differences were within laboratory control limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Trace Metals by Method 6010B

Laboratory Control Sample

Sample L410136-01 was analyzed in analytical batch WG429949. The laboratory control sample associated with this sample was within the laboratory control limits for all compounds.

Sample Duplicate Analysis

For analytical batch WG429949 sample duplicate analysis was performed on sample L410139-08. The relative percent difference exceeded the method limits for Selenium and Zinc.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG429949 matrix spike/matrix spike duplicate analysis was performed on sample L410139-08. The matrix spike recoveries were below laboratory control limits for Silver. The spike recoveries for the remaining target compounds were within limits. The relative percent difference was within laboratory limits for all compounds. Post digestion spike recoveries were within the method limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Trace Metals by Method 6020

Laboratory Control Sample

Sample L410136-01 was analyzed in analytical batch WG429915. The laboratory control sample associated with this sample was within the laboratory control limits for all compounds.

Sample Duplicate Analysis

For analytical batch WG429915 sample duplicate analysis was performed on sample L410139-05. The relative percent differences were within the method limits.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG429915 matrix spike/matrix spike duplicate analysis was performed on sample L410139-05. The matrix spike recoveries and relative percent differences were within laboratory control limits for all target analytes.

For: Engineering & Env. Consultants, INC. -AZ Project: Tucson/Grant Rd. MS4 Site L410136

SDG: L410136

July 10, 2009

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Method 8021B

Laboratory Control Sample

Sample L410136-01 was analyzed in analytical batch WG429527. The laboratory control sample associated with this sample was within the laboratory control limits for all compounds.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG429527 matrix spike/matrix spike duplicate analysis was performed on sample L410210-09. The matrix spike recoveries and relative percent differences were within laboratory control limits for all target analytes.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Chlorinated Pesticides by Method 8081A

Laboratory Control Sample

Sample L410136-01 was analyzed in analytical batch WG429567. The laboratory control sample associated with this sample was within the laboratory control limits for all compounds.

Matrix Spike/Matrix Spike Duplicate

Precision for batch WG429567 was evaluated using the LCS / LCSD. The RPDs were within method limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Semi-volatile Organic Compounds by Method 8270C

Laboratory Control Sample

Sample L410136-01 was analyzed in analytical batch WG429990. The laboratory control sample associated with this sample was within the laboratory control limits for all compounds. Benzylbutyl phthalate and Dimethyl phthalate failed RPDs.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG429990 matrix spike/matrix spike duplicate analysis was performed on sample L410769-01. The matrix spike recoveries were within laboratory control limits for all target analytes. The relative percent difference exceeded laboratory limits for Benzylbutyl phthalate and Dimethyl phthalate.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Diesel Range Organics by Method 8015

Laboratory Control Sample

Sample L410136-01 was analyzed in analytical batch WG429554. The laboratory control sample associated with this sample was within the laboratory control limits.

For: Engineering & Env. Consultants, INC. -AZ Project: Tucson/Grant Rd. MS4 Site L410136 SDG: L410136

July 10, 2009

Matrix Spike/Matrix Spike Duplicate

Precision for batch WG429554 was evaluated using the LCS / LCSD. The RPDs were within method limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Nancy F. Winters ESC Representative Environmental Science Corporation

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

John Burton Engineering & Env. Consultants, INC. -AZ 7878 N. 16th Street, Suite 140

Phoenix, AZ 85020

Report Summary

Monday July 13, 2009

Report Number: L410136 Samples Received: 07/01/09 Client Project: 30803201

Description: Tucson MS4

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Entire Report Reviewed By:

Laboratory Certification Numbers

A2LA - 1461-01, AIHA - 100789, AL - 40660, CA - I-2327, CT - PH-0197, FL - E87487 GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - ENV375,DW21704, ND - R-140 NJ - TN002, NJ NELAP - TN002, SC - 84004, TN - 2006, VA - 00109, WV - 233 AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910

Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

This report may not be reproduced, except in full, without written approval from Environmental Science Corp. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

> 1 Samples Reported: 07/09/09 14:37 Revised: 07/13/09 10:49 Page 1 of 7

*ESC

chards

(615) 758-5858 1-800-767-5859 Fax (615) 758-5859

				SAMP	LE NUMI	BER				
🕑 Envi	ironmental Scie	ence Corporati	on		GR ADO	DT 2				
			D • •		20002201					
Customer :	Engineering & E	env. Consultants, INC.	Project :	:	<u>30803201</u>					
Source :	·		Date Sa	<u>9 8:30 AM</u>						
Location :	<u>Tucson/Grant Ro</u>	<u>d. MS4 Site</u>	Sampleo	d By :	By: <u>Chad S. Howard</u>					
Lab Sample	e ID : L410136-01		Date Re	ceived :	7/1/2009					
9056										
Analytic Bate	ch: WG429351	Analysis Date: 7/1/2	2009	Analysis	Time: 7:49	PM				
Instrument: I	C4	Analyst: 245		Preparati	on Date: $7/1$	/2009 8:08 AM				
Method: 9056	5	Dilution: 1		riepuluu	on Dute. 771	2007 0.00 1101				
112011001 9000	~									
CAS NO	Analyte		RL	RI	ESULTS	FLAG				
	•		mg/l	mg	g/l					
16887-00-6	Chloride		1.0	19						
14797-55-8	Nitrate		0.10	0.2	21					
14797-65-0	Nitrite		0.10	< (0.10					
14808-79-8	Sulfate		5.0	68						
SM5210B										
Analytic Bate	ch: WG429358	Analysis Date: 7/1/2	2009	Analysis	Time: 11.29	1				
Instrument: N	IONE	Analyst: 421		Preparati	on Date:					
Method: SM5	5210B	Dilution: 1		Topulai						
CAS NO	Analyte		RL	RI	ESULTS	FLAG				
	-		mg/l	mş	g/l					
	BOD		5.0	44						
410.4										
Analytic Bate	ch: WG429473	Analysis Date: 7/3/2	2009	Analysis	Time: 2:34	PM				
Instrument: H	IACH 4000	Analyst: 397		Preparati	on Date: 7/1	/2009 3:45 PM				
Method: 410.	4	Dilution: 1		r						
CAS NO	Analyte		RL	RI	ESULTS	FLAG				
	-		mg/l	mg	g/l					
E-10117	COD		10	64	0					
9012R										
Analytic Bate	ch: WG429238	Analysis Date: 7/3/2	2009	Analysis	Time: 10.29	1				
Instrument: L	ACHAT4	Analysis Date: 17572	Analyst: 165			Prenaration Date: 7/1/2009 11:02				
Method: 9012	2B	Dilution: 1		Topalut						
CAS NO	Analyte		RL	RI	ESULTS	FLAG				
			mg/l	mş	g/l					
57-12-5	Cyanide		0.0050	< (0.0050	Q10				

Sample results are reported as rounded values.
These results are applicable only to the items tested.
Environ	mental Scienc	e Corporatio	on		GR ADC	DT 2
Customer : Source : Location : Lab Sample ID :	Engineering & Env. Tucson/Grant Rd. M L410136-01	Consultants, INC S4 Site	Project Date Sa Sample Date Re	: mpled : d By : eceived :	30803201 6/30/2009 Chad S. H 7/1/2009	9 8:30 AM Howard
7196A Analytic Batch: WG Instrument: HACH 4 Method: 7196A	429396 4000	Analysis Date: 7/1/20 Analyst: 476 Dilution: 1	009	Analysis Preparati	Time: 12:21 on Date: 7/1	/2009 11:02
CAS NO	Analyte		RL mg/l	RE mg	ESULTS g/l	FLAG
18540-29-9	Chromium,Hexavalent		0.010	< (0.010	H1
<i>Calc</i> Analytic Batch: WG Instrument: ICP6 Method: Calc	429949	Analysis Date: 7/5/20 Analyst: 438 Dilution: 1	009	Analysis Preparati	Time: 12:00 on Date: 7/4) /2009 1:22 PM
CAS NO	Analyte		RL mg/l	RF mg	ESULTS ¤/l	FLAG
16065-83-1	Chromium, Trivalent		0.010	< (0.010	
<i>5540C</i> Analytic Batch: WG Instrument: HACH 4 Method: 5540C	429431 4000	Analysis Date: 7/2/20 Analyst: 476 Dilution: 25	009	Analysis Preparati	Time: 5:08 1 on Date: 7/1	PM /2009 1:26 PM
CAS NO	Analyte		RL mg/l	RF mg	ESULTS g/l	FLAG
	MBAS		2.5	11		
<i>350.1</i> Analytic Batch: WG Instrument: LACHA Method: 350.1	429462 T3	Analysis Date: 7/7/20 Analyst: 236 Dilution: 1	009	Analysis Preparati	Time: 10:22 on Date: 7/2	/2009 11:16
CAS NO	Analyte		RL mg/l	RF mg	ESULTS g/l	FLAG
7664-41-7	Ammonia Nitrogen		0.10	6.7	1	

SAMPLE NUMBER

. . 4

¹⁾ Sample results are reported as rounded values.

				SAMP	LE NUMI	BER
Environ	mental Scienc	e Corporatio	n		GR ADO	DT 2
Customar :	Engineering & Env	Consultants INC	Drojact ·		20802201	1
Source :	Engineering & Env.	<u>Consultants, INC</u>	Data Sam	nled ·	6/30/200	0.8.30 AM
Logation :	Tuggon/Cront Dd M	SA Site	Sampled		$\frac{0/30/2003}{Chod S}$	Joward
Location .	<u>1 ucson/Orant Ku. Mi</u>	<u>54 5116</u>	Data Data	Dy.	$\frac{Cliau S. r}{7/1/2000}$	lowalu
Lab Sample ID :	L410130-01		Date Reco	eived :	//1/2009	
1664A						
Analytic Batch: WG	429997	Analysis Date: 7/6/20	009	Analysis	Time: 8:28	
Instrument: BAL		Analyst: 078		Preparat	ion Date: 7/6	/2009 3:36 AM
Method: 1664A		Dilution: 1				
CASNO	Analyta		DI	D	FSIII TS	FLAC
CASINO	Analyte		KL mg/l	m	σ/I	FLAG
	Oil & Grease (Hexane Ex	xtr)	6.7	<	6 .7	
4500P E						
43001 -E Analytic Batch: WG	179/37	Analysis Date: 7/1/2(PUD	Analysis	Time: 5:32	РМ
Instrument: HACH 4	.000	Analysis Date: 7/1/20 Analyst: 476		Prenarat	ion Date: $7/1$	/2009 1·26 PM
Method: 4500P-E	000	Dilution: 5		riepuru	ion Dute. // I	2009 1.201 11
		Dilution				
CAS NO	Analyte		RL	R	ESULTS	FLAG
			mg/l	m	g/l	
	Phosphate,Ortho		0.12	<	0.12	
365.1						
Analytic Batch: WG	429461	Analysis Date: 7/6/20	009	Analysis	Time: 10:11	
Instrument: LACHA	T2	Analyst: 236		Preparat	ion Date: 7/1	/2009 3:34 PM
Method: 365.1		Dilution: 1				
C L C NO			DI			
CAS NO	Analyte		KL ma/l	K	ESULTS ~/I	FLAG
7723-14-0	Phosphorus Total		0.10	<u> </u>	g/1 36	
00504	i nospitorus, i otur		0.10	0.		
9050A	120195	Amplusia Deter 7/2/2	000	Anclasi	Time: 2.00	
Analytic Batch: WG4	429485	Analysis Date: 7/2/20	009	Analysis	inne: 5:22	PM
Mothod: 0050A	170	Allalyst: 597		Preparat	ion Date:	
MULIIOU. 7030A						
CACNO						
CAS NO	Analyte		RL	R	ESULTS	FLAG
CAS NO	Analyte		RL umhos/cm	R ur	ESULTS nhos/cm	FLAG

1) Sample results are reported as rounded values.

Enviror	mental Science	e Corporatio	n		GR ADO	DT 2
Customer : Source : Location :	Engineering & Env. C	Consultants, INC	Project : Date Sar Sampled	npled : By :	<u>30803201</u> <u>6/30/2009</u> <u>Chad S. H</u>	<u> </u> 9 8:30 AM Howard
Lab Sample ID :	L410136-01		Date Red	ceived :	7/1/2009	
351.2 Analytic Batch: WC Instrument: LACHA Method: 351.2	G429456 AT4	Analysis Date: 7/6/20 Analyst: 143 Dilution: 1)09	Analysis Preparat	5 Time: 9:37 ion Date: 7/3	PM /2009 10:28
CAS NO	Analyte		RL mg/l	R) m	ESULTS g/l	FLAG
7727-37-9	Kjeldahl Nitrogen, TKN		0.10	14	ļ	
<i>2540C</i> Analytic Batch: WC Instrument: BAL Method: 2540C	G429498	Analysis Date: 7/6/20 Analyst: 479 Dilution: 1)09	Analysis Preparat	Time: 2:25 ion Date: 7/1	PM /2009 3:59 PM
CAS NO	Analyte		RL mg/l	R) m	ESULTS g/l	FLAG
	Dissolved Solids		10	68	80	
<i>2540D</i> Analytic Batch: WC Instrument: BAL Method: 2540D	G429504	Analysis Date: 7/2/20 Analyst: 479 Dilution: 1	009	Analysis Preparat	s Time: 1:01 ion Date: 7/1	PM /2009 4:04 PM
CAS NO	Analyte		RL mg/l	R) m	ESULTS g/l	FLAG
	Suspended Solids		1.0	16	<u>50</u>	
6020 Analytic Batch: WC Instrument: ICPMS Method: 6020	G429915 4	Analysis Date: 7/9/20 Analyst: 338 Dilution: 1	009	Analysis Preparat	3 Time: 5:33 ion Date: 7/3	/2009 5:51 PM
CAS NO	Analyte		RL mg/l	R) m	ESULTS g/l	FLAG
7440-36-0	Antimony		0.0010	0.	0046	
7440-38-2	Arsenic		0.0010	0.	0030	
7440-28-0	Thallium		0.0010	<	0.0010	

SAMPLE NUMBER

¹⁾ Sample results are reported as rounded values.

				SAMPLE NUM	IBER
Environ	mental Scie	nce Corporation	on	GR AD	OT 2
			-	•••••	
Customer :	Engineering & Ei	<u>nv. Consultants, INC</u>	Project :	<u>3080320</u>	<u>)1</u>
Source :			Date Sai	mpled : $6/30/200$	<u>)9 8:30 AM</u>
Location :	Tucson/Grant Rd	. MS4 Site	Sampled	By: Chad S.	Howard
Lab Sample ID :	L410136-01		Date Re	ceived : $\frac{7}{1/2009}$)
			2 400 110		
7470A					
Analytic Batch: WG	i429402	Analysis Date: 7/1/2	009	Analysis Time: 10::	32 11/2000 11 14
Instrument: CVAA3	j	Analyst: 261		Preparation Date: 7/	1/2009 11:14
Method: 7470A		Dilution: I			
CAS NO	Analyte		RL	RESULTS	FLAG
			mg/l	mg/l	
7439-97-6	Mercury		0.00020	< 0.00020	
(010D			0.00020		
OULUB Analytic Batch: WG	479949	Analysis Date: 7/5/2	009	Analysis Time 2.33	8 PM
Instrument. ICDA	<i>ロムノノ</i> マノ	Analysis Date. 1/3/2		Prenaration Date: 7	/4/2000 1.22 DN/
Method: 6010B		Dilution: 1			4/2009 1.22 1 101
Wiedhou. 0010D		Dilution. 1			
CAS NO	Analyte		RL	RESULTS	FLAG
			mg/l	mg/l	
7440-39-3	Barium		0.0050	0.20	
7440-41-7	Beryllium		0.0020	< 0.0020	
7440-43-9	Cadmium		0.0050	< 0.0050	
7440-70-2	Calcium		0.50	100	
7440-47-3	Chromium		0.010	< 0.010	
7440-50-8	Copper		0.020	0.033	
7439-92-1	Lead		0.0050	< 0.0050	
7440-02-0	Nickel		0.020	< 0.020	
7782-49-2	Selenium		0.020	0.020	
7440-22-4	Silver		0.010	< 0.010	
7440-23-5	Sodium		0.50	18	
7440-66-6	Zinc		0.030	0.18	
8021B					
Analytic Batch: WG	429527	Analysis Date: 7/2/2	009	Analysis Time: 6:01	
Instrument: VOCGC	C14	Analyst: 241		Preparation Date: 7/	2/2009 6:01 AM
Method: 8021B		Dilution: 1		-	
CACNO	A I 4		DI		
CA5 NU	Analyte		KL ma/l	KESULTS	rlag
71 42 2	Danzana		mg/I	mg/I	
102 88 3	Toluono		0.00050	< 0.00000	
100-00-3	Fthylbonzono		0.0030	< 0.0030	
1330-20-7	Total Xylene		0.00050	< 0.00030	
1330-20-7	Total Aylelle		0.0015	< 0.0013	
Surrogates					
	Analyte	PERCEN RECOVE	r QU RY	ALIFIERS	FLAG
	a.a.a-Trifluorotoluen	e(PID) 112			

1) Sample results are reported as rounded values.

				SAMI	<u>PLE N</u> UM	BER
Environ	mental Scienc	e Corporatio	n		GR AD	OT 2
Customer ·	Engineering & Env	Consultants INC -	Project	•	3080320	1
Source :	Eligineering & Eliv.		Data S	amplad ·	<u>6/30/200</u>	0 8.30 AM
		Q 4 Q 4 -	Date S		$\frac{0/30/200}{Cl_{10}}$	<u>7 6.30 AM</u>
Location :	Tucson/Grant Rd. M	<u>184 Site</u>	Sample	ea By :	Chad S. I	Howard
Lab Sample ID :	L410136-01		Date R	eceived :	7/1/2009	
3510/DRO						
Analytic Batch: WG	429554	Analysis Date: 7/3/20)09	Analysi	s Time: 9:20	
Instrument: SVGC7		Analyst: 267		Prepara	tion Date: 7/1	/2009 11:15
Method: 3510/DRO		Dilution: 20				
CASNO	A 0 4		DI	п	TOTIL TO	FLAC
CAS NU	Analyte		KL ma/l	K		FLAG
68334-30-5	TPH (GC/FID) High Fra	ction	2.0	2	1g/1 4	
<u> </u>			2.0			
Surrogates	A	DED CENT			C	FLAC
	Analyte	RECOVE	L Q RV	UALIFIER	.5	FLAG
	o Ternhanvl			58		
00014	0-101pholiyi	0.00		00		
ovolA Apolytic Potch: WC	120567	Analysis Data 7/2/2	000	Anolica	5 Time: 0.20	
Instrument: SVCC22	427307	Analysis Date: 7/3/20	109	Analysi Dramouri	s Time: 9:39	0/2000 7.15 43
Instrument: SVGC23	5	Analyst: 239		Prepara	tion Date: 1/2	22009 7:15 AM
Method: 8081A		Dilution: 1				
CAS NO	Analyte		RL	R	ESULTS	FLAG
200.00.2	Aldrin		mg/l	<u>n</u>	ng/l	
319-84-6	Aluliii Alpha BHC		0.00005		0.000050	
319-85-7	Reta BHC		0.00005		0.000050	
319-86-8	Delta BHC		0.00005		0.000050	
58-89-9	Gamma BHC		0.00005	<u> </u>	0.000050	
57-74-9	Chlordane		0.00050	<	0.00050	
72-54-8	4.4-DDD		0.00005	0 <	0.000050	
72-55-9	4.4-DDE		0.00005	<u> </u>	0.000050	
50-29-3	4.4-DDT		0.00005	0 <	0.000050	
60-57-1	Dieldrin		0.00005	0 <	0.000050	
959-98-8	Endosulfan I		0.00005	0 <	0.000050	
33213-65-9	Endosulfan II		0.00005	0 <	0.000050	
1031-07-8	Endosulfan sulfate		0.00005	0 <	0.000050	
72-20-8	Endrin		0.00005	0 <	0.000050	
7421-93-4	Endrin aldehyde		0.00005	0 <	0.000050	
53494-70-5	Endrin ketone		0.00005	0 <	0.000050	
118-74-1	Hexachlorobenzene		0.00005	0 <	0.000050	
76-44-8	Heptachlor		0.00005	0 <	0.000050	
1024-57-3	Heptachlor epoxide		0.00005	0 <	0.000050	
72-43-5	Methoxychlor		0.00005	0 <	0.000050	
8001-35-2	Toxaphene		0.00050	<	0.00050	
Surrogates						
	Analyte	PERCENT RECOVE	r Q RY	UALIFIER	S	FLAG
	Decachlorobiphenvl	25.0				
	Tetrachloro-m-xvlene	47.1				
	requesto in Aytene	-1/+A				

¹⁾ Sample results are reported as rounded values.

Environ	n 🗌	GR ADOT	2		
			D	20002201	
Customer :	Engineering & Env. Con	<u>sultants, INC</u>	Project :	<u>30803201</u>	20 116
Source :			Date Sampled :	<u>6/30/2009 8:</u>	<u>30 AM</u>
Location :	Tucson/Grant Rd. MS4 S	Site	Sampled By :	<u>Chad S. Hov</u>	vard
Lab Sample ID :	L410136-01		Date Received :	7/1/2009	
8270C					
Analytic Batch: WG4	29990 Ar	nalysis Date: 7/6/20	09 Analy	sis Time: 6:17 PM	
Instrument: BNAMS	10 Ar	nalyst: 145	Prepar	ation Date: 7/5/200	09 10:57
Method: 8270C	Di	ilution: 1	1		
CAS NO	Analyte		RL	RESULTS	FLAG
			mg/l	mg/l	
83-32-9	Acenaphthene		0.010	< 0.010	
208-96-8	Acenaphthylene		0.010	< 0.010	
120-12-7	Anthracene		0.010	< 0.010	
92-87-5	Benzicine		0.050	< 0.050 < 0.010	
205 00 2	Benzo(h)fluoranthana		0.010	< 0.010 < 0.010	
203-99-2	Benzo(k)fluoranthene		0.010	< 0.010	
191-24-2	Benzo(g h i)pervlene		0.010	< 0.010	
50-32-8	Benzo(a)pyrene		0.010	< 0.010	
111-91-1	Bis(2-chlorethoxy)methane		0.010	< 0.010	
111-44-4	Bis(2-chloroethyl)ether		0.010	< 0.010	
108-60-1	Bis(2-chloroisopropyl)ether		0.010	< 0.010	
101-55-3	4-Bromophenyl-phenylether		0.010	< 0.010	
91-58-7	2-Chloronaphthalene		0.010	< 0.010	
7005-72-3	4-Chlorophenyl-phenylether		0.010	< 0.010	
218-01-9	Chrysene		0.010	< 0.010	
53-70-3	Dibenz(a,h)anthracene		0.010	< 0.010	
91-94-1	3,3-Dichlorobenzidine		0.010	< 0.010	
121-14-2	2,4-Dinitrotoluene		0.010	< 0.010	
606-20-2	2,6-Dinitrotoluene		0.010	< 0.010	
206-44-0	Fluoranthene		0.010	< 0.010	
86-73-7	Fluorene		0.010	< 0.010	
118-74-1	Hexachlorobenzene		0.010	< 0.010	
87-68-3	Hexachloro-1,3-butadiene		0.010	< 0.010	
77-47-4	Hexachlorocyclopentadiene		0.010	< 0.010	
67-72-1	Hexachloroethane		0.010	< 0.010	
193-39-3	Indeno(1,2,3-cd)pyrene		0.010	< 0.010	
01 20 3	Isophorone		0.010	< 0.010 < 0.010	
91-20-3	Nitrobenzene		0.010	< 0.010	
62 75 9	n Nitrosodimethylamine		0.010	< 0.010	
86-30-6	n-Nitrosodinhenvlamine		0.000	< 0.030 < 0.010	
621-64-7	n-Nitrosodi-n-pronvlamine		0.010	< 0.010	
85-01-8	Phenanthrene		0.010	< 0.010	
85-68-7	Benzylbutyl phthalate		0.010	< 0.010	R6
117-81-7	Bis(2-ethylhexyl)phthalate		0.010	< 0.010	
84-74-2	Di-n-butyl phthalate		0.010	< 0.010	
84-66-2	Diethyl phthalate		0.010	< 0.010	
131-11-3	Dimethyl phthalate		0.010	< 0.010	R6
117-84-0	Di-n-octyl phthalate		0.010	< 0.010	
129-00-0	Pyrene		0.010	< 0.010	

1) Sample results are reported as rounded values.

2) These results are applicable only to the items tested.

SAMPLE NUMBER

				SAMP	LE NUM	BER
Environ	mental Science	e Corporatio	n		GR AD	OT 2
Customer ·	Engineering & Env. (Consultants INC -	Project ·		3080320	1
Source :	Engineering & Elly, C	<u></u>	Date Sor	nnled ·	6/30/200	<u>+</u> 0 8·30 AM
Source.	Tuesen/Creat Dd M	74 C:40	Date Sal		$\frac{0/30/200}{Chad Classical Chad Classical Cl$	<u>9 6.30 Alvi</u>
Location :	Tucson/Grant Rd. MS	<u>54 Site</u>	Sampled	BY:	<u>Chad S. I</u>	Howard
Lab Sample ID :	L410136-01		Date Red	ceived :	7/1/2009	
8270C						
Analytic Batch: WG4	429990	Analysis Date: 7/6/20)09	Analysis	s Time: 6:17	PM
Instrument: BNAMS	10	Analyst: 145		Preparat	ion Date: 7/5	5/2009 10:57
Method: 8270C		Dilution: 1				
CAS NO	Analyte		RL	R	ESULTS	FLAG
	·		mg/l	m	g/l	
120-82-1	1,2,4-Trichlorobenzene		0.010	<	0.010	
59-50-7	4-Chloro-3-methylphenol		0.010	<	0.010	
95-57-8	2-Chlorophenol		0.010	<	0.010	
120-83-2	2,4-Dichlorophenol		0.010	<	0.010	
105-67-9	2,4-Dimethylphenol		0.010	<	0.010	
534-52-1	4,6-Dinitro-2-methylphen	ol	0.010	<	0.010	
51-28-5	2,4-Dinitrophenol		0.010	<	0.010	
88-75-5	2-Nitrophenol		0.010	<	0.010	
100-02-7	4-Nitrophenol		0.010	<	0.010	
87-86-5	Pentachlorophenol		0.010	<	0.010	
108-95-2	Phenol		0.010	<	0.010	
88-06-2	2,4,6-Trichlorophenol		0.010	<	0.010	
Surrogates						
	Analyte	PERCENT RECOVE	C QU RY	ALIFIER	S	FLAG
	2-Fluorophenol	54.3				
	Phenol-d5	46.4				
	Nitrobenzene-d5	64.4				
	2-Fluorobiphenyl	52.1				
	2,4,6-Tribromophenol	91.4				
	p-Terphenyl-d14	60.0				
LEGEND						
RL -	Reporting Limit					
QUALIFIERS		1 (h = m = (1 = 1) (a the bar P		4	
K0 -	LFB/LFBD RPD exceede	a the method acceptant	e limit. Re	covery me	t acceptance	criteria.
58 -	The analysis of the sample	e required a dilution such	in that the s	urrogate re	covery calcu	nation does not
010	provide useful information	n. The associated blan	k spike reco	overy was a	icceptable.	
<u> </u>	Sample recieved in inapp	ropriate sample contain	er.			
HI -	Sample analysis performe	ed past holding time.				

Sample results are reported as rounded values.
These results are applicable only to the items tested.

Engineering & Env. Consultants, INC. -AZ

Test: Anions by Method 9056 Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No: 30803201 Login No: L410136 Sample Number: L410136-01 Sample Date: 6/30/2009 Analysis Date: 7/1/2009 Instrument ID: IC4 Analyst: 245 Analytic Batch: WG429351 L410136

EPA ID: TN00003

Method Blank

Analyte	CAS	PQL
		1.00
Chloride		<1.00
Nitrate		<0.100
Nitrite		< 0.100
Sulfate		<5.00

Laboratory Control Sample (LCS)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Chloride	40.0	39.6	99.0	90 - 110	
Nitrate	8.00	8.09	101	90 - 110	
Nitrite	8.00	7.99	99.9	90 - 110	
Sulfate	40.0	38.8	97.0	90 - 110	

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Chloride	40.0	39.5	98.8	90 - 110	
Nitrate	8.00	8.07	101	90 - 110	
Nitrite	8.00	8.00	100	90 - 110	
Sulfate	40.0	38.6	96.5	90 - 110	

Engineering & Env. Consultants, INC. -AZ

L410136

Test: Anions by Method 9056 Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No: 30803201 Login No: L410136 Sample Number: L410136-01 Sample Date: 6/30/2009 Analysis Date: 7/1/2009 Instrument ID: IC4 Analyst: 245 Analytic Batch: WG429351

EPA ID: TN00003

Laboratory Control Sample/ Laboratory Control Sample Duplicate

	Spike		%		%	Control	%	Control
Analyte		LCS	Rec	LCSD	Rec	Limits	Qualifier RPD	Limits Qualifier
Chloride	40.0	39.6	99.0	39.5	98.8	90-110	0.3	20
Nitrate	8.00	8.09	101	8.07	101	90-110	0.2	20
Nitrite	8.00	7.99	99.9	8.00	100	90-110	0.1	20
Sulfate	40.0	38.8	97.0	38.6	96.5	90-110	0.5	20

Sample Duplicate L409585-04

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
Chloride	303	302	0.3	20	
Sulfate	6.30	6.20	1.6	20	

Sample Duplicate

L409772-01

Name	Sample Results	Results Duplicate	%RPD	Limit	Oualifiers
Sulfate	770	765	0.7	20	

Engineering & Env. Consultants, INC. -AZ

L410136

Test: Anions by Method 9056 Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No: 30803201 Login No: L410136 Sample Number: L410136-01 Sample Date: 6/30/2009 Analysis Date: 7/1/2009 Instrument ID: IC4 Analyst: 245 Analytic Batch: WG429351

EPA ID: TN00003

	Sample L409	Duplicate 939-02			
Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
Chloride	120	121	0.8	20	

Matrix Spike/Matrix Spike Duplicate L410085-01

	Spike			%		%	Control	%	Control
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier RPD	Limits Qualifier
Nitrate	5.00	0.450	5.24	95.8	5.26	96.2	80-120	0.4	20
Nitrite	5.00	0.000	5.03	101	5.05	101	80-120	0.4	20

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test: Ammonia Nitrogen by Method 350.1 Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No: 30803201 Login No: L410136 Sample Number: L410136-01 Sample Date: 6/30/2009 Extraction Date: 7/1/2009 Analysis Date: 7/7/2009 10:22:00 AM Instrument ID: LACHAT3 Analyst: 236 Analytic Batch: WG429462

L410136

EPA ID: TN00003

	Method Blank	
Analyte	CAS	PQL
Ammonia Nitrogen		< 0.100

Laboratory Control Sample (LCS)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Ammonia Nitrogen	7.50	8.13	108	90 - 110	

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Ammonia Nitrogen	7.50	8.00	107	90 - 110	

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test: Ammonia Nitrogen by Method 350.1

Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No:30803201 Login No:L410136 Sample Number:L410136-01 Sample Date:6/30/2009 Extraction Date:7/1/2009 Analysis Date:7/1/2009 10:22:00 AM Instrument ID:LACHAT3 Analyst:236 Analytic Batch:WG429462 L410136

EPA ID: TN00003

Laboratory Control Sample/ Laboratory Control Sample Duplicate

	Spike		%		%	Control	%	Control
Analyte		LCS	Rec	LCSD	Rec	Limits	Qualifier RPD	Limits Qualifier
Ammonia Nitrogen	7.50	8.13	108	8.00	107	90-110	1.6	20

Sample Duplicate L410119-01

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
Ammonia Nitrogen	0.360	0.241	40	20	R8

Sample Duplicate L410148-01

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
Ammonia Nitrogen	11.0	11.9	7.9	20	

Matrix Spike/Matrix Spike Duplicate L410119-02

	Spike			%		%	Control		%	Control	
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualif	ier RPD	Limits	Qualifier
Ammonia Nitrogen	5.00	0.580	6.24	113	6.31	115	90-110	M1	1.1	20	

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test:BOD by Method SM5210B Matrix:Water - mg/L Project:Tucson/Grant Rd. MS4 Site Project No:30803201 Login No:L410136 Sample Number:L410136-01 Sample Date:6/30/2009 Extraction Date:7/1/2009 Analysis Date:7/1/2009 I1:29:00 AM Instrument ID:NONE Analyst:421 Analytic Batch:WG429358

L410136

EPA ID: TN00003

Method Blank

Analyte	CAS	Results
BOD BOD		0.0000 0.0000

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Oualifiers
	100				
BOD	198	190	96.0	84.6 - 115.4	
BOD	198	188	94.9	84.6 - 115.4	
BOD	198	172	86.9	84.6 - 115.4	
BOD	198	201	102	84.6 - 115.4	
BOD	198	176	88.9	84.6 - 115.4	
BOD	198	191	96.5	84.6 - 115.4	

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test:BOD by Method SM5210B Matrix:Water - mg/L Project:Tucson/Grant Rd. MS4 Site Project No:30803201 Login No:L410136 Sample Number:L410136-01 Sample Date:6/30/2009 Extraction Date:7/1/2009 Analysis Date:7/1/2009 I1:29:00 AM Instrument ID:NONE Analyst:421 Analytic Batch:WG429358

L410136

EPA ID: TN00003

Sample Duplicate L410123-01

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
BOD	140	130	7.4	10	

Environmental Science Corporation Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test: COD by Method 410.4 Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No: 30803201 Login No: L410136 Sample Number: L410136-01 Sample Date: 6/30/2009 Extraction Date: 7/1/2009 Analysis Date: 7/3/2009 2: 34:00 PM Instrument ID: HACH 4000 Analyst: 397 Analytic Batch: WG429473

L410136

EPA ID: TN00003

	Method Blank					
Analyte	CAS	PQL				
COD		<10.0				

Laboratory Control Sample (LCS)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
COD	212	216	102	90 - 110	

Amolaita	True	Found	Recovery	Control	Qualifian
Analyte	value	Found	%0	Linits	Quaimers
COD	212	220	104	90 - 110	

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test: COD by Method 410.4 Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No: 30803201 Login No: L410136 Sample Number: L410136-01 Sample Date: 6/30/2009 Extraction Date: 7/1/2009 Analysis Date: 7/3/2009 2:34:00 PM Instrument ID: HACH 4000 Analyst: 397 Analytic Batch: WG429473 L410136

EPA ID: TN00003

Laboratory Control Sample/ Laboratory Control Sample Duplicate

	Spike		%		%	Control	%	Control
Analyte		LCS	Rec	LCSD	Rec	Limits	Qualifier RPD	Limits Qualifier
COD	212	216	102	220	104	90-110	1.8	5

Sample Duplicate

L410224-03

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
COD	0.0000	0.0000			

Sample Duplicate L410113-01

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
COD	6700	6570	2.0	5	

Matrix Spike/Matrix Spike Duplicate L410224-02

	Spike			%		%	Control	%	Control
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier RPD	Limits Qualifier
COD	400	0.0000	412	103	417	104	90-110	1.2	5.0

Environmental Science Corporation Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test: Chromium, Hexavalent by Method 7196A

L410136

Matrix:Water - mg/L Project:Tucson/Grant Rd. MS4 Site Project No:30803201 Login No:L410136 Sample Number:L410136-01 Sample Date:6/30/2009 Extraction Date:7/1/2009 Analysis Date:7/1/2009 12:21:00 PM Instrument ID:HACH 4000 Analyst:476 Analytic Batch:WG429396

EPA ID: TN00003

]	Method Blank	
Analyte	CAS	PQL
Chromium,Hexavalent		< 0.0100

Laboratory Control Sample (LCS)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Chromium,Hexavalent	0.600	0.570	95.0	85 - 115	

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Chromium, Hexavalent	0.600	0.576	96.0	85 - 115	

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test: Chromium, Hexavalent by Method 7196A

Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No:30803201 Login No:L410136 Sample Number:L410136-01 Sample Date:6/30/2009 Extraction Date:7/1/2009 Analysis Date:7/1/2009 12:21:00 PM Instrument ID:HACH 4000 Analyst:476

Analytic Batch:WG429396

EPA ID: TN00003

L410136

Laboratory Control Sample/ Laboratory Control Sample Duplicate

	Spike		%		%	Control	%	Control
Analyte		LCS	Rec	LCSD	Rec	Limits	Qualifier RPD	Limits Qualifier
Chromium,Hexavalent	0.600	0.570	95.0	0.576	96.0	85-115	1.0	20

Sample Duplicate

L410168-01

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
Chromium, Hexavalent	0.0000	0.0000			

Sample Duplicate L410116-01

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
Chromium,Hexavalent	0.0088	0.0095			

Matrix Spike/Matrix Spike Duplicate L410116-03

	Spike			%		%	Control	%	Control
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier RPD	Limits Qualifier
Chromium,Hexavalent	0.500	0.0051	0.462	91.4	0.497	98.4	85-115	7.3	20

Environmental Science Corporation Quality Control Summary Engineering & Env. Consultants, INC. -AZ *Test:* Cyanide by Method 9012B

Matrix:Water - mg/L Project:Tucson/Grant Rd. MS4 Site Project No:30803201 Login No:L410136 Sample Number:L410136-01 Sample Date:6/30/2009 Extraction Date:6/30/2009 Analysis Date:7/3/2009 10:29:00 AM Instrument ID:LACHAT4 Analyst:165 Analytic Batch:WG429238

EPA ID: TN00003

L410136

	Method Blank	
Analyte	CAS	PQL
Cyanide		< 0.0050

Laboratory Control Sample (LCS)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Cyanide	0.100	0.109	109	90 - 110	

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Cyanide	0.100	0.0931	93.1	90 - 110	

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test: Cyanide by Method 9012B Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No:30803201 Login No:L410136 Sample Number:L410136-01 Sample Date:6/30/2009 Extraction Date:6/30/2009 Analysis Date:7/3/2009 10:29:00 AM Instrument ID:LACHAT4 Analyst:165 Analytic Batch:WG429238

L410136

EPA ID: TN00003

Laboratory Control Sample/ Laboratory Control Sample Duplicate

	Spike		%		%	Control	%	Control
Analyte		LCS	Rec	LCSD	Rec	Limits	Qualifier RPD	Limits Qualifier
Cyanide	0.100	0.109	109	0.0931	93.1	90-110	16	20

Sample Duplicate

L410231-02

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
Cyanide	0.0000	0.0000			

Sample Duplicate L410035-09

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
Cyanide	0.120	0.122	1.7	20	

Matrix Spike/Matrix Spike Duplicate L410149-04

	Spike			%		%	Control		%	Control	
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifie	r RPD	Limits	Qualifier
Cyanide	0.200	0.0000	0.223	112	0.209	104	90-110	M1	6.5	20	

Environmental Science Corporation Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test: Dissolved Solids by Method 2540C Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No: 30803201 Login No: L410136 Sample Number: L410136-01 Sample Date: 6/30/2009 Extraction Date: 7/1/2009 Analysis Date: 7/6/2009 2:25:00 PM Instrument ID: BAL Analyst: 479 Analytic Batch: WG429498

L410136

EPA ID: TN00003

	Method Blank	
Analyte	CAS	PQL
Dissolved Solids		<10.0

Laboratory Control Sample (LCS)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Dissolved Solids	8800	8610	97.9	85 - 115	

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Dissolved Solids	8800	8640	98.2	85 - 115	

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test: Dissolved Solids by Method 2540C Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No: 30803201 Login No: L410136 Sample Number: L410136-01 Sample Date: 6/30/2009 Extraction Date: 7/1/2009 Analysis Date: 7/6/2009 2:25:00 PM Instrument ID: BAL Analyst: 479 Analytic Batch: WG429498

L410136

EPA ID: TN00003

Laboratory Control Sample/ Laboratory Control Sample Duplicate

	Spike		%		%	Control	%	Control
Analyte		LCS	Rec	LCSD	Rec	Limits	Qualifier RPD	Limits Qualifier
Dissolved Solids	8800	8610	97.9	8640	98.2	85-115	0.3	20

Sample Duplicate

L410008-01

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
Dissolved Solids	36000	37400	3.8	5	

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test: Kjeldahl Nitrogen, TKN by Method 351.2

L410136

Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No:30803201 Login No:L410136 Sample Number:L410136-01 Sample Date:6/30/2009 Extraction Date:7/1/2009 Analysis Date:7/6/2009 9:37:00 PM Instrument ID:LACHAT4 Analyst:143 Analytic Batch:WG429456

EPA ID: TN00003

Γ	Method Blank	
Analyte	CAS	PQL
Kjeldahl Nitrogen, TKN		< 0.100

Laboratory Control Sample (LCS)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Kjeldahl Nitrogen, TKN	3.74	3.56	95.2	85 - 115	

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Kjeldahl Nitrogen, TKN	3.74	3.54	94.7	85 - 115	

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test: Kjeldahl Nitrogen, TKN by Method 351.2

L410136

Test: Kjeldahl Nitrogen, TKN b *Matrix:*Water - mg/L *Project:*Tucson/Grant Rd. MS4 Site *Project No:*30803201 *Login No:*L410136 *Sample Number:*L410136-01 *Sample Date:*6/30/2009 *Extraction Date:*7/1/2009 *Analysis Date:*7/6/2009 9:37:00 PM *Instrument ID:*LACHAT4 *Analyst:*143 *Analytic Batch:*WG429456

EPA ID: TN00003

Laboratory Control Sample/ Laboratory Control Sample Duplicate

	Spike		%		%	Control	%	Control
Analyte		LCS	Rec	LCSD	Rec	Limits	Qualifier RPD	Limits Qualifier
Kjeldahl Nitrogen, TKN	3.74	3.56	95.2	3.54	94.7	85-115	0.6	20

Sample Duplicate

L410595-01

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
Kjeldahl Nitrogen, TKN	1.00	0.802	22	20	R8

Sample Duplicate L409101-19

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
Kjeldahl Nitrogen, TKN	0.260	0.242	7.2	20	

Matrix Spike/Matrix Spike Duplicate L410085-01

	Spike			%		%	Control	%	Control
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier RPD	Limits Qualifier
Kjeldahl Nitrogen, TKN	5.00	0.610	5.99	108	6.15	111	80-120	2.6	20

Environmental Science Corporation Quality Control Summary Engineering & Env. Consultants, INC. -AZ

Test: MBAS by Method 5540C Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No: 30803201 Login No: L410136 Sample Number: L410136-01 Sample Date: 6/30/2009 Extraction Date: 7/1/2009 Analysis Date: 7/2/2009 5:08:00 PM Instrument ID: HACH 4000 Analyst: 476 Analytic Batch: WG429431

L410136

EPA ID: TN00003

	Method Blank	
Analyte	CAS	PQL
MBAS		<0.100

Laboratory Control Sample (LCS)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
MBAS	1.00	1.04	104	85 - 115	

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
MBAS	1.00	1.05	105	85 - 115	

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test: MBAS by Method 5540C Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No: 30803201 Login No: L410136 Sample Number: L410136-01 Sample Date: 6/30/2009 Extraction Date: 7/1/2009 Analysis Date: 7/2/2009 5:08:00 PM Instrument ID: HACH 4000 Analyst: 476 Analytic Batch: WG429431 L410136

EPA ID: TN00003

Laboratory Control Sample/ Laboratory Control Sample Duplicate

	Spike		%		%	Control	%	Control
Analyte		LCS	Rec	LCSD	Rec	Limits	Qualifier RPD	Limits Qualifier
MBAS	1.00	1.04	104	1.05	105	85-115	1.0	20

Sample Duplicate

L410328-02

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
MBAS	0.0000	0.0000			

Sample Duplicate

L410431-01

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
MBAS	0.580	0.591	1.9	20	

Matrix Spike/Matrix Spike Duplicate L410149-03

	Spike			%		%	Control	%	Control
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier RPD	Limits Qualifier
MBAS	1.00	0.150	1.08	93.0	1.08	93.0	80-120	0.0	20

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test: **MBAS by Method 5540C** *Matrix:* Water - mg/L units *Project:* Tucson/Grant Rd. MS4 Site *Project No:* 30803201 *Login No:*L410136 *Sample Number:*L410136-01 *Sample Date:*6/30/2009 *Extraction Date:*7/1/2009 *Analysis Date:*7/2/2009 5:08:00 PM *Instrument ID:*HACH 4000

Analytic Batch:WG429431

Method Blank Summary									
Client Sample ID	Laboratory Sample ID	Lab Filename	Instrument	Date Analyzed	Time Analyzed				
Blank WG429431	Blank WG429431		HACH 4000	7/2/2009	5:05 PM				
LCS WG429431	LCS WG429431		HACH 4000	7/2/2009	5:06 PM				
LCSD WG429431	LCSD WG429431		HACH 4000	7/2/2009	5:06 PM				
GR ADOT 2	L410136-01		HACH 4000	7/2/2009	5:08 PM				
MS WG429431	MS WG429431		HACH 4000	7/2/2009	5:09 PM				
MSD WG429431	MSD WG429431		HACH 4000	7/2/2009	5:09 PM				
DUP WG429431	DUP WG429431		HACH 4000	7/2/2009	5:11 PM				
DUP WG429431	DUP WG429431		HACH 4000	7/2/2009	5:13 PM				

L410136

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test: MBAS by Method 5540C Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No: 30803201 Login No: L410136 Sample Number: L410136-01 Sample Date: 6/30/2009 Extraction Date: 7/1/2009 Analysis Date: 7/2/2009 5:08:00 PM Instrument ID: HACH 4000 Analyst: 476 Analytic Batch: WG429431 L410136

EPA ID: TN00003

Laboratory Control Sample/ Laboratory Control Sample Duplicate

	Spike		%		%	Control	%	Control
Analyte		LCS	Rec	LCSD	Rec	Limits	Qualifier RPD	Limits Qualifier
MBAS	1.00	1.04	104	1.05	105	85-115	1.0	20

Sample Duplicate

L410328-02

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
MBAS	0.0000	0.0000			

Sample Duplicate

L410431-01

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
MBAS	0.580	0.591	1.9	20	

Matrix Spike/Matrix Spike Duplicate L410149-03

	Spike			%		%	Control	%	Control
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier RPD	Limits Qualifier
MBAS	1.00	0.150	1.08	93.0	1.08	93.0	80-120	0.0	20

Environmental Science Corporation Quality Control Summary Engineering & Env. Consultants, INC. -AZ Test: Oil & Grease (Hexane Extr) by Method 1664A

Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No:30803201 Login No:L410136 Sample Number:L410136-01 Sample Date:6/30/2009 Extraction Date:7/6/2009 Analysis Date:7/6/2009 8:28:00 AM Instrument ID:BAL Analyst:078 Analytic Batch:WG429997

EPA ID: TN00003

L410136

Method Blank						
Analyte	CAS	PQL				
Oil & Grease (Hexane Extr)		<5.00				

Laboratory Control Sample (LCS)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Oil & Grease (Hexane Extr)	40.0	33.0	82.5	78 - 114	

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Oil & Grease (Hexane Extr)	40.0	32.0	80.0	78 - 114	

Environmental Science Corporation Quality Control Summary Engineering & Env. Consultants, INC. -AZ Test: Oil & Grease (Hexane Extr) by Method 1664A

Matrix:Water - mg/L Project:Tucson/Grant Rd. MS4 Site Project No:30803201 Login No:L410136 Sample Number:L410136-01 Sample Date:6/30/2009 Extraction Date:7/6/2009 Analysis Date:7/6/2009 8:28:00 AM Instrument ID:BAL Analyst:078 Analytic Batch:WG429997

EPA ID: TN00003

L410136

Laboratory Control Sample/ Laboratory Control Sample Duplicate

	Spike		%		%	Control	%	Control
Analyte	_	LCS	Rec	LCSD	Rec	Limits	Qualifier RPD	Limits Qualifier
Oil & Grease (Hexane	40.0	33.0	82.5	32.0	80.0	78-114	3.1	20

Environmental Science Corporation Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test: Phosphate,Ortho by Method 4500P-E Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No:30803201 Login No:L410136 Sample Number:L410136-01 Sample Date:6/30/2009 Extraction Date:7/1/2009 Analysis Date:7/1/2009 5:32:00 PM Instrument ID:HACH 4000 Analyst:476 Analytic Batch:WG429432

EPA ID: TN00003

L410136

	Method Blank	
Analyte	CAS	PQL
Phosphate,Ortho		< 0.0250

Laboratory Control Sample (LCS)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Phosphate, Ortho	0.750	0.735	98.0	85 - 115	

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Phosphate,Ortho	0.750	0.722	96.3	85 - 115	

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test: Phosphate, Ortho by Method 4500P-E

Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No:30803201 Login No:L410136 Sample Number:L410136-01 Sample Date:6/30/2009 Extraction Date:7/1/2009 Analysis Date:7/1/2009 5:32:00 PM Instrument ID:HACH 4000 Analyst:476

Analytic Batch:WG429432

EPA ID: TN00003

L410136

Laboratory Control Sample/ Laboratory Control Sample Duplicate

	Spike		%		%	Control	%	Control
Analyte		LCS	Rec	LCSD	Rec	Limits	Qualifier RPD	Limits Qualifier
Phosphate,Ortho	0.750	0.735	98.0	0.722	96.3	85-115	1.8	20

Sample Duplicate

L410153-01

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
Phosphate,Ortho	6.20	5.50	12	20	

Matrix Spike/Matrix Spike Duplicate L410136-01

	Spike			%		%	Control	%	Control
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier RPD	Limits Qualifier
Phosphate,Ortho	2.50	0.0000	2.62	105	2.71	108	80-120	3.4	20

Environmental Science Corporation Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test: Phosphorus, Total by Method 365.1 Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No: 30803201 Login No: L410136 Sample Number: L410136-01 Sample Date: 6/30/2009 Extraction Date: 7/1/2009 Analysis Date: 7/6/2009 10:11:00 AM Instrument ID: LACHAT2 Analyst: 236 Analytic Batch: WG429461

EPA ID: TN00003

L410136

Method BlankAnalyteCASPhosphorus,Total<0.100</td>

Laboratory Control Sample (LCS)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Phosphorus, Total	1.00	1.05	105	85 - 115	

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Phosphorus, Total	1.00	1.02	102	85 - 115	

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test: Phosphorus, Total by Method 365.1 Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No: 30803201 Login No: L410136 Sample Number: L410136-01 Sample Date: 6/30/2009 Extraction Date: 7/1/2009 Analysis Date: 7/6/2009 10: 11:00 AM Instrument ID: LACHAT2 Analyst: 236

Analytic Batch:WG429461

L410136

EPA ID: TN00003

Laboratory Control Sample/ Laboratory Control Sample Duplicate

	Spike		%		%	Control	%	Control
Analyte		LCS	Rec	LCSD	Rec	Limits	Qualifier RPD	Limits Qualifier
Phosphorus, Total	1.00	1.05	105	1.02	102	85-115	2.9	20

Sample Duplicate

L410077-01

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
Phosphorus, Total	0.470	0.469	0.2	20	

Sample Duplicate L410260-01

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
Phosphorus, Total	1.20	1.14	5.1	20	

Matrix Spike/Matrix Spike Duplicate L410078-01

	Spike			%		%	Control	%	Control
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier RPD	Limits Qualifier
Phosphorus, Total	2.50	0.320	2.68	94.4	2.78	98.4	80-120	3.7	20

Environmental Science Corporation Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test: Specific Conductance by Method 9050A

L410136

Matrix:Water - mg/L Project:Tucson/Grant Rd. MS4 Site Project No:30803201 Login No:L410136 Sample Number:L410136-01 Sample Date:6/30/2009 Extraction Date:7/1/2009 Analysis Date:7/2/2009 3:22:00 PM Instrument ID:ORION170 Analyst:397 Analytic Batch:WG429485

EPA ID: TN00003

Γ	Method Blank				
Analyte	CAS	Results			
Specific Conductance		2.70			

Laboratory Control Sample (LCS)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Specific Conductance	589	510	86.6	85 - 115	

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Specific Conductance	589	510	86.6	85 - 115	

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test: Specific Conductance by Method 9050A

Matrix:Water - mg/L Project:Tucson/Grant Rd. MS4 Site Project No:30803201 Login No:L410136 Sample Number:L410136-01 Sample Date:6/30/2009 Extraction Date:7/1/2009 Analysis Date:7/2/2009 3:22:00 PM Instrument ID:ORION170 Analyst:397

Analytic Batch:WG429485

EPA ID: TN00003

L410136

Laboratory Control Sample/ Laboratory Control Sample Duplicate

	Spike		%		%	Control	%	Control
Analyte		LCS	Rec	LCSD	Rec	Limits	Qualifier RPD	Limits Qualifier
Specific Conductance	589	510	86.6	510	86.6	85-115	0.0	20

Sample Duplicate

L410098-01

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
Specific Conductance	1400	1380	1.6	20	

Sample Duplicate L410166-01

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
Specific Conductance	920	933	1.4	20	
Environmental Science Corporation Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test: Suspended Solids by Method 2540D Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No: 30803201 Login No: L410136 Sample Number: L410136-01 Sample Date: 6/30/2009 Extraction Date: 7/1/2009 Analysis Date: 7/2/2009 1:01:00 PM Instrument ID: BAL Analyst: 479 Analytic Batch: WG429504

L410136

EPA ID: TN00003

	Method Blank	
Analyte	CAS	PQL
Suspended Solids		<1.00

Laboratory Control Sample (LCS)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Suspended Solids	780	772	99.0	85 - 115	

Laboratory Control Sample Duplicate (LCSD)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Suspended Solids	780	776	99.5	85 - 115	

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test: Suspended Solids by Method 2540D Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No: 30803201 Login No: L410136 Sample Number: L410136-01 Sample Date: 6/30/2009 Extraction Date: 7/1/2009 Analysis Date: 7/2/2009 1:01:00 PM Instrument ID: BAL Analyst: 479

Analytic Batch:WG429504

L410136

EPA ID: TN00003

Laboratory Control Sample/ Laboratory Control Sample Duplicate

	Spike		%		%	Control	%	Control
Analyte		LCS	Rec	LCSD	Rec	Limits	Qualifier RPD	Limits Qualifier
Suspended Solids	780	772	99.0	776	99.5	85-115	0.5	20

Sample Duplicate

L410252-01

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
Suspended Solids	330	329	0.3	5	

Sample Duplicate L410099-01

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
Suspended Solids	130	132	1.5	5	

Environmental Science Corporation Quality Control Summary Engineering & Env. Consultants, INC. -AZ *Test:* Mercury by Method 7470A

Test: Mercury by Method 7470A Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No:30803201 Login No:L410136 Sample Number:L410136-01 Sample Date:6/30/2009 Extraction Date:7/1/2009 Analysis Date:7/1/2009 Instrument ID:CVAA3 Analyst:261 Analytic Batch:WG429402 L410136

EPA ID: TN00003

Method Blank

Analyte CAS PQL Mercury <0.0002

Laboratory Control Sample (LCS)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Mercury	0.0030	0.0029	95.7	85 - 115	

Environmental Science Corporation Quality Control Summary Engineering & Env. Consultants, INC. -AZ

Test: Mercury by Method 7470A Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No:30803201 Login No:L410136 Sample Number:L410136-01 Sample Date:6/30/2009 Extraction Date:7/1/2009 Analysis Date:7/1/2009 Instrument ID:CVAA3 Analyst:261 Analytic Batch:WG429402

L410136

EPA ID: TN00003

Sample Duplicate L410116-11

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
Mercury	0.0000	0.0000			

Matrix Spike/Matrix Spike Duplicate L410116-11

	Spike			%		%	Control	%	Control
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier RPD	Limits Qualifier
Mercury	0.0030	0.0000	0.0029	98.0	0.0030	99.0	70-130	1.0	20

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test: Trace Metals by Method 6010B Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No: 30803201 Login No: L410136 Sample Number: L410136-01 Sample Date: 6/30/2009 Extraction Date: 7/4/2009 Analysis Date: 7/6/2009 Instrument ID: ICP6 Analyst: 438 Analytic Batch: WG429949

L410136

EPA ID: TN00003

Method Blank

Analyte	CAS	PQL
Barium	7440-39-3	< 0.00500
Beryllium	7440-41-7	< 0.00200
Cadmium	7440-43-9	< 0.00500
Calcium	7440-70-2	< 0.500
Chromium	7440-47-3	< 0.0100
Copper	7440-50-8	< 0.0200
Lead	7439-92-1	< 0.00500
Nickel	7440-02-0	< 0.0200
Selenium	7782-49-2	< 0.0200
Silver	7440-22-4	< 0.0100
Sodium	7440-23-5	< 0.500
Zinc	7440-66-6	< 0.0300

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test: Trace Metals by Method 6010B Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No: 30803201 Login No: L410136 Sample Number: L410136-01 Sample Date: 6/30/2009 Extraction Date: 7/4/2009 Analysis Date: 7/6/2009 Instrument ID: ICP6 Analyst: 438 Analytic Batch: WG429949

L410136

EPA ID: TN00003

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Barium	1.13	1.13	100	85 - 115	
Beryllium	1.13	1.12	99.1	85 - 115	
Cadmium	1.13	1.14	101	85 - 115	
Calcium	11.3	11.3	100	85 - 115	
Chromium	1.13	1.10	97.3	85 - 115	
Copper	1.13	1.09	96.5	85 - 115	
Lead	1.13	1.14	101	85 - 115	
Nickel	1.13	1.13	100	85 - 115	
Selenium	1.13	1.11	98.2	85 - 115	
Silver	1.13	1.07	94.7	85 - 115	
Sodium	11.3	11.2	99.1	85 - 115	
Zinc	1.13	1.09	96.5	85 - 115	

Laboratory Control Sample (LCS)

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test: Trace Metals by Method 6010B Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No: 30803201 Login No: L410136 Sample Number: L410136-01 Sample Date: 6/30/2009 Extraction Date: 7/4/2009 Analysis Date: 7/6/2009 Instrument ID: ICP6 Analyst: 438

Analytic Batch:WG429949

L410136

EPA ID: TN00003

Sample Duplicate L410139-08

	Sample	Results			
Name	Results	Duplicate	%RPD	Limit	Qualifiers
Barium	0.200	0.203	1.5	20	
Bervllium	0.00000	0.00064			
Cadmium	0.00000	0.00117			
Calcium	10.9	11.0	0.9	20	
Chromium	0.00000	0.00000			
Copper	0.00000	0.0481			
Lead	0.00000	0.00000			
Nickel	0.00000	0.00000			
Selenium	0.0285	0.00980	98	20	R8
Silver	0.00000	0.00320			
Sodium	17.6	18.0	2.2	20	
Zinc	0.0369	0.0533	36	20	R8

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test: Trace Metals by Method 6010B Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No: 30803201 Login No: L410136 Sample Number: L410136-01 Sample Date: 6/30/2009 Extraction Date: 7/4/2009 Analysis Date: 7/6/2009 Instrument ID: ICP6 Analyst: 438

Analytic Batch:WG429949

L410136

EPA ID: TN00003

Matrix Spike/Matrix Spike Duplicate L410139-08

	Spike			%		%	Control	%	Control
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier RPD	Limits Qualifier
Barium	1.13	0.203	1.34	101	1.36	102	75-125	1.5	20
Beryllium	1.13	0.00000	1.12	99.1	1.13	100	75-125	0.9	20
Cadmium	1.13	0.00000	1.16	103	1.18	104	75-125	1.7	20
Calcium	11.3	11.0	22.4	101	22.5	102	75-125	0.4	20
Chromium	1.13	0.00000	1.10	97.3	1.09	96.5	75-125	0.9	20
Copper	1.13	0.0481	1.14	96.6	1.16	98.4	75-125	1.7	20
Lead	1.13	0.00000	1.14	101	1.13	100	75-125	0.9	20
Nickel	1.13	0.00000	1.13	100	1.13	100	75-125	0.0	20
Selenium	1.13	0.00980	1.11	97.4	1.11	97.4	75-125	0.0	20
Silver	1.13	0.00000	0.179	15.8	0.183	16.2	75-125	M2 2.2	20
Sodium	11.3	18.0	29.4	101	28.1	89.4	75-125	4.5	20
Zinc	1.13	0.0533	1.17	98.8	1.18	99.7	75-125	0.9	20

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test: Trace Metals by Method 6020 Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No: 30803201 Login No: L410136 Sample Number: L410136-01 Sample Date: 6/30/2009 Extraction Date: 7/3/2009 Analysis Date: 7/9/2009 Instrument ID: ICPMS4 Analyst: 338 Analytic Batch: WG429915

L410136

EPA ID: TN00003

Method Blank

Analyte	CAS	PQL
Antimony	7440-36-0	< 0.00100
Arsenic	7440-38-2	< 0.00100
Thallium	7440-28-0	< 0.00100

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Antimony	0.0567	0.0525	92.6	85 - 115	
Arsenic	0.0567	0.0545	96.1	85 - 115	
Thallium	0.0567	0.0546	96.3	85 - 115	

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test: Trace Metals by Method 6020 Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No: 30803201 Login No: L410136 Sample Number: L410136-01 Sample Date: 6/30/2009 Extraction Date: 7/3/2009 Analysis Date: 7/9/2009 Instrument ID: ICPMS4 Analyst: 338 Analytic Batch: WG429915

L410136

EPA ID: TN00003

Sample Duplicate L410139-05

	Sample	Results			
Name	Results	Duplicate	%RPD	Limit	Qualifiers
Antimony	0.0000000	0.000950			
Arsenic	0.000650	0.000590	9.7	20	
Thallium	0.0000000	0.000440			

Matrix Spike/Matrix Spike Duplicate L410139-05

	Spike			%		%	Control	%	Control
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier RPD	Limits Qualifier
Antimony	0.0567	0.00095	0.0529	91.6	0.0558	96.7	75-125	5.3	20
Arsenic	0.0567	0.00059	0.0551	96.1	0.0568	99.1	75-125	3.0	20
Thallium	0.0567	0.00044	0.0551	96.4	0.0580	102	75-125	5.1	20

Quality Control Summary – Engineering & Env. Consultants, INC. -AZ

Test: Method 8021B Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No: 30803201 Login No: L410136 Sample Number: L410136-01 Sample Date: 6/30/2009 Analysis Date: 7/1/2009 Instrument ID: VOCGC14 Analyst: 241 Analytic Batch: WG429527 L410136

EPA ID: TN00003

	Method Blank	
Analyte	CAS	PQL
Benzene	71-43-2	< 0.0005
Toluene	108-88-3	< 0.0050
Ethylbenzene	100-41-4	< 0.0005
m&p-Xylene	1330-20-7	< 0.0015
o-Xylene	1330-20-7	< 0.0015

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Benzene	0.0500	0.0415	83.0	79 - 114	
Toluene	0.0500	0.0427	85.5	79 - 112	
Ethylbenzene	0.0500	0.0410	81.9	80 - 116	
m&p-Xylene	0.100	0.0891	89.1	85 - 120	
o-Xylene	0.0500	0.0433	86.7	82 - 116	

Laboratory Control Sample Duplicate (LCSD)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Benzene	0.0500	0.0465	93.0	79 - 114	
Toluene	0.0500	0.0476	95.2	79 - 112	
Ethylbenzene	0.0500	0.0460	92.0	80 - 116	
m&p-Xylene	0.100	0.0997	99.7	85 - 120	
o-Xylene	0.0500	0.0486	97.2	82 - 116	

Engineering & Env. Consultants, INC. -AZ

Test: Method 8021B Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No: 30803201 Login No: L410136 Sample Number: L410136-01 Sample Date: 6/30/2009 Analysis Date: 7/1/2009 Instrument ID: VOCGC14 Analyst: 241 Analytic Batch: WG429527 L410136

EPA ID: TN00003

Laboratory	a,a,a-Trifluorot	oluene - FID	a,a,a-Trifluorotoluene - PID		
Sample ID	ppb	% Rec	ppb	% Rec	
				100	
LCS WG429527	95.1	95.1	100	100	
LCSD WG429527	96.4	96.4	101	101	
LCS WG429527	120	120	138 *	138	
LCSD WG429527	119	119	137 *	137	
Blank WG429527	96.8	96.8	104	104	
MS WG429527	95.1	95.1	100	100	
MSD WG429527	95.7	95.7	101	101	
MS WG429527	115	115	131 *	131	
MSD WG429527	116	116	134 *	134	
L410136-01	98.0	98.0	112	112	

Surrogate Summary

a,a,a-Trifluorotoluene (FID) 200 ppb Limits - 62 - 128 a,a,a-Trifluorotoluene (PID) 200 ppb Limits - 55 - 122

Environmental Science Corporation Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test: Method 8021B Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No: 30803201 Login No: L410136 Sample Number: L410136-01 Sample Date: 6/30/2009 Analysis Date: 7/1/2009 Instrument ID: VOCGC14 Analyst: 241 Analytic Batch: WG429527 L410136

EPA ID: TN00003

Laboratory Control Sample/ Laboratory Control Sample Duplicate

Analyte	Spike	LCS	% Rec	LCSD	% Rec	Control Limits	% Qualifier RPD	Control Limits Qualifier
Benzene	0.0500	0.0415	83.0	0.0465	93.0	79-114	11	20
Toluene	0.0500	0.0427	85.5	0.0476	95.2	79-112	11	20
Ethylbenzene	0.0500	0.0410	81.9	0.0460	92.0	80-116	12	20
m&p-Xylene	0.100	0.0891	89.1	0.0997	99.7	85-120	11	20
o-Xylene	0.0500	0.0433	86.7	0.0486	97.2	82-116	11	20

Matrix Spike/Matrix Spike Duplicate L410210-09

Analyte	Spike Value	Sample	MS	% Rec	MSD	% Rec	Control Limits	% Qualifier RPD	Control Limits Qualifier
Benzene	0.0500	0.0000	0.0432	86.3	0.0445	88.9	35-147	3.0	20
Toluene	0.0500	0.0000	0.0448	89.6	0.0456	91.1	35-148	1.7	20
Ethylbenzene	0.0500	0.0000	0.0433	86.6	0.0437	87.4	39-141	1.0	20
m&p-Xylene	0.100	0.0000	0.0936	93.6	0.0944	94.4	26-157	0.9	20
o-Xylene	0.0500	0.0000	0.0455	91.1	0.0459	91.7	40-145	0.8	20

Engineering & Env. Consultants, INC. -AZ

Test: Method 8021B Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No: 30803201 Login No: L410136 Sample Date: 6/30/2009 Analysis Date: 7/1/2009 Instrument ID: VOCGC14 Analyst: 241 Analytic Batch: WG429527 L410136

EPA ID: TN00003

	Internal Standard	Response and Reten	tion Time Summary	7		
FileID:0701_0)3.D	Date:7/1/2009	Tir	Time:5:21 PM		
		IS - FID		IS - PID		
	Response	RT	Response	RT		
12 Hour Std	290820525	4.09	556907516	4.09		
Upper Limit	581641050	4.59	1113815032	4.59		
Lower Limit	145410262.	3.59	278453758	3.59		
Sample ID	Response	RT	Response	RT		
Blank WG429527	260808875	4.09	484900342	4.09		
LCS WG429527	283670132	4.09	556491936	4.09		
LCS WG429527	285431800	4.09	558634447	4.09		
LCSD WG429527	256874424	4.09	499431961	4.09		
LCSD WG429527	295940900	4.09	564174138	4.09		
MS WG429527	272817097	4.09	527461991	4.09		
MS WG429527	311488256	4.09	590806318	4.09		
MSD WG429527	263680499	4.09	510001412	4.09		
MSD WG429527	303708542	4.09	571588535	4.09		

63 of 91

Test: Method 8021B Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No: 30803201 Login No: L410136 Sample Number: L410136-01 Sample Date: 6/30/2009 Analysis Date: 7/1/2009 Instrument ID: VOCGC14 Analyst: 241 Analytic Batch: WG429527

EPA ID: TN00003

L410136

Internal Standard Response and Retention Time Summary								
FileID:0701_26	5.D	Date:7/2/2009	Tin	Time:4:11 AM				
		IS - FID		IS - PID				
	Response	RT	Response	RT				
12 Hour Std	298975929	4.09	565851243	4.09				
Upper Limit	597951858	4.59	1131702486	4.59				
Lower Limit	149487964.	3.59	282925621.	3.59				
Sample ID	Response	RT	Response	RT				
L410136-01	289232862	4.09	538859118	4.09				

Environmental Science Corporation Quality Control Summary Engineering & Env. Consultants, INC. -AZ Test: Diesel Range Organics by Method 8015 L410136 *Matrix:* Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No:30803201 Login No:L410136 Sample Number:L410136-01 Sample Date:6/30/2009 Extraction Date:7/1/2009 Analysis Date:7/2/2009 Instrument ID:SVGC7 Analyst:267 Analytic Batch:WG429554 EPA ID: TN00003 **Method Blank**

Analyte	CAS	PQL
Diesel Range Organics		<0.10

Laboratory Control Sample (LCS)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Diesel Range Organics	1.50	1.33	88.7	50 - 150	

Laboratory Control Sample Duplicate (LCSD)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Diesel Range Organics	1.50	1.36	90.5	50 - 150	

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test: Diesel Range Organics by Method 8015

L410136

*Matrix:*Water - mg/L *Project:*Tucson/Grant Rd. MS4 Site *Project No:*30803201 *Login No:*L410136 *Sample Number:*L410136-01 *Sample Date:*6/30/2009 *Extraction Date:*7/1/2009 *Analysis Date:*7/2/2009 *Instrument ID:*SVGC7 *Analyst:*267 *Analytic Batch:*WG429554

EPA ID: TN00003

Surrogate Summary

Laboratory Sample ID	o-terphenylD ppm	% Rec	
Blank WG429554	0.0186	93.1	
LCS WG429554	0.0204	102	
LCSD WG429554	0.0192	95.8	
L410136-01	\$8	S8	

o-terphenyl Limits - 50 - 150

Environmental Science Corporation Quality Control Summary Engineering & Env. Consultants, INC. -AZ Test: Diesel Range Organics by Method 8015

Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No:30803201 Login No:L410136 Sample Number:L410136-01 Sample Date:6/30/2009 Extraction Date:7/1/2009 Analysis Date:7/2/2009 Instrument ID:SVGC7 Analyst:267 Analytic Batch:WG429554

EPA ID: TN00003

L410136

Laboratory Control Sample/ Laboratory Control Sample Duplicate

	Spike		%		%	Control	%	Control
Analyte	_	LCS	Rec	LCSD	Rec	Limits	Qualifier RPD	Limits Qualifier
Diesel Range Organics	1.50	1.33	88.7	1.36	90.5	50-150	1.9	25

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test: Semi-Volatiles by Method 8270C Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No: 30803201 Login No: L410136 Sample Number: L410136-01 Sample Date: 6/30/2009 Extraction Date: 7/5/2009 Analysis Date: 7/6/2009 Instrument ID: BNAMS11

Analyst:145 Analytic Batch:WG429990 L410136

Analyte CAS PQL 62-75-9 n-Nitrosodimethylamine < 0.0500 Bis(2-chloroethyl)ether 111-44-4 < 0.0100 Phenol 108-95-2 < 0.0100 2-Chlorophenol 95-57-8 < 0.0100 Bis(2-chloroisopropyl)ether 108-60-1 < 0.0100 Hexachloroethane 67-72-1 < 0.0100 n-Nitrosodi-n-propylamine 621-64-7 < 0.0100 Nitrobenzene 98-95-3 < 0.0100 Isophorone 78-59-1 < 0.0100 2-Nitrophenol 88-75-5 < 0.0100 2,4-Dimethylphenol 105-67-9 < 0.0100 Bis(2-chlorethoxy)methane 111-91-1 < 0.0100 2,4-Dichlorophenol 120-83-2 < 0.0100 1.2.4-Trichlorobenzene 120-82-1 < 0.0100 Naphthalene 91-20-3 < 0.0100 Hexachloro-1,3-butadiene 87-68-3 < 0.0100 4-Chloro-3-methylphenol 59-50-7 < 0.0100 Hexachlorocyclopentadiene 77-47-4 < 0.0100 2,4,6-Trichlorophenol 88-06-2 < 0.0100 2-Chloronaphthalene 91-58-7 < 0.0100 Acenaphthylene 208-96-8 < 0.0100 Dimethyl phthalate 131-11-3 < 0.0100 2,6-Dinitrotoluene 606-20-2 < 0.0100 Acenaphthene 83-32-9 < 0.0100 2,4-Dinitrophenol 51-28-5 < 0.0100 2,4-Dinitrotoluene 121-14-2 < 0.0100 4-Nitrophenol 100-02-7 < 0.0100 Fluorene 86-73-7 < 0.0100 4-Chlorophenyl-phenylether 7005-72-3 < 0.0100 Diethyl phthalate 84-66-2 < 0.0100 4,6-Dinitro-2-methylphenol 534-52-1 < 0.0100 n-Nitrosodiphenylamine 86-30-6 < 0.0100 4-Bromophenyl-phenylether 101-55-3 < 0.0100

118-74-1

87-86-5

Method Blank

EPA ID: TN00003

Hexachlorobenzene

Pentachlorophenol

< 0.0100

< 0.0100

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test:Semi-Volatiles by Method 8270C Matrix:Water - mg/L Project:Tucson/Grant Rd. MS4 Site Project No:30803201 Login No:L410136 Sample Number:L410136-01 Sample Date:6/30/2009 Extraction Date:7/5/2009 Analysis Date:7/6/2009 Instrument ID:BNAMS11

Analyst:145 Analytic Batch:WG429990

EPA	ID:	TN00003
	\mathbf{n} .	11100000

L410136

Method Blank					
Analyte	CAS	PQL			
Phenanthrene	85-01-8	< 0.0100			
Anthracene	120-12-7	< 0.0100			
Di-n-butyl phthalate	84-74-2	< 0.0100			
Fluoranthene	206-44-0	< 0.0100			
Benzidine	92-87-5	< 0.0500			
Pyrene	129-00-0	< 0.0100			
Benzylbutyl phthalate	85-68-7	< 0.0100			
3,3-Dichlorobenzidine	91-94-1	< 0.0100			
Benzo(a)anthracene	56-55-3	< 0.0100			
Chrysene	218-01-9	< 0.0100			
Bis(2-ethylhexyl)phthalate	117-81-7	< 0.0100			
Di-n-octyl phthalate	117-84-0	< 0.0100			
Benzo(b)fluoranthene	205-99-2	< 0.0100			
Benzo(k)fluoranthene	207-08-9	< 0.0100			
Benzo(a)pyrene	50-32-8	< 0.0100			
Indeno(1,2,3-cd)pyrene	193-39-5	< 0.0100			
Dibenz(a,h)anthracene	53-70-3	< 0.0100			
Benzo(g,h,i)perylene	191-24-2	< 0.0100			

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

*Test:*Semi-volatile Organic Compounds by Method 8270C

Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site

Login No:L410136 Sample Number:L410136-01 Sample Date:6/30/2009 Extraction Date:7/5/2009 Analysis Date:7/6/2009 6:17:00 PM Instrument ID:BNAMS10 Analyst:145 Analytic Batch:WG429990

Project No:30803201

EPA ID: TN00003

L410136

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
1,2,4-Trichlorobenzene	0.0100	0.00593	59.3	26 - 103	
2,4,6-Trichlorophenol	0.0100	0.00645	64.5	49 - 118	
2,4-Dichlorophenol	0.0100	0.00691	69.1	46 - 115	
2,4-Dimethylphenol	0.0100	0.0117	117	40 - 124	
2,4-Dinitrophenol	0.0100	0.00626	62.6	10 - 125	
2,4-Dinitrotoluene	0.0100	0.00711	71.1	56 - 128	
2,6-Dinitrotoluene	0.0100	0.00643	64.3	56 - 121	
2-Chloronaphthalene	0.0100	0.00610	61.0	44 - 110	
2-Chlorophenol	0.0100	0.00593	59.3	38 - 114	
2-Nitrophenol	0.0100	0.00669	66.9	35 - 118	
3,3-Dichlorobenzidine	0.0100	0.00961	96.1	46 - 145	
4,6-Dinitro-2-methylphenol	0.0100	0.00594	59.4	24 - 119	
4-Bromophenyl-phenylether	0.0100	0.00751	75.1	45 - 105	
4-Chloro-3-methylphenol	0.0100	0.00740	74.0	47 - 116	
4-Chlorophenyl-phenylether	0.0100	0.00720	72.0	49 - 116	
4-Nitrophenol	0.0100	0.00280	28.0	10 - 66	
Acenaphthene	0.0100	0.00662	66.2	48 - 110	
Acenaphthylene	0.0100	0.00673	67.3	48 - 113	
Anthracene	0.0100	0.00838	83.8	55 - 127	
Benzidine	0.0100	0.00113	11.3	0 - 46	
Benzo(a)anthracene	0.0100	0.00838	83.8	57 - 115	
Benzo(a)pyrene	0.0100	0.00799	79.9	63 - 125	
Benzo(b)fluoranthene	0.0100	0.00749	74.9	50 - 123	
Benzo(g,h,i)perylene	0.0100	0.0112	112	39 - 143	
Benzo(k)fluoranthene	0.0100	0.00750	75.0	45 - 126	
Benzylbutyl phthalate	0.0100	0.00421	42.1	22 - 154	
Bis(2-chlorethoxy)methane	0.0100	0.00795	79.5	42 - 116	
Bis(2-chloroethyl)ether	0.0100	0.00690	69.0	26 - 115	
Bis(2-chloroisopropyl)ether	0.0100	0.00671	67.1	32 - 115	
Bis(2-ethylhexyl)phthalate	0.0100	0.0107	107	47 - 143	
Chrysene	0.0100	0.00762	76.2	58 - 113	
Dibenz(a,h)anthracene	0.0100	0.0100	100	39 - 144	
Diethyl phthalate	0.0100	0.00412	41.2	36 - 128	
Dimethyl phthalate	0.0100	0.00187	18.7	10 - 135	
Di-n-butyl phthalate	0.0100	0.00815	81.5	51 - 131	

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

*Test:*Semi-volatile Organic Compounds by Method 8270C

L410136

Matrix:Water - mg/L Project:Tucson/Grant Rd. MS4 Site Project No:30803201 Login No:L410136 Sample Number:L410136-01 Sample Date:6/30/2009 Extraction Date:7/5/2009 Analysis Date:7/6/2009 6:17:00 PM Instrument ID:BNAMS10 Analyst:145 Analytic Batch:WG429990

EPA ID: TN00003

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Di-n-octyl phthalate	0.0100	0.0110	110	51 - 138	
Fluoranthene	0.0100	0.00870	87.0	53 - 119	
Fluorene	0.0100	0.00669	66.9	49 - 116	
Hexachloro-1,3-butadiene	0.0100	0.00606	60.6	21 - 116	
Hexachlorobenzene	0.0100	0.00869	86.9	51 - 121	
Hexachlorocyclopentadiene	0.0100	0.00387	38.7	4 - 126	
Hexachloroethane	0.0100	0.00569	56.9	15 - 109	
Indeno(1,2,3-cd)pyrene	0.0100	0.0104	104	40 - 143	
Isophorone	0.0100	0.00732	73.2	48 - 126	
Naphthalene	0.0100	0.00634	63.4	29 - 103	
Nitrobenzene	0.0100	0.00627	62.7	31 - 105	
n-Nitrosodimethylamine	0.0100	0.00561	56.1	11 - 69	
n-Nitrosodi-n-propylamine	0.0100	0.00832	83.2	47 - 122	
n-Nitrosodiphenylamine	0.0100	0.00849	84.9	59 - 143	
Pentachlorophenol	0.0100	0.00676	67.6	20 - 122	
Phenanthrene	0.0100	0.00732	73.2	54 - 112	
Phenol	0.0100	0.00244	24.4	17 - 52	
Pyrene	0.0100	0.00713	71.3	46 - 130	

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

*Test:*Semi-volatile Organic Compounds by Method 8270C

L410136

Matrix:Water - mg/L Project:Tucson/Grant Rd. MS4 Site Project No:30803201 Login No:L410136 Sample Number:L410136-01 Sample Date:6/30/2009 Extraction Date:7/5/2009 Analysis Date:7/6/2009 6:17:00 PM Instrument ID:BNAMS10 Analyst:145 Analytic Batch:WG429990

EPA ID: TN00003

Laboratory Control Sample Duplicate (LCSD)

A	True	Eaurad	Recovery	Control	Orealifians
Allalyte	value	round	%0	Linits	Quaimers
1.2.4-Trichlorobenzene	0.0100	0.00558	55.8	26 - 103	
2.4.6-Trichlorophenol	0.0100	0.00590	59.0	49 - 118	
2.4-Dichlorophenol	0.0100	0.00688	68.8	46 - 115	
2.4-Dimethylphenol	0.0100	0.0116	116	40 - 124	
2.4-Dinitrophenol	0.0100	0.00739	73.9	10 - 125	
2.4-Dinitrotoluene	0.0100	0.00660	66.0	56 - 128	
2.6-Dinitrotoluene	0.0100	0.00627	62.7	56 - 121	
2-Chloronaphthalene	0.0100	0.00511	51.1	44 - 110	
2-Chlorophenol	0.0100	0.00520	52.0	38 - 114	
2-Nitrophenol	0.0100	0.00670	67.0	35 - 118	
3,3-Dichlorobenzidine	0.0100	0.00950	95.0	46 - 145	
4,6-Dinitro-2-methylphenol	0.0100	0.00647	64.7	24 - 119	
4-Bromophenyl-phenylether	0.0100	0.00660	66.0	45 - 105	
4-Chloro-3-methylphenol	0.0100	0.00751	75.1	47 - 116	
4-Chlorophenyl-phenylether	0.0100	0.00623	62.3	49 - 116	
4-Nitrophenol	0.0100	0.00299	29.9	10 - 66	
Acenaphthene	0.0100	0.00557	55.7	48 - 110	
Acenaphthylene	0.0100	0.00596	59.6	48 - 113	
Anthracene	0.0100	0.00780	78.0	55 - 127	
Benzidine	0.0100	0.000942	9.4	0 - 46	
Benzo(a)anthracene	0.0100	0.00791	79.1	57 - 115	
Benzo(a)pyrene	0.0100	0.00824	82.4	63 - 125	
Benzo(b)fluoranthene	0.0100	0.00760	76.0	50 - 123	
Benzo(g,h,i)perylene	0.0100	0.0103	103	39 - 143	
Benzo(k)fluoranthene	0.0100	0.00728	72.8	45 - 126	
Benzylbutyl phthalate	0.0100	0.00600	60.0	22 - 154	
Bis(2-chlorethoxy)methane	0.0100	0.00789	78.9	42 - 116	
Bis(2-chloroethyl)ether	0.0100	0.00617	61.7	26 - 115	
Bis(2-chloroisopropyl)ether	0.0100	0.00633	63.3	32 - 115	
Bis(2-ethylhexyl)phthalate	0.0100	0.0109	109	47 - 143	
Chrysene	0.0100	0.00796	79.6	58 - 113	
Dibenz(a,h)anthracene	0.0100	0.00994	99.4	39 - 144	
Diethyl phthalate	0.0100	0.00458	45.8	36 - 128	
Dimethyl phthalate	0.0100	0.00280	28.0	10 - 135	
Di-n-butyl phthalate	0.0100	0.00786	78.6	51 - 131	

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

*Test:*Semi-volatile Organic Compounds by Method 8270C

L410136

Matrix:Water - mg/L Project:Tucson/Grant Rd. MS4 Site Project No:30803201 Login No:L410136 Sample Number:L410136-01 Sample Date:6/30/2009 Extraction Date:7/5/2009 Analysis Date:7/6/2009 6:17:00 PM Instrument ID:BNAMS10 Analyst:145 Analytic Batch:WG429990

EPA ID: TN00003

Laboratory Control Sample Duplicate (LCSD)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
					-
Di-n-octyl phthalate	0.0100	0.0109	109	51 - 138	
Fluoranthene	0.0100	0.00773	77.3	53 - 119	
Fluorene	0.0100	0.00607	60.7	49 - 116	
Hexachloro-1,3-butadiene	0.0100	0.00587	58.7	21 - 116	
Hexachlorobenzene	0.0100	0.00793	79.3	51 - 121	
Hexachlorocyclopentadiene	0.0100	0.00315	31.5	4 - 126	
Hexachloroethane	0.0100	0.00509	50.9	15 - 109	
Indeno(1,2,3-cd)pyrene	0.0100	0.00999	99.9	40 - 143	
Isophorone	0.0100	0.00734	73.4	48 - 126	
Naphthalene	0.0100	0.00622	62.2	29 - 103	
Nitrobenzene	0.0100	0.00580	58.0	31 - 105	
n-Nitrosodimethylamine	0.0100	0.00488	48.8	11 - 69	
n-Nitrosodi-n-propylamine	0.0100	0.00775	77.5	47 - 122	
n-Nitrosodiphenvlamine	0.0100	0.00757	75.7	59 - 143	
Pentachlorophenol	0.0100	0.00662	66.2	20 - 122	
Phenanthrene	0.0100	0.00639	63.9	54 - 112	
Phenol	0.0100	0.00227	22.7	17 - 52	
Pyrene	0.0100	0.00769	76.9	46 - 130	

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test:Semi-Volatiles by Method 8270C Matrix:Water - mg/L Project:Tucson/Grant Rd. MS4 Site Project No:30803201 Login No:L410136 Sample Number:L410136-01 Sample Date:6/30/2009 Extraction Date:7/5/2009 Analysis Date:7/6/2009

Instrument ID:BNAMS11 Analyst:145

Analytic Batch:WG429990

EPA ID: TN00003

Surrogate Summary

Laboratory	N	ΒZ	F	BP	TI	PH	2F	P	PF	łL	TB	P
Sample ID	ppb	% Rec	ppb	% Rec	ppb	% Rec	ppb	% Rec	ppb	% Rec	ppb	% Rec
LCS WG429990	7480	74.8	7370	73.7	10200	102	9100	45.5	5430	27.1	21100	105
LCSD WG429990	6280	62.8	6210	62.1	10100	101	8030	40.1	5300	26.5	19300	96.4
Blank WG429990	6420	64.2	7730	77.3	10300	103	8540	42.7	5080	25.4	21100	105
MS WG429990	7390	73.9	7100	71.0	9980	99.8	8320	41.6	4820	24.1	19300	96.6
MSD WG429990	5890	58.9	7100	71.0	8640	86.4	7710	38.5	4500	22.5	20000	99.8
L410136-01	6440	64.4	5210	52.1	6000	60.0	10900	54.3	9280	46.4	18300	91.4
	NBZ - Nitro	obenzene	e-d5			12-	-120					
	FBP - 2-Flu	orobiphe	enyl			26-	122					
	TPH - Terp	hneyl-d1	4			34-	149					
	2FP - 2-Flu	orophen	ol			10-	-87					
	PHL - Phen	iol-d5				10-	-67					
	TBP - 2,4,6	-Tribron	opheno	ol		10-	-148					

L410136

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

*Test:*Semi-volatile Organic Compounds by Method 8270C

Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No: 30803201 Login No:L410136 Sample Number:L410136-01 Sample Date: 6/30/2009 Extraction Date: 7/5/2009 Analysis Date: 7/6/2009 6:17:00 PM Instrument ID: BNAMS10 Analyst: 145

Analytic Batch:WG429990

EPA ID: TN00003

Matrix Spike/Matrix Spike Duplicate

L410769-01

	Spike			%		%	Control	%	Control	
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier RPD	Limits	Qualifier
1,2,4-Trichlorobenzene	0.0100	0.00000	0.00572	57.2	0.00556	55.6	18-105	2.9	50	
2,4,6-Trichlorophenol	0.0100	0.00000	0.00606	60.6	0.00633	63.3	10-137	4.4	42	
2,4-Dichlorophenol	0.0100	0.00000	0.00611	61.1	0.00635	63.5	10-133	3.9	50	
2,4-Dimethylphenol	0.0100	0.00000	0.00965	96.5	0.00867	86.7	10-142	11	36	
2,4-Dinitrophenol	0.0100	0.00000	0.00644	64.4	0.00596	59.6	10-150	7.7	50	
2,4-Dinitrotoluene	0.0100	0.00000	0.00621	62.1	0.00719	71.9	32-137	15	36	
2,6-Dinitrotoluene	0.0100	0.00000	0.00616	61.6	0.00683	68.3	35-123	10	37	
2-Chloronaphthalene	0.0100	0.00000	0.00629	62.9	0.00615	61.5	33-109	2.2	39	
2-Chlorophenol	0.0100	0.00000	0.00542	54.2	0.00500	50.0	10-155	8.1	50	
2-Nitrophenol	0.0100	0.00000	0.00581	58.1	0.00623	62.3	12-121	7.1	48	
3,3-Dichlorobenzidine	0.0100	0.00000	0.00801	80.1	0.00887	88.7	10-135	10	40	
4,6-Dinitro-2-methylphenol	0.0100	0.00000	0.00480	48.0	0.00511	51.1	0-138	6.3	50	
4-Bromophenyl-phenylether	0.0100	0.00000	0.00730	73.0	0.00715	71.5	35-102	2.1	23	
4-Chloro-3-methylphenol	0.0100	0.00000	0.00656	65.6	0.00671	67.1	10-136	2.3	29	
4-Chlorophenyl-phenylether	0.0100	0.00000	0.00646	64.6	0.00759	75.9	39-116	16	32	
4-Nitrophenol	0.0100	0.00000	0.00298	29.8	0.00279	27.9	13-59	6.3	50	
Acenaphthene	0.0100	0.00000	0.00619	61.9	0.00648	64.8	39-112	4.5	37	
Acenaphthylene	0.0100	0.00000	0.00664	66.4	0.00707	70.7	37-114	6.3	35	
Anthracene	0.0100	0.00000	0.00766	76.6	0.00809	80.9	44-136	5.5	24	
Benzidine	0.0100	0.00000	0.00010	1.0	0.00011	1.2	0-25	13	50	
Benzo(a)anthracene	0.0100	0.00000	0.00788	78.8	0.00862	86.2	43-117	8.9	25	
Benzo(a)pyrene	0.0100	0.00000	0.00705	70.5	0.00780	78.0	33-137	10.0	34	
Benzo(b)fluoranthene	0.0100	0.00000	0.00715	71.5	0.00784	78.4	35-128	9.2	50	
Benzo(g,h,i)perylene	0.0100	0.00000	0.00838	83.8	0.00884	88.4	10-139	5.4	50	
Benzo(k)fluoranthene	0.0100	0.00000	0.00573	57.3	0.00660	66.0	36-119	14	40	
Benzylbutyl phthalate	0.0100	0.00000	0.00700	70.0	0.00950	95.0	47-121	30	28	R5
Bis(2-chlorethoxy)methane	0.0100	0.00000	0.00737	73.7	0.00774	77.4	21-135	4.9	39	
Bis(2-chloroethyl)ether	0.0100	0.00000	0.00663	66.3	0.00652	65.2	10-134	1.7	50	
Bis(2-chloroisopropyl)ether	0.0100	0.00000	0.00661	66.1	0.00704	70.4	14-124	6.2	40	
Bis(2-ethylhexyl)phthalate	0.0100	0.00000	0.00759	75.9	0.00804	80.4	10-115	5.8	33	
Chrysene	0.0100	0.00000	0.00739	73.9	0.00779	77.9	41-117	5.2	24	
Dibenz(a,h)anthracene	0.0100	0.00000	0.00811	81.1	0.00842	84.2	10-145	3.7	50	
Diethyl phthalate	0.0100	0.00000	0.00625	62.5	0.00774	77.4	23-132	21	35	
Dimethyl phthalate	0.0100	0.00000	0.00524	52.4	0.00707	70.7	42-107	30	27	R5
Di-n-butyl phthalate	0.0100	0.00000	0.00909	90.9	0.0101	101	46-121	11	27	

Quality Control Summary for client sample(s) GR ADOT 2

L410136

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

*Test:*Semi-volatile Organic Compounds by Method 8270C

L410136

Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No:30803201 Login No:L410136 Sample Number:L410136-01 Sample Date:6/30/2009 Extraction Date:7/5/2009 Analysis Date:7/6/2009 6:17:00 PM Instrument ID:BNAMS10 Analyst:145 Analytic Batch:WG429990

EPA ID: TN00003

Matrix Spike/Matrix Spike Duplicate

L410769-01

	Spike			%		%	Control	%	Control
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier RPD	Limits Qualifier
Di-n-octyl phthalate	0.0100	0.00000	0.00792	79.2	0.00812	81.2	22-109	2.5	31
Fluoranthene	0.0100	0.00000	0.00803	80.3	0.00833	83.3	36-130	3.6	27
Fluorene	0.0100	0.00000	0.00618	61.8	0.00711	71.1	37-120	14	30
Hexachloro-1,3-butadiene	0.0100	0.00000	0.00566	56.6	0.00588	58.8	16-118	3.9	50
Hexachlorobenzene	0.0100	0.00000	0.00798	79.8	0.00858	85.8	41-114	7.3	28
Hexachlorocyclopentadiene	0.0100	0.00000	0.00181	18.1	0.00181	18.1	0-132	0.3	50
Hexachloroethane	0.0100	0.00000	0.00583	58.3	0.00553	55.3	10-125	5.2	50
Indeno(1,2,3-cd)pyrene	0.0100	0.00000	0.00827	82.7	0.00878	87.8	10-138	6.0	50
Isophorone	0.0100	0.00000	0.00673	67.3	0.00639	63.9	32-131	5.3	38
Naphthalene	0.0100	0.00000	0.00619	61.9	0.00626	62.6	14-114	1.2	50
Nitrobenzene	0.0100	0.00000	0.00580	58.0	0.00593	59.3	14-122	2.3	46
n-Nitrosodimethylamine	0.0100	0.00000	0.00508	50.8	0.00500	50.0	0-75	1.4	50
n-Nitrosodi-n-propylamine	0.0100	0.00000	0.00784	78.4	0.00764	76.4	20-145	2.6	43
n-Nitrosodiphenylamine	0.0100	0.00000	0.00828	82.8	0.00847	84.7	10-171	2.3	34
Pentachlorophenol	0.0100	0.00000	0.00650	65.0	0.00589	58.9	0-137	9.8	50
Phenanthrene	0.0100	0.00000	0.00741	74.1	0.00742	74.2	38-121	0.2	26
Phenol	0.0100	0.00000	0.00249	24.9	0.00226	22.6	10-68	9.7	32
Pyrene	0.0100	0.00000	0.00685	68.5	0.00734	73.4	27-136	6.8	33

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

*Test:*Semi-volatile Organic Compounds by Method 8270C

Matrix:Water - mg/L Project:Tucson/Grant Rd. MS4 Site Project No:30803201 Login No:L410136 Sample Number:L410136-01 Sample Date:6/30/2009 Extraction Date:7/5/2009

Analysis Date:7/6/2009 6:17:00 PM Instrument ID:BNAMS10 Analyst:145 Analytic Batch:WG429990

EPA ID: TN00003

Laboratory Control Sample/ Laboratory Control Sample Duplicate

	Spike		%		%	Control	%	Control	
Analyte	-	LCS	Rec	LCSD	Rec	Limits	Qualifier RPD	Limits	Qualifier
1,2,4-Trichlorobenzene	0.0100	0.00593	59.3	0.00558	55.8	26-103	6.1	38	
2,4,6-Trichlorophenol	0.0100	0.00645	64.5	0.00590	59.0	49-118	9.0	28	
2,4-Dichlorophenol	0.0100	0.00691	69.1	0.00688	68.8	46-115	0.4	28	
2,4-Dimethylphenol	0.0100	0.0117	117	0.0116	116	40-124	0.4	36	
2,4-Dinitrophenol	0.0100	0.00626	62.6	0.00739	73.9	10-125	16	50	
2,4-Dinitrotoluene	0.0100	0.00711	71.1	0.00660	66.0	56-128	7.6	24	
2,6-Dinitrotoluene	0.0100	0.00643	64.3	0.00627	62.7	56-121	2.6	23	
2-Chloronaphthalene	0.0100	0.00610	61.0	0.00511	51.1	44-110	18	30	
2-Chlorophenol	0.0100	0.00593	59.3	0.00520	52.0	38-114	13	36	
2-Nitrophenol	0.0100	0.00669	66.9	0.00670	67.0	35-118	0.2	35	
3,3-Dichlorobenzidine	0.0100	0.00961	96.1	0.00950	95.0	46-145	1.2	31	
4,6-Dinitro-2-methylphenol	0.0100	0.00594	59.4	0.00647	64.7	24-119	8.6	50	
4-Bromophenyl-phenylether	0.0100	0.00751	75.1	0.00660	66.0	45-105	13	26	
4-Chloro-3-methylphenol	0.0100	0.00740	74.0	0.00751	75.1	47-116	1.5	22	
4-Chlorophenyl-phenylether	0.0100	0.00720	72.0	0.00623	62.3	49-116	14	26	
4-Nitrophenol	0.0100	0.00280	28.0	0.00299	29.9	10-66	6.4	37	
Acenaphthene	0.0100	0.00662	66.2	0.00557	55.7	48-110	17	26	
Acenaphthylene	0.0100	0.00673	67.3	0.00596	59.6	48-113	12	28	
Anthracene	0.0100	0.00838	83.8	0.00780	78.0	55-127	7.2	24	
Benzidine	0.0100	0.00113	11.3	0.00094	9.4	0-46	18	50	
Benzo(a)anthracene	0.0100	0.00838	83.8	0.00791	79.1	57-115	5.8	20	
Benzo(a)pyrene	0.0100	0.00799	79.9	0.00824	82.4	63-125	3.1	22	
Benzo(b)fluoranthene	0.0100	0.00749	74.9	0.00760	76.0	50-123	1.4	32	
Benzo(g,h,i)perylene	0.0100	0.0112	112	0.0103	103	39-143	8.8	31	
Benzo(k)fluoranthene	0.0100	0.00750	75.0	0.00728	72.8	45-126	3.1	37	
Benzylbutyl phthalate	0.0100	0.00421	42.1	0.00600	60.0	22-154	35	29	R6
Bis(2-chlorethoxy)methane	0.0100	0.00795	79.5	0.00789	78.9	42-116	0.8	38	
Bis(2-chloroethyl)ether	0.0100	0.00690	69.0	0.00617	61.7	26-115	11	50	
Bis(2-chloroisopropyl)ether	0.0100	0.00671	67.1	0.00633	63.3	32-115	5.8	47	
Bis(2-ethylhexyl)phthalate	0.0100	0.0107	107	0.0109	109	47-143	1.6	24	
Chrysene	0.0100	0.00762	76.2	0.00796	79.6	58-113	4.3	21	
Dibenz(a,h)anthracene	0.0100	0.0100	100	0.00994	99.4	39-144	1.1	30	
Diethyl phthalate	0.0100	0.00412	41.2	0.00458	45.8	36-128	11	27	
Dimethyl phthalate	0.0100	0.00187	18.7	0.00280	28.0	10-135	40	33	R6
Di-n-butyl phthalate	0.0100	0.00815	81.5	0.00786	78.6	51-131	3.6	22	
Quality Control Summary for clie	nt sample(s)	GR ADOT 2							

77 of 91

L410136

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

*Test:*Semi-volatile Organic Compounds by Method 8270C

L410136

Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No:30803201 Login No:L410136 Sample Number:L410136-01 Sample Date:6/30/2009 Extraction Date:7/5/2009 Analysis Date:7/6/2009 6:17:00 PM Instrument ID:BNAMS10 Analyst:145 Analytic Batch:WG429990

EPA ID: TN00003

Laboratory Control Sample/ Laboratory Control Sample Duplicate

Analyte	Spike	LCS	% Rec	LCSD	% Rec	Control Limits	% Qualifier RPD	Control Limits Qualifier
Di-n-octvl nhthalate	0.0100	0.0110	110	0.0109	109	51-138	0.6	22
Fluoranthene	0.0100	0.00870	87.0	0.00773	77 3	53-119	12	22
Fluorene	0.0100	0.00669	66.9	0.00607	60.7	49-116	9.7	25
Hexachloro-1.3-butadiene	0.0100	0.00606	60.6	0.00587	58.7	21-116	3.3	50
Hexachlorobenzene	0.0100	0.00869	86.9	0.00793	79.3	51-121	9.2	23
Hexachlorocyclopentadiene	0.0100	0.00387	38.7	0.00315	31.5	4-126	21	50
Hexachloroethane	0.0100	0.00569	56.9	0.00509	50.9	15-109	11	50
Indeno(1,2,3-cd)pyrene	0.0100	0.0104	104	0.00999	99.9	40-143	3.9	30
Isophorone	0.0100	0.00732	73.2	0.00734	73.4	48-126	0.3	31
Naphthalene	0.0100	0.00634	63.4	0.00622	62.2	29-103	2.0	45
Nitrobenzene	0.0100	0.00627	62.7	0.00580	58.0	31-105	7.9	43
n-Nitrosodimethylamine	0.0100	0.00561	56.1	0.00488	48.8	11-69	14	50
n-Nitrosodi-n-propylamine	0.0100	0.00832	83.2	0.00775	77.5	47-122	7.0	33
n-Nitrosodiphenylamine	0.0100	0.00849	84.9	0.00757	75.7	59-143	11	23
Pentachlorophenol	0.0100	0.00676	67.6	0.00662	66.2	20-122	2.1	50
Phenanthrene	0.0100	0.00732	73.2	0.00639	63.9	54-112	14	22
Phenol	0.0100	0.00244	24.4	0.00227	22.7	17-52	7.4	33
Pyrene	0.0100	0.00713	71.3	0.00769	76.9	46-130	7.6	28

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test:Semi-Volatiles by Method 8270C Matrix:Water - mg/L Project:Tucson/Grant Rd. MS4 Site Project No:30803201 Login No:L410136 Sample Date:6/30/2009 Extraction Date:7/5/2009 Analysis Date:7/6/2009 Instrument ID:BNAMS10 Analyst:145

Analytic Batch:WG429990

L410136

EPA ID: TN00003

FileID:0706_03.D	Ι	Date:7/6/2009	9		Time:12:09 PM		
	IS1 Response	RT	IS2 Response	RT	IS3 Response	RT	
12 Hour Std Upper Limit Lower Limit	117140 234280 58570	4.77 5.27 4.27	481407 962814 240703.5	5.55 6.05 5.05	277724 555448 138862	6.58 7.08 6.08	
Sample ID	Response	RT	Response	RT	Response	RT	
Blank WG429990 LCS WG429990 LCSD WG429990 MS WG429990 MSD WG429990	137785 151630 140343 159127 161073	4.78 4.78 4.78 4.78 4.78 4.78	518583 555594 491331 622172 599717	5.55 5.54 5.55 5.55 5.55	294478 367067 376529 384087 364274	6.58 6.57 6.58 6.58 6.58	

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test:Semi-Volatiles by Method 8270C Matrix:Water - mg/L Project:Tucson/Grant Rd. MS4 Site Project No:30803201 Login No:L410136 Sample Date:6/30/2009 Extraction Date:7/5/2009 Analysis Date:7/6/2009 Instrument ID:BNAMS10 Analyst:145

Analytic Batch:WG429990

L410136

EPA ID: TN00003

FileID:0706_03.D]	Date:7/6/200	9		Time:12:09 PM		
	IS4		IS5		IS6		
	Response	RT	Response	RT	Response	RT	
12 Hour Std	450557	7.46	465188	9.01	424430	10.18	
Upper Limit	901114	7.96	930376	9.51	848860	10.68	
Lower Limit	225278.5	6.96	232594	8.51	212215	9.68	
Sample ID	Response	RT	Response	RT	Response	RT	
Sample ID	Response	RT	Response	RT	Response	RT	
Sample ID Blank WG429990	Response 463780	RT 7.45	Response 441015	RT 9.01	Response 455095	RT 10.18	
Sample ID Blank WG429990 LCS WG429990	Response 463780 511633	RT 7.45 7.45	Response 441015 501393	RT 9.01 9.01	Response 455095 483969	RT 10.18 10.18	
Sample ID Blank WG429990 LCS WG429990 LCSD WG429990	Response 463780 511633 525735	RT 7.45 7.45 7.46	Response 441015 501393 461091	RT 9.01 9.01 9.01	Response 455095 483969 458360	RT 10.18 10.18 10.19	
Sample ID Blank WG429990 LCS WG429990 LCSD WG429990 MS WG429990	Response 463780 511633 525735 544299	RT 7.45 7.45 7.46 7.46	Response 441015 501393 461091 542996	RT 9.01 9.01 9.01 9.01	Response 455095 483969 458360 526144	RT 10.18 10.18 10.19 10.19	

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test:Semi-Volatiles by Method 8270C Matrix:Water - mg/L Project:Tucson/Grant Rd. MS4 Site Project No:30803201 Login No:L410136 Sample Date:6/30/2009 Extraction Date:7/5/2009 Analysis Date:7/6/2009 Instrument ID:BNAMS11 Analyst:145 Analytic Batch:WG429990

L410136

EPA ID: TN00003

FileID:0706_02.D]	Date:7/6/200	19		Time:5:08 PM			
	IS1 Response	RT	IS2 Response	RT	IS3 Response	RT		
12 Hour Std Upper Limit Lower Limit	23228 46456 11614	4.73 5.23 4.23	86810 173620 43405	5.47 5.97 4.97	40119 80238 20059.5	6.5 7 6		
Sample ID	Response	RT	Response	RT	Response	RT		
L410136-01	31288	4.73	127132	5.47	79047	6.50		

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test:Semi-Volatiles by Method 8270C Matrix:Water - mg/L Project:Tucson/Grant Rd. MS4 Site Project No:30803201 Login No:L410136 Sample Date:6/30/2009 Extraction Date:7/5/2009 Analysis Date:7/6/2009 Instrument ID:BNAMS11 Analyst:145 Analytic Batch:WG429990

L410136

EPA ID: TN00003

FileID:0706_02.D		Date:7/6/20	09		Time:5:08 PM			
	IS4 Response	RT	IS5 Response	RT	IS6 Response	RT		
12 Hour Std Upper Limit Lower Limit	69611 139222 34805.5	7.36 7.86 6.86	72552 145104 36276	8.9 9.4 8.4	66427 132854 33213.5	9.85 10.35 9.35		
Sample ID	Response	RT	Response	RT	Response	RT		
L410136-01	113368	7.37	95626	8.91	65980	9.87		

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test: Chlorinated Pesticides by Method 8081A

Method Blank

Matrix:Water - mg/L Project:Tucson/Grant Rd. MS4 Site Project No:30803201 Login No:L410136 Sample Number:L410136-01 Sample Date:6/30/2009 Extraction Date:7/2/2009 Analysis Date:7/3/2009 Instrument ID:SVGC23 Analyst:239

Analytic Batch:WG429567

EPA ID: TN00003

-	and Duning	
Analyte	CAS	PQL
4,4-DDD	72-54-8	< 0.000050
4,4-DDE	72-55-9	< 0.000050
4,4-DDT	50-29-3	< 0.000050
Aldrin	309-00-2	< 0.000050
Alpha BHC	319-84-6	< 0.000050
Beta BHC	319-85-7	< 0.000050
Chlordane	57-74-9	< 0.000500
Delta BHC	319-86-8	< 0.000050
Dieldrin	60-57-1	< 0.000050
Endosulfan I	959-98-8	< 0.000050
Endosulfan II	33213-65-9	< 0.000050
Endosulfan sulfate	1031-07-8	< 0.000050
Endrin	72-20-8	< 0.000050
Endrin aldehyde	7421-93-4	< 0.000050
Endrin ketone	53494-70-5	< 0.000050
Gamma BHC	58-89-9	< 0.000050
Heptachlor	76-44-8	< 0.000050
Heptachlor epoxide	1024-57-3	< 0.000050
Hexachlorobenzene	118-74-1	< 0.000050
Methoxychlor	72-43-5	< 0.000050
Toxaphene	8001-35-2	< 0.000500

Quality Control Summary for client sample(s) GR ADOT 2

L410136

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test: Chlorinated Pesticides by Method 8081A

Matrix:Water - mg/L Project:Tucson/Grant Rd. MS4 Site Project No:30803201 Login No:L410136 Sample Number:L410136-01 Sample Date:6/30/2009 Extraction Date:7/2/2009 Analysis Date:7/3/2009 Instrument ID:SVGC23 Analyst:239

Analytic Batch:WG429567

EPA ID: TN00003

L410136

Laboratory Control Sample (LCS)

4 4 DDD 0 000200 0 000173 86 7 37 142	
1.4 DDD $0.000200 0.000173 867 37 142$	
4,4-DD 0.000200 0.000175 80.7 57 - 142	
4,4-DDE 0.000200 0.000166 83.1 33 - 124	
4,4-DDT 0.000200 0.000180 90.1 32 - 143	
Aldrin 0.000200 0.000167 83.5 25 - 115	
Alpha BHC 0.000200 0.000170 85.1 38 - 119	
Beta BHC 0.000200 0.000156 78.2 42 - 126	
Delta BHC 0.000200 0.000160 80.1 24 - 141	
Dieldrin 0.000200 0.000171 85.7 37 - 130	
Endosulfan I 0.000200 0.000174 86.8 37 - 125	
Endosulfan II 0.000200 0.000202 101 38 - 131	
Endosulfan sulfate 0.000200 0.000167 83.7 38 - 131	
Endrin 0.000200 0.000171 85.3 37 - 126	
Endrin aldehyde 0.000200 0.000149 74.6 24 - 154	
Endrin ketone 0.000200 0.000165 82.4 37 - 139	
Gamma BHC 0.000200 0.000166 83.0 35 - 114	
Heptachlor 0.000200 0.000169 84.5 21 - 123	
Heptachlor epoxide 0.000200 0.000167 83.7 38 - 121	
Hexachlorobenzene 0.000200 0.000155 77.6 28 - 115	
Methoxychlor 0.000200 0.000134 67.0 55 - 150	

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test: Chlorinated Pesticides by Method 8081A

Matrix:Water - mg/L Project:Tucson/Grant Rd. MS4 Site Project No:30803201 Login No:L410136 Sample Number:L410136-01 Sample Date:6/30/2009 Extraction Date:7/2/2009 Analysis Date:7/3/2009 Instrument ID:SVGC23 Analyst:239

Analytic Batch:WG429567

EPA ID: TN00003

L410136

Laboratory Control Sample Duplicate (LCSD)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
4,4-DDD	0.000200	0.000159	79.5	37 - 142	
4,4-DDE	0.000200	0.000156	78.0	33 - 124	
4,4-DDT	0.000200	0.000158	79.1	32 - 143	
Aldrin	0.000200	0.000161	80.7	25 - 115	
Alpha BHC	0.000200	0.000167	83.4	38 - 119	
Beta BHC	0.000200	0.000153	76.4	42 - 126	
Delta BHC	0.000200	0.000153	76.4	24 - 141	
Dieldrin	0.000200	0.000162	80.9	37 - 130	
Endosulfan I	0.000200	0.000166	83.0	37 - 125	
Endosulfan II	0.000200	0.000181	90.4	38 - 131	
Endosulfan sulfate	0.000200	0.000147	73.6	38 - 131	
Endrin	0.000200	0.000145	72.4	37 - 126	
Endrin aldehyde	0.000200	0.000137	68.4	24 - 154	
Endrin ketone	0.000200	0.000148	74.1	37 - 139	
Gamma BHC	0.000200	0.000161	80.3	35 - 114	
Heptachlor	0.000200	0.000161	80.3	21 - 123	
Heptachlor epoxide	0.000200	0.000161	80.3	38 - 121	
Hexachlorobenzene	0.000200	0.000154	77.0	28 - 115	
Methoxychlor	0.000200	0.000111	55.3	55 - 150	
Environmental Science Corporation

Quality Control Summary

L410136

Engineering & Env. Consultants, INC. -AZ

Test: Pesticides by Method 8081 Matrix: Water - mg/L Project: Tucson/Grant Rd. MS4 Site Project No: 30803201 Login No: L410136 Sample Number: L410136-01 Sample Date: 6/30/2009 Extraction Date: 7/2/2009 Analysis Date: 7/3/2009 Instrument ID: SVGC23 Analyst: 239

Analytic Batch:WG429567

Surrogate Summary

Laboratory	TC	X Col 1	TC	X Col 2	DC	CB Col 1	DCB Col 2		
Sample ID	ppm	% Rec	ppm	% Rec	ppm	% Rec	ppm	% Rec	
Blank WG429567	0.00017	88.7	0.0001	92.2	0.0001	88.0	0.0002	103	
LCS WG429567	0.00016	83.2	0.0001	84.4	0.0001	77.6	0.0001	84.0	
LCSD WG429567 L410136-01	0.00016 0.00009	82.2 47.1	0.0001 0.0000	80.4 31.8	$0.0001 \\ 0.0000$	63.4 25.0	0.0001 0.0001	86.3 67.6	

Column 1 TCMX	Limits -15 - 114	
DCB	Limits -10 - 123	
Column 2		86 of 91
TCMX	Limits -15 - 114	
DCB	Limits -10 - 123	

Environmental Science Corporation

Quality Control Summary

Engineering & Env. Consultants, INC. -AZ

Test: Chlorinated Pesticides by Method 8081A

Matrix:Water - mg/L Project:Tucson/Grant Rd. MS4 Site Project No:30803201 Login No:L410136 Sample Number:L410136-01 Sample Date:6/30/2009 Extraction Date:7/2/2009 Analysis Date:7/3/2009 Instrument ID:SVGC23 Analyst:239

Analytic Batch:WG429567

EPA ID: TN00003

Laboratory Control Sample/ Laboratory Control Sample Duplicate

Analyte	Spike	LCS	% Rec	LCSD	% Rec	Control Limits	% Qualifier RPD	Control Limits	Qualifier
4,4-DDD	0.00020	0.00017	86.7	0.00015	79.5	37-142	8.6	39	
4,4-DDE	0.00020	0.00016	83.1	0.00015	78.0	33-124	6.3	37	
4,4-DDT	0.00020	0.00018	90.1	0.00015	79.1	32-143	13	42	
Aldrin	0.00020	0.00016	83.5	0.00016	80.7	25-115	3.4	45	
Alpha BHC	0.00020	0.00017	85.1	0.00016	83.4	38-119	2.1	30	
Beta BHC	0.00020	0.00015	78.2	0.00015	76.4	42-126	2.3	31	
Delta BHC	0.00020	0.00016	80.1	0.00015	76.4	24-141	4.7	41	
Dieldrin	0.00020	0.00017	85.7	0.00016	80.9	37-130	5.8	36	
Endosulfan I	0.00020	0.00017	86.8	0.00016	83.0	37-125	4.6	35	
Endosulfan II	0.00020	0.00020	101	0.00018	90.4	38-131	11	36	
Endosulfan sulfate	0.00020	0.00016	83.7	0.00014	73.6	38-131	13	37	
Endrin	0.00020	0.00017	85.3	0.00014	72.4	37-126	16	37	
Endrin aldehyde	0.00020	0.00014	74.6	0.00013	68.4	24-154	8.7	36	
Endrin ketone	0.00020	0.00016	82.4	0.00014	74.1	37-139	11	36	
Gamma BHC	0.00020	0.00016	83.0	0.00016	80.3	35-114	3.3	30	
Heptachlor	0.00020	0.00016	84.5	0.00016	80.3	21-123	5.1	38	
Heptachlor epoxide	0.00020	0.00016	83.7	0.00016	80.3	38-121	4.2	33	
Hexachlorobenzene	0.00020	0.00015	77.6	0.00015	77.0	28-115	0.8	29	
Methoxychlor	0.00020	0.00013	67.0	0.00011	55.3	55-150	19	40	

L410136

* · · · *

Company Name/Address			Alternate Bi	illina	-			Analy	sis/Cr	ontain	or/Dra		itivo			Chai	n of Custody
				in g					3,3,00		ं हेल्ल	30140			C095	्णवा पुर	e_1_of_3_
EEC															0030	-	
7878 N. 16th St., Suite 140 Phoenix, AZ 85020)														Prepared by:		
										03		Cet		Pres	Environ Science cor	MENTAL P	
				na Burto	<i>i</i> n					NH	s	Ż		٩	12065 Lebar	non Road	
			E-mail to;	rton C C	echr.c	sen				ш	Pre	F		Щ	Mt. Juliet TN	37122	
Project Description: Tucson/Grant Ro	d. MS4 Site			City/S	State Collected:					ЮН	<u>0</u>	N.		Ŧ	Phone (615)	758-5858	
PHONE:602-248-7702	Client Project	No.		Lab Project #	<u> </u>		오	6		E	ш	×		7	Phone (800) 767-5859	
FAX: 602-248-7851							P	Pré	res	500	D H	The	es	ride	. FAX (61	5)758-5859	9
Colleged by: Charl S. Lancord	Site/Facility ID	¥ .		P.O.#			ןאַ ש	°N N	NoF	a, Na		1609	No PI	Chlo	CoCode	(lab use	only)
Collected by (signature):	Rush? (L	ab MUST be Next Day	e Notified)	Date Result	s Needed	No	₩ ₽	- Amb	- Amb	3a, C₂	DS 5(VER	DPE	tho-P,			
(hed S. thursd	<u> </u>	WO Day		Email?N	lo_XYes	of	HH H		=	us E	F	R	L	ō	remplate/Prelogin		
Packed on ice NY		Three Day	25%	FAX?N	loYes		21-	270	<u>8</u> 081	lq N	ğ	X	5	ate,	Shipped Via:		
Sample ID	Comp/Grab	Matrix	Depth	Date	Time	Cntrs	V80	S S S	SVB	ΡР	SPC	MAX .	BOI	Sulf	Remarks/contaminant	Sample	# (lab only)
GR ADOT 2	C	hater	Ó	6/30/09	0280	19	x	X	X	х	X	3	x	Х		14/0/	36-01
:																	
									1							· . ·	
													<u></u>				
							1										
														<u></u>			
				+				3	6008 12 5		- 2008 - 2008 - 2008						
							<u> </u>		8.1	1	<u> </u>		i.·			e villige .	
Matrix: SS-Soil/Solid GW-Groundwa	ter WW-Wa	stewater D	W-Drinking V	Vater OT-Of	ther								pH_		Temp		
Remarks: Shipped	in te	ට ා Coo	levs -	Rd Gx	Theelen	90	69	745	3 -	72ይን	/-,	Flo	w		Other	-	
Refiniquisher by: (Signatule	Date:	Time:	Received by:(S	Signature)	m		Sampl	es retur	ned via	FedE	UP:	S_Oth	ner			(lab use ohlý)	
Relinquisher by:(Signature	Date:	Time:	Received by: (Signature)	5_5		Temp	1			Bottles	Recei	ved:				

Relinquisher by:(Signature) Date: Time: Received for lab by: (Signature) Date: Time: Date: Time: Date: Time: Date: Date:

NCF: 88 0f 91

Company Name/Address			Alternate Bi	lling	·			Analy	/sis/C	ontair	ner/Pre	eserva	tive		Chain of Custody		
EEC																Page_2_of_3_	
7878 N. 16th St., Suite 140 Phoenix, AZ 85020)										and				Prepared by:		
											, Sake		E.		Environ Science cor	MENTAL p	
			Report to:	n Bur	ton										12065 Leba	- non Road	
			E-mail to:	urton @	eecohic	. حتاب									Mt. Juliet TN	37122	
Project Description: Tucson/Grant Rd. MS4 Site				City/S	State Collected:				്ഗ						Dhone (615)	759 5959	
PHONE:602-248-7702	Client Project	No.		Lab Project #			7	6	Рге	res	4	4			Phone (800) 767-5859	
FAX: 602-248-7851							12S(Pre	å	9	SO	2SC	Ъ	80	. FAX (61	5)758-5859	
Collected by: Chad S. Haynoch	Site/Facility ID	#		P.O.#			Ш	°N N	DPE	ШЩ	E H2	Э Н	Za Z	HZ	CoCode	(lab use only)	
Collected by(signature):	Rush? (L	ab MUST be	e Notified)	Date Result	s Needed	No	Ð	DPE	ΠH	H	I G H	ЦЦН	Ida	DPE	ENGENVPAZ		
Thed Saland	<u> </u>	Vext Day	100%	Emeil2	A V Vee	4.	oml	エ ユ	25r	25m	E	Ш	도 문	ЧН	Template/Prelogin		
Packed on Ice N Y X		Three Day		FAX?N	lo_x_res lo_Yes	or	25	S V	ē	÷ •	25(25(2501	250r	Shinned Via*		
Sample ID	Comp/Grab	Matrix	Depth	Date	Time	Cntrs		MBA	Nitra	Nitrit	NH3	TKN	N	ЦЦ	Remarks/contaminant	Sample # (lab only)	
GR ADOT 2	C	Water	0'	6/30/09	0830	8	x	X	X	X	X	X	x	X		24/0/36-01	
													38079 2019 201				
							5										
*			<u> </u>		1		1	I									
Matrix: SS-Soil/Solid GW-Groundwa	ater WW-Wa	stewater D	W-Drinking W	later OT-Ot	her								рН		Temp		
Remarks: Shipped in 2	coulers.	- Fed 5	Thack	iz 96	69 7453	72	81 /·	726	7			Flo	w		Other		
Reinfouisner by (Signature)	Date:	Time:	Received by:(S	igňature)	LV1	-	Sampl	es retun	ned via	: FedE	x_UP	SOth	er		Condition	(lab use only)	
Relinquisher by:(Signature	Date:	Time:	Received by: (S	Signature)	Č , Ž-		Temp	,			Bottles	Receiv	ed:		6.603.1		
Pelloguisher hu/Cirgot	Data		1.1.1.2.1.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1	····	La U		3	4			2	3+	17ß				
	Date:	lime:	Received for t	ab by: (Signature			Date:	1-01-	7 Y A		Time:	190	0		pH Checked:	NCF 89 of 91	
			lan d	· Vin	<u>n</u>	ionica i	$1 \sim 7$							~im.k			

>

ż,

EEC 7878 N. 16th St., Suite 140 Phoenix, AZ 85020 Report to: _bhn B_crbn Email to: _bhn B_crbn B_crbn Email to: _bhn B_crbn B_crbn Broject Description. Tucson/Grant Rd. MS4 Site Chystae Collected Phome 502.248-7702 Client Project No. Lab Project # Chystae Collected Phome 502.248-7702 Client Project No. Lab Project # Chystae Collected Phome 615/758-5855 Phone 615/758-5856 Phome 615/758-5856 Phone 615/758-5856 Phome 615/758-5856 Phone 615/758-5856 Phome 615/758-5856 FAX (615)758-5856 Phome 615/758-5856 FAX (615)758-5856 Collected by: Ud Hullon Collected Collected by: Ud Hullon Collected Mud S : Hund Rush7 Lab MUST be Notified) Matrix Depth Date Orins Sample ID Completed Matrix Depth Date No GAL GAL GAL GAL GAL GAL Collected Date Collected No GAL GAL GAL Packed on tor	₽ :3 -0 :3
7878 N. 16th St., Suite 140 Project 140 Project 140 Project 150 Date No. Bar bin Bar bin <	-
Report to: John Bur ton Bur ton Bur ton Bur ton Bur ton Cellected. Project Description: Tucson/Grant Rd. MS4 Site Collected Discription: Tucson/Grant Rd. MS4 Site Collected Cellected. Office Project # Office Proje	
Project Description: Tucson/Grant Rd. MS4 Site 12065 Lebanon Road Project Description: Tucson/Grant Rd. MS4 Site City/State Collected: PHONE 602-248-7702 Cilent Project No. FAX: 602-248-7702 Cilent Project No. Collected by Date Facility ID# Collected by Dot facility ID# Collected by No Mut Juliet TN 37122 Phone (615)758-5858 Phone (600) 767-585 FAX (015)768-5858 Phone (600) 767-585 Phone (615)768-5858 Phone (615)768-5858 Phone (600) 767-585 Phone (615)768-5858 Phone (615)768-5858 Phone (700) Phone (700) Phone (700) Phone (700)	
Project Description: Tucson/Grant Rd. MS4 Site Mt. Juliet TN 37122 Project Description: Cilent Project No. Lab Project # FAX: G02-248-7702 Cilent Project No. Lab Project # Collected by O U O U Collected by Date Results Needed No U U U Collected by Mt. Juliet TN 37122 Phone (615)758-588 Phone (600) 767-585 Collected by Mt. Juliet TN 37122 Phone (615)758-588 Collected by Mt. Juliet TN 37124 Phone (615)758-588 Collected by Mt. Juliet TN 37124 Phone (615)758-588 Mt. Juliet TN 37122 Phone (615)758-588 Collected ty regarature) Mt. Juliet TN 37124 Mult J StierFacility ID# Date Results Needed Mult J StierFacility ID# Date Results Needed Mult J No Email® No Mt. Juliet TN 37122 Three Day 25% Sample ID Comp/Grab Matrix Depth Date No SitepFace SitepFace SitepFace SitepFace SitepFace	
Project Description: Tucson/Grant Rd. MS4 Site City/State Collected: Phone (615)/58-5858 PHONE:502-248-7702 Cilient Project No. Lab Project # O FAX: 602-248-7851 Site/Facility ID# P.0.# O Collected by: Goldent Project No. Date Results Needed No Collected by: Mud OF TH Date Results Needed No Macd S: Mush? (Lab MUST be Notified) Date Results Needed No Macd S: Much S: Matrix Depth Date Time Control Matrix Depth Date Time Control Sample ID Comp/Grab Matrix Depth Date Time Control GR Ator T Z C C Glasso GR X	
PHONE:602-248-7702 Client Project No. Lab Project # Poiet # Phone (800) 767-585 FAX: 602-248-7851 Site/Facility ID# P.O.# D D Phone (800) 767-585 Collected by:	
FAX: 602-248-7851 Collected by: Date Results Needed Diffectility ID# P.O.# Diffectility ID# P.O.# Diffectility ID# Date Results Needed Diffectility ID# Collected by: Diffectility ID# Date Results Needed No Diffectility ID# Collected by: Diffectility ID# Date Results Needed No Diffectility ID# Collected by: Diffectility ID# Date Results Needed No Diffectility ID# Collected by: Diffectility ID# Diffectility ID# <t< td=""><td>9</td></t<>	9
Collected by: Sitte/Facility ID# P.O.# TO TO <thto< th=""> TO TO<td>i9</td></thto<>	i9
Collected by(signature) Rush? (Lab MUST be Notified) Date Results Needed No H	e only)
Packed on Ice N_Y TWO Day	
Sample ID Comp/Grab Matrix Depth Date Time Cntrs C S S S Remarks/contaminant Sample ID GR ADOT 2 C Lutur O ⁴ G/3a/o9 O830 S X	ıter
<u>GRADOTZ</u> <u>C</u> <u>unter</u> <u>O'</u> <u>430/09</u> 0830 <u>unter</u> <u>X</u> <u></u>	le # (lab only)
	136-01
	•
	•
Matrix: SS-Soil/Solid GW-Groundwater WW-Wastewater DW-Drinking Water OT-Other Remarks: Shipped in Z coolers - Ed Go Tomohing 9669 74537289/7267 Flow Other	<u>6</u> 41, , , , , , , , , , , , , , , , , , ,
Relinquisher/by:(Signature Date: Time: Received by:(Signature) Samples returned via: FedEx_UPS_Other_ Condition (lab use only No. C State: C/30/07 I Zoo Sh. p.n.d Fed Fed Condition COCS / Relinquisher by:(Signature) Date: Time: Received by: (Signature) Temp: Bottles Received: COCS /	
Intellinguisher by:(Signature Date: Time: Received for lab by: (Signature) Date: Time: pH Checked: NCF: 90 of - - - 0701-09 0100 - - 90 of	91

۱**ه**

Ą

ENVIRONMENTAL SCIENCE CORP.
SAMPLE NON-CONFORMANCE FORM
Login No.: D. Richerds
Date: $0/-0/-09$ Evaluated by: J . $F_0 _W$
Client: PNGENUPAZ
Non-Conformance (check applicable items)
Chain of Custody is missing \mathcal{L} Login Clarification Needed
Improper container type Improper preservation Chain of custody is incomplete Container lid not intact
\overline{X} Parameter(s) past holding time Improper temperature
Broken container(s) see below Broken container: sufficient sample
volume remains for analysis requested Insufficient packing material around container
Insufficient packing material inside cooler Immoner handling by carrier (FedEv / 110S / Conrier)
Sample was frozen
Comments: Received & XTUG 1 Litur DIGHTIC Lubiliz
T55, por little on C. of. C
2 cile and 4 Hold
Login Instructions: TSR Initials: DC
Client informed by callenaily fax / voice mail date: $\frac{3}{1}$ time: 16:0
Client contact: DAdd + new TSS per cluent
C proved per Vaplue R.

May 19, 2010

Tom Ross Engineering and Environmental Consultants, Inc. 4625 E. Ft. Lowell Road, Tucson, AZ 85712

TEL (520) 321-4625 FAX (520) 547-5650

RE: A DOT Storm Water

Work Order No.: 10D0680 Order Name: A DOT Storm Water

Dear Tom Ross,

Turner Laboratories, Inc. received 1 sample(s) on 04/23/2010 for the analyses presented in the following report.

All results are intended to be considered in their entirety, and Turner Laboratories, Inc. is not responsible for use of less than the complete report. Results apply only to the samples analyzed. Samples will be disposed of 30 days after issue of our report unless special arrangements are made.

The pages that follow may contain sensitive, privileged or confidential information intended solely for the addressee named above. If you receive this message and are not the agent or employee of the addressee, this communication has been sent in error. Please do not disseminate or copy any of the attached and notify the sender immediately by telephone. Please also return the attached sheet(s) to the sender by mail.

Please call if you have any questions.

Respectfully submitted,

Turner Laboratories, Inc. ADHS License AZ0066

eni L. Harcia

Terri Garcia Technical Director

Lab Sample ID	Client Sample ID	Matrix	Collection Date/Time					
Work Order: 10D0680 Date Received: 04/23/2010		Work Order Sa	imple Summary					
Project:	A DOT Storm Water	Order: A DOT Storm	Water					
Client: Engineering and Environmental Consultants, Inc								

10D0680-01

ADOT-10-113

Storm Water

04/23/2010 1135

Work Order: Date Received:	10D0680 04/23/2010	Case Narrative
Project:	A DOT Storm Water	
Client:	Engineering and Environmental Consultants, Inc.	

The surfactant analysis was performed by SPL, Inc. in Houston, TX.

D5	Minimum	Reporting	Limit (MRL)	is elevated	due to sam	ple dilution.
----	---------	-----------	---------	------	-------------	------------	---------------

E Value is above quantitation range.

- H2 Initial analysis was performed within holding time. Reanalysis for the required dilution was past holding time.
- H5 Initial analysis was performed within holding time with failing QC. Reanalysis was performed past holding time with acceptable QC and similar results were obtained.
- K3 The sample dilutions set-up for the BOD/CBOD analysis did not produce more than one reportable result for a calculated average. Reported result is an estimated value.
- M4 The analysis of the spiked sample required a dilution such that the calculation does not provide useful information. The associated LCS/LCSD recovery was acceptable.
- M5 Insufficient sample was available for method-required MS, MSD.
- M7 The matrix spike recovery was below acceptance limits. Re-extraction and/or re-analysis confirms the low recovery.
- S4 Surrogate recovery was above laboratory and method acceptance limits.No target analytes were detected in the sample.
- S8 The analysis of the sample required a dilution such that the surrogate recovery does not provide useful information. The associated LCS/LCSD recovery was acceptable.
- V1 CCV recovery was above method acceptance limits. This target analyte was not detected in the sample.
- ND Not Detected at or above the PQL
- PQL Practical Quantitation Limit
- DF Dilution Factor

Client: Project: Work Order: Lab Sample ID:	ent:Engineering and Environmental ConsultantsClient Sample ID: ADOT-10-oject:A DOT Storm WaterCollection Date/Time: 04/23/2010ork Order:10D0680Matrix: Storm Waterb Sample ID:10D0680-01Order Name: A DOT Stor									
Analyses		Result	PQL	PQL Qual		DF	Prep Date	Analysis Date	Analyst	
C10-C32 Hydrocarbo	ons-8015AZR1(I	Mod)								
C10-C22 (Diesel Ra Organics)	nge	7.9	3.0		mg/L	1	04/27/2010 102	9 04/28/2010 2229	DCB	
C10-C32 (Total)		24	13		mg/L	1	04/27/2010 102	9 05/08/2010 0004	DCB	
C22-C32 (Oil Range	Organics)	16	10		mg/L	1	04/27/2010 102	9 05/08/2010 0004	DCB	
C6-C10 (Gasoline R Organics)	ange	ND	2.0		mg/L	1	04/27/2010 102	9 04/28/2010 2229	DCB	
Surr: o-Terphenyl		81	70-130		%REC	1	04/27/2010 102	9 04/28/2010 2229	D DCB	
Surr: Trifluorotoluer	1e	92	70-130		%REC	1	04/27/2010 102	9 04/28/2010 2229	DCB	
Calculation										
Hardness, Ca & Mg Calculation		470			mg/L	1	04/26/2010 095	0 04/29/2010 1622	RAD	
Nitrogen, Total		20			mg/L	5	04/28/2010 080	0 04/30/2010 1100	JM	
рН-Е150.1										
pH (pH Units)		7.3	0.0		-	1	04/23/2010 142	0 04/23/2010 1422	BKW	
Temperature (°C)		18			-	1	04/23/2010 142	0 04/23/2010 1422	BKW	
N-Hexane Extractabl	e Material (HE	M)-E1664A								
Oil & Grease		9.20	5.00		mg/L	1	04/30/2010 080	0 04/30/2010 1419	EW	
Turbidity-E180.1										
Turbidity		58	0.10	H2	NTU	1	05/03/2010 152	0 04/23/2010 1426	BKW	
ICP Total Metals-E2(00.7									
Antimony		ND	0.20		mg/L	1	04/26/2010 095	0 04/29/2010 1623	RAD	
Arsenic		ND	0.040		mg/L	1	04/26/2010 095	0 04/29/2010 1623	RAD	
Barium		0.20	0.050		mg/L	1	04/26/2010 095	0 04/29/2010 1622	RAD	
Beryllium		ND	0.0020		mg/L	1	04/26/2010 095	0 04/29/2010 1622	RAD	
Cadmium		ND	0.0020		mg/L	1	04/26/2010 095	0 04/29/2010 1623	RAD	
Calcium		150	4.0		mg/L	1	04/26/2010 095	0 04/29/2010 1622	RAD	
Chromium		ND	0.030		mg/L	1	04/26/2010 095	0 04/29/2010 1623	RAD	
Copper		0.13	0.020		mg/L	1	04/26/2010 095	0 04/29/2010 1622	RAD	
Lead		ND	0.040		mg/L	1	04/26/2010 095	0 04/29/2010 1623	RAD	
Magnesium		20	3.0		mg/L	1	04/26/2010 095	0 04/29/2010 1622	RAD	
Nickel		ND	0.050		mg/L	1	04/26/2010 095	0 04/29/2010 1623	RAD	
Selenium		ND	0.040		mg/L	1	04/26/2010 095	0 04/29/2010 1623	RAD	
Silver		ND	0.010		mg/L	1	04/26/2010 095	0 04/29/2010 1622	RAD	
Sodium		18	5.0		mg/L	1	04/26/2010 095	0 04/29/2010 1622	RAD	

Client: Project: Work Order: Lab Sample ID:	Engineerin A DOT Sto 10D0680 10D0680-0	Client Sample ID: ADOT-10-113 Collection Date/Time: 04/23/2010 1135 Matrix: Storm Water Order Name: A DOT Storm Water									
Analyses		Result	PQL	Qual	Units	DF	Prep Date		Analysis Date		Analyst
Thallium		ND	0.050		mg/L	1	04/26/2010 0	950	04/29/2010	1623	RAD
Zinc		0.41	0.040		mg/L	1	04/26/2010 0	950	04/29/2010	1622	RAD
CVAA Total Mercury	-E245.1										
Mercury		ND	0.0010		mg/L	1	04/26/2010 1	315	04/27/2010	1005	RAD
Anions by Ion Chrom	atography-E30	0									
Chloride		14	1.0		mg/L	1	04/23/2010 1	700	04/23/2010	1935	JM
Nitrogen, Nitrate (A	s N)	9.9	2.0	H2	mg/L	2	04/27/2010 1	100	04/27/2010	1259	JM
Nitrogen, Nitrite		1.9	0.10		mg/L	1	04/23/2010 1	700	04/23/2010	1935	JM
Phosphorus, Dissolv Orthophosphate (As	ed P)	ND	0.50	Н5	mg/L	1	04/27/2010 1	300	04/27/2010	1241	JM
Sulfate		310	100		mg/L	20	04/27/2010 1	100	04/27/2010	1318	JM
Total Kjeldahl Nitrog	en-E351.1										
Nitrogen, Kjeldahl, T	Fotal	7.8	2.5		mg/L	5	04/28/2010 0	800	04/30/2010	1100	JM
Total Residual Chlori	ine-H8167										
Total Residual Chlor	rine	ND	0.10	M7	mg/L	1	04/23/2010 1	355	04/23/2010	1440	GW
Total Phosphorous as	P-H8190										
Total Phosphorus (as	s P)	0.58	0.20		mg/L	2	05/03/2010 1	000	05/03/2010	1130	JM
Chemical Oxygen De	mand-Hach 800	0									
Chemical Oxygen D	emand	490	20		mg/L	1	04/30/2010 1	045	04/30/2010	1625	EW
Specific Conductance	-SM2510 B										
Conductivity		1000	0.10		µmhos/cm	1	04/27/2010 1	318	04/27/2010	1325	EW
Total Dissolved Solids	s (Residue, Filte	rable)-SM2540	0 C								
Total Dissolved Soli Filterable)	ds (Residue,	910	20		mg/L	1	04/27/2010 0	815	04/28/2010	1110	GW
Total Suspended Solid	ds (Residue, Noi	n-Filterable)-S	M2540 D								
Total Suspended Sol	ids	130	10		mg/L	1	04/26/2010 1	100	04/26/2010	1515	JM
Ammonia as N-SM45	00 B,C										
Nitrogen, Ammonia	(As N)	ND	0.50		mg/L	1	04/29/2010 0	930	04/29/2010	1400	JM

Client: Project:	Engineering and Environmental Consultants A DOT Storm Water 10D0680 10D0680-01				Client Sample ID: ADOT-10-113 Collection Date/Time: 04/23/2010 1135						
Work Order: Lab Sample ID:					Matrix: Storm Water Order Name: A DOT Storm Water						
Analyses		Result	PQL	Qual	Units	DF	Prep Date		Analysis Date		Analyst
Cyanide-SM4500-CN	BE										
Cyanide		ND	0.10		mg/L	1	04/28/2010	1300	04/29/2010	0730	JM
BOD, 5 day-SM5210	В										
Biochemical Oxygen	Demand	90	2.0	K3	mg/L	1	04/23/2010	1600	04/28/2010	1600	JM
Total Coliform & E. C	Coli, MPN-SM922	3B									
E.Coli		390	1		org/100 mL	. 1	04/23/2010	1200	04/24/2010	1200	EW
Total Coliform		2400	1	Е	org/100 mL	. 1	04/23/2010	1200	04/24/2010	1200	EW
Organochlorine Pesti	cides-SW8081A										
4,4′-DDD		ND	0.96		ug/L	10	04/23/2010	1407	05/07/2010	1327	DCB
4,4'-DDE		ND	0.96		ug/L	10	04/23/2010	1407	05/07/2010	1327	DCB
4,4'-DDT		ND	0.96	M4, M5	ug/L	10	04/23/2010	1407	05/07/2010	1327	DCB
Aldrin		ND	0.96	M4, M5	ug/L	10	04/23/2010	1407	05/07/2010	1327	DCB
alpha-BHC		ND	0.96		ug/L	10	04/23/2010	1407	05/07/2010	1327	DCB
alpha-Chlordane		ND	0.96		ug/L	10	04/23/2010	1407	05/07/2010	1817	DCB
beta-BHC		ND	0.96		ug/L	10	04/23/2010	1407	05/07/2010	1327	DCB
delta-BHC		ND	0.96		ug/L	10	04/23/2010	1407	05/07/2010	1327	DCB
Dieldrin		ND	0.96	M4, M5	ug/L	10	04/23/2010	1407	05/07/2010	1327	DCB
Endosulfan I		ND	0.96		ug/L	10	04/23/2010	1407	05/07/2010	1327	DCB
Endosulfan II		ND	0.96		ug/L	10	04/23/2010	1407	05/07/2010	1327	DCB
Endosulfan sulfate		ND	0.96		ug/L	10	04/23/2010	1407	05/07/2010	1327	DCB
Endrin		ND	0.96	M4, M5	ug/L	10	04/23/2010	1407	05/07/2010	1327	DCB
Endrin aldehyde		ND	0.96		ug/L	10	04/23/2010	1407	05/07/2010	1327	DCB
Endrin ketone		ND	0.96		ug/L	10	04/23/2010	1407	05/07/2010	1327	DCB
gamma-BHC		ND	0.96	M5	ug/L	10	04/23/2010	1407	05/07/2010	1327	DCB
gamma-Chlordane		ND	0.96		ug/L	10	04/23/2010	1407	05/07/2010	1817	DCB
Heptachlor		ND	0.96	M4, M5	ug/L	10	04/23/2010	1407	05/07/2010	1327	DCB
Heptachlor epoxide		ND	0.96		ug/L	10	04/23/2010	1407	05/07/2010	1327	DCB
Methoxychlor		ND	0.96		ug/L	10	04/23/2010	1407	05/07/2010	1327	DCB
Toxaphene		ND	0.00096		ug/L	10	04/23/2010	1407	05/07/2010	1327	DCB
Surr: Decachlorobip	henyl		45.4-142.	8 S8	%REC	10	04/23/2010	1407	05/07/2010	1327	DCB
Surr: Tetrachloro-m-	xylene		<i>33.9-124</i> .	4 S8	%REC	10	04/23/2010	1407	05/07/2010	1327	DCB

Volatile Organic Compounds by GC/MS-SW8260B

1,1,1,2-Tetrachloroethane	ND	0.50	ug/L	1	04/26/2010 1117	04/26/2010 1503	KP

Client:	Engineering and Environmental Consultants
Project:	A DOT Storm Water
Work Order:	10D0680
Lab Sample ID:	10D0680-01

Analyses	Result	PQL	Qual	Units	DF	Prep Date	Analysis Date	Analyst
1,1,1-Trichloroethane	ND	0.50		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP
1,1,2,2-Tetrachloroethane	ND	0.50		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP
1,1,2-Trichloroethane	ND	0.50		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP
1,1,2-Trichlorotrifluoroethane	ND	5.0		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP
1,1-Dichloroethane	ND	0.50		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP
1,1-Dichloroethene	ND	0.50		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP
1,1-Dichloropropene	ND	0.50		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP
1,2,3-Trichlorobenzene	ND	2.0		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP
1,2,3-Trichloropropane	ND	1.0		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP
1,2,4-Trichlorobenzene	ND	2.0		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP
1,2,4-Trimethylbenzene	ND	0.50		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP
1,2-Dibromo-3-chloropropane	ND	10		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP
1,2-Dibromoethane	ND	2.0		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP
1,2-Dichlorobenzene	ND	0.50		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP
1,2-Dichloroethane	ND	0.50		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP
1,2-Dichloropropane	ND	0.50		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP
1,3,5-Trimethylbenzene	ND	0.50		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP
1,3-Dichlorobenzene	ND	0.50		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP
1,3-Dichloropropane	ND	0.50		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP
1,4-Dichlorobenzene	ND	0.50		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP
2,2-Dichloropropane	ND	0.50		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP
2-Butanone	12	10		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP
2-Chlorotoluene	ND	0.50		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP
2-Hexanone	ND	2.0		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP
4-Chlorotoluene	ND	0.50		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP
4-Isopropyltoluene	ND	0.50		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP
4-Methyl-2-pentanone	3.6	2.0		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP
Acetone	52	10		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP
Acrylonitrile	ND	10		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP
Benzene	ND	0.50		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP
Bromobenzene	ND	0.50		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP
Bromochloromethane	ND	0.50		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP
Bromodichloromethane	ND	0.50		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP
Bromoform	ND	2.0		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP
Bromomethane	ND	1.0		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP
Carbon disulfide	ND	2.0		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP
Carbon tetrachloride	ND	0.50		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP
Chlorobenzene	ND	0.50		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP
Chloroethane	ND	1.0		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP
Chloroform	ND	0.50		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP
Chloromethane	ND	1.0		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP
cis-1,2-Dichloroethene	ND	0.50		ug/L	1	04/26/2010 1117	04/26/2010 1503	KP

Engineering and Environmental Consultants
A DOT Storm Water
10D0680
10D0680-01

Analyses Result PQL Qual Units DF Prep Date Analysis Da	te Analyst
cis-1,3-Dichloropropene ND 2.0 ug/L 1 04/26/2010 1117 04/26/2010	1503 KP
Dibromochloromethane ND 0.50 ug/L 1 04/26/2010 1117 04/26/2010	1503 KP
Dibromomethane ND 0.50 ug/L 1 04/26/2010 1117 04/26/2010	1503 KP
Dichlorodifluoromethane ND 0.50 ug/L 1 04/26/2010 1117 04/26/2010	1503 KP
Ethylbenzene ND 0.50 ug/L 1 04/26/2010 1117 04/26/2010	1503 KP
Hexachlorobutadiene ND 5.0 ug/L 1 04/26/2010 1117 04/26/2010	1503 KP
Iodomethane ND 10 ug/L 1 04/26/2010 1117 04/26/2010	1503 KP
Isopropylbenzene ND 0.50 ug/L 1 04/26/2010 1117 04/26/2010	1503 KP
m,p-Xylene ND 1.0 ug/L 1 04/26/2010 1117 04/26/2010	1503 KP
Methylene chloride 1.2 1.0 ug/L 1 04/26/2010 1117 04/26/2010	1503 KP
Naphthalene ND 2.0 ug/L 1 04/26/2010 1117 04/26/2010	1503 KP
n-Butylbenzene ND 0.50 ug/L 1 04/26/2010 1117 04/26/2010	1503 KP
n-Propylbenzene ND 0.50 ug/L 1 04/26/2010 1117 04/26/2010	1503 KP
o-Xylene ND 0.50 ug/L 1 04/26/2010 1117 04/26/2010	1503 KP
sec-Butylbenzene ND 2.0 ug/L 1 04/26/2010 1117 04/26/2010	1503 KP
Styrene ND 0.50 ug/L 1 04/26/2010 1117 04/26/2010	1503 KP
tert-Butylbenzene ND 0.50 ug/L 1 04/26/2010 1117 04/26/2010	1503 KP
Tetrachloroethene ND 0.50 ug/L 1 04/26/2010 1117 04/26/2010	1503 KP
Toluene ND 0.50 ug/L 1 04/26/2010 1117 04/26/2010	1503 KP
trans-1,2-Dichloroethene ND 0.50 ug/L 1 04/26/2010 1117 04/26/2010	1503 KP
trans-1,3-Dichloropropene ND 2.0 ug/L 1 04/26/2010 1117 04/26/2010	1503 KP
trans-1,4-Dichloro-2-butene ND 10 ug/L 1 04/26/2010 1117 04/26/2010	1503 KP
Trichloroethene ND 0.50 ug/L 1 04/26/2010 1117 04/26/2010	1503 KP
Trichlorofluoromethane ND 0.50 ug/L 1 04/26/2010 1117 04/26/2010	1503 KP
Vinyl acetate ND 10 ug/L 1 04/26/2010 1117 04/26/2010	1503 KP
Vinyl chloride ND 0.50 ug/L 1 04/26/2010 1117 04/26/2010	1503 KP
Surr: 4-Bromofluorobenzene 92 70-130 %REC 1 04/26/2010 1117 04/26/2010	1503 KP
Surr: Dibromofluoromethane 111 70-130 %REC 1 04/26/2010 1117 04/26/2010	1503 KP
Surr: Toluene-d8 86 70-130 %REC 1 04/26/2010 1117 04/26/2010	1503 KP
Semivolatile Organic Compounds-SW8270C	
1,2,4-Trichlorobenzene ND 96 D5, ug/L 10 04/24/2010 1016 05/04/2010 M4, M5	1328 DCB
1,2-Dichlorobenzene ND 96 D5 ug/L 10 04/24/2010 1016 05/04/2010	1328 DCB
1,3-Dichlorobenzene ND 96 D5 ug/L 10 04/24/2010 1016 05/04/2010	1328 DCB
1,4-Dichlorobenzene ND 96 D5, ug/L 10 04/24/2010 1016 05/04/2010 M4, M5	1328 DCB
2,4,5-Trichlorophenol ND 96 D5 ug/L 10 04/24/2010 1016 05/04/2010	1328 DCB
2,4,6-Trichlorophenol ND 96 D5 ug/L 10 04/24/2010 1016 05/04/2010	1328 DCB
2,4-Dichlorophenol ND 96 D5 ug/L 10 04/24/2010 1016 05/04/2010	1328 DCB

Client:	Engineering and Environmental Consultants
Project:	A DOT Storm Water
Work Order:	10D0680
Lab Sample ID:	10D0680-01

Analyses	Result	PQL	Qual	Units	DF	Prep Date	Analysis Date	Analyst
2,4-Dimethylphenol	ND	96	D5	ug/L	10	04/24/2010 1016	05/04/2010 1328	DCB
2,4-Dinitrophenol	ND	480	D5	ug/L	10	04/24/2010 1016	05/04/2010 1328	DCB
2,4-Dinitrotoluene	ND	96	D5, M4, M5, V1	ug/L	10	04/24/2010 1016	05/04/2010 1328	DCB
2,6-Dinitrotoluene	ND	96	D5	ug/L	10	04/24/2010 1016	05/04/2010 1328	DCB
2-Chloronaphthalene	ND	96	D5	ug/L	10	04/24/2010 1016	05/04/2010 1328	DCB
2-Chlorophenol	ND	96	D5, M4, M5	ug/L	10	04/24/2010 1016	05/04/2010 1328	DCB
2-Methylnaphthalene	ND	48	D5	ug/L	10	04/24/2010 1016	05/04/2010 1328	DCB
2-Methylphenol	ND	96	D5	ug/L	10	04/24/2010 1016	05/04/2010 1328	DCB
2-Nitroaniline	ND	190	D5	ug/L	10	04/24/2010 1016	05/04/2010 1328	DCB
2-Nitrophenol	ND	96	D5, V1	ug/L	10	04/24/2010 1016	05/04/2010 1328	DCB
3,3'-Dichlorobenzidine	ND	190	D5	ug/L	10	04/24/2010 1016	05/04/2010 1328	DCB
3-Nitroaniline	ND	190	D5	ug/L	10	04/24/2010 1016	05/04/2010 1328	DCB
4,6-Dinitro-2-methylphenol	ND	190	D5	ug/L	10	04/24/2010 1016	05/04/2010 1328	DCB
4-Bromophenyl phenyl ether	ND	96	D5, V1	ug/L	10	04/24/2010 1016	05/04/2010 1328	DCB
4-Chloro-3-methylphenol	ND	96	D5, M4, M5	ug/L	10	04/24/2010 1016	05/04/2010 1328	DCB
4-Chloroaniline	ND	190	D5	ug/L	10	04/24/2010 1016	05/04/2010 1328	DCB
4-Chlorophenyl phenyl ether	ND	96	D5	ug/L	10	04/24/2010 1016	05/04/2010 1328	DCB
4-Methylphenol	ND	96	D5	ug/L	10	04/24/2010 1016	05/04/2010 1328	DCB
4-Nitroaniline	ND	190	D5	ug/L	10	04/24/2010 1016	05/04/2010 1328	DCB
4-Nitrophenol	ND	480	D5, M4, M5	ug/L	10	04/24/2010 1016	05/04/2010 1328	DCB
Acenaphthene	ND	48	D5, M4, M5	ug/L	10	04/24/2010 1016	05/04/2010 1328	DCB
Acenaphthylene	ND	48	D5	ug/L	10	04/24/2010 1016	05/04/2010 1328	DCB
Aniline	ND	190	D5	ug/L	10	04/24/2010 1016	05/04/2010 1328	DCB
Anthracene	ND	48	D5	ug/L	10	04/24/2010 1016	05/04/2010 1328	DCB
Benzo[a]anthracene	ND	48	D5	ug/L	10	04/24/2010 1016	05/04/2010 1328	DCB
Benzo[a]pyrene	ND	48	D5	ug/L	10	04/24/2010 1016	05/04/2010 1328	DCB
Benzo[b,k]fluoranthene	ND	96	D5	ug/L	10	04/24/2010 1016	05/04/2010 1328	DCB
Benzo[g,h,i]perylene	ND	48	D5	ug/L	10	04/24/2010 1016	05/04/2010 1328	DCB
Benzoic acid	ND	480	D5	ug/L	10	04/24/2010 1016	05/04/2010 1328	DCB
Benzyl alcohol	ND	48	D5	ug/L	10	04/24/2010 1016	05/04/2010 1328	DCB
Bis(2-chloroethoxy)methane	ND	96	D5	ug/L	10	04/24/2010 1016	05/04/2010 1328	DCB

Client:	Engineering and Environmental Consultants
Project:	A DOT Storm Water
Work Order:	10D0680
Lab Sample ID:	10D0680-01

Analyses	Result	PQL	Qual	Units	DF	Prep Date		Analysis Da	ite	Analyst
Bis(2-chloroethyl)ether	ND	96	D5	ug/L	10	04/24/2010	1016	05/04/2010	1328	DCB
Bis(2-chloroisopropyl)ether	ND	96	D5	ug/L	10	04/24/2010	1016	05/04/2010	1328	DCB
Bis(2-ethylhexyl)phthalate	ND	96	D5	ug/L	10	04/24/2010	1016	05/04/2010	1328	DCB
Butyl benzyl phthalate	ND	96	D5	ug/L	10	04/24/2010	1016	05/04/2010	1328	DCB
Chrysene	ND	48	D5	ug/L	10	04/24/2010	1016	05/04/2010	1328	DCB
Dibenz[a,h]anthracene	ND	48	D5	ug/L	10	04/24/2010	1016	05/04/2010	1328	DCB
Dibenzofuran	ND	48	D5	ug/L	10	04/24/2010	1016	05/04/2010	1328	DCB
Diethyl phthalate	ND	96	D5	ug/L	10	04/24/2010	1016	05/04/2010	1328	DCB
Dimethyl phthalate	ND	96	D5	ug/L	10	04/24/2010	1016	05/04/2010	1328	DCB
Di-n-butyl phthalate	ND	96	D5, V1	ug/L	10	04/24/2010	1016	05/04/2010	1328	DCB
Di-n-octyl phthalate	ND	96	D5	ug/L	10	04/24/2010	1016	05/04/2010	1328	DCB
Fluoranthene	ND	48	D5	ug/L	10	04/24/2010	1016	05/04/2010	1328	DCB
Fluorene	ND	48	D5	ug/L	10	04/24/2010	1016	05/04/2010	1328	DCB
Hexachlorobenzene	ND	96	D5	ug/L	10	04/24/2010	1016	05/04/2010	1328	DCB
Hexachlorobutadiene	ND	96	D5	ug/L	10	04/24/2010	1016	05/04/2010	1328	DCB
Hexachlorocyclopentadiene	ND	96	D5	ug/L	10	04/24/2010	1016	05/04/2010	1328	DCB
Hexachloroethane	ND	96	D5	ug/L	10	04/24/2010	1016	05/04/2010	1328	DCB
Indeno[1,2,3-cd]pyrene	ND	48	D5	ug/L	10	04/24/2010	1016	05/04/2010	1328	DCB
Isophorone	ND	96	D5	ug/L	10	04/24/2010	1016	05/04/2010	1328	DCB
Naphthalene	ND	48	D5	ug/L	10	04/24/2010	1016	05/04/2010	1328	DCB
Nitrobenzene	ND	96	D5	ug/L	10	04/24/2010	1016	05/04/2010	1328	DCB
N-Nitrosodimethylamine	ND	96	D5	ug/L	10	04/24/2010	1016	05/04/2010	1328	DCB
N-Nitrosodiphenylamine	ND	96	D5	ug/L	10	04/24/2010	1016	05/04/2010	1328	DCB
N-Nitrosodipropylamine	ND	96	D5, M4, M5	ug/L	10	04/24/2010	1016	05/04/2010	1328	DCB
Pentachlorophenol	ND	290	D5, M4, M5	ug/L	10	04/24/2010	1016	05/04/2010	1328	DCB
Phenanthrene	ND	48	D5	ug/L	10	04/24/2010	1016	05/04/2010	1328	DCB
Phenol	ND	96	D5, M4, M5	ug/L	10	04/24/2010	1016	05/04/2010	1328	DCB
Pyrene	ND	48	D5, M4, M5	ug/L	10	04/24/2010	1016	05/04/2010	1328	DCB
Surr: 2,4,6-Tribromophenol		44.71-1	09.8 <i>S4,</i> S8	%REC	10	04/24/2010	1016	05/04/2010	1328	DCB
Surr: 2-Fluorobiphenyl		19.47-1	09.2 <i>S</i> 8	%REC	10	04/24/2010	1016	05/04/2010	1328	DCB
Surr: 2-Fluorophenol		6.66-77	.89 S8	%REC	10	04/24/2010	1016	05/04/2010	1328	DCB
Surr: 4-Terphenyl-d14		38.66-1	04.858	%REC	10	04/24/2010	1016	05/04/2010	1328	DCB
Surr: Nitrobenzene-d5		3.34-10	5.8458	%REC	10	04/24/2010	1016	05/04/2010	1328	DCB

Client:	Engineering and Environn	nental Consultants	s Client Sample ID: ADOT-10-113						
Project:		Collection Date/Time: 04/23/2010 1135							
Work Order:	10D0680			Mat	trix: Storm W	Vater			
Lab Sample ID:	10D0680-01	Order Name: A DOT Storm Water							
Analyses	Result	PQL Qual	Units	DF Pre	p Date	Analysis Date	Analyst		
Surr: Phenol-d6	118	11.94-90.98 S4	%REC	10 04/2	24/2010 1016	05/04/2010 1328	B DCB		

	ton at out
QUEST FORM	AMPLE RECEIPT: Total Containers Temperature 79 Imperentation 19 Preservation Confirmation 18 Appropriate Head Space 18 Received Within Hold Time 24
	Account V NOICE INFORMATION: Account V N Custody Seals Custody Seals Container Intact R COC/Labels Agree V
	EPORT REQUIREMENTS: 1. Routine Report 1. Report (includes DUP, MS, MS, ASD, as required, may be charged as samples) MSD, as required, may be mSD, as required, may be charged as samples) 11. Date Validation Report (includes AII Raw Data) Add 10%, to invoice Add 4dd 4dd 4dd 4dd 4dd 4dd 4dd 4dd 4dd
CONTRINERS OF CONTRINERS OF CONTRINERS	DUND REQUIREMENTS: R Day2 Day5 Day' Preliminary Results To:5 Day' Preliminary Results To:5 Day' Preliminary Results To:5 Day' = DRINKING WATER5 PECL = DRINKING WATER6 A = SOULD6 A
CHAI TURNER WORK (HOLDE // KA	VED BY: TURNAR stand Next Next Next Next Next Next Next Next
245 N. Coyote Drive, Suite 1 Tucson, Arizona 85745 (520) 882-5880 Eax: (520) 882-5880 Fax: (520) 882-9788 MARE Fax: (520) 822-9788 MARE Fax: (520)	NQUISHED BY: 2. RECEI
PROJECT N CONTACT COMPANY ADDRESS_ SAMPLERS	Signature Signature Date/Time Date/Time Date/Time Date/Time

-

-

Sampling Kit from ESC

Please use the following containers per sample:

For Stormwater:

 \checkmark

GRO- (2) 40ml amber glass vials- these already contain preservative!! Fill completely

\$260-BTEX- (2) 40ml amber glass vials- these already contain preservative!! Fill completely

OGHEX(Oil and Grease)- (1) 1L clear glass bottle w/ blue dot- add HCL preservative and fill completely

PPMetals+Ba,Na, Ca- (1) 500ml plastic w/ red dot- add nitric preservative and fill completely

-Hardness- (1) 250ml plastic bottle w/ red dot- add nitric preservative and fill completely

Evanide- (1) 250ml brown plastic bottle- this already contains preservative!! Fill completely

TKN, PT(total Phosphorous)- (1) 500ml plastic bottle w/ yellow dot- add sulfuric preservative and fill completely

COD, Ammonia as N- (1) 500ml plastic bottle w/ yellow dot- add sulfuric preservative and fill completely

TSS-(1) 1L plastic bottle- fill completely

BOD- (1) 1L plastic bottle- fill completely

SPCON, pH, TDS, Turbidity, Sulfates- (1) 1L plastic bottle- fill completely

Chloride, Chlorine, Ortho-P- (1) 500ml plastic bottle- fill completely

Nitrate and Nitrite- (1) 250ml plastic bottle- fill completely

**Fecal coliform- (1) 250ml plastic bottle w/ green dot- already contains preservative!!- fill between line and bottom of cap

**E.Coli- (1) 250ml plastic bottle w/ green dot- already contains preservative!!- fill between line and bottom of cap

**NOTE- these analysis have a 6 hour hold time and need to be subbed to the local lab in Tucson- Turner Labs.

A trip blank, temperature blank, labels and COCs have been included with the kit.

Please let me know if you have any questions.

TO SCHEDULE A PICKUP IN TUCSON- Call J2 Express Courier- 520-888-5662. Please try and call the day before or morning of a pickup. Indicate that you are working with Environmental Science and will need cooler(s) picked up for priority overnight delivery to Nashville, TN. Please have coolers packed and on ice according to instructions contained within.

Thanks,

Casey Loflin Phoenix Branch Manager ESC 602-708-8233

Sampling Kit from ESC

Please use the following containers per sample:

For Stormwater:

DRO- (2) 1L ambers w/ blue dot- Add HCL preservative and fill completely

Surfactants- (2) 1L ambers- fill completely 8081-Pesticides- (2) 1L ambers- fill completely 8270-SVOC- (2) 1L ambers- fill completely

Labels and COCs have been included with the kit.

Please let me know if you have any questions.

TO SCHEDULE A PICKUP IN TUCSON- Call J2 Express Courier- 520-888-5662. Please try and call the day before or morning of a pickup. Indicate that you are working with Environmental Science and will need cooler(s) picked up for priority overnight delivery to Nashville, TN. Please have coolers packed and on ice according to instructions contained within.

Thanks,

Casey Loflin Phoenix Branch Manager ESC 602-708-8233

Phone: (713) 660-0901 Fax: (713) 660-8975

Certificate of Analysis April 26, 2010 Workorder: H10040513 Terri Garcia Turner Laboratories, Inc. 2445 N. Coyote Dr., Suite 104 Tucson, AZ 85745 Project: 10D0680 Project: Number: Project Number: Site: Tucson PO Number: NELAC Cert. No.: T104704205-09-1

This Report Contains A Total Of 10 Pages

Excluding Any Attachments

Page 1 of 10

Phone: (713) 660-0901 Fax: (713) 660-8975

Certificate of Analysis					
April 26, 2010	Workorder: H10040513				
Terri Garcia	Project: 10D0680				
Lurner Laboratories, Inc. 2445 N. Coyote Dr., Suite 104	Project Number:				
Tucson, AZ 85745	Site: Tucson				
	PO Number:				
	NELAC Cert. No.: T104704205-09-1				

I. SAMPLE RECEIPT:

All samples were received intact. The internal ice chest temperatures were measured on receipt and are recorded on the attached Sample Receipt Checklist.

II: ANALYSES AND EXCEPTIONS:

Anionic Surfactants as MBAS by SM5540 C:

Sample ID "10D0680-01" (SPL ID: H10040513-001) required a dilution due to the high analyte concentration in the sample. The sample is assigned the Arizona data qualifier D2.

III. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless	dry-weight correction is a	denoted in the units field or	n the analytical report	(" mg\kg-dry "
or " ug\kg-dry ").				

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the Method Blank (MB) are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

Phone: (713) 660-0901 Fax: (713) 660-8975

Certificate of Analysis					
April 26, 2010	Workorder: H10040513				
Terri Garcia	Project: 10D0680				
Turner Laboratories, Inc. 2445 N. Coyote Dr., Suite 104	Project Number:				
Tucson, AZ 85745	Site: Tucson				
	PO Number:				
	NELAC Cert. No.: T104704205-09-1				

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or by his designee, as verified by the following signature.

ancy Bassena

Nancy Barrera, Project Manager

Enclosures

SAMPLE SUMMARY

Workorder: H10040513 : 10D0680					
Lab ID	Sample ID	Matrix	COC ID	Date/Time Collected	Date/Time Received
H10040513001	10D0680-01	Water		4/23/2010 11:35	4/24/2010 09:00

ANALYTICAL RESULTS

Workorder: H10040513 : 10D0680		Project Number:		
Lab ID: H10040513001 Sample ID: 10D0680-01	Date/Time Received: 4/24/2010 09:00 Matrix: Water Date/Time Collected: 4/23/2010 11:35			
WET CHEMISTRY				
Analysis Desc: SM 5540 C	Analytical Batches:			
Batch: 2416 SM 5540 C on 04/24/2010 11:30 by ESK				
Parameters	Results mg/l Qual Report Limit MDL DF RegLmt	Batch Information Prep Analysis		
MDAC				
MR42	2.00 0.500 0.1335 5	2416		

QUALITY CONTROL DATA

Workorder: H10040513 : 10D0680)								Proj	ect Number:
QC Batch: WCSH/2416 QC Batch Method: SM 5540 C Associated Lab Samples: H100	6 040513	001	A	nalysis Meth	od: SM	5540 C				
METHOD BLANK: 41179 Analysis Date/Time Analyst: ()4/24/2	010 11:30 ESK								
Parameter	Unit	ts	F	Blank Result Qualif	iers	Reporting Limit				
MBAS	mg/	1		ND		0.100				
LABORATORY CONTROL SAMP	_E: 4 [·]	1180								
Analysis Date/Time Analyst:	04/24/	2010 11:30 ESK								
Parameter	Units		S	Spike Sonc.	LCS Result	LCS % Rec		% Rec Limits		
MBAS	mg/l			0.6	0.6111	102		81-125		
MATRIX SPIKE & MATRIX SPIKE	DUPLI	CATE: 41181		41182		Original: H	100405130	01		
MS Analysis Date/Time Analyst:		04/24/2010 11:30	ESK							
MSD Analysis Date/Time Analyst:		04/24/2010 11:30	ESK							
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD
MBAS	ma/l	2	3	5.368	5.368	112	112	76-133	0.0	15

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Legend

(S) - Indicates analyte is a surrogate

Qualifier	Qualifier Description
MI	Matrix Interference
I	Estimated value, between MDL and PQL (Florida)
JN	The analysis indicates the presence of an analyte
С	MTBE results were not confirmed by GCMS
NC	Not Calculated - Sample concentration > 4 times the spike
*	Recovery/RPD value outside QC limits
Е	Results exceed calibration range
Н	Exceeds holding time
J	Estimated value
Q	Received past holding time
В	Analyte detected in the Method Blank
Ν	Recovery outside of control limits
D	Recovery out of range due to dilution
NC	Not Calculable (Sample Duplicate)
Р	Pesticide dual column results, greater then 25%

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: H10040513 : 10D0680						
Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch	
H10040513001	10D0680-01	SM 5540 C	WCSH/2416			

Phone: (713) 660-0901 Fax: (713) 660-8975

Sample Receipt Checklist

WorkOrder:		H10040513	Received By	LOG
Dat	e and Time	04/24/2010 09:00	Carrier Name:	FEDEXP
Terr	nperature:	1.0°C	Chilled By:	Water Ice
1.	Shipping container/cooler	in good condition?		YES
2.	Custody seals intact on sh	hipping container/cooler?		Not Present
3.	Custody seals intact on sa	ample bottles?		Not Present
4.	Chain of custody present?	,		YES
5.	Chain of custody signed w	when relinquished and received?		YES
6.	Chain of custody agrees v	vith sample labels?		YES
7.	Samples in proper contain	ner/bottle?		YES
8.	Samples containers intact	?		YES
9.	Sufficient sample volume	for indicated test?		YES
10.	All samples received withi		YES	
11.	Container/Temp Blank ten		YES	
12.	Water - VOA vials have ze		VOA Vials Not Present	
13.	Water - Preservation chec	ked upon receipt(except VOA*)?		Not Applicable
	*VOA Preservation Check	ed After Sample Analysis		

SPL Representative: Client Name Contacted: Client Instructions:

Contact Date & Time:

Phone: (713) 660-0901 Fax: (713) 660-8975

SUBCONTRACT ORDER

H10040513

Turner Laboratories, Inc.

10D0680

SENDING LABORATORY	<u>¥:</u>		RECEIVING LABORATORY:					
Turner Laboratories, Inc.			SPL, Inc.					
2445 N. Coyote Drive, St	e #104		8880 Interchange Driv	/e				
Tucson, AZ 85745			Houston, TX 77054 Phone :800-969-6775					
Phone: 520.882.5880								
Fax: 520.882.9788			Fax: (713) 660-8975					
Project Manager: Terri C	Jarcia		15 48					
Analysis	Due	Expires	Laboratory ID	Comments				
Sample ID: 10D0680-01	Ground V	Sampled:04/23/2010 11:35						
Surfactants	05/07/2010	00:00 06/10/2010 11:35			1000			
Containers Supplied:								

and the second

1500 4.73.10 Released B Date envived B C Released By Date

Page 1 of 1

Page 10 of 10

APPENDIX L Industrial and Maintenance Facility Discharge Monitoring Reports **Superior Maintenance Yard**

AZS000018 DISCHARGE MONITORING REPORT (DMR)

(Complete a separate form for each monitoring point)

Facility Name:			Monitoring l	Monitoring Point (Outfall):					
ADOT – Superior Mainter	nance Yard			Along the s	Along the southeast corner of the maintenance yard				
Facility Address:				Year:	Year:				
951 W Main St., Superior, AZ 85273				2009/2010	Reporting `	Year – Winte	er Storm	Event	
Monitoring Personnel Name(s):			Date/Time C	Collected:					
Gary Hoffmann or Phillip	McNamara, I	EEC		2/23/10 at 2	2:10pm				
Time Rainfall Began:	Duration of R	ainfall Event: A	Approximately	5.0 hours		Rainfall Am	ount (inch	es):	
Approximately 5:00 am						1.32 inches (or 0.11 ft)		
Runoff Source: ☐ Rainfall ☐ Snowmelt	Time Elapsed Approximately	Since Last 0.1 5 days	inch Rainfall	Event:	vent: Qualifying Rainfall Event:				
Estimated Total Volume of Discharge (Include units; gal, ft ³ , etc.): <u>16,500</u> ft ² X <u>0.11</u> ft ² of rain = <u>1,815.0</u> ft ³ X 75% runoff = <u>1,361.25 ft³</u> (7.282			827) = <u>9,913.58</u> g	gallons	NO DISCHA	ARGE []		
Parameter	Qua	antity or Loadi	ng	Quality	or Concentr	ation	No Ex	Frequency of	Sample Type
	Average	Maximum	Units	Minimum	Average	Units		Analysis	
Oil & Grease (Hexane Extr)		No Sample	Lbs	No Sample		mg/L		Once per season	Grab
Total Dissolved Solids		499.85	Lbs	450		mg/L		Once per season	Grab
Total Suspended Solids		33.32	Lbs	30		mg/L		Once per season	Grab
Copper		0.06	Lbs	0.053		mg/L		Once per season	Grab
Copper, Dissolved		-	Lbs	<0.020		mg/L		Once per season	Grab
TPH (GC/FID) High		0.43	Lbs	0.46		mg/L		Once per season	Grab

AZS000018 DISCHARGE MONITORING REPORT (DMR) (Complete a separate form for each monitoring point)

Facility Name:	Monitoring	Monitoring Point (Outfall):								
ADOT – Superior Maintenance Yard				Along the s	Along the southeast corner of the maintenance vard					
Facility Address:	Year:	Year:								
951 W Main St., Superior.	2009/2010	2009/2010 Reporting Year – Summer Storm Event								
Monitoring Personnel Name(s	Date/Time C	Date/Time Collected:								
Gary Hoffmann or Phillip	7/21/09 at	7/21/09 at 10:35am								
Time Rainfall Began: Approximately 5:00 am	Duration of R	ainfall Event: A	Approximatel	y 2.5 hours	5 hoursRainfall Amount (inches): 0.26 inches (or 0.022 ft)					
Runoff Source: ☑ Rainfall □ Snowmelt	Time Elapsed Since Last 0.1 inch Rainfall Event: Approximately 5 days					Qualifying Rainfall Event:				
Estimated Total Volume of Di <u>16,500</u> ft ² X <u>0.022</u> ft ² of rain =	27) = <u>1,982.72</u> gal	llons	NO DISCHA	ARGE []					
Parameter	Quantity or Loading			Quality or Concentra		ation	No Ex	Frequency of Analysis	Sample Type	
	Average	Maximum	Units	Minimum	Average	Units		1111119515		
Oil & Grease (Hexane Extr)			Lbs	<5.9		mg/L		Once per season	Grab	
Total Dissolved Solids		76.58	Lbs	350		mg/L		Once per season	Grab	
Total Suspended Solids		18.59	Lbs	100		mg/L		Once per season	Grab	
Copper		0.02	Lbs	0.12		mg/L		Once per season	Grab	
Copper, Dissolved		0.13	Lbs	0.69		mg/L		Once per season	Grab	
Hardness		19.69	Lbs	90		mg/L		Once per season	Grab	

Superior Fuel Yard

AZS000018 DISCHARGE MONITORING REPORT (DMR)

(Complete a separate form for each monitoring point)

Facility Name:				Monitoring I	Point (Outfal	l):				
ADOT – Superior Fuel Ya	rd L-413522-	-01		Along the west corner of the exterior of the fuel yard						
Facility Address:				Year:						
				2009/10 Re	2009/10 Reporting Year – Winter Storm Event					
Monitoring Personnel Name(s	5):			Date/Time C	Date/Time Collected:					
Gary Hoffmann, EEC				2/22/10 at 1	l 1:20am					
Time Rainfall Began:	Duration of R	ainfall Event: A	Approximately	5.0 hours		Rainfall Am	ount (inch	es):		
Approximately 6:00 am						1.32 inches (0	or 0.11 ft)			
Runoff Source:	Time Elapsed	Since Last 0.1	inch Rainfall	Event: Approxi	mately 5	Qualifying R	ainfall Ev	ent:		
🛛 Rainfall 🔲 Snowmelt	days						\bowtie	YES 🗌 NO		
Estimated Total Volume of Di	ischarge (Includ	le units; gal, ft ³	, etc.):			NO DISCUL		1		
$9,150 \text{ ft}^2 \ge 0.11 \text{ ft}^2 \text{ of rain} = 1,$	<u>006.5</u> ft ³ X 75%	5 runoff = <u>754.</u>	<u>88 ft³ (7.2827</u>	7) = <u>5,497.53 gall</u>	<u>ons</u>	NU DISCHA		J		
Parameter	Qua	antity or Loadii	ng	Quality	Quality or Concentration		No Ex	Frequency of	Sample Type	
					Minimum Average Units					
	Average	Maximum	Units	Minimum	Average	Units		Analysis	Sample Type	
Handnace	Average	Maximum	Units	Minimum	Average	Units		Analysis	Crob	
Hardness	Average	Maximum -	Units Lbs	Minimum <30.0	Average	Units mg/L		Analysis Once Per Season	Grab	
Hardness Total Dissolved Solids	Average	<u>Maximum</u> - 20.76	Units Lbs Lbs	<u>Minimum</u> <30.0 22	Average	Units mg/L mg/L		Analysis Once Per Season Once Per Season	Grab	
Hardness Total Dissolved Solids	Average	Maximum - 20.76	Units Lbs Lbs	Minimum <30.0 22	Average	Units mg/L mg/L		Analysis Once Per Season Once Per Season Once Per Season	Grab Grab	
Hardness Total Dissolved Solids Total Suspended Solids	Average	Maximum - 20.76 188.83	Units Lbs Lbs Lbs	Minimum <30.0	Average	Units mg/L mg/L mg/L		Analysis Once Per Season Once Per Season Once Per Season	Grab Grab Grab	
Hardness Total Dissolved Solids Total Suspended Solids Copper	Average	Maximum - 20.76 188.83 0.0510	Units Lbs Lbs Lbs Lbs	Minimum <30.0	Average	Units mg/L mg/L mg/L mg/L		Analysis Once Per Season	Grab Grab Grab Grab Grab	
Hardness Total Dissolved Solids Total Suspended Solids Copper	Average	Maximum - 20.76 188.83 0.0510	Units Lbs Lbs Lbs Lbs	Minimum <30.0 22 170 0.054 <0.20	Average	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Analysis Once Per Season	Grab Grab Grab Grab Grab	
Hardness Total Dissolved Solids Total Suspended Solids Copper Copper, Dissolved TPH (GC/FID) High	Average	Maximum 20.76	Units Lbs Lbs Lbs Lbs Lbs	Minimum <30.0	Average	Units mg/L mg/L mg/L mg/L mg/L		Analysis Once Per Season	Grab Grab Grab Grab Grab Grab	
Hardness Total Dissolved Solids Total Suspended Solids Copper Copper, Dissolved TPH (GC/FID) High Fraction	Average	Maximum - 20.76 188.83 0.0510 -	Units Lbs Lbs Lbs Lbs Lbs	Minimum <30.0	Average	Units mg/L mg/L mg/L mg/L mg/L		Analysis Once Per Season	Grab Grab Grab Grab Grab Grab	
Hardness Total Dissolved Solids Total Suspended Solids Copper Copper, Dissolved TPH (GC/FID) High Fraction	Average	Maximum	Units Lbs Lbs Lbs Lbs Lbs Lbs Lbs	Minimum <30.0	Average	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Analysis Once Per Season Once Per Season	Grab Grab Grab Grab Grab Grab	
Hardness Total Dissolved Solids Total Suspended Solids Copper Copper, Dissolved TPH (GC/FID) High Fraction	Average	Maximum - 20.76 188.83 0.0510 - 0.29	Units Lbs Lbs Lbs Lbs Lbs Lbs Lbs	Minimum <30.0	Average	Units mg/L mg/L mg/L mg/L mg/L		Analysis Once Per Season	Grab Grab Grab Grab Grab Grab Grab	

AZS000018 DISCHARGE MONITORING REPORT (DMR)

(Complete a separate form for each monitoring point)

Facility Name:				Monitoring I	Point (Autfal	D•			
ADOT – Superior Fuel Ya	rd L-413522-	-01		Along the west corner of the exterior of the fuel yard					
Facility Address:		01		Vear					
Tucinty Huuress.				2009/10 Reporting Year – Summer Storm Event					
Monitoring Personnel Name(s	5):			Date/Time C	follected:	u Summer	Storin L	vent	
Gary Hoffmann EEC	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			7/21/09 at 1	10.35am				
Time Deinfell Decene	Dungtion of D	ainfall Enorth A			10.554111	Doinfoll Am		~~)•	
Approximately 6:00 am	Duration of R	ainfall Event: A	Approximately	y 2.5 nours		Rainfall Am	ount (Incn)	es):	
Approximately 0.00 am						0.20 menes (DI 0.022 II)		
Runoff Source:	Time Elapsed	Since Last 0.1	inch Rainfall	Event:		Qualifying F	ainfall Ev	ent:	
🛛 Rainfall 📋 Snowmelt	Approximatel	y 5 days					\boxtimes	YES 🗌 NO	
Estimated Total Volume of Di	ischarge (Inclue	de units; gal, ft ³	, etc.):			NO DISCH		1	
$9.150 \text{ ft}^2 \text{ X } 0.022 \text{ ft}^2 \text{ of rain} = 1$	<u>198.25</u> ft ³ X 75%	∕₀ runoff = <u>148.</u>	<u>.69 ft³ (</u> 7.282	27) = <u>1,082.84 gal</u>	<u>lons</u>	NO DISCHA]	
	014	antity or Loadi	20	Quality	or Concentr	ration		Fraguancy of	
Donomotor	Uua Uua	анных от тлаанн	2	Viiaiii.v		aliun		FIEULIEIU, VOI	a . m
Parameter				Quinty			No Ex	Analysis	Sample Type
rarameter	Average	Maximum	Units	Minimum	Average	Units	No Ex	Analysis	Sample Type
Handnoss	Average	Maximum	Units	Minimum	Average	Units	No Ex	Analysis	Sample Type
Hardness	Average	Maximum 24.07	Units Lbs	Minimum 110	Average	Units mg/L	No Ex	Analysis Once Per Season	Sample Type Grab
Hardness Total Dissolved Solids	Average	Maximum 24.07 72.20	Units Lbs Lbs	<u>Minimum</u> 110 330	Average	Units mg/L mg/L	No Ex	Once Per Season Once Per Season	Sample Type Grab Grab
Hardness Total Dissolved Solids	Average	Maximum 24.07 72.20	Units Lbs Lbs	<u>Minimum</u> 110 330	Average	Units mg/L mg/L	No Ex	Analysis Once Per Season Once Per Season	Sample Type Grab Grab
Hardness Total Dissolved Solids Total Suspended Solids	Average	Maximum 24.07 72.20 21.88	Units Lbs Lbs Lbs	Minimum 110 330 100	Average	Units mg/L mg/L mg/L	No Ex	Analysis Once Per Season Once Per Season Once Per Season	Sample Type Grab Grab Grab
Hardness Total Dissolved Solids Total Suspended Solids	Average	Maximum 24.07 72.20 21.88	Units Lbs Lbs Lbs	Minimum 110 330 100 0.42	Average	Units Units mg/L mg/L mg/L	No Ex	Analysis Once Per Season Once Per Season Once Per Season Once Per Season	Sample Type Grab Grab Grab
Farameter Hardness Total Dissolved Solids Total Suspended Solids Copper	Average	Maximum 24.07 72.20 21.88 0.09	Units Lbs Lbs Lbs Lbs	Minimum 110 330 100 0.43	Average	Units mg/L mg/L mg/L		Analysis Once Per Season	Sample Type Grab Grab Grab Grab
Hardness Total Dissolved Solids Total Suspended Solids Copper Copper. Dissolved	Average	Maximum 24.07 72.20 21.88 0.09 0.01	Units Units Lbs Lbs Lbs Lbs	Minimum 110 330 100 0.43 0.049	Average	Units Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Analysis Once Per Season	Sample Type Grab Grab Grab Grab Grab
Hardness Total Dissolved Solids Total Suspended Solids Copper Copper, Dissolved TPH (GC/FID) High	Average	Maximum 24.07 72.20 21.88 0.09 0.01	Units Units Lbs Lbs Lbs Lbs Lbs Lbs	Minimum 110 330 100 0.43 0.049	Average	Units Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Analysis Once Per Season	Sample Type Grab Grab Grab Grab Grab
Hardness Total Dissolved Solids Total Suspended Solids Copper Copper, Dissolved TPH (GC/FID) High Fraction	Average	Maximum 24.07 72.20 21.88 0.09 0.01	Units Units Lbs Lbs Lbs Lbs Lbs Lbs	Minimum 110 330 100 0.43 0.049	Average	Units Units mg/L mg/L mg/L mg/L mg/L		Analysis Once Per Season	Sample Type Grab Grab Grab Grab Grab
Hardness Total Dissolved Solids Total Suspended Solids Copper Copper, Dissolved TPH (GC/FID) High Fraction	Average	Maximum 24.07 72.20 21.88 0.09 0.01 0.63	Units Units Lbs Lbs Lbs Lbs Lbs Lbs	Minimum 110 330 100 0.43 0.049 3.4	Average	Units Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Analysis Once Per Season Once Per Season	Sample Type Grab Grab Grab Grab Grab Grab
Hardness Total Dissolved Solids Total Suspended Solids Copper Copper, Dissolved TPH (GC/FID) High Fraction	Average	Maximum 24.07 72.20 21.88 0.09 0.01 0.63	Units Units Lbs Lbs Lbs Lbs Lbs Lbs Lbs	Minimum 110 330 100 0.43 0.049 3.4	Average	Units		Analysis Once Per Season Once Per Season	Sample Type Grab Grab Grab Grab Grab Grab

Nogales Maintenance Yard

AZS000018 DISCHARGE MONITORING REPORT (DMR)

(Complete a separate form for each monitoring point)

Easility Norman				Maniforing	Doint (Onthe)	1).				
Facility Name: Nogalas Maintenance Var	d			Outfall from	Outfall from vard (drains approximately 2.7				2)	
Facility Address:	u			Vear					.)	
1340 North Hohokam Driv	va Nogalas /	Arizona		2009/10 Reporting Vear - Winter Storm Event						
1340 North Honokalli Dil	ve, nogales, r	Alizolia		Dete/Time C	outo/To Reporting Tear - Winter Storin Event					
Thomas Doss EEC	5):			2/22/2010	$\bigcirc 0.18$ m					
Thomas Ross, EEC				2/23/2010	@ 9.10alli					
Time Rainfall Began: Approx 2:30am	Duration of R 3.75 Hrs	ainfall Event:				Rainfall Am 0.13 inches (ount (inche or 0.011 fee	es): et)		
Runoff Source	Time Elansed	Since Last 0.1	inch Rainfall	Event.		Qualifying R	ainfall Ev	ent•		
\square Rainfall \square Snowmelt	Approximatel	ly 43 days	inen Kannan	Lvent.		Quanying I		YES INO		
Estimated Total Volume of Discharge (Include units; gal, ft ³ , etc.): <u>119,790 ft² X 0.011 ft² of rain = 1,317.69 ft³ X 75% runoff = 988.27 ft³ (7.2)</u>				.2827) = <u>7,197.26</u>	<u>gallons</u>	NO DISCHA	ARGE]		
Parameter	Qua	antity or Loadii	ng	Quality	or Concentr	ation	No Ex	Frequency of	Sample Type	
	Average	Maximum	Units	Minimum	Average	Units		Analysis		
Ammonia Nitrogen		0.06	Lbs	0.5		mg/L		Once each season	Grab	
Total Dissolved Solids		229.09	Lbs	1900		mg/L		Once each season	Grab	
Total Suspended Solids		31.35	Lbs	260		mg/L		Once each season	Grab	
Copper, total		0.01	Lbs	0.044		mg/L		Once each season	Grab	
TPH - DRO		-	Lbs	<3.0		mg/L		Once each season	Grab	
Residual Chlorine		-	Lbs	<0.10		mg/L		Once each season	Grab	
Total Coliform		289.39	Lbs	2400		MPN		Once each season	Grab	
E G P		0.04				MDV			G I	
E. Coli		0.24	Lbs	2		MPN		Unce each season	Grab	
Total Hardness		103.69	Lbs	860		mg/L		Once each season	Grab	

Durango Sign Factory

AZS000018 DISCHARGE MONITORING REPORT (DMR)

(Complete a separate form for each monitoring point)

Facility Name:				Monitoring H	Point (Outfal	l):				
Durango Sign Factory				Storm drain located approximately south-central in the parking lot					ot	
Facility Address:				Year:						
2104 South 22 nd Avenue, I	Phoenix, Ariz	ona 85009		2009/10 Reporting Year – Summer Storm Event						
Monitoring Personnel Name(s	s):			Date/Time C	ollected:					
Phillip McNamara, EEC				February 23	3, 2010 @ 9	9:15 am				
Time Rainfall Began:	Duration of R	ainfall Event:		·		Rainfall Am	ount (inch	es):		
Approximately 4:00am	Approximately	3.0 Hours				0.18inches (o	r 0.015 ft)			
Runoff Source:	Time Elapsed	Since Last 0.1	inch Rainfall l	Event:		Qualifying R	ainfall Ev	ent:		
Rainfall Snowmelt	Approximately	20 days						YES 🗌 NO		
Estimated Total Volume of Di	ischarge (Inclue	le units; gal, ft ³	³ , etc.):			NO DISCHA	RGE			
<u>32,700 ft² X 0.015 ft² of rain =</u>	<u>490.5 ft³ X 75%</u>	% runoff = <u>367.</u>	<u>88 ft³ (7.2827)</u>) = <u>2,679.12 gallo</u>	2,679.12 gallons					
	Quantity or Loading Quality or Concent									
Parameter	Qua	antity or Loadi	ng	Quality	or Concentr	ation	No Ex	Frequency of	Sample Type	
Parameter	Qua Average	antity or Loadi Maximum	ng Units	Quality Minimum	or Concentr Average	ation Units	No Ex	Frequency of Analysis	Sample Type	
Parameter Nitrate + Nitrite	Qua Average	antity or Loadin Maximum 0.02	ng Units Lbs	Quality Minimum 0.96	or Concentr Average	ution Units mg/L	No Ex	Frequency of Analysis Once each season	Sample Type Grab	
Parameter Nitrate + Nitrite	Qua Average	ntity or Loadin Maximum 0.02	ng Units Lbs	Quality Minimum 0.96	or Concentr Average	eation Units mg/L	No Ex	Frequency of Analysis Once each season	Sample Type Grab	
Parameter Nitrate + Nitrite TSS	Qua Average	nntity or Loadin Maximum 0.02 4.63	ng Units Lbs	Quality Minimum 0.96 180	or Concentr Average	eation Units mg/L mg/L	No Ex	Frequency of Analysis Once each season Once each season	Sample Type Grab Grab	
Parameter Nitrate + Nitrite TSS Total Nitrogen	Qua Average	10.02 0.02 4.63 0.13	ng Units Units Lbs Lbs Lbs	Quality Minimum 0.96 180 5.0	or Concentr Average	eation Units mg/L mg/L mg/L	No Ex	Frequency of Analysis Once each season Once each season Once each season	Sample Type Grab Grab Grab	
Parameter Nitrate + Nitrite TSS Total Nitrogen TKN	Qua Average	10.02 4.63 0.13 0.11	ng Units Units Lbs Lbs Lbs Lbs Lbs Lbs	Quality Minimum 0.96 180 5.0 4.1	or Concentr Average	eation Units mg/L mg/L mg/L mg/L mg/L mg/L	No Ex	Frequency of Analysis Once each season Once each season Once each season Once each season	Sample Type Grab Grab Grab Grab Grab	
Parameter Nitrate + Nitrite TSS Total Nitrogen TKN	Qua Average	Maximum 0.02 4.63 0.13 0.11	ng Units Units Lbs Lbs Lbs Lbs Lbs Lbs Lbs Lbs Lbs Lb	Quality Minimum 0.96 180 5.0 4.1	or Concentr Average	eation Units Units mg/L mg/L mg/L mg/L	No Ex	Frequency of Analysis Once each season Once each season Once each season Once each season Once each season	Sample Type Grab Grab Grab Grab	
Parameter Nitrate + Nitrite TSS Total Nitrogen TKN	Qua Average	Antity or Loadin Maximum 0.02 4.63 0.13 0.11	ng Units Units Lbs Lbs Lbs Lbs Lbs Lbs Lbs Lbs Lbs Lb	Quality Minimum 0.96 180 5.0 4.1	or Concentr Average	eation Units Units mg/L mg/L mg/L mg/L	No Ex	Frequency of Analysis Once each season Once each season Once each season Once each season Once each season	Sample Type Grab Grab Grab Grab	
Parameter Nitrate + Nitrite TSS Total Nitrogen TKN	Qua Average	Maximum 0.02 4.63 0.13	ng Units I Lbs Lbs Lbs Lbs Lbs Lbs Lbs Lbs Lbs Lbs	Quality Minimum 0.96 180 5.0 4.1	or Concentr Average	eation Units Units mg/L mg/L mg/L	No Ex	Frequency of Analysis Once each season Once each season Once each season Once each season Once each season	Sample Type Grab Grab Grab Grab	

AZS000018 DISCHARGE MONITORING REPORT (DMR)

(Complete a separate form for each monitoring point)

Facility Name:				Monitoring I	Point (Outfal	D•				
Durango Sign Factory				Storm drain	located an	proximately	south-cer	ntral in the parking l	ot	
Facility Address:				Year:	<u>- 10 care ap</u>	<u>prominery</u>				
2104 South 22 nd Avenue, I	Phoenix, Ariz	ona 85009		2009/10 Re	009/10 Reporting Year – Winter Storm Event					
Monitoring Personnel Name(s	5):			Date/Time C	Date/Time Collected:					
Gary Hoffmann, EEC				September	September 1, 2009 @ 11:45 am					
Time Rainfall Began:	Duration of R	ainfall Event:				Rainfall Am	ount (inch	es):		
Approximately 4:00am	Approximately	1.5 Hours				0.1 inches (or	0.0083 ft)			
Runoff Source:	Time Elapsed	Since Last 0.1	inch Rainfall	Event:		Qualifying R	ainfall Ev	ent:		
Rainfall Snowmelt	Approximately	15 days						YES 🗌 NO		
Estimated Total Volume of Discharge (Include units; gal, ft ³ , etc.): <u>32,700 ft² X 0.0083 ft² of rain = 272.5 ft³ X 75% runoff = 2 04.38 ft³ (7.282)</u>				27) = <u>1,488.4 gall</u>	ons	NO DISCHA	RGE			
Parameter	Qua	antity or Loadi	ng	Quality	or Concentr	ation	No Ex	Frequency of	Sample Type	
	Average	Maximum	Units	Minimum	Average	Units		Analysis		
Nitrate + Nitrite		0.34	Lbs	6.8		mg/L		Once each season	Grab	
TSS		4.5	Lbs	90		mg/L		Once each season	Grab	
TKN		NA	Lbs	NA		mg/L		Once each season	Grab	
Iron		0.25	Lbs	5.0		mg/L		Once each season	Grab	
Zinc		0.07	Lbs	1.3		mg/L		Once each season	Grab	
Hardness		8.01	Lbs	160		mg/L		Once each season	Grab	

APPENDIX M Industrial and Maintenance Facility Monitoring Laboratory Reports **Superior Maintenance Yard**

Environmental Science Corporation Mount Juliet, TN

(615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Environmental Science Corporation Mt. Juliet, TN

For: Engineering & Env. Consultants, INC. -AZ Project: Superior Maintenance Yard L413520

SDG: L413520

July 28, 2009

Sample Receiving and Handling

All sample aliquots were received at the correct temperature, in the proper containers, and with the appropriate preservatives. All method specified holding times were met.

Hardness by Method 130.1

Laboratory Control Sample

Sample L413520-01 was analyzed in analytical batch WG432693. The laboratory control sample associated with this sample was within the laboratory control limits.

Sample Duplicate Analysis

For analytical batch WG432693 sample duplicate analysis was performed on sample L413234-01. The relative percent difference was within the method limits.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG432693, matrix spike/matrix spike duplicate analysis was performed on sample L413320-01. The spike recoveries were below the laboratory control limits. The relative percent difference was within control limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Suspended Solids by Method 2540D

Laboratory Control Sample

Sample L413520-01 was analyzed in analytical batch WG432703. The laboratory control sample associated with this sample was within the laboratory control limits.

Sample Duplicate Analysis

For analytical batch WG432703 sample duplicate analysis was performed on sample L413446-01. The relative percent difference was within the method limits.

Matrix Spike/Matrix Spike Duplicate

Precision for batch WG432703 was evaluated using the LCS / LCSD. The RPDs were within method limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Dissolved Solids by Method 2540C

Laboratory Control Sample

Sample L413520-01 was analyzed in analytical batch WG432871. The laboratory control sample associated with this sample was within the laboratory control limits.

Sample Duplicate Analysis

For analytical batch WG432871 sample duplicate analysis was performed on sample L413340-01. The relative percent difference was within the method limits.

Environmental Science Corporation Mt. Juliet, TN

For: Engineering & Env. Consultants, INC. -AZ Project: Superior Maintenance Yard L413520

SDG: L413520

July 28, 2009

Matrix Spike/Matrix Spike Duplicate

Precision for batch WG432871 was evaluated using the LCS / LCSD. The RPDs were within method limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Oil & Grease (Hexane Extr) by Method 1664A

Laboratory Control Sample

Sample L413520-01 was analyzed in analytical batch WG433438. The laboratory control sample associated with this sample was within the laboratory control limits.

Matrix Spike/Matrix Spike Duplicate

Precision for batch WG433438 was evaluated using the LCS / LCSD. The RPDs were within method limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Trace Metals by Method 200.7

Laboratory Control Sample

Sample L413520-01 was analyzed in analytical batch WG432710. The laboratory control sample associated with this sample was within the laboratory control limits for all compounds.

Sample L413520-01 was analyzed in analytical batch WG433235. The laboratory control sample associated with this sample was within the laboratory control limits for all compounds.

Sample Duplicate Analysis

For analytical batch WG432710 sample duplicate analysis was performed on sample L413555-02. The relative percent differences were within the method limits.

For analytical batch WG433235 sample duplicate analysis was performed on sample L413952-02. The relative percent differences were within the method limits.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG432710 matrix spike/matrix spike duplicate analysis was performed on sample L413555-02. The matrix spike recoveries and relative percent differences were within laboratory control limits for all target analytes.

For analytical batch WG433235 matrix spike/matrix spike duplicate analysis was performed on sample L413952-02. The matrix spike recoveries and relative percent differences were within laboratory control limits for all target analytes.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Environmental Science Corporation Mt. Juliet, TN

For: Engineering & Env. Consultants, INC. -AZ Project: Superior Maintenance Yard L413520 SDG: L413520

July 28, 2009

Nancy F. Winters ESC Representative Environmental Science Corporation

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Gary Hoffmann Engineering & Env. Consultants, INC. -AZ 7878 N. 16th Street, Suite 140

Phoenix, AZ 85020

Report Summary

Tuesday July 28, 2009

Report Number: L413520 Samples Received: 07/22/09 Client Project:

Description: Superior Maintenance Yard

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Entire Report Reviewed By:

Laboratory Certification Numbers

A2LA - 1461-01, AIHA - 100789, AL - 40660, CA - I-2327, CT - PH-0197, FL - E87487 GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - ENV375,DW21704, ND - R-140 NJ - TN002, NJ NELAP - TN002, SC - 84004, TN - 2006, VA - 00109, WV - 233 AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910

Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

This report may not be reproduced, except in full, without written approval from Environmental Science Corp. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

> 1 Samples Reported: 07/28/09 14:56 Printed: 07/28/09 14:56 Page 1 of 5

ESC

nards

Environmental Science Corporation Mount Juliet, TN

(615) 758-5858 1-800-767-5859 Fax (615) 758-5859

				SAMP	PLE NUMI	BER
🖢 🛛 Environ	mental Scien	ce Corporati	on		SMY	7
Customer :	Engineering & Env	. Consultants. INC	- Project	:		
Source :		· · · · · · · · · · · · · · · · · · ·	Date Sa	ampled :	7/21/2009	9 10:05 AM
Location :	Superior Maintena	nce Yard	Sample	ed By :	<u>.,</u> ,,,	
Lab Sample ID :	L413520-01	<u> </u>	Date Re	eceived :	7/22/2009)
130.1						
Analytic Batch: WG	432693	Analysis Date: 7/23/	/2009	Analysi	s Time: 3:16]	PM
Instrument: LACHA	AT3	Analyst: 236		Preparat	tion Date: 7/2	3/2009 3:30
Method: 130.1		Dilution: 1		-		
CAS NO	Analyte		RL	R	ESULTS	FLAG
	1 Intelly CC		mg/l	m	ig/l	12110
471-34-1	Hardness		30	9)	
1664A						
Analytic Batch: WG	433438	Analysis Date: 7/28/	/2009	Analysi	s Time: 12:20)
Instrument: BAL		Analyst: 078		Preparat	tion Date: 7/2	8/2009 3:31
Method: 1664A		Dilution: 1				
CAS NO	Analyte		RL	R	ESULTS	FLAG
	-		mg/l	m	ıg/l	
	Oil & Grease (Hexane	Extr)	5.9	<	5.9	
2540C						
Analytic Batch: WG	432871	Analysis Date: 7/25/	/2009	Analysi	s Time: 12:01	
Instrument: BAL		Analyst: 193		Preparat	tion Date: 7/2	3/2009 3:34
Method: 2540C		Dilution: 1				
CAS NO	Analyte		RL	R	ESULTS	FLAG
			mg/l	m	ıg/l	
	Dissolved Solids		10	3.	50	
2540D						
Analytic Batch: WG	432703	Analysis Date: 7/23/	/2009	Analysi	s Time: 8:41	
Instrument: BAL		Analyst: 193		Preparat	tion Date: 7/2	2/2009 4:03
Method: 2540D		Dilution: 1				
CAS NO	Analyte		RL	R	ESULTS	FLAG
	-		mg/l	m	ıg/l	
	Suspended Solids		1.0	1	00	

2) These results are applicable only to the items tested.

¹⁾ Sample results are reported as rounded values.

Environ	mental Science	e Corporatio	n		SMY	7
Customer :	Engineering & Env. C	<u>Consultants, INC</u>	Project :			
Source :			Date Sam	pled :	7/21/2009	9 10:05 AM
Location :	Superior Maintenance	<u>Yard</u>	Sampled I	By :		
Lab Sample ID :	L413520-01		Date Rece	eived :	7/22/2009)
200.7						
Analytic Batch: WG4	432710	Analysis Date: 7/23/2	2009	Analysis	s Time: 10:43	
Instrument: ICP6		Analyst: 447		Preparat	tion Date: 7/2	2/2009 4:11
Method: 200.7		Dilution: 1				
CASNO	Anglyta		DI	D	FSUI TS	FLAC
CABINO	Analyte		mg/l	m	ig/l	FLAG
7440-50-8	Copper		0.020	0.	.12	
200.7						
Analytic Batch: WG4	433235	Analysis Date: 7/27/2	2009	Analysis	s Time: 3:34]	PM
Instrument: ICP7		Analyst: 454		Preparat	tion Date: 7/2	6/2009 11:33
Method: 200.7		Dilution: 1				
CASNO	Anglyte		RI	R	FSULTS	FLAG
ensite	7 mary te		mg/l	m	ig/l	TLIG
7440-50-8	Copper, Dissolved		0.020	0.	.069	
LEGEND						
RL -	Reporting Limit					

SAMPLE NUMBER

Comments:

1) Sample results are reported as rounded values.

2) These results are applicable only to the items tested.

Environmental Science Corporation Quality Control Summary Engineering & Env. Consultants, INC. -AZ Test: Dissolved Solids by Method 2540C L413520 *Matrix:* Water - mg/L Project: Superior Maintenance Yard Login No:L413520 Sample Number:L413520-01 Sample Date:7/21/2009 Extraction Date:7/23/2009 Analysis Date:7/25/2009 12:01:00 PM Instrument ID:BAL Analyst:193 Analytic Batch:WG432871 EPA ID: TN00003

	Method Blank					
Analyte	CAS	PQL				
Dissolved Solids		<10.0				

Laboratory Control Sample (LCS)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Dissolved Solids	8800	8660	98.4	85 - 115	

Laboratory Control Sample Duplicate (LCSD)

	True		Recovery	Control	~
Analyte	Value	Found	%	Limits	Qualifiers
Dissolved Solids	8800	8630	98.0	85 - 115	

Environmental Science Corporation Quality Control Summary Engineering & Env. Consultants, INC. -AZ *Test:*Dissolved Solids by Method 2540C L413520 *Matrix:* Water - mg/L Project: Superior Maintenance Yard Login No:L413520 Sample Number:L413520-01 Sample Date:7/21/2009 Extraction Date:7/23/2009 Analysis Date:7/25/2009 12:01:00 PM Instrument ID:BAL Analyst:193 Analytic Batch:WG432871 EPA ID: TN00003

Laboratory Control Sample/ Laboratory Control Sample Duplicate

Analyte	Spike	LCS	% Rec	LCSD	% Rec	Control Limits	% Qualifier RPD	Control Limits (Qualifier
Dissolved Solids	8800	8660	98.4	8630	98.0	85-115	0.4	20	
		Sa	mple Du L41334(iplicate 0-01					
		Somr	مام	Docul	te				

Name	Sample Results	Duplicate	%RPD	Limit	Qualifiers
Dissolved Solids	81.0	79.0	2.5	5	

Environmental Science Corporation Quality Control Summary Engineering & Env. Consultants, INC. -AZ Test: Hardness by Method 130.1 L413520 *Matrix:* Water - mg/L Project: Superior Maintenance Yard Login No:L413520 Sample Number:L413520-01 Sample Date:7/21/2009 Extraction Date:7/22/2009 Analysis Date:7/23/2009 3:16:00 PM Instrument ID:LACHAT3 Analyst:236 Analytic Batch:WG432693 EPA ID: TN00003

	Method Blank	
Analyte	CAS	PQL
Hardness		<30.0

Laboratory Control Sample (LCS)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Hardness	200	220	110	85 - 115	

Laboratory Control Sample Duplicate (LCSD)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Hardness	200	218	109	85 - 115	

Environmental Science Corporation Quality Control Summary Engineering & Env. Consultants, INC. -AZ Test: Hardness by Method 130.1 L413520 *Matrix:* Water - mg/L Project: Superior Maintenance Yard Login No:L413520 Sample Number:L413520-01 Sample Date:7/21/2009 Extraction Date:7/22/2009 Analysis Date:7/23/2009 3:16:00 PM Instrument ID:LACHAT3 Analyst:236 Analytic Batch:WG432693 EPA ID: TN00003

Laboratory Control Sample/ Laboratory Control Sample Duplicate

	Spike		%		%	Control	%	Control
Analyte		LCS	Rec	LCSD	Rec	Limits	Qualifier RPD	Limits Qualifier
Hardness	200	220	110	218	109	85-115	0.9	20

Sample Duplicate

L413234-01

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
Hardness	260	247	5.1	20	

Matrix Spike/Matrix Spike Duplicate L413320-01

	Spike			%		%	Control		%	Control	
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifie	r RPD	Limits	Qualifier
Hardness	150	260	357	64.7	357	64.7	80-120	M2	0.0	20	

Environmental Science Corporation Quality Control Summary Engineering & Env. Consultants, INC. -AZ Test: Oil & Grease (Hexane Extr) by Method 1664A L413520 *Matrix:* Water - mg/L Project: Superior Maintenance Yard Login No:L413520 Sample Number:L413520-01 Sample Date:7/21/2009 Extraction Date:7/28/2009 Analysis Date:7/28/2009 12:20:00 PM Instrument ID:BAL Analyst:078 Analytic Batch:WG433438 EPA ID: TN00003

	Method Blank	
Analyte	CAS	PQL
Oil & Grease (Hexane Extr)		<5.00

Laboratory Control Sample (LCS)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Oil & Grease (Hexane Extr)	40.0	40.0	100	78 - 114	

Laboratory Control Sample Duplicate (LCSD)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Oil & Grease (Hexane Extr)	40.0	35.0	87.5	78 - 114	

Laboratory Control Sample/ Laboratory Control Sample Duplicate

	Spike		%		%	Control	%	Control
Analyte		LCS	Rec	LCSD	Rec	Limits	Qualifier RPD	Limits Qualifier
Oil & Grease (Hexane	40.0	40.0	100	35.0	87.5	78-114	13	20

Environmental Science Corporation Quality Control Summary Engineering & Env. Consultants, INC. -AZ Test: Suspended Solids by Method 2540D L413520 *Matrix:* Water - mg/L Project: Superior Maintenance Yard Login No:L413520 Sample Number:L413520-01 Sample Date:7/21/2009 Extraction Date:7/22/2009 Analysis Date:7/23/2009 8:41:00 AM Instrument ID:BAL Analyst:193 Analytic Batch:WG432703 EPA ID: TN00003

	Method Blank	
Analyte	CAS	PQL
Suspended Solids		<1.00

Laboratory Control Sample (LCS)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Suspended Solids	780	776	99.5	85 - 115	

Laboratory Control Sample Duplicate (LCSD)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Suspended Solids	780	808	104	85 - 115	

Environmental Science Corporation Quality Control Summary Engineering & Env. Consultants, INC. -AZ Test: Suspended Solids by Method 2540D L413520 *Matrix:* Water - mg/L Project: Superior Maintenance Yard Login No:L413520 Sample Number:L413520-01 Sample Date:7/21/2009 Extraction Date:7/22/2009 Analysis Date:7/23/2009 8:41:00 AM Instrument ID:BAL Analyst:193 Analytic Batch:WG432703 EPA ID: TN00003

Laboratory Control Sample/ Laboratory Control Sample Duplicate

	Spike		%		%	Control	%	Control
Analyte		LCS	Rec	LCSD	Rec	Limits	Qualifier RPD	Limits Qualifier
Suspended Solids	780	776	99.5	808	104	85-115	4.0	20

Sample Duplicate L413446-01

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
Suspended Solids	5.10	4.89	4.2	5	

Environmental Science Corporation Quality Control Summary Engineering & Env. Consultants, INC. -AZ Test: Trace Metals by Method 200.7 L413520 *Matrix:* Water - mg/L Project: Superior Maintenance Yard Login No:L413520 Sample Number:L413520-01 Sample Date:7/21/2009 Extraction Date:7/22/2009 Analysis Date:7/23/2009 Instrument ID:ICP6 Analyst:447 Analytic Batch:WG432710 EPA ID: TN00003

Method Blank

Analyte	CAS	PQL
Copper	7440-50-8	< 0.0200

Laboratory Control Sample (LCS)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Copper	1.00	0.960	96.0	85 - 115	

Environmental Science Corporation Quality Control Summary Engineering & Env. Consultants, INC. -AZ Test: Trace Metals by Method 200.7 Matrix: Water - mg/L Project: Superior Maintenance Yard Login No:L413520 Sample Number:L413520-01 Sample Date: 7/21/2009 Extraction Date: 7/26/2009 Analysis Date: 7/27/2009 Instrument ID:ICP7 Analyst: 454

Analytic Batch:WG433235

EPA ID: TN00003

Method Blank

Analyte	CAS	PQL
Copper, Dissolved	7440-50-8	< 0.0200

Laboratory Control Sample (LCS)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Copper, Dissolved	1.00	1.01	101	85 - 115	

Environmental Science Corporation Quality Control Summary Engineering & Env. Consultants, INC. -AZ Test: Trace Metals by Method 200.7 Matrix: Water - mg/L Project: Superior Maintenance Yard Login No:L413520 Sample Number:L413520-01 Sample Date: 7/21/2009 Extraction Date: 7/22/2009 Analysis Date: 7/23/2009

Instrument ID:ICP6 Analyst:447 Analytic Batch:WG432710

EPA ID: TN00003

Sample Duplicate L413555-02

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
Copper	0.00000	0.00160			

Matrix Spike/Matrix Spike Duplicate L413555-02

	Spike			%		%	Control	%	Control
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier RPD	Limits Qualifier
Copper	1.00	0.00000	0.985	98.5	0.977	97.7	75-125	0.8	20

Environmental Science Corporation Quality Control Summary Engineering & Env. Consultants, INC. -AZ Test: Trace Metals by Method 200.7 L413520 *Matrix:* Water - mg/L Project: Superior Maintenance Yard Login No:L413520 Sample Date:7/21/2009

Sample Number:L413520-01 Extraction Date:7/26/2009 Analysis Date:7/27/2009 Instrument ID:ICP7 Analyst:454 Analytic Batch:WG433235

EPA ID: TN00003

Sample Duplicate L413952-02

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
Copper, Dissolved	0.00000	0.00050			

Matrix Spike/Matrix Spike Duplicate L413952-02

	Spike			%		%	Control	%	Control
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier RPD	Limits Qualifier
Copper, Dissolved	1.00	0.00000	1.01	101	1.01	101	75-125	0.0	20

Company Name/Address		•	Alternate Bi	Alternate Billing					/sis/C	ontain	er/Pre	serva	itive		Chain of Custody
EEC														C141	Page_1_of_1_
7878 N. 16th St., Suite 140 Phoenix, AZ 85020									* * *					Prepared by:	
														ENVIRON	MENTAL D
			Report to:	ary Hoff	Mann						6			12065 Leba	r non Road
			E-mail to: ghof	France	EECPh	(.CeA					E E			Mt. Juliet TN	N 37122
Project Description: Superior Mainter	nance Yard			City/S	State Collected:						٩ ۷	03		Phone (615)	758-5858
PHONE:602-248-7702	Client Project	No.		Lab Project #	·····		es				Щ	E H		Phone (800)) 767-5859
FAX: 602-248-7851							ā o	es		ő	H	щ		. FAX (61	5)758-5859
Collected by:	Site/Facility ID	#		P.O.#			- Z Ш	lo Pr	덫	HN	10ml	НDF		CoCode	(lab use only)
Collected by(signature):	Rush? (L	.ab MUST be	e Notified)	Date Result	s Needed	No	HDP	DPE N	L Cir I	HDPE	ved) 5(500ml		ENGENVPAZ Template/Prelogin	
		Two Day Three Day	50% 25%	Email?N FAX?N	lo_X_Yes lo_Yes	of	S 25or	S 1L H	HEX 1	500ml	(Dissol	rdness		Shipped Via:	
Sample ID	Comp/Grab	Matrix	Depth	Date	Time	Cntrs	P	ΤS	90	С	C	Hai		Remarks/contaminant	Sample # (lab only)
SMY		5~		7/21/59	10:05	6	X	X	X	X	X	X			6413520-01
•															
											Maria				
			l										andre e		
									in a second						
											1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				
Matrix: SS-Soil/Solid_GW-Groundwa	iter WAM-Wa	- astewater D	W-Drinking V	Nater OT-O	ther								ы 1	11 Jame 75.	2
Remarks:						-						Flo		Other	-
Reliveration by:(Signature	Date: 7/2/	Time: Lo CA	Received by (S	Signature)	In	, , , , , , , , , , , , , , , , , , , 	Sampl	es retur	ned via	: FedE:	K UP	S_Oti	ner 164	Condition	(lab üse önly)
Relinquisher by:(Signature	Date:	Time:	Received by:	Signature) *	5.5-		Temp	3.6	°, c		Bottles	Recei	ved:	Ule	Cochi
Relinquisher by:(Signature	Date:	Time:	Received Tor	ab by: (Signatur	e)		Date:	ລາ.	09		Time:	ער	5	pH Checked:	NCF 21 of 21

Quality Control Summary SDG: L446185

YOUR LAB OF CHOICE

Quality Control Summary SDG: L446185

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

For: Engineering & Env. Consultants, INC. -AZ Project: ADOT Yard Samples / Superior February 26, 2010

Sample Receiving and Handling

All sample aliquots were received at the correct temperature, in the proper containers, and with the appropriate preservatives. All method specified holding times were met.

Dissolved Solids by Method 2540C

Laboratory Control Sample

Sample L446185-01 was analyzed in analytical batch WG464708. The laboratory control sample associated with this sample was within the laboratory control limits.

Sample Duplicate Analysis

For analytical batch WG464708 sample duplicate analysis was performed on sample L446178-01. The relative percent difference exceeded the method limits for Dissolved Solids.

Matrix Spike/Matrix Spike Duplicate

Precision for batch WG464708 was evaluated using the LCS / LCSD. The RPDs were within method limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Suspended Solids by Method 2540D

Laboratory Control Sample

Sample L446185-01 was analyzed in analytical batch WG464786. The laboratory control sample associated with this sample was within the laboratory control limits.

Sample Duplicate Analysis

For analytical batch WG464786 sample duplicate analysis was performed on sample L446062-01. The relative percent differences were within the method limits.

For analytical batch WG464786 sample duplicate analysis was performed on sample L446240-01. The relative percent differences were within the method limits.

Matrix Spike/Matrix Spike Duplicate

Precision for batch WG464786 was evaluated using the LCS / LCSD. The RPDs were within method limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Trace Metals by Method 6010B

Laboratory Control Sample

Sample L446185-01 was analyzed in analytical batch WG464622. The laboratory control sample associated with this sample was within the laboratory control limits for all compounds.

YOUR LAB OF CHOICE

Quality Control Summary

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

SDG: L446185

For: Engineering & Env. Consultants, INC. -AZ Project: ADOT Yard Samples / Superior February 26, 2010

Sample Duplicate Analysis

For analytical batch WG464622 sample duplicate analysis was performed on sample L446209-01. The relative percent differences were within the method limits.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG464622 matrix spike/matrix spike duplicate analysis was performed on sample L446209-01. The matrix spike recoveries and relative percent differences were within laboratory control limits for all target analytes.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Diesel Range Organics by Method 8015

Laboratory Control Sample

Sample L446185-01 was analyzed in analytical batch WG464621. The laboratory control sample associated with this sample was within the laboratory control limits.

Matrix Spike/Matrix Spike Duplicate

Precision for batch WG464621 was evaluated using the LCS / LCSD. The RPDs were within method limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Nancy F. Winters ESC Representative ESC Lab Sciences

YOUR LAB OF CHOICE

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Gary Hoffmann Engineering & Env. Consultants, INC. -AZ 7878 N. 16th Street, Suite 140

Phoenix, AZ 85020

Report Summary Friday February 26, 2010 Report Number: L446185 Samples Received: 02/23/10 Client Project: 308032.07

Description: ADOT-Superior

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Entire Report Reviewed By:

Laboratory Certification Numbers

A2LA - 1461-01, AIHA - 100789, AL - 40660, CA - I-2327, CT - PH-0197, FL - E87487 GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - ENV375,DW21704, ND - R-140 NJ - TN002, NJ NELAP - TN002, SC - 84004, TN - 2006, VA - 00109, WV - 233 AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910

Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

This report may not be reproduced, except in full, without written approval from Environmental Science Corp. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

> 1 Samples Reported: 02/26/10 11:50 Printed: 02/26/10 11:50 Page 1 of 5

*ESC

chards

Quality Control Summary SDG: L446185 12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

SAMPLE NUMBER STORAGE YARD

Customer :	Engineering & Env. Consultants, INC		Project :		<u>308032.07</u>	
Source :			Date Sampled :		<u>2/22/2010 10:30 AM</u>	
Location :	ADOT Yard Samples / Superior		Sampled By :		<u>Gary Hoffmann</u>	
Lab Sample ID :	L446185-01		Date Received : 2/23/2010			
2540C						
Analytic Batch: WG464708		Analysis Date: 2/25/2010		Analysis Time: 2:02 PM		
Instrument: BAL		Analyst: 183	Analyst: 183 Prepara		tion Date: 2/24/2010 9:53	
Method: 2540C		Dilution: 1				
CAS NO	Analyte		RL	RESULTS		FLAG
	v		mg/l n		g/l	
DSOLIDS	Dissolved Solids		10	450		
2540D						
Analytic Batch: WG464786		Analysis Date: 2/25/2010 Analysis		Time: 10:09		
Instrument: BAL		Analyst: 183	Analyst: 183 Preparation Date: 2/24/2010		4/2010 3:29	
Method: 2540D		Dilution: 1				
CAS NO	Analyte		RL	R	ESULTS	FLAG
			mg/l	m	g/l	
SSOLIDS	Suspended Solids		1.0	30		
6010B						
Analytic Batch: WG464622		Analysis Date: 2/24/2010		Analysis Time: 9:24		
Instrument: ICP5		Analyst: 438	Preparation Date: 2/23/20		3/2010 3:00	
Method: 6010B		Dilution: 1				
CAS NO	Analyte		RL	R	ESULTS	FLAG
	-		mg/l	m	g/l	
7440-50-8	Copper		0.020	0.	053	

Comments:

1) Sample results are reported as rounded values.

2) These results are applicable only to the items tested.

SAMPLE NUMBER STORAGE YARD

Customer :	Engineering & Env. (Consultants, INC	Project	:	<u>308032.0</u>	7
Source :			Date Sa	ampled :	2/22/2010	<u>0 10:30 AM</u>
Location :	ADOT Yard Samples	<u>s / Superior</u>	Sample	d By :	Gary Hof	<u>fmann</u>
Lab Sample ID :	L446185-01		Date Re	eceived :	2/23/201	0
8015						
Analytic Batch: WG4	464621	Analysis Date: 2/24/2	2010	Analysis	s Time: 4:24	PM
Instrument: SVGC2		Analyst: 280		Preparat	ion Date: 2/2	23/2010 3:00
Method: 8015		Dilution: 1		1		
CAS NO	Analyte		RL	R	ESULTS	FLAG
	·		mg/l	m	g/l	
	C10-C28 Diesel Range		0.10	0.	87	
	C28-C40 Oil Range		0.10	0.	53	
Surrogates						
Sunogates	Analyta	DEDCENT			S	FLAC
	Analyte	RECOVE	RY QU	UALITIEN,	3	FLAG
	o-Terphenyl	103				
LEGEND						
RL -	Reporting Limit					

Comments:

1) Sample results are reported as rounded values.

Quality Control Summary SDG: L446185 Engineering & Env. Consultants, INC. -AZ

Dissolved Solids by Method 2540C	·	
308032.07	Matrix:	Water - mg/L
ADOT Yard Samples / Superior	EPA ID:	TN00003
2/22/2010	Analytic Batch:	WG464708
2/25/2010 2:02:00 PM	Analyst:	183
BAL	Extraction Date:	2/24/2010
L446185-01		
	Dissolved Solids by Method 2540C 308032.07 ADOT Yard Samples / Superior 2/22/2010 2/25/2010 2:02:00 PM BAL L446185-01	Dissolved Solids by Method 2540C308032.07Matrix:ADOT Yard Samples / SuperiorEPA ID:2/22/2010Analytic Batch:2/25/2010 2:02:00 PMAnalyst:BALExtraction Date:L446185-01Extraction Date:

Method Blank

Analyte	CAS	PQL	Qualifiers
Dissolved Solids			

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Dissolved Solids	8800	8920	101	85 - 115	

Laboratory Control Sample Duplicate (LCSD)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Dissolved Solids	8800	8860	101	85 - 115	

Quality Control Summary SDG: L446185 Engineering & Env. Consultants, INC. -AZ

Test:	Dissolved Solids by Method 2540C		
Project No:	308032.07	Matrix:	Water - mg/L
Project:	ADOT Yard Samples / Superior	EPA ID:	TN00003
Collection Date:	2/22/2010	Analytic Batch:	WG464708
Analysis Date:	2/25/2010 2:02:00 PM	Analyst:	183
Instrument ID:	BAL	Extraction Date:	2/24/2010
Sample Numbers:	L446185-01		

Laboratory Control Sample/ Laboratory Control Sample Duplicate

			%		% Control		% Control			
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
Dissolved Solids	8800	8920	101	8860	101	85-115		0.6	20	

Sample Duplicate L446178-01

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
Dissolved Solids	170	156	8.6	5	R8

Quality Control Summary SDG: L446185 Engineering & Env. Consultants, INC. -AZ

2540D	
Matrix:	Water - mg/L
or EPA ID:	TN00003
Analytic Batch:	WG464786
Analyst:	183
Extraction Date:	2/24/2010
	2540D Matrix: EPA ID: Analytic Batch: Analyst: Extraction Date:

Method Blank

Analyte	CAS	PQL	Qualifiers
Suspended Solids		<1.00	

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Suspended Solids	773	788	102	85 - 115	

Laboratory Control Sample Duplicate (LCSD)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Suspended Solids	773	780	101	85 - 115	

Quality Control Summary SDG: L446185 Engineering & Env. Consultants, INC. -AZ

Test:	Suspended Solids by Method 2540D		
Project No:	308032.07	Matrix:	Water - mg/L
Project:	ADOT Yard Samples / Superior	EPA ID:	TN00003
Collection Date:	2/22/2010	Analytic Batch:	WG464786
Analysis Date:	2/25/2010 10:09:00 AM	Analyst:	183
Instrument ID:	BAL	Extraction Date:	2/24/2010
Sample Numbers:	L446185-01		

Laboratory Control Sample/ Laboratory Control Sample Duplicate

			%		%	Control	%	o Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier RP	D Limits	Qualifier
Suspended Solids	773	788	102	780	101	85-115	1.	0 20	

Sample Duplicate L446062-01

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
Suspended Solids	87.0	88.0	1.1	5	

Sample Duplicate L446240-01

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
Suspended Solids	180	184	2.2	5	

Quality Control Summary SDG: L446185 Engineering & Env. Consultants, INC. -AZ

Test:	Trace Metals by Method 6010B		
Project No:	308032.07	Matrix:	Water - mg/L
Project:	ADOT Yard Samples / Superior	EPA ID:	TN00003
Collection Date:	2/22/2010	Analytic Batch:	WG464622
Analysis Date:	2/24/2010	Analyst:	438
Instrument ID:	ICP5	Extraction Date:	2/23/2010
Sample Numbers:	L446185-01		

Method Blank

Analyte	CAS	PQL	Qualifiers
Copper	7440-50-8	< 0.0200	

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Copper	1.13	1.14	101	85 - 115	

Quality Control Summary SDG: L446185 Engineering & Env. Consultants, INC. -AZ

Test:	Trace Metals by Method 6010B		
Project No:	308032.07	Matrix:	Water - mg/L
Project:	ADOT Yard Samples / Superior	EPA ID:	TN00003
Collection Date:	2/22/2010	Analytic Batch:	WG464622
Analysis Date:	2/24/2010	Analyst:	438
Instrument ID:	ICP5	Extraction Date:	2/23/2010
Sample Numbers:	L446185-01		

Sample Duplicate

L446209-01

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
Copper	0.00000	0.0212			

Matrix Spike/Matrix Spike Duplicate

			L	.44620	9-01						
	Spike			%		%	Control	% Rec	%	Control	RPD
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual
Copper	1.13	0.0212	1.17	102	1.18	103	75-125		0.9	20	

VOUR LAB OF CHOICE Quality Control Summary SDG: L446185 Engineering & Env. Consultants, INC. -AZ

Test:	Diesel Range Organics by Method 8015		
Project No:	308032.07	Matrix:	Water - mg/L
Project:	ADOT Yard Samples / Superior	EPA ID:	TN00003
Collection Date:	2/22/2010	Analytic Batch:	WG464621
Analysis Date:	2/24/2010	Analyst:	280
Instrument ID:	SVGC2	Extraction Date:	2/23/2010
Sample Numbers:	L446185-01		

Method Blank

Analyte	CAS	PQL	Qualifiers
Diesel Range Organics		<0.10	

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Diesel Range Organics	1.50	1.39	92.7	50 - 150	

Laboratory Control Sample Duplicate (LCSD)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Diesel Range Organics	1.50	1.48	98.7	50 - 150	

Test:

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

VOUR LAB OF CHOICE Quality Control Summary SDG: L446185 Engineering & Env. Consultants, INC. -AZ

Diesel Range Organics by Method 8015 308032.07

Project No:	308032.07	Matrix:	Water - mg/L
Project:	ADOT Yard Samples / Superior	EPA ID:	TN00003
Collection Date:	2/22/2010	Analytic Batch:	WG464621
Analysis Date:	2/24/2010	Analyst:	280
Instrument ID:	SVGC2	Extraction Date:	2/23/2010
Sample Numbers:	L446185-01		

Surrogate Summary

Laboratory Sample ID	o-terphenylD ppm	% Rec
Blank WG40 LCS WG464 LCSD WG4 L446185-01	64621 0.0229 4621 0.0222 464621 0.0234 0.0207	114 111 117 103

o-terphenyl Limits - 50 - 150

Test:

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L446185 Engineering & Env. Consultants, INC. -AZ

Diesel Range Organics by Method 8015

Project No:	308032.07	Matrix:	Water - mg/L
Project:	ADOT Yard Samples / Superior	EPA ID:	TN00003
Collection Date:	2/22/2010	Analytic Batch:	WG464621
Analysis Date:	2/24/2010	Analyst:	280
Instrument ID:	SVGC2	Extraction Date:	2/23/2010
Sample Numbers:	L446185-01		

	Laboratory Control S	ample/	Labo	ratory	Contr	ol Sampl	e Duplic	ate		
	·	-	%	•	%	Control	-	%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
Diesel Range	Organics 1.50	1.39	92.7	1.48	98.7	50-150		6.3	25	

Company Name/Address: EEC PhV		Alt	ernate billing	information:			/	Analysis/	Containe	er/Pres	ervative	G020	Chain of Custody age of
7878 N 1600 000 Suite 140													ONMENTAL
Phoenik Az 85020	C											SCIENC	CE CORP.
		Ema	ail to: a (D	0								Mt. Juliet,	banon Road TN 37122
Briest Cary Hottmann	, /		City/Sate	fmanne	eccph R.c	on						Phone (6	15) 758-5858
Description: ADOT Yard Sc	ingles/Sa	Deriov	Collected 5	perior,	Az						10.00	Phone (8	00) 767-5859
Phone: 602-248-7702	Client Project #	¢:	ESC Key									FAX (6	15) 758-5859
	30803	2.07	D O#				2. 18	S					
Colleared by: Gary Hoffmann	Site/Facility ID	#:	P.O.#:					10					લ્ટુ ર
Collected by (signature):	Rush? (La	b MUST Be I me Dav	Notified) 200%	Date Resu	ts Needed:	No.	ß					CoCode	(lab use only)
Immediately	Ne	ext Day	. 100%	Email?	No_Yes		H	F				Template/Prelogin	
Packed on Ice N Y	Tw	/o Day ree Dav	50% 25%	FAX?	NoYes	Cntrs	8	[] =				Shipped Via:	
Sample ID	Comp/Grab	Matrix*	Depth	Date	Time	0.1110	F	34	-			Remarks/Contaminant	Sample # (lab only)
Storage yord	Grab	ot	0'	2 22	10:30	4	×	x x					L446185-01
							2250 2160				23346		
												-	en e
*Matrix: SS - Soil/Solid GW - Grou	undwater WW .	- WasteWater	DW - Drinl	king Water	ے _ Other	sω					pH	Ter	np
Remarks:	4/2	4198m	וורד ה								Flow	Ott	ner
Relinguished by: (Signature)	Date:	Time:	Recei	ed by: (Signa	ature)			Sa	edEx	urned v Courie	^{ia:} □ UPS r □	Condition: OK	(lab use only)
Relingerener by (Signature)	Z/22 Date:	10 1910 Time:	Z Recei	ed by: Cana	iture)			Ter	mp;	B	ottles Receiv	ed: CoC Seals Intact	_Y NNA
Relinquished by: (Signature)	Date:	Time:	Recei	vod for to	y: (Signature)			1te:	Т	ime:	pH Checked: 17	•NGF:

U

Quality Control Summary SDG: L447785

YOUR LAB OF CHOICE

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary

SDG: L447785 For: Engineering & Env. Consultants, INC. -AZ

Project: ADOT Yard Samples / Superior March 11, 2010

Sample Receiving and Handling

All sample aliquots were received at the correct temperature, in the proper containers, and with the appropriate preservatives. All method specified holding times were met.

Trace Metals by Method 6010B

Laboratory Control Sample

Sample L447785-01 was analyzed in analytical batch WG466962. The laboratory control sample associated with this sample was within the laboratory control limits for all compounds.

Sample Duplicate Analysis

For analytical batch WG466962 sample duplicate analysis was performed on sample L447785-01. The relative percent differences were within the method limits.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG466962 matrix spike/matrix spike duplicate analysis was performed on sample L447785-01. The matrix spike recoveries and relative percent differences were within laboratory control limits for all target analytes.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Diesel Range Organics by Method 8015

Laboratory Control Sample

Sample L447785-01 was analyzed in analytical batch WG466133. The laboratory control sample associated with this sample was within the laboratory control limits.

Matrix Spike/Matrix Spike Duplicate

Precision for batch WG466133 was evaluated using the LCS / LCSD. The RPDs were within method limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Nancy F. Winters ESC Representative ESC Lab Sciences

I · C · E · S

YOUR LAB OF CHOICE

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Gary Hoffmann Engineering & Env. Consultants, INC. -AZ 7878 N. 16th Street, Suite 140 Phoenix, AZ 85020

Report Summary

Thursday March 11, 2010

Report Number: L447785 Samples Received: 02/23/10 Client Project: 308032.07

Description: ADOT-Superior

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Entire Report Reviewed By:

Daphne Richards , ESC Representative

Laboratory Certification Numbers

A2LA - 1461-01, AIHA - 100789, AL - 40660, CA - I-2327, CT - PH-0197, FL - E87487 GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - ENV375/DW21704, ND - R-140 NJ - TN002,NJ NELAP - TN002, SC - 84004, TN - 2006, VA - 00109, WV - 233 AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910

Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

This report may not be reproduced, except in full, without written approval from ESC Lab Sciences. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Page 1 of 4

Quality Control Summary SDG: L447785

SAMPLE NUMBER STORAGE YARD

Customer :	Engineering & Env.	Consultants, INC	Proje	ect :	<u>308032.0</u>	<u>)7</u>
Source :			Date	Sampled :	2/22/201	0 10:30 AM
Location :	ADOT Yard Sample	es / Superior	Sam	pled By :	Gary Hot	<u>ffmann</u>
Lab Sample ID :	L447785-01		Date	Received :	2/23/201	00
Analytic Batch: WG	466962	Analysis Date: 3/10/2	2010	Analysis	Time: 8:54	PM
Instrument: ICP5		Analyst: 454		Preparat	ion Date: 3/1	0/2010 8:49
Method: 6010B		Dilution: 1				
CASNO	Amoletto		БТ	ות	CTIL TO	FLAC
CAS NO	Analyte		KL mg/l	KI m	25UL15 σ/Ι	FLAG
7440-50-8	Copper, Dissolved		0.020	<	0.020	
3510/DRO						
Analytic Batch: WG	466133	Analysis Date: 3/5/20	010	Analysis	Time: 7:58	PM
Instrument: SVGC7		Analyst: 280		Preparat	ion Date: 3/4	/2010 2:27 PM
Method: 3510/DRO		Dilution: 1				
CAS NO	Analyta		DI	וס	FSIII TS	FLAC
CASINO	Analyte		mg/l	m	воцтв р/]	FLAG
68334-30-5	TPH (GC/FID) High Fra	ction	0.10	0.4	46	
Surrogates						
Suitoguies	Analvte	PERCENT	Г	OUALIFIERS	5	FLAG
	0	RECOVE	RY	·		
	o-Terphenyl	84.6				
LEGEND						
	Reporting Limit					

Comments:

1) Sample results are reported as rounded values.

2) These results are applicable only to the items tested.

Quality Control Summary SDG: L447785 Engineering & Env. Consultants, INC. -AZ

Test:	Trace Metals by Method 6010B		
Project No:	308032.07	Matrix:	Water - mg/L
Project:	ADOT Yard Samples / Superior	EPA ID:	TN00003
Collection Date:	2/22/2010	Analytic Batch:	WG466962
Analysis Date:	3/10/2010	Analyst:	454
Instrument ID:	ICP5	Extraction Date:	3/10/2010
Sample Numbers:	L447785-01		

Method Blank

Analyte	CAS	PQL	Qualifiers
Copper,Dissolved	7440-50-8	< 0.0200	

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Copper,Dissolved	1.13	1.16	103	85 - 115	

Quality Control Summary SDG: L447785 Engineering & Env. Consultants, INC. -AZ

Test:	Trace Metals by Method 6010B		
Project No:	308032.07	Matrix:	Water - mg/L
Project:	ADOT Yard Samples / Superior	EPA ID:	TN00003
Collection Date:	2/22/2010	Analytic Batch:	WG466962
Analysis Date:	3/10/2010	Analyst:	454
Instrument ID:	ICP5	Extraction Date:	3/10/2010
Sample Numbers:	L447785-01		

Sample Duplicate

L447785-01

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
Copper,Dissolved	0.00000	0.0000			

Matrix Spike/Matrix Spike Duplicate

			L	44778	5-01						
	Spike			%		%	Control	% Rec	%	Control	RPD
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual
Copper, Dissolved	1.13	0.00000	1.18	104	1.16	103	75-125		1.7	20	

Quality Control Summary SDG: L447785 Engineering & Env. Consultants, INC. -AZ

Test:	Diesel Range Organics by Method 8015		
Project No:	308032.07	Matrix:	Water - mg/L
Project:	ADOT Yard Samples / Superior	EPA ID:	TN00003
Collection Date:	2/22/2010	Analytic Batch:	WG466133
Analysis Date:	3/5/2010	Analyst:	280
Instrument ID:	SVGC7	Extraction Date:	3/4/2010
Sample Numbers:	L447785-01		

Method Blank

Analyte	CAS	PQL	Qualifiers
Diesel Range Organics		< 0.10	

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Diesel Range Organics	1.50	1.28	85.3	50 - 150	

Laboratory Control Sample Duplicate (LCSD)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Diesel Range Organics	1.50	1.22	81.3	50 - 150	

Test:

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L447785 Engineering & Env. Consultants, INC. -AZ

Diesel Range Organics by Method 8015

Project No:	308032.07	Matrix:	Water - mg/L
Project:	ADOT Yard Samples / Superior	EPA ID:	TN00003
Collection Date:	2/22/2010	Analytic Batch:	WG466133
Analysis Date:	3/5/2010	Analyst:	280
Instrument ID:	SVGC7	Extraction Date:	3/4/2010
Sample Numbers	: L447785-01		

Surrogate Summary

Laboratory Sample ID	o-terphenylD ppm	% Rec
Blank WG466133	0.0172	86.0
LCS WG466133	0.0167	83.4
LCSD WG466133	0.0160	80.2
L447785-01	0.0169	84.6

o-terphenyl Limits - 50 - 150

Test:

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

VOUR LAB OF CHOICE Quality Control Summary SDG: L447785 Engineering & Env. Consultants, INC. -AZ

Diesel Range Organics by Method 8015

Project No:	308032.07	Matrix:	Water - mg/L
Project:	ADOT Yard Samples / Superior	EPA ID:	TN00003
Collection Date:	2/22/2010	Analytic Batch:	WG466133
Analysis Date:	3/5/2010	Analyst:	280
Instrument ID:	SVGC7	Extraction Date:	3/4/2010
Sample Numbers:	L447785-01		

Laboratory Control Sample/ Laboratory Control Sample Duplicate											
	·	-	%	·	%	Control	-	%	Control		
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier	
Diesel Range Organi	cs 1.50	1.28	85.3	1.22	81.3	50-150		4.8	25		

Company Name/Address: EEL PhV		Alter	nate billing	information:				Analvsis/Co	ontainer/Pr	eservative	G020	Chain of Custody age of
7878 N 16th 36 Soite 140												ONMENTAL
Phoenik, Az 85020)							1999 (1997) 1997 - 1997 1997 - 1997 - 1997 - 1997 1997 - 1997			SCIENC	CE CORP.
				0 0	·····						12065 Lei Mt. Juliet '	banon Road
Cary Hottmann			D: Ghof	menne	eccphp.	con				512 712		IIN 57122
Project Description: ADOT Yard Sa	males So	Deriov (City/Sate Collected 5	Derpor.	Az			392		ing the second	Phone (6	15) 758-5858
Phone: 602-248-7702	Client Project #	ł:	ESC Key:	<u> </u>	<u> </u>			i de la compación de	1. 1.		FAX (6	15) 758-5859
FAX: .	30803:	2.07						6				15) 750-5055
Collected by: Gary Hotfmany	Site/Facility ID	#:	P.O.#:					oßt	200 - 200 - 200 - 200		an the state	Marina da series de la composición de l
Collected by (signature):	[<i>Rush?</i>] (Lal Sa Ne	b MUST Be No me Day	otified) 200% 100%	Date Resul	ts Needed: No_Yes	No.	† S	Duc			CoCode Template/Prelogin	(lab use only)
Packed on Ice N Y	Tw	o Day	50%	FAX? _1	No_Yes	of	3	() [)			Shipped Via:	1774 - Maria 1774 - Maria Maria 1975 - Maria Maria
Sample ID	Th Comp/Grab	ree Day Matrix*	25% Depth	Date	Time	Cntrs	P	SE	1.2. S 70. d 62.		Remarks/Contaminant	Sample # (lab only)
Stanger Unel	Grab	ot	<u>ح'</u>	2/22/0	10:50	4	×	<u>v</u> x	195		1447785-01	6446185-01
- winge ta -				<u>↓ ↓ </u>	10:00	/	- 			2220 24		
								Here's	1	a a a a a a a a a a a a a a a a a a a		an a
								3.84S		a terra Nation		анаан (1997) Аларын Артория Аларын Артория (199
								10 State	ar i.		· · · · · ·	starbarta starbarta starbarta
								Survives.		27.5%. 19555.27		574 - 11 - 11
								5-86 y		ne ² lo¥ne		an a
								11201 0 (1201) 0 (22)	1000 C	21-21-32 (Sa. 42)		1000 1000 - State State State 1000 - State State State State
*Matrix: \$\$ - Soil/Solid GW - Grou	ndwater WW -	WasteWater	DW - Drink	king Water	DT - Other	sω	10.0400000	N=*****:31		pH	Tei	np
Remarks:	4/2	419800	ארד מ							Flow	Ot	ner
Relinguished by: (Signature)	Date: 2/22	Time: 10 1410	Receiv	ed by: (Signa	iture)			Sand Fee	les returneo IEx □Cou	d via: 🗌 UPS Irier 🗋	Condition: OK	(lab use only)
Relingerenterby: (Signature)	Date:	Time:	Receiv	od by: Signa	ture)					Bottles Receiv	ed: CoC Seals Intact	YNNA
Relinquished by: (Signature)	Date:	Time:	Recei	y of for the b	y (Signatur 9104	e)		Date 2.2:	5/0	Time: 09:00	pH Checked:	NCF:

Superior Fuel Yard

Environmental Science Corporation Mount Juliet, TN

(615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Environmental Science Corporation Mt. Juliet, TN

For: Engineering & Env. Consultants, INC. -AZ Project: Superior Storage and Fueling Yard L413522 SDG: L413522

July 28, 2009

Sample Receiving and Handling

All sample aliquots were received at the correct temperature, in the proper containers, and with the appropriate preservatives. All method specified holding times were met.

Hardness by Method 130.1

Laboratory Control Sample

Sample L413522-01 was analyzed in analytical batch WG432693. The laboratory control sample associated with this sample was within the laboratory control limits.

Sample Duplicate Analysis

For analytical batch WG432693 sample duplicate analysis was performed on sample L413234-01. The relative percent difference was within the method limits.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG432693, matrix spike/matrix spike duplicate analysis was performed on sample L413320-01. The spike recoveries were below the laboratory control limits. The relative percent difference was within control limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Suspended Solids by Method 2540D

Laboratory Control Sample

Sample L413522-01 was analyzed in analytical batch WG432703. The laboratory control sample associated with this sample was within the laboratory control limits.

Sample Duplicate Analysis

For analytical batch WG432703 sample duplicate analysis was performed on sample L413446-01. The relative percent difference was within the method limits.

Matrix Spike/Matrix Spike Duplicate

Precision for batch WG432703 was evaluated using the LCS / LCSD. The RPDs were within method limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Dissolved Solids by Method 2540C

Laboratory Control Sample

Sample L413522-01 was analyzed in analytical batch WG432871. The laboratory control sample associated with this sample was within the laboratory control limits.

Sample Duplicate Analysis

For analytical batch WG432871 sample duplicate analysis was performed on sample L413340-01. The relative percent difference was within the method limits.

Environmental Science Corporation Mt. Juliet, TN

For: Engineering & Env. Consultants, INC. -AZ Project: Superior Storage and Fueling Yard L413522

July 28, 2009

Matrix Spike/Matrix Spike Duplicate

Precision for batch WG432871 was evaluated using the LCS / LCSD. The RPDs were within method limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Trace Metals by Method 200.7

Laboratory Control Sample

Sample L413522-01 was analyzed in analytical batch WG432710. The laboratory control sample associated with this sample was within the laboratory control limits for all compounds.

Sample L413522-01 was analyzed in analytical batch WG433235. The laboratory control sample associated with this sample was within the laboratory control limits for all compounds.

Sample Duplicate Analysis

For analytical batch WG432710 sample duplicate analysis was performed on sample L413555-02. The relative percent differences were within the method limits.

For analytical batch WG433235 sample duplicate analysis was performed on sample L413952-02. The relative percent differences were within the method limits.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG432710 matrix spike/matrix spike duplicate analysis was performed on sample L413555-02. The matrix spike recoveries and relative percent differences were within laboratory control limits for all target analytes.

For analytical batch WG433235 matrix spike/matrix spike duplicate analysis was performed on sample L413952-02. The matrix spike recoveries and relative percent differences were within laboratory control limits for all target analytes.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Diesel Range Organics by Method 8015

Laboratory Control Sample

Sample L413522-01 was analyzed in analytical batch WG432732. The laboratory control sample associated with this sample was within the laboratory control limits.

Matrix Spike/Matrix Spike Duplicate

Precision for batch WG432732 was evaluated using the LCS / LCSD. The RPDs were within method limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

SDG: L413522

Environmental Science Corporation Mt. Juliet, TN

For: Engineering & Env. Consultants, INC. -AZ Project: Superior Storage and Fueling Yard L413522

SDG: L413522

July 28, 2009

Nancy F. Winters ESC Representative Environmental Science Corporation

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Gary Hoffmann Engineering & Env. Consultants, INC. -AZ 7878 N. 16th Street, Suite 140

Phoenix, AZ 85020

Report Summary

Tuesday July 28, 2009

Report Number: L413522 Samples Received: 07/22/09 Client Project:

Description: Superior Storage and Fueling Yard

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Entire Report Reviewed By:

Laboratory Certification Numbers

A2LA - 1461-01, AIHA - 100789, AL - 40660, CA - I-2327, CT - PH-0197, FL - E87487 GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - ENV375,DW21704, ND - R-140 NJ - TN002, NJ NELAP - TN002, SC - 84004, TN - 2006, VA - 00109, WV - 233 AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910

Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

This report may not be reproduced, except in full, without written approval from Environmental Science Corp. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

> 1 Samples Reported: 07/28/09 11:05 Printed: 07/28/09 11:06 Page 1 of 5

ESC

nards

Environmental Science Corporation Mount Juliet, TN

(615) 758-5858 1-800-767-5859 Fax (615) 758-5859

				SAMP	LE NUMI	BER
🖡 🛛 Environ	mental Scien	ce Corporation	on		SFY	
Customer :	Engineering & Env	Consultants, INC	Project	•		
Source :			Date Sa	mpled :	7/21/2009	9 10:35 AM
Location :	Superior Storage ar	nd Fueling Yard	Sample	d By :	<u> </u>	10100 1111
Lab Sample ID :	L413522-01	<u>10 1 00000 1 010</u>	Date Re	eceived :	7/22/2009)
130 1						
Analytic Batch: WG	432693	Analysis Date: 7/23/	2009	Analysis	s Time: 3:17	PM
Instrument: LACHA	T3	Analyst: 236		Preparat	ion Date: 7/2	3/2009 3:30
Method: 130.1		Dilution: 1				
CAS NO	Analyte		RL	R	ESULTS	FLAG
			mg/l	m	g/l	12.10
471-34-1	Hardness		30	11	10	
2540C						
Analytic Batch: WG	432871	Analysis Date: 7/25/	2009	Analysis	s Time: 12:01	
Instrument: BAL	Instrument: BAL			Preparat	tion Date: 7/2	3/2009 3:34
Method: 2540C		Dilution: 1				
CAS NO	Analyte		RL	R	ESULTS	FLAG
			mg/l	m	g/l	
	Dissolved Solids		10	33	30	
2540D						
Analytic Batch: WG	432703	Analysis Date: 7/23/	2009	Analysis	s Time: 8:41	
Instrument: BAL		Analyst: 193		Preparat	tion Date: 7/2	2/2009 4:03
Method: 2540D		Dilution: 1				
CAS NO	Analyte		RL	R	ESULTS	FLAG
			mg/l	m	g/l	
	Suspended Solids		1.0	10)0	
200.7						
Analytic Batch: WG	432710	Analysis Date: 7/23/	2009	Analysis	s Time: 10:46	i
Instrument: ICP6		Analyst: 447		Preparat	ion Date: 7/2	2/2009 4:11
Method: 200.7		Dilution: 1				
CAS NO	Analyte		RL mg/l	R m	ESULTS g/l	FLAG
7440-50-8	Copper		0.020	0.	43	

Comments:

1) Sample results are reported as rounded values.

2) These results are applicable only to the items tested.

				SAMP	LE NUMI	BER
🕨 Environ	mental Scien	ce Corporatio	on		SFY	
Customer :	Engineering & Env	<u>-</u> <u>- Consultants, INC</u>	Proje	ect :		
Source :			Date	Sampled :	7/21/2009	9 10:35 AM
Location :	Superior Storage ar	nd Fueling Yard	Samp	pled By :		
Lab Sample ID :	L413522-01		Date	Received :	7/22/2009)
<i>200.7</i> Analytic Batch: WG Instrument: ICP7 Method: 200.7	433235	Analysis Date: 7/27/2 Analyst: 454 Dilution: 1	2009	Analysis Preparati	Time: 3:37 on Date: 7/2	PM 6/2009 11:33
CAS NO	Analyte		RL	RF	ESULTS	FLAG
	-		mg/l	mg	g/l	
7440-50-8	Copper, Dissolved		0.020	0.0	49	
<i>3510/DRO</i> Analytic Batch: WG Instrument: SVGC7 Method: 3510/DRO	432732	Analysis Date: 7/23/2 Analyst: 260 Dilution: 1	2009	Analysis Preparati	Time: 2:51 on Date: 7/2	PM 2/2009 5:00
CAS NO	Analyte		RL mg/l	RF mg	ESULTS g/l	FLAG
68334-30-5	TPH (GC/FID) High Fi	raction	0.10	3.4		
Surrogates	Analyte	PERCENT RECOVE	Г RY	QUALIFIERS		FLAG
	o-Terphenyl	53.9				
LEGEND						
RL -	Reporting Limit					

2) These results are applicable only to the items tested.

Environmental Science Corporation Quality Control Summary Engineering & Env. Consultants, INC. -AZ *Test:*Dissolved Solids by Method 2540C L413522 *Matrix:* Water - mg/L Project: Superior Storage and Fueling Yard Login No:L413522 Sample Number:L413522-01 Sample Date:7/21/2009 Extraction Date:7/23/2009 Analysis Date:7/25/2009 12:01:00 PM Instrument ID:BAL Analyst:193 Analytic Batch:WG432871 EPA ID: TN00003

	Method Blank	
Analyte	CAS	PQL
Dissolved Solids		<10.0

Laboratory Control Sample (LCS)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Dissolved Solids	8800	8660	98.4	85 - 115	

Laboratory Control Sample Duplicate (LCSD)

A 1.	True	F 1	Recovery	Control	0 110
Analyte	value	Found	%	Limits	Qualifiers
Dissolved Solids	8800	8630	98.0	85 - 115	

Environmental Science Corporation Quality Control Summary Engineering & Env. Consultants, INC. -AZ *Test:*Dissolved Solids by Method 2540C L413522 *Matrix:* Water - mg/L Project: Superior Storage and Fueling Yard Login No:L413522 Sample Number:L413522-01 Sample Date:7/21/2009 Extraction Date:7/23/2009 Analysis Date:7/25/2009 12:01:00 PM Instrument ID:BAL Analyst:193 Analytic Batch:WG432871 EPA ID: TN00003

Laboratory Control Sample/ Laboratory Control Sample Duplicate

	Spike		%		%	Control	%	Control
Analyte		LCS	Rec	LCSD	Rec	Limits	Qualifier RPD	Limits Qualifier
Dissolved Solids	8800	8660	98.4	8630	98.0	85-115	0.4	20
Sample Duplicate								

L413340-01

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
Dissolved Solids	81.0	79.0	2.5	5	

Environmental Science Corporation Quality Control Summary Engineering & Env. Consultants, INC. -AZ Test: Hardness by Method 130.1 L413522 *Matrix:* Water - mg/L Project: Superior Storage and Fueling Yard Login No:L413522 Sample Number:L413522-01 Sample Date:7/21/2009 Extraction Date:7/22/2009 Analysis Date:7/23/2009 3:17:00 PM Instrument ID:LACHAT3 Analyst:236 Analytic Batch:WG432693 EPA ID: TN00003

	Method Blank	
Analyte	CAS	PQL
Hardness		<30.0

Laboratory Control Sample (LCS)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Hardness	200	220	110	85 - 115	

Laboratory Control Sample Duplicate (LCSD)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Hardness	200	218	109	85 - 115	

Environmental Science C Quality Control Summa	orporation ry
Engineering & Env. Consultants	, INCAZ
Test: Hardness by Method 130.1	L413522
<i>Matrix</i> :Water - mg/L	
Project: Superior Storage and Fueling Yard	
Login No:L413522	
Sample Number:L413522-01	
Sample Date:7/21/2009	
Extraction Date:7/22/2009	
Analysis Date:7/23/2009 3:17:00 PM	
Instrument ID:LACHAT3	
Analyst:236	
Analytic Batch:WG432693	EPA ID: TN00003

Laboratory Control Sample/ Laboratory Control Sample Duplicate

	Spike		%		%	Control	%	Control
Analyte		LCS	Rec	LCSD	Rec	Limits	Qualifier RPD	Limits Qualifier
Hardness	200	220	110	218	109	85-115	0.9	20

Sample Duplicate

L413234-01

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
Hardness	260	247	5.1	20	

Matrix Spike/Matrix Spike Duplicate L413320-01

	Spike			%		%	Control		%	Control	
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifie	r RPD	Limits	Qualifier
Hardness	150	260	357	64.7	357	64.7	80-120	M2	0.0	20	

Environmental Science Corporation Quality Control Summary Engineering & Env. Consultants, INC. -AZ Test: Suspended Solids by Method 2540D L413522 *Matrix:* Water - mg/L Project: Superior Storage and Fueling Yard Login No:L413522 Sample Number:L413522-01 Sample Date:7/21/2009 Extraction Date:7/22/2009 Analysis Date:7/23/2009 8:41:00 AM Instrument ID:BAL Analyst:193 Analytic Batch:WG432703 EPA ID: TN00003

	Method Blank	
Analyte	CAS	PQL
Suspended Solids		<1.00

Laboratory Control Sample (LCS)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Suspended Solids	780	776	99.5	85 - 115	

Laboratory Control Sample Duplicate (LCSD)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Suspended Solids	780	808	104	85 - 115	
Environmental Science Corporation Quality Control Summary Engineering & Env. Consultants, INC. -AZ Test: Suspended Solids by Method 2540D L413522 *Matrix:* Water - mg/L Project: Superior Storage and Fueling Yard Login No:L413522 Sample Number:L413522-01 Sample Date:7/21/2009 Extraction Date:7/22/2009 Analysis Date: 7/23/2009 8:41:00 AM Instrument ID:BAL Analyst:193 Analytic Batch:WG432703 EPA ID: TN00003

Laboratory Control Sample/ Laboratory Control Sample Duplicate

	Spike		%		%	Control	%	Control
Analyte		LCS	Rec	LCSD	Rec	Limits	Qualifier RPD	Limits Qualifier
Suspended Solids	780	776	99.5	808	104	85-115	4.0	20

Sample Duplicate L413446-01

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
Suspended Solids	5.10	4.89	4.2	5	

Environmental Science Corporation Quality Control Summary Engineering & Env. Consultants, INC. -AZ Test: Trace Metals by Method 200.7 L413522 *Matrix:* Water - mg/L Project: Superior Storage and Fueling Yard Login No:L413522 Sample Number:L413522-01 Sample Date:7/21/2009 Extraction Date:7/22/2009 Analysis Date:7/23/2009 Instrument ID:ICP6 Analyst:447 Analytic Batch:WG432710 EPA ID: TN00003

Method Blank

Analyte	CAS	PQL
Copper	7440-50-8	< 0.0200

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Copper	1.00	0.960	96.0	85 - 115	

Environmental Science Corporation Quality Control Summary Engineering & Env. Consultants, INC. -AZ Test: Trace Metals by Method 200.7 L413522 *Matrix:* Water - mg/L Project: Superior Storage and Fueling Yard Login No:L413522 Sample Number:L413522-01 Sample Date:7/21/2009 Extraction Date:7/26/2009 Analysis Date:7/27/2009 Instrument ID:ICP7 Analyst:454 Analytic Batch:WG433235 EPA ID: TN00003

Method Blank

Analyte	CAS	PQL
Copper, Dissolved	7440-50-8	< 0.0200

Laboratory Control Sample (LCS)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Copper, Dissolved	1.00	1.01	101	85 - 115	

Environmental Science Corporation Quality Control Summary Engineering & Env. Consultants, INC. -AZ Test: Trace Metals by Method 200.7 L413522 *Matrix:* Water - mg/L Project: Superior Storage and Fueling Yard Login No:L413522 Sample Number:L413522-01 Sample Date:7/21/2009 Extraction Date:7/22/2009 Analysis Date:7/23/2009 Instrument ID:ICP6 Analyst:447 Analytic Batch:WG432710 EPA ID: TN00003

Sample Duplicate L413555-02

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
Copper	0.00000	0.00160			

Matrix Spike/Matrix Spike Duplicate L413555-02

	Spike			%		%	Control	%	Control
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier RPD	Limits Qualifier
Copper	1.00	0.00000	0.985	98.5	0.977	97.7	75-125	0.8	20

Environmental Science Corporation Quality Control Summary Engineering & Env. Consultants, INC. -AZ Test: Trace Metals by Method 200.7 L413522 *Matrix:* Water - mg/L Project: Superior Storage and Fueling Yard Login No:L413522 Sample Number:L413522-01 Sample Date:7/21/2009 Extraction Date:7/26/2009 Analysis Date:7/27/2009 Instrument ID:ICP7 Analyst:454 Analytic Batch:WG433235

Sample Duplicate L413952-02

Name	Sample Results	Results Duplicate	%RPD	Limit	Qualifiers
Copper, Dissolved	0.00000	0.00050			

Matrix Spike/Matrix Spike Duplicate L413952-02

	Spike			%		%	Control	%	Control
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier RPD	Limits Qualifier
Copper, Dissolved	1.00	0.00000	1.01	101	1.01	101	75-125	0.0	20

EPA ID: TN00003

Environmental Science Corporation Quality Control Summary Engineering & Env. Consultants, INC. -AZ Test: Diesel Range Organics by Method 8015 L413522 *Matrix:* Water - mg/L Project: Superior Storage and Fueling Yard Login No:L413522 Sample Number:L413522-01 Sample Date:7/21/2009 Extraction Date:7/22/2009 Analysis Date:7/23/2009 Instrument ID:SVGC7 Analyst:260 Analytic Batch:WG432732 EPA ID: TN00003

1	vietnoù Blank	
Analyte	CAS	PQL
Diesel Range Organics		<0.10

T 41

Laboratory Control Sample (LCS)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Diesel Range Organics	1.50	1.22	81.2	50 - 150	

Laboratory Control Sample Duplicate (LCSD)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Diesel Range Organics	1.50	1.16	77.1	50 - 150	

Environmental Science Corporation Quality Control Summary Engineering & Env. Consultants, INC. -AZ Test: Diesel Range Organics by Method 8015 L413522 Matrix: Water - mg/L Project: Superior Storage and Fueling Yard Login No:L413522 Sample Number:L413522-01 Sample Date:7/21/2009 Extraction Date:7/22/2009

o-terphenylD

ppm

0.0189 0.0196

0.0190

0.0108

% Rec

94.7

97.8

95.1

53.9

Surrogate Summary

o-terphenyl Limits - 50 - 150

Analysis Date:7/23/2009 Instrument ID:SVGC7 Analyst:260 Analytic Batch:WG432732

Laboratory

Sample ID

Blank WG432732

LCS WG432732

L413522-01

LCSD WG432732

EPA ID: TN00003

Environmental Science Corpora Quality Control Summary	tion
Engineering & Env. Consultants, INCAZ	
Test: Diesel Range Organics by Method 8015	L413522
<i>Matrix:</i> Water - mg/L	
Project: Superior Storage and Fueling Yard	
Login No:L413522	
Sample Number:L413522-01	
Sample Date:7/21/2009	
Extraction Date:7/22/2009	
Analysis Date:7/23/2009	
Instrument ID:SVGC7	
Analyst:260	
Analytic Batch:WG432732	EPA ID: TN00003

Laboratory Control Sample/ Laboratory Control Sample Duplicate

	Spike		%		%	Control	%	Control
Analyte	_	LCS	Rec	LCSD	Rec	Limits	Qualifier RPD	Limits Qualifier
Diesel Range Organics	1.50	1.22	81.2	1.16	77.1	50-150	5.2	25

Company Name/Address			Alternate Bi	illing			Analysis/Container/Preservative					eserva	tive		Chain of Custody	
EEC														Page_1_of_1_		
7878 N. 16th St., Suite 14 Phoenix AZ 85020	40													Prepared by:	F199	
														ENVIRON Science cor	MENTAL D	
			Report to: 6	lary Hol	Fmam						6			12065 Leba	non Road	
			E-mail to:	1 SFEMAN	neecr	hx.co	1 - 198	e e			Pre			Mt. Juliet TN	N 37122	
Project Description: Superior Stor	age and Fueling	g Yard	•	City/	State Collected	:					2	n N		Phone (615)	758-5858	
PHONE:602-248-7702	Client Project	No.		Lab Project #			Les		Į.	~	РЕ	HZ		Phone (800)) 767-5859	
FAX: 602-248-7851	Site/Facility ID	#	·	0.0.4			2	Pres	Pres HC	NO	Ш	РП		· FAX (0	10)//06-0809	
				P.0.#	P.O.#		뷥	2 Z	dm∕	T T	000	I		CoCode	(lab use only)	
Collected by(signature).	Rush? (L	ab MUST b	e Notified)	Date Result	ts Needed	No	HD	ШЩ	1L/	IDPI	ed) 5	500m		ENGENVPAZ		
Packed on Ice N Y		Two Day Three Day		Email?N FAX?N	lo_X_Yes lo_Yes	of	25om	1L H	(HH)	500ml I	Dissolv	Iness (Shipped Via:		
Sample ID	Comp/Grab	Matrix	Depth	Date	Time	Cntrs	TDS	TSS	DRC	СЦ	Cu (Harc		Remarks/contaminant	Sample # (lab only)	
SFY		SU		7/21/09	10:36	7	X	X	x	Х	x	Х			1413522-01	
				/									- - -			
					-											
		ļ				_										
		ļ							: :							
Matrix: SS-Soil/Solid GW-Ground	water WW-Wa	stewater [DW-Drinking W	Vater OT-Of	ther								₀н 8	17 Temp 74	.8	
Remarks:												Fk	w	Other	-	
Refinauisben by:(Signature	Date:	Time:	Received by:(S	ignature	M		Sampl	les retu	rned via	: FedE:	xUP	s_Oti		Condition	(lab-use only)	
	1.7-1-7		$+ \sim 7$	<u> </u>	~ Z		L							Like Xi Xi	nel 1	
Relinquisher by:(Signature	Date:	Time:	Received/by: (Signature) 👋	2.1		Temp	31	1		Bottles	i Recei	ved:			

•

Quality Control Summary SDG: L446178

YOUR LAB OF CHOICE

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary

SDG: L446178

For: Engineering & Env. Consultants, INC. -AZ Project: Superior Fueling Yard February 26, 2010

Sample Receiving and Handling

All sample aliquots were received at the correct temperature, in the proper containers, and with the appropriate preservatives. All method specified holding times were met.

Hardness, Total (mg/L as CaCO3) by Method 130.1

Laboratory Control Sample

Sample L446178-01 was analyzed in analytical batch WG464635. The laboratory control sample associated with this sample was within the laboratory control limits.

Sample Duplicate Analysis

For analytical batch WG464635 sample duplicate analysis was performed on sample L445970-06. The relative percent differences were within the method limits.

For analytical batch WG464635 sample duplicate analysis was performed on sample L446044-01. The relative percent differences were within the method limits.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG464635, matrix spike/matrix spike duplicate analysis was performed on sample L445970-11. The spike recoveries were below the laboratory control limits. The relative percent difference was within control limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Dissolved Solids by Method 2540C

Laboratory Control Sample

Sample L446178-01 was analyzed in analytical batch WG464708. The laboratory control sample associated with this sample was within the laboratory control limits.

Sample Duplicate Analysis

For analytical batch WG464708 sample duplicate analysis was performed on sample L446178-01. The relative percent difference exceeded the method limits for Dissolved Solids.

Matrix Spike/Matrix Spike Duplicate

Precision for batch WG464708 was evaluated using the LCS / LCSD. The RPDs were within method limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Suspended Solids by Method 2540D

Laboratory Control Sample

Sample L446178-01 was analyzed in analytical batch WG464787. The laboratory control sample associated with this sample was within the laboratory control limits.

YOUR LAB OF CHOICE

Quality Control Summary

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

SDG: L446178

For: Engineering & Env. Consultants, INC. -AZ Project: Superior Fueling Yard February 26, 2010

Sample Duplicate Analysis

For analytical batch WG464787 sample duplicate analysis was performed on sample L446192-01. The relative percent differences were within the method limits.

For analytical batch WG464787 sample duplicate analysis was performed on sample L446049-01. The relative percent differences were within the method limits.

Matrix Spike/Matrix Spike Duplicate

Precision for batch WG464787 was evaluated using the LCS / LCSD. The RPDs were within method limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Trace Metals by Method 6010B

Laboratory Control Sample

Sample L446178-01 was analyzed in analytical batch WG464622. The laboratory control sample associated with this sample was within the laboratory control limits for all compounds.

Sample L446178-01 was analyzed in analytical batch WG464808. The laboratory control sample associated with this sample was within the laboratory control limits for all compounds.

Sample Duplicate Analysis

For analytical batch WG464622 sample duplicate analysis was performed on sample L446209-01. The relative percent differences were within the method limits.

For analytical batch WG464808 sample duplicate analysis was performed on sample L446355-06. The relative percent differences were within the method limits.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG464622 matrix spike/matrix spike duplicate analysis was performed on sample L446209-01. The matrix spike recoveries and relative percent differences were within laboratory control limits for all target analytes.

For analytical batch WG464808 matrix spike/matrix spike duplicate analysis was performed on sample L446355-06. The matrix spike recoveries and relative percent differences were within laboratory control limits for all target analytes.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Diesel Range Organics by Method 8015

Laboratory Control Sample

Sample L446178-01 was analyzed in analytical batch WG464616. The laboratory control sample associated with this sample was within the laboratory control limits.

Quality Control Summary

SDG: L446178 For: Engineering & Env. Consultants, INC. -AZ Project: Superior Fueling Yard February 26, 2010

Matrix Spike/Matrix Spike Duplicate

Precision for batch WG464616 was evaluated using the LCS / LCSD. The RPDs were within method limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Nancy F. Winters ESC Representative ESC Lab Sciences

YOUR LAB OF CHOICE

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Gary Hoffmann Engineering & Env. Consultants, INC. -AZ 7878 N. 16th Street, Suite 140

Phoenix, AZ 85020

Report Summary

Friday February 26, 2010

Report Number: L446178 Samples Received: 02/23/10 Client Project: 308032.07

Description: Superior Fueling Yard

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Entire Report Reviewed By:

Laboratory Certification Numbers

A2LA - 1461-01, AIHA - 100789, AL - 40660, CA - I-2327, CT - PH-0197, FL - E87487 GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - ENV375,DW21704, ND - R-140 NJ - TN002, NJ NELAP - TN002, SC - 84004, TN - 2006, VA - 00109, WV - 233 AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910

Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

This report may not be reproduced, except in full, without written approval from Environmental Science Corp. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

> 1 Samples Reported: 02/26/10 11:51 Printed: 02/26/10 11:52 Page 1 of 7

ESC

nards

Quality Control Summary SDG: L446178

SAMPLE NUMBER SUPERIOR FUEL YARD

Customer :	Engineering & Env. (Consultants, INC	Project :		<u>308032.0</u>	<u>7</u>
Source :			Date San	npled :	2/22/2010) 11:20 AM
Location :	Superior Fueling Yar	<u>d</u>	Sampled	By :	<u>Gary Hof</u>	<u>fmann</u>
Lab Sample ID :	L446178-01		Date Rec	eived :	2/23/2010)
130.1						
Analytic Batch: WG	464635	Analysis Date: 2/24/2	2010	Analysis	s Time: 3:24	PM
Instrument: LACHA	AT3	Analyst: 234		Preparat	tion Date: 2/2	3/2010 4:31
Method: 130.1		Dilution: 1				
CAS NO	Analyte		RL	R	ESULTS	FLAG
		~ ~ ~ ~	mg/l	m	g/l	
471-34-1	Hardness, Total (mg/L as	CaCO3)	30	<	30	
2540C						
Analytic Batch: WG	464708	Analysis Date: 2/25/2	2010	Analysis	s Time: 2:16	PM
Instrument: BAL		Analyst: 183		Preparat	tion Date: 2/2	4/2010 9:53
Method: 2540C		Dilution: 1				
CAS NO	Analyte		RL mg/l	R m	ESULTS g/l	FLAG
DSOLIDS	Dissolved Solids		10	17	70	R8
2540D						
Analytic Batch: WG	Analytic Batch: WG464787		2010	Analysis	Analysis Time: 2:12 PM	
Instrument: BAL		Analyst: 183		Preparat	tion Date: 2/2	4/2010 3:30
Method: 2540D		Dilution: 1				
CAS NO	Analyte		RL	R	ESULTS	FLAG
	-		mg/l	m	g/l	
SSOLIDS	Suspended Solids		1.0	22	2	

Comments:

1) Sample results are reported as rounded values.

2) These results are applicable only to the items tested.

SAMPLE NUMBER SUPERIOR FUEL YARD

Customer :	Engineering & Env. (Consultants, INC	Project :		<u>308032.0</u>	<u>17</u>
Source :			Date Sar	npled :	2/22/201	0 11:20 AM
Location :	Superior Fueling Yar	<u>d</u>	Sampled	By :	Gary Hot	<u>ffmann</u>
Lab Sample ID :	L446178-01		Date Rec	ceived :	2/23/201	00
6010B Analytic Batch: WG	464622	Analysis Data: 2/24/	2010	Analysis	Time: 0:00	
Instrument: ICP5	404022	Analyst: 438	2010	Preparat	ion Date: 2/2	23/2010 3:00
Method: 6010B		Dilution: 1		1		
CAS NO	Analyte		RL	R	ESULTS	FLAG
			mg/l	m	g/l	
7440-50-8	Copper		0.020	0.	054	
6010B						
Analytic Batch: WG	464808	Analysis Date: 2/25/2	2010	Analysis	s Time: 4:06	PM
Instrument: ICP6		Analyst: 428		Preparat	ion Date: 2/2	24/2010 4:34
Method: 6010B		Dilution: 1				
CAS NO	Analyte		RL	R	ESULTS	FLAG
	-		mg/l	m	g/l	
7440-50-8	Copper, Dissolved		0.020	<	0.020	
3510/DRO						
Analytic Batch: WG	464616	Analysis Date: 2/26/2	2010	Analysis	s Time: 8:04	
Instrument: SVGC7		Analyst: 280		Preparat	ion Date: 2/2	23/2010 2:55
Method: 3510/DRO		Dilution: 1				
CAS NO	Analyte		RL	R	ESULTS	FLAG
	·		mg/l	m	g/l	
68334-30-5	TPH (GC/FID) High Frac	ction	0.10	0.	31	
Surrogates						
	Analyte	PERCENT RECOVE	r QU. RY	ALIFIER	8	FLAG
	o-Terphenyl	91.8				
LEGEND						
RL -	Reporting Limit					
	1 0					
QUALIFIERS	Sample DDD avaaded 41	a mathad accontance 1	nit			
Кð -	Sample KPD exceeded th	e methoù acceptance m	.			

Comments:

1) Sample results are reported as rounded values.

2) These results are applicable only to the items tested.

Quality Control Summary SDG: L446178 Engineering & Env. Consultants, INC. -AZ

Test	Dissolved Solids by Method 2540C	, ,	
Droject No.	208022.07	Motrix	Water ma/I
Floject No.	506052.07	Mauix.	water - mg/L
Project:	Superior Fueling Yard	EPA ID:	TN00003
Collection Date:	2/22/2010	Analytic Batch:	WG464708
Analysis Date:	2/25/2010 2:16:00 PM	Analyst:	183
Instrument ID:	BAL	Extraction Date:	2/24/2010
Sample Numbers:	L446178-01		

Method Blank

Analyte	CAS	PQL	Qualifiers
Dissolved Solids		<10.0	

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Dissolved Solids	8800	8920	101	85 - 115	

Laboratory Control Sample Duplicate (LCSD)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Dissolved Solids	8800	8860	101	85 - 115	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

VOUR LAB OF CHOICE Quality Control Summary SDG: L446178 Engineering & Env. Consultants, INC. -AZ

Dissolved Solids by Method 2540C

Project No:	308032.07	Matrix:	Water - mg/L
Project:	Superior Fueling Yard	EPA ID:	TN00003
Collection Date:	2/22/2010	Analytic Batch:	WG464708
Analysis Date:	2/25/2010 2:16:00 PM	Analyst:	183
Instrument ID:	BAL	Extraction Date:	2/24/2010
Sample Numbers:	L446178-01		

Laboratory Control Sample/ Laboratory Control Sample Duplicate

			%		%	Control		%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
Dissolved Solids	8800	8920	101	8860	101	85-115		0.6	20	

Sample Duplicate L446178-01

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
Dissolved Solids	170	156	8.6	5	R8

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

VOUR LAB OF CHOICE Quality Control Summary SDG: L446178 Engineering & Env. Consultants, INC. -AZ

Hardness, Total (mg/L as CaCO3) by Method 130.1

Project No:	308032.07	Matrix:	Water - mg/L
Project:	Superior Fueling Yard	EPA ID:	TN00003
Collection Date:	2/22/2010	Analytic Batch:	WG464635
Analysis Date:	2/24/2010 3:24:00 PM	Analyst:	234
Instrument ID:	LACHAT3	Extraction Date:	2/23/2010
Sample Numbers:	: L446178-01		

Method Blank					
Analyte	CAS	PQL	Qualifiers		
Hardness		<30.0			

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Hardness	200	210	105	85 - 115	

Laboratory Control Sample Duplicate (LCSD)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Hardness	200	207	103	85 - 115	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

CE Quality Control Summary SDG: L446178 Engineering & Env. Consultants, INC. -AZ

Hardness, Total (mg/L as CaCO3) by Method 130.1

Project No:	308032.07	Matrix:	Water - mg/L
Project:	Superior Fueling Yard	EPA ID:	TN00003
Collection Date:	2/22/2010	Analytic Batch:	WG464635
Analysis Date:	2/24/2010 3:24:00 PM	Analyst:	234
Instrument ID:	LACHAT3	Extraction Date:	2/23/2010
Sample Numbers:	L446178-01		

Laboratory Control Sample/ Laboratory Control Sample Duplicate										
	-	-	%	·	%	Control	-	%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
Hardness	200	210	105	207	103	85-115		1.4	20	

Sample Duplicate L445970-06

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
Hardness	240	241	0.4	20	

Sample Duplicate L446044-01

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
Hardness	210	205	2.4	20	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L446178 Engineering & Env. Consultants, INC. -AZ

Hardness, Total (mg/L as CaCO3) by Method 130.1

Project No:	308032.07	Matrix:	Water - mg/L
Project:	Superior Fueling Yard	EPA ID:	TN00003
Collection Date:	2/22/2010	Analytic Batch:	WG464635
Analysis Date:	2/24/2010 3:24:00 PM	Analyst:	234
Instrument ID:	LACHAT3	Extraction Date:	2/23/2010
Sample Numbers:	L446178-01		

		Matrix	Spike	/Matri	ix Spik	e Dupl	licate					
]	L44597	70-11							
	Spike			%		%	Control	% Rec	%	Control	RPD	
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual	
Hardness	300	360	462	34.0	454	31.3	80-120	M2	1.7	20		

Quality Control Summary SDG: L446178 Engineering & Env. Consultants, INC. -AZ

Test	Suspended Solids by Method 2540D	<i>,</i>	
Due is at Max			W
Project No:	308032.07	Matrix:	water - mg/L
Project:	Superior Fueling Yard	EPA ID:	TN00003
Collection Date:	2/22/2010	Analytic Batch:	WG464787
Analysis Date:	2/25/2010 2:12:00 PM	Analyst:	183
Instrument ID:	BAL	Extraction Date:	2/24/2010
Sample Numbers:	L446178-01		

Method Blank

Analyte	CAS	PQL	Qualifiers
Suspended Solids			

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Suspended Solids	773	772	99.9	85 - 115	

Laboratory Control Sample Duplicate (LCSD)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Suspended Solids	773	780	101	85 - 115	

VOUR LAB OF CHOICE Quality Control Summary SDG: L446178 Engineering & Env. Consultants, INC. -AZ

Suspended Solids by Method 2540D Test: 308032.07 Matrix: Project No: Water - mg/L Superior Fueling Yard Project: EPA ID: TN00003 Collection Date: 2/22/2010 Analytic Batch: WG464787 Analysis Date: 2/25/2010 2:12:00 PM Analyst: 183 Extraction Date: 2/24/2010 Instrument ID: BAL Sample Numbers: L446178-01

Laboratory Control Sample/ Laboratory Control Sample Duplicate

			%		%	Control		%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier R	RPD	Limits	Qualifier
Suspended Solids	773	772	99.9	780	101	85-115		1.0	20	

Sample Duplicate L446192-01

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
Suspended Solids	3400	3370	0.9	5	

Sample Duplicate L446049-01

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
Suspended Solids	120	126	4.9	5	

Quality Control Summary SDG: L446178 Engineering & Env. Consultants, INC. -AZ

Test:	Trace Metals by Method 6010B		
Project No:	308032.07	Matrix:	Water - mg/L
Project:	Superior Fueling Yard	EPA ID:	TN00003
Collection Date:	2/22/2010	Analytic Batch:	WG464622
Analysis Date:	2/24/2010	Analyst:	438
Instrument ID:	ICP5	Extraction Date:	2/23/2010
Sample Numbers:	L446178-01		

Method Blank

Analyte	CAS	PQL	Qualifiers
Copper	7440-50-8	< 0.0200	

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Copper	1.13	1.14	101	85 - 115	

Quality Control Summary SDG: L446178 Engineering & Env. Consultants, INC. -AZ

Test:	Trace Metals by Method 6010B		
Project No:	308032.07	Matrix:	Water - mg/L
Project:	Superior Fueling Yard	EPA ID:	TN00003
Collection Date:	2/22/2010	Analytic Batch	: WG464808
Analysis Date:	2/25/2010	Analyst:	428
Instrument ID:	ICP6	Extraction Date	: 2/24/2010
Sample Numbers:	L446178-01		

Method Blank

Analyte	CAS	PQL	Qualifiers
Copper,Dissolved	7440-50-8	< 0.0200	

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Copper, Dissolved	1.13	1.07	94.7	85 - 115	

Quality Control Summary SDG: L446178 Engineering & Env. Consultants, INC. -AZ

Test:	Trace Metals by Method 6010B		
Project No:	308032.07	Matrix:	Water - mg/L
Project:	Superior Fueling Yard	EPA ID:	TN00003
Collection Date:	2/22/2010	Analytic Batch:	WG464622
Analysis Date:	2/24/2010	Analyst:	438
Instrument ID:	ICP5	Extraction Date:	2/23/2010
Sample Numbers:	L446178-01		

Sample Duplicate

L446209-01

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
Copper	0.00000	0.0212			

Matrix Spike/Matrix Spike Duplicate

			L	.44620	9-01						
	Spike			%		%	Control	% Rec	%	Control	RPD
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual
Copper	1.13	0.0212	1.17	102	1.18	103	75-125		0.9	20	

Quality Control Summary SDG: L446178 Engineering & Env. Consultants, INC. -AZ

Test:	Trace Metals by Method 6010B		
Project No:	308032.07	Matrix:	Water - mg/L
Project:	Superior Fueling Yard	EPA ID:	TN00003
Collection Date:	2/22/2010	Analytic Batch:	WG464808
Analysis Date:	2/25/2010	Analyst:	428
Instrument ID:	ICP6	Extraction Date:	2/24/2010
Sample Numbers:	L446178-01		

Sample Duplicate

L446355-06

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
Copper,Dissolved	0.00000	0.0046			

Matrix Spike/Matrix Spike Duplicate

			L	.44635	5-06						
	Spike			%		%	Control	% Rec	%	Control	RPD
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual
Copper, Dissolved	1.13	0.00460	1.12	98.7	1.15	101	75-125		2.6	20	

VOUR LAB OF CHOICE Quality Control Summary SDG: L446178 Engineering & Env. Consultants, INC. -AZ

Test:	Diesel Range Organics by Method 8015		
Project No:	308032.07	Matrix:	Water - mg/L
Project:	Superior Fueling Yard	EPA ID:	TN00003
Collection Date:	2/22/2010	Analytic Batch:	WG464616
Analysis Date:	2/24/2010	Analyst:	280
Instrument ID:	SVGC7	Extraction Date:	2/23/2010
Sample Numbers:	L446178-01		

Method Blank

Analyte	CAS	PQL	Qualifiers
Diesel Range Organics		< 0.10	

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Diesel Range Organics	1.50	1.33	88.6	50 - 150	

Laboratory Control Sample Duplicate (LCSD)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Diesel Range Organics	1.50	1.36	90.6	50 - 150	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

VOUR LAB OF CHOICE Quality Control Summary SDG: L446178 Engineering & Env. Consultants, INC. -AZ

Diesel Range Organics by Method 8015

Project No:	308032.07	Matrix:
Project:	Superior Fueling Yard	EPA ID:
Collection Date:	2/22/2010	Analytic Bat
Analysis Date:	2/24/2010	Analyst:
Instrument ID:	SVGC7	Extraction Da
Sample Numbers	: L446178-01	

Matrix:	Water - mg/L
EPA ID:	TN00003
Analytic Batch:	WG464616
Analyst:	280
Extraction Date:	2/23/2010

Surrogate Summary

Laboratory Sample ID	o-terphenylD ppm	% Rec	
Blank WG464 LCS WG4646	616 0.0146 16 0.0160	73.0 79.9	
LCSD WG464 L446178-01	4616 0.0158 0.0184	78.8 91.8	

o-terphenyl Limits - 50 - 150

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L446178 Engineering & Env. Consultants, INC. -AZ

Diesel Range Organics by Method 8015

Project No:	308032.07	Matrix:	Water - mg/L
Project:	Superior Fueling Yard	EPA ID:	TN00003
Collection Date:	2/22/2010	Analytic Batch:	WG464616
Analysis Date:	2/24/2010	Analyst:	280
Instrument ID:	SVGC7	Extraction Date:	2/23/2010
Sample Numbers:	L446178-01		

Laboratory Control Sample/	/ Laboratory	Contr	ol Sample	Duplicate	
	%	%	Control	- %	Control

Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier F	RPD	Limits	Qualifier
Diesel Range Organics	1.50	1.33	88.6	1.36	90.6	50-150		2.2	25	

Company Name/Address			Alternate B	illing			Analysis/Container/Preservative				eserva	ative	Chain of Custody					
EEC														G018	Page_1_of_1_			
7878 N. 16th St., Suite 140 Phoenix, AZ 85020			Report to:	· · · · · · ·							¥			Prepared by: Environ Science co	IMENTAL rp			
			E-mail to:	E-mail to: 11.00.			-				es			12065 Leba	12065 Lebanon Road			
Project Description: Superior, Storage	e and Fueling	g Yard	<u> </u>	City/	State Collected:	.com	-		Š.		lo P	D	199	Mt. Juliet T	N 37122			
PHONE:602-248-7702	Client Project I	No.		Lab Project #					W		Ш	Ч НО Н		Phone (615 Phone (80	i)758-5858 0) 767 5850			
FAX: 602-248-7851	304	2032.0	07					es	Ţ	03				. FAX (6	15)758-5859			
Collected by: Gary Lottmany	Site/Facility ID	#		P.O.#	· · · · · · · · · · · · · · · · · · ·		- Ž	o Pre	- q	ŬH	Oml		1911 - 1911 1911 - 1911 1911 - 1911 - 1911 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 191	CoCode	(lab use only)			
Collected by(signature):	Rush? (L N	.ab MUST b Next Day Two Day	e Notified) 100%	Date Result	ts Needed	No	oml HDP	HDPE N	PH) 1L Ar	mI HDPE	solved) 50	ss 500ml		ENGENVPAZ Template/Prelogin				
Packed on Ice N_Y		Three Day		FAX?N	loYes		3 25	1	E)	500	(Dise	dnes		Shipped Via:				
Sample ID	Comp/Grab	Matrix	Depth	Date	Time	Cntrs	Ĭ	TSS	DR(C	Cu	Han		Remarks/contaminant	Sample # (lab only)			
Superior the fuel	Grab	OT	Ø	122/10	11:20	7	x	X	X	X	X	X	-		6446178-01			
			<u> </u>									<u> </u>						
<u></u>								<u> </u>										
										 								
		· · · · · ·								<u> </u>			1.325					
									2	<u> </u>								
							in a t											
					 								An ge					
Matrix: SS-Soil/Solid GW-Groundwar Remarks: KFHC	ter WV-Wa G.F I	stewater GD	W-Drinking V	Vater OT-O	.her <u>SW</u> 10.7714	ц D		1	1		L (A)	Flo	pH	Temp Other				
Relinguisher by Storature Relinguisher Signature	Date: Z/22/ 10 Date:	Time: 1410 Time:	Received by (S	Signature)	MA-		Sampi	es retu	med via	a: FedE	Bottles	SOt	ved:		(lab use only)			
Relinquisher by Signature	Z/ZZ// D Date:	1422 Time:	Received for I	aboy: (Sibnature	<u></u>	. Sec. A	Date	- [Time	7		oH Checked	NCE			
				C. pros			2.2	3.	0	c.	0°	100	ر میں ا 1930ء – ا		23 of 23			

• • •

Quality Control Summary SDG: L447787

Quality Control Summary

SDG: L447787

For: Engineering & Env. Consultants, INC. -AZ Project: Superior Fueling Yard March 09, 2010

Sample Receiving and Handling

All sample aliquots were received at the correct temperature, in the proper containers, and with the appropriate preservatives. All method specified holding times were met.

Diesel Range Organics by Method 8015

Laboratory Control Sample

Sample L447787-01 was analyzed in analytical batch WG466633. The laboratory control sample associated with this sample was within the laboratory control limits.

Matrix Spike/Matrix Spike Duplicate

Precision for batch WG466633 was evaluated using the LCS / LCSD. The RPDs were within method limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Nancy F. Winters ESC Representative ESC Lab Sciences

YOUR LAB OF CHOICE

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Gary Hoffmann Engineering & Env. Consultants, INC. -AZ 7878 N. 16th Street, Suite 140

Phoenix, AZ 85020

Report Summary

Tuesday March 09, 2010

Report Number: L447787 Samples Received: 02/23/10 Client Project: 308032.07

Description: Superior Fueling Yard

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesizate to call.

Entire Report Reviewed By:

Jarred White ISC Representative

Laboratory Certification Numbers

A2LA - 1461-01, AIHA - 100789, AL - 40660, CA - I-2227, CT - PH-0197, FL - E87487 GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, MC - ENV375, DW21704, ND - R-140 NJ - TN002, NJ NELAP - TN002, SC - 84004, TN - 2006, VA - 00109, WV - 233 AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910

Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

This report may not be reproduced, except in full, without written approval from Environmental Science Corp. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

> 1 Samples Reported: 03/08/10 14:20 Revised: 03/09/10 18:13 Page 1 of 4

Quality Control Summary SDG: L447787

SAMPLE NUMBER SUPERIOR FUEL YARD

Customer :	Engineering & Env. (Consultants, INC	Project	t:	<u>308032.0</u>	<u>07</u>
Source :			Date S	ampled :	2/22/201	0 11:20 AM
Location :	Superior Fueling Yar	<u>d</u>	Sample	ed By :	Gary Hot	f <u>mann</u>
Lab Sample ID :	L447787-01		Date R	leceived :	2/23/201	00
8015						
Analytic Batch: WG	466633	Analysis Date: 3/7/20	010	Analysis	s Time: 9:55	PM
Instrument: SVGC2		Analyst: 287		Preparat	ion Date: 3/8	8/2010 12:13
Method: 8015		Dilution: 1				
CAS NO	Analyte		RL	R	ESULTS	FLAG
	G10 G20 D: 1 D		mg/l	<u> </u>	g/l	
	C10-C28 Diesel Range		0.10	0.	65	
	C28-C40 Oil Range		0.10	0.	23	
Surrogates						
	Analyte	PERCENT RECOVE	ГQ RY	UALIFIER	S	FLAG
	o-Terphenyl	93.9				
LEGEND						
RL -	Reporting Limit					

Comments:

-

1) Sample results are reported as rounded values.

2) These results are applicable only to the items tested.

VOUR LAB OF CHOICE Quality Control Summary SDG: L447787 Engineering & Env. Consultants, INC. -AZ

Test:	Diesel Range Organics by Method 8015		
Project No:	308032.07	Matrix:	Water - mg/L
Project:	Superior Fueling Yard	EPA ID:	TN00003
Collection Date:	2/22/2010	Analytic Batch:	WG466633
Analysis Date:	3/7/2010	Analyst:	287
Instrument ID:	SVGC2	Extraction Date:	3/8/2010
Sample Numbers:	L447787-01		

Method Blank Analyte CAS PQL Qualifiers Extractable Petroleum Hydrocarbons <0.10</td>

Laboratory Control Sample (LCS)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Extractable Petroleum Hydrocarbons	1.50	1.22	81.4	50 - 100	

Laboratory Control Sample Duplicate (LCSD)

	True		Recovery	Control	
Analyte	Value	Found	%	Limits	Qualifiers
Extractable Petroleum Hydrocarbons	1.50	1.05	69.8	50 - 100	

Test:

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary YOUR LAB OF CHOICE SDG: L447787 Engineering & Env. Consultants, INC. -AZ

Diesel Range Organics by Method 8015

Project No:	308032.07	Matrix:	Water - mg/L
Project:	Superior Fueling Yard	EPA ID:	TN00003
Collection Date:	2/22/2010	Analytic Batch:	WG466633
Analysis Date:	3/7/2010	Analyst:	287
Instrument ID:	SVGC2	Extraction Date:	3/8/2010
Sample Numbers:	: L447787-01		

Surrogate Summary

L	aboratory	o-terphenylD	% Rec
S	ample ID	ppm	
B	Blank WG466633	0.0192	96.1
L	.CS WG466633	0.0205	102
L	.CSD WG466633	0.0174	87.1
L	.447787-01	0.0188	93.9

o-terphenyl Limits - 50 - 150

Test:

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

Quality Control Summary SDG: L447787 Engineering & Env. Consultants, INC. -AZ

Diesel Range Organics by Method 8015

Project No:	308032.07	Matrix:	Water - mg/L
Project:	Superior Fueling Yard	EPA ID:	TN00003
Collection Date:	2/22/2010	Analytic Batch:	WG466633
Analysis Date:	3/7/2010	Analyst:	287
Instrument ID:	SVGC2	Extraction Date:	3/8/2010
Sample Numbers	: L447787-01		

Laboratory Control S	Sample/ Laboratory	Control	Sample Duplica	te	
	- 0/	0/ 0	¹ ontrol	0/	C

-	Laboratory control	jumpie,	1400	Lacory	001101	or Samp	e zapne	ave		
			%		%	Control		%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
Extractable Petroleu	ım 1.50	1.22	81.4	1.05	69.8	50 - 100		15	20	

Company Name/Address		·······	Alternate B	illing			Analysis/Container/Preservative			tive		Chain of Custody			
EEC														G018	Page_1_of_1_
Project Description: Superior, Storage PHONE:602-248-7702 FAX: 602-248-7851	Client Project I 30 { Site/Facility 1Di	y Yard No. 3032. (Report to:	Dary Hat hat Manann City/ Lab Project # P.O.#	Pmann Ceccphk State Collected:	.com	No Pres	Pres	b HCLA	HNO3 &	mi HDPE No Pres 🗙	рре инозф		Prepared by: ENVIRON Science col 12065 Leba Mt. Juliet TI Phone (615 Phone (800 FAX (6	MENTAL rp anon Road N 37122)758-5858 D) 767-5859 15)758-5859
	Rush? (L	ab MUST b Vext Day ГWO Day Three Day	e Notified) 100% 50% 25%	Date Result Email?N FAX?N	ts Needed lo_X_Yes loYes	No of	S 250ml HDPE	3 1L HDPE No	O(TPH) 1L Am	500ml HDPE	(Dissolved) 500	dness 500ml H		CoCode ENGENVPAZ Template/Prelogin Shipped Via:	(lab use only)
Sample ID	Comp/Grab	Matrix	Depth	Date	Time	Cntrs	Ŭ	TSS	DR(С	Cu	Han	anal se	Remarks/contaminant	Sample # (lab only)
Superior tree ruel	Grab	OT	Ø	2/22/10	11:20	7	X	X	X	X	X	X		1447787-01	6446178-01-
· · ·			ļ		ļ						31				**************************************
			<u> </u>		-	-	1								
·······			1												
						+									
														· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·						<u> </u>			2002) 1967 - 1967 1967 - 1967						
Matrix: SS-Soil/Solid GW-Groundwa Remarks: KFiltC Relinquisher by:(Sord ture	ter WV-Wa M.+ +	stewater Gb (W-Drinking V	Vater OT-O	ther <u>SW</u>	<u>,</u>	100mm		d				pH	Temp Other	
Relinguished	$\frac{z/2z/10}{Date:}$	1410 Time: 1422	Received by: (Mr.		Temp:	es retu	med via	: FedE	× <u>¥</u> UP Bottles	S_Oth Receiv	er ed:		(lab use only)
Reinquisner by Kolgnature	Date:	Time:	Received for	ab by: Signatur	e)		Date:	3.	0		Time:	∞		pH Checked:	NCF:

Nogales Maintenance Yard

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

John Burton Engineering & Env. Consultants, INC. -AZ 7878 N. 16th Street, Suite 140

Phoenix, AZ 85020

Report Summary

Wednesday July 08, 2009

Report Number: L410057 Samples Received: 06/30/09 Client Project:

Description: Nogales Yard

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Entire Report Reviewed By:

Laboratory Certification Numbers

A2LA - 1461-01, AIHA - 100789, AL - 40660, CA - I-2327, CT - PH-0197, FL - E87487 GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - ENV375,DW21704, ND - R-140 NJ - TN002, NJ NELAP - TN002, SC - 84004, TN - 2006, VA - 00109, WV - 233 AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910

Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

This report may not be reproduced, except in full, without written approval from Environmental Science Corp. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

> 1 Samples Reported: 07/08/09 13:14 Printed: 07/08/09 14:23 Page 1 of 5

Richards -ESC

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

John Burton Engineering & Env 7878 N. 16th Stre Phoenix, AZ 85020	. Consultants, INC et, Suite 140	REPORT	G OF ANALYSIS		July 08, 2009		
Date Received :	June 30, 200 Nogales Vard	9			ESC Sample # :	L410057-01	
Description .	Nogares fara				Site ID :		
Sample ID :	NOG 2				Project # :		
Collected By : Collection Date :	06/29/09 12:00						
Parameter		Result	Det. Limit	Units	Method	Date	Dil.
Hardness		250	30.	mg/l	130.1	07/07/09	1
Ammonia Nitroge	n	0.74	0.10	mg/l	350.1	07/07/09	1
Dissolved Solid	s	630	10.	mg/l	2540C	07/06/09	1
Suspended Solid	S	20.	1.0	mg/l	2540D	07/01/09	1
Copper		BDL	0.020	mg/l	200.7	07/04/09	1
TPH (GC/FID) High Fraction		9.2	0.10	mg/l	3510/DRO	07/03/09	1
o-Terphenyl	Υ(δ)	131.		% Rec.	3510/DRO	07/03/09	1

BDL - Below Detection Limit
Det. Limit - Practical Quantitation Limit(PQL)
Note:
The reported analytical results relate only to the sample submitted.
This report shall not be reproduced, except in full, without the written approval from ESC.
.
Reported: 07/08/09 13:14 Printed: 07/08/09 14:23

Page 2 of 5

Summary of Remarks For Samples Printed $07/08/09 \mbox{ at } 14{:}23{:}53$

TSR Signing Reports: 288 R5 - Desired TAT

Sample: L410057-01 Account: ENGENVPAZ Received: 06/30/09 09:00 Due Date: 07/07/09 00:00 RPT Date: 07/08/09 13:14

Engineering & Env. Consultants, INC. -AZ John Burton 7878 N. 16th Street, Suite 140

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

July 08, 2009

Phoenix, AZ 85020

Quality Assurance Report Level II

L410057

		Labora	atory Blank				
Analyte	Result	Units	5 % Re	ec	Limit	Batch I	Date Analyzed
TPH (GC/FID) High Fraction	< .1	maa				WG429554 (7/02/09 22:10
o-Terphenyl		% Rec	93	.09	50-150	WG429554 (07/02/09 22:10
Copper	< .02	mg/l				WG429797 (07/04/09 15:31
Dissolved Solids	< 10	mg/l				WG429498 (07/06/09 14:19
Suspended Solids	< 1	mg/l				WG429272 ()7/01/09 15:42
Ammonia Nitrogen	< .1	mg/l				WG429462 ()7/07/09 10:07
Hardness	< 30	mg/l				WG430120 ()7/07/09 <u>1</u> 8:45
		Dı	uplicate				
Analyte	Units	Result	Duplicate	RPD	Limit	Ref Samp	Batch
Copper	mg/l	0.165	0.160	3.08	20	L410413-0)1 WG429797
Dissolved Solids	mg/l	37400	36000	3.85	5	L410008-0)1 WG429498
Suspended Solids	mg/l	16.2	15.0	7.91*	5	L409935-0)2 WG429272
Ammonia Nitrogen	mg/l	11.9	11.0	7.86	20	L410148-0)1 WG429462
Ammonia Nitrogen	mg/l	0.241	0.360	39.6*	20	L410119-0	01 WG429462
Hardness	mg/l	0.00	0.00	0.00	20	L410329-0)3 WG430120
Hardness	mg/l	70.3	88.0	22.4*	20	L408944-0	<u>)1 WG4</u> 30120
		Laboratory	7 Control Sam	nple			
Analyte	Units	Known Val	L Re	esult	% Rec	Limit	Batch
TPH (GC/FID) High Fraction	ppm	1.5	1	.32	87.8	50-150	WG429554
o-Terphenyl					102.0	50-150	WG429554
Copper	mg/l	1	0	.994	99.4	85-115	WG429797
Dissolved Solids	mg/l	8800	8610)	97.9	85-115	WG429498
Suspended Solids	mg/l	780	780		100.	85-115	WG429272
Ammonia Nitrogen	mg/l	7.5	8	.13	108.	90-110	WG429462
Hardness	mg/l	200	194		97.0	85-115	WG430120

* Performance of this Analyte is outside of established criteria. For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

Page 3 of 5

Engineering & Env. Consultants, INC. -AZ John Burton 7878 N. 16th Street, Suite 140

Phoenix, AZ 85020

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II L410057

July 08, 2009

		Laboratory	/ Control	Sample Dupl	icate				
Analyte	Units	Result	Ref	%Rec		Limit	RPD	Limit	Batch
TPH (GC/FID) High Fraction o-Terphenyl	ppm	1.34	1.32	90.0 95.82		50-150 50-150	1.96	5 25	WG429554 WG429554
Dissolved Solids	mg/l	8640	8610	98.0		85-115	0.32	25 20	WG429498
Suspended Solids	mg/l	788.	780.	101.		85-115	1.02	2 20	WG429272
Ammonia Nitrogen	mg/l	8.00	8.13	107.		90-110	1.61	L 20	WG429462
Hardness	mg/l	198.	194.	99.0		85-115	2.04	1 20	WG430120
			Matrix	Snike					
Analyte	Units	MS Res	Ref Re	es TV	% Rec	Limit		Ref Samp	Batch
Copper	mg/l	1.25	0.10	50 1	109.	75-125		L410413-01	WG429797
Ammonia Nitrogen	mg/l	6.24	0.58	30 5	113.*	90-110		L410119-02	WG429462
Hardness	mg/l	279.	160.	150	79.3*	80-120		L410119-01	WG430120
		Matr	rix Spike	Duplicate					
Analyte	Units	MSD	Ref	%Rec	Limit	RPD	Limit	Ref Samp	Batch
Copper	mg/l	1.24	1.25	108.	75-125	0.803	20	L410413-01	WG429797
Ammonia Nitrogen	mg/l	6.31	6.24	114.6*	90-110	1.12	20	L410119-02	WG429462
Hardness	mg/l	277.	279.	78*	80-120	0.719	20	L410119-01	WG430120

Batch number /Run number / Sample number cross reference

WG429554:	R802506:	L410057-01
WG429797:	R803969:	L410057-01
WG429498:	R804446:	L410057-01
WG429272:	R804867:	L410057-01
WG429462:	R806006:	L410057-01
WG430120:	R807086:	L410057-01

* Calculations are performed prior to rounding of reported values .
 * Performance of this Analyte is outside of established criteria.
 For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

Page 4 of 5

Engineering & Env. Consultants, INC. -AZ John Burton 7878 N. 16th Street, Suite 140

Phoenix, AZ 85020

Quality Assurance Report Level II

L410057

The data package includes a summary of the analytic results of the quality control samples required by the SW-846 or CWA methods. The quality control samples include a method blank, a laboratory control sample, and the matrix spike/matrix spike duplicate analysis. If a target parameter is outside the method limits, every sample that is effected is flagged with the appropriate qualifier in Appendix B of the analytic report.

> Method Blank - an aliquot of reagent water carried through the entire analytic process. The method blank results indicate if any possible contamination exposure during the sample handling, digestion or extraction process, and analysis. Concentrations of target analytes above the reporting limit in the method blank are qualified with the "B" qualifier.

Laboratory Control Sample - is a sample of known concentration that is carried through the digestion/extraction and analysis process. The percent recovery, expressed as a percentage of the theoretical concentration, has statistical control limits indicating that the analytic process is "in control". If a target analyte is outside the control limits for the laboratory control sample or any other control sample, the parameter is flagged with a "J4" qualifier for all effected samples.

Matrix Spike and Matrix Spike Duplicate - is two aliquots of an environmental sample that is spiked with known concentrations of target analytes. The percent recovery of the target analytes also has statistical control limits. If any recoveries that are outside the method control limits, the sample that was selected for matrix spike/matrix spike duplicate analysis is flagged with either a "J5" or a "J6". The relative percent difference (%RPD) between the matrix spike and the matrix spike duplicate recoveries is all calculated. If the RPD is above the method limit, the effected samples are flagged with a "J3" qualifier. 12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

July 08, 2009

Company Name/Address			Alternate B	illing		i		Analy	sis/C	ontaine	r/Pres	ervativ	ve	Chain of Custod	iy
EEC 7878 N. 16th St., Suite 140 Phoenix, AZ 85020			Report to:	the B	ur ton	<u>.</u>						04		Page_1_of_1 Prepared by: B093 ENVIRONMENTAL Science corp 12065 Lebanon Road	_
Project Description: Nogales Yard PHONE:602-248-7702	Client Project	No.		Lab Project #	State Collected:	4 <u>K.</u> C	Les	-			HNO3	DPE H2S	Hori fes	Phone (615)758-5858 Phone (800) 767-5859	
FAX: 602-248-7851 Collected by:	Site/Facility ID	#		P.O.#			РЕ No P	No Pres	Amb HC	E HNO3		250ml HI		FAX (615)758-5859 CoCode (lab use only)	
Packed on Ice N_Y	Rush? (l	ab MUST b. Next Day Two Day Three Day	e Notified) 100% 50% 25%	Date Result	ts Needed lo_X_Yes loYes	No of	S 250ml HDI	3 1L HDPE	о(трн) 1L /	500ml HDPI	dness 250m	monia as N	orine. 2 3011	ENGENVPAZ Template/Prelogin Shipped Via:	
Sample ID	Comp/Grab	Matrix	Depth	Date	Time	Cntrs	Ĩ	ΤSS	DRI	วี	Har	Ā		i Remarks/contaminant Sample # (lab only)	0
NOG 2	Сотр			<u>425/07</u>	/200		X	X			X	X		<u>L410057-</u>	<u>> (</u>
		· · · · ·				-									
Matrix: SS-Soil/Solid GW-Groundwa Remarks: Mtols nd	ter WW-Wa	istewater D	W-Drinking V	Water OT-O	ther	l	L	<u> </u>				Flow	oH	Temp	<u> 24666</u>
Relinquisher by:(Signature	Date:	Time: 1400 Time:	Received by: (S Received by: (Signature) Signature)	ANI -		Sampl Temp:	es retur	ned via	I: FedEx_	_ UPS_	_Other	r d:	Condition (lab use only)	
Relinquisher by:(Signature	Date:	Time:	Received for	lab by: (Signatur - SUU	e)		Date:	(<i>,2</i> 0	-04		ime:	190	W.	pH Checked: NCF:	·····

9669 7453 7278			
	9669	7453	7278

MAR 1 1 2010

March 09, 2010

Tom Ross Engineering and Environmental Consultants, Inc. 4625 E. Ft. Lowell Road, Tucson, AZ 85712

TEL (520) 321-4625 FAX (520) 547-5650

Work Order No.: 10B0622

RE: ADOT SW (Nogales)

Dear Tom Ross,

Turner Laboratories, Inc. received 1 sample(s) on 02/23/2010 for the analyses presented in the following report.

All results are intended to be considered in their entirety, and Turner Laboratories, Inc. is not responsible for use of less than the complete report. Results apply only to the samples analyzed. Samples will be disposed of 30 days after issue of our report unless special arrangements are made.

The pages that follow may contain sensitive, privileged or confidential information intended solely for the addressee named above. If you receive this message and are not the agent or employee of the addressee, this communication has been sent in error. Please do not disseminate or copy any of the attached and notify the sender immediately by telephone. Please also return the attached sheet(s) to the sender by mail.

Please call if you have any questions.

Respectfully submitted,

Turner Laboratories, Inc. ADHS License AZ0066

eni L'Alarcia

Terri Garcia Technical Director

2445 NORTH COYOTE DRIVE SUITE #104 TUCSON, ARIZONA 85745 520 882-5880 FAX# 520 882-9788

Turner Laboratories, Inc.

Date: 03/09/2010

Client:	Engineering and Environmental Consultants, Inc	
Project:	ADOT SW (Nogales)	
Work Order:	10B0622	
Date Received:	02/23/2010	Work

Work Order Sample Summary

Lab Sample ID Client Sample ID

10B0622-01

Nogales ADOT SW 022310

Matrix Storm Water

Collection Date/Time

Turner Laboratories, Inc.

Client: Project:	Engineering and Environmental Consultants, Inc. ADOT SW (Nogales)	
Work Order: Date Received:	10B0622 02/23/2010	Case Narrative

Job Address Nogales Maintenance Yard 1340 North Hohokam Drive Nogales AZ

L1 The associated LCS/LCSD recovery was above laboratory acceptance limits.

M2 Matrix spike recovery was low; the associated LCS/LCSD was acceptable.

R7 MS/MSD RPD exceeded the method acceptance limit.

- ND Not Detected at or above the PQL
- PQL Practical Quantitation Limit
- DF Dilution Factor

E Value is above quantitation range.

Turner Laboratories, Inc.

.

۰,

Client: E	ngineering and Environ	nmental Cor	nsultants	S Clie	nt Sa	mple ID: Nogales	ADOT SW 02231	0
Project: A	DUI SW (Nogales)			Collectio	on Da	ate/Time: 02/23/2	010 0725	
Work Order: 1	0B0022					Matrix: Storm v	vater	
Lab Sample ID: 1	0B0622-01	· · · · · · · · · · · · · · · · · · ·						
Analyses	Result	PQL	Qual	Units	DF	Prep Date	Analysis Date	Analyst
C10-C32 Hydrocarbons-8	015AZR1(Mod)							
C10-C22 (Diesel Range Organics)	ND	3.0	R7	mg/L	1	02/23/2010 0943	02/24/2010 1137	DCB
C10-C32 (Total)	ND	13	R7	mg/L	1	02/23/2010 0943	02/24/2010 1137	DCB
C22-C32 (Oil Range Org	anics) ND	10	L1	mg/L	1	02/23/2010 0943	02/24/2010 1137	DCB
C6-C10 (Gasoline Range Organics)	ND	2.0		mg/L	1	02/23/2010 0943	02/24/2010 1137	DCB
Surr: o-Terphenyl	76	70-130		%REC	1	02/23/2010 0943	02/24/2010 1137	DCB
Surr: Trifluorotoluene	85	70-130		%REC	1	02/23/2010 0943	02/24/2010 1137	DCB
Calculation								
Hardness, Ca & Mg	860			mg/L	1	02/24/2010 0930	02/25/2010 1331	RAD
ICP Dissolved Metals-E 20	00.7							
Copper	0.022	0.020		mg/L	1	02/24/2010 0850	02/25/2010 1450	RAD
ICP Total Metals-E200.7								
Calcium	240	4.0		mg/L	1	02/24/2010 0930	02/25/2010 1331	RAD
Copper	0.044	0.020		mg/L	1	02/24/2010 0930	02/25/2010 1331	RAD
Magnesium	65	3.0		mg/L	1	02/24/2010 0930	02/25/2010 1331	RAD
Total Residual Chlorine-H	8167							
Total Residual Chlorine	ND	0.10	M2	mg/L	1	02/23/2010 1035	02/23/2010 1135	JM
Total Dissolved Solids (Res	sidue, Filterable)-SM2540	С						
Total Dissolved Solids (R Filterable)	esidue, 1900	20		mg/L	1	02/25/2010 0810	03/01/2010 1145	JM
Total Suspended Solids (R	esidue, Non-Filterable)-SM	12540 D						
Total Suspended Solids	260	10		mg/L	1	02/25/2010 0900	02/25/2010 1500	ЛМ
Ammonia as N-SM4500 B,	с							
Nitrogen, Ammonia (As I	N) ND	0.50		mg/L	1	03/02/2010 0820	03/02/2010 1535	EW
Total Coliform & E. Coli, I	MPN-SM9223B							
E.Coli	2	1		org/100 mL	1	02/23/2010 1010	02/24/2010 1050	EW
Total Coliform	2400	1	Е	org/100 mL	1	02/23/2010 1010	02/24/2010 1050	EW

Chrissie Hancock

 From:
 "John Burton" <jburton@eecphx.com>

 Date:
 Monday, February 22, 2010 3:11 PM

 To:
 "Tom Ross" <TRoss@eectuc.com>; "Chad Hancock" <chancock@eectuc.com>

 Attach:
 Site Plan.pdf

 Subject:
 Nogales Yard Sampling

 308032.07/INDST/ES4
 Attach

The Nogales Maintenance Yard is located at 1340 North Hohokam Drive in Nogales, Arizona.

Parameters for Analyses

- Total Dissolved Solids (TDS)
- Total Suspended Solids (TSS)
- Total Petroleum Hydrocarbons (TPH) DRO to be specific
- Total and Dissolved Copper
- Hardness (required as part of dissolved copper comparison level)
- Ammonia
- Escherichia-coli (E-coli) MPN
- Chlorine

Let me know if you need anything else...thanks for the help !

John Burton

Project Manager | Environmental Services Engineering and Environmental Consultants, Inc. (EEC) 7878 N. 16th Street, Suite 140, Phoenix, AZ 85020 Tel 602-248-7702 | Ext 319 | Fax 602-248-7851 jburton@eecphx.com Visit us @ <u>eec-info.com</u>

An Employee Owned Company

Customer Focus | Commitment | Communication

2445 N. Cú Tucson, Ari	oyote Uriv izona 857 saan	/e, Suite 11 45	40	CHA	Z	OF C	NS	OD'	Y/LA	BOR	ATO	RY /	ANA	LYSI	S RE	D O	EST	FOR	Z.
TURNER TURNER WWW.turne	382-9788 rlabs.com		•	turner work	(ORD	ER # /6	Bo	225		_ DATE					PAGE_		G		
PROJECT NAME AND SLU (- <u></u>	() ()	# <u>305</u> .4	52.07	S			CIRCLE	ANALY	SIS REQI	JESTED	AND/C	DR CHE	CK THE	APPRC	PRIATE	BOX		
CONTACT NAME Town Pes	. v				INEB	<u> </u>						יי א לי 						$\left \right $	-
COMPANY NAME					IATN						best.	-01	OFW OFW	ARYC	$\langle \mathcal{R} \rangle$] a08)KC	_
ADDRESS 4625 E . Pa	Ĺ	رعمها			F CO	Acids		AAH	1 L 8085	sisvlet	siels	101 101			Cl ² [2 Colilert	$\left \right\rangle$		2-+	
TUCCON AZ BS 72 P	HONE	20-321-	HLK FAX	520-321-0333	EK O	[] s	09 SJU		D ^t ON		₩ ₩ ₩OA-IW	BCRA	CANICO	Colife S		1 551		2013	
SAMPLER'S SIGNATURE	1	z			B MU	Veutral Neutral	U SV 78/2"+2	l səp <u>i</u>		v+991		-E pe)د 	 	~~/	
SAMPLE I.D.	DATE	TIME	LAB I.D.	SAMPLE MATRIX*	IN T	^{1]12} [0] 78/579 1 əseg	WHIL 25/b29	Pestici	^{de} <u>!</u> O] ² ON	L CLEAR]	JCLP (anjossia	WIAd Mas	DNJW	<u>П</u> на		100	ημ	
Nuches ADOT SU 022310 2	ः/हत्त्	0725		210	જ									7	7	7	7	2	<u> </u>
,	-																		
	-																		
							na an tao an												
1. RELINQUISHED BY:	2.	RECEIVI	ED BY:	TURNAR	QNNO	REQUIREMI	ENTS:	REP	ORT REQ	JIREMENTS		INVC	DICE INFO	RMATIO	ż		SAMPLE	RECEIPT:	
The second se					tac) byc	*(auch 11 daue)*		-	Routine Re	port		Acco	ount	2					
Signature	Signature				laru (ap <u>i</u>	ווטא. ווט שמאאן		=	Report (inc	ludes DUP, N	is,	# .0.							
Printed Name	Printed Na	ame		L Sext	Day	2 Day	5 Day*		MSD, as re charged as	quired, may b samples)	<u>в</u> е	ill to:				Total Conta	ainers	6	
Firm Device Of its	Firm					ary results 10:		Ë	Date Valid	ation Report	1					Temperatur	۶) ۱		
Date/Time	Date/Time			* Working D	ays				(Includes / Add 10% t	ll Raw Data) o invoice						Z-wai lo	e	Ō	lue Ice
3. RELINQUISHED BY:	4.	RECEIVE	₽ ⁸ Y:		* LE(CEND		SPECIAL	INSTRUC	IONS/COM	AMENTS:								
	¥ 	\backslash		MC	= DRII	NKING WAT	R	Complia	nce Analys	s 🗌 Yes		٥Z	Custody	seals		Preserv	ation Con	irmation	面
Signature	Signature	Cherker	SU.M.	88	R S S S S S	DUNDWATE	~	ADEQ F	orms:	□ Yes		0N No	Containe	r Intact	٦	Approp	oriate Head	Space	百
Printed Name	Printed Na TI IDNIE		ATODIEC II			DGE		Mail AD	EQ Forms:	□ Yes		°Z	COC/La	bels Agree	के	Receive	ed Within I	fold Time) J
Firm	Firm C	Para Para	9 B	य स 	= SOII	- RMWATER													
Date/fime	Date/Time			MM	= WA9	STEWATER													

Durango Sign Factory

Quality Control Summary SDG: L420220

YOUR LAB OF CHOICE

Quality Control Summary

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

SDG: L420220

For: Engineering & Env. Consultants, INC. -AZ Project: Durango Sign Factory September 09, 2009

Sample Receiving and Handling

All sample aliquots were received at the correct temperature, in the proper containers, and with the appropriate preservatives. All method specified holding times were met.

Suspended Solids by Method 2540D

Laboratory Control Sample

Sample L420220-01 was analyzed in analytical batch WG439280. The laboratory control sample associated with this sample was within the laboratory control limits.

Sample Duplicate Analysis

For analytical batch WG439280 sample duplicate analysis was performed on sample L420268-01. The relative percent differences were within the method limits.

Matrix Spike/Matrix Spike Duplicate

Precision for batch WG439280 was evaluated using the LCS / LCSD. The RPDs were within method limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Hardness by Method 130.1

Laboratory Control Sample

Sample L420220-01 was analyzed in analytical batch WG439493. The laboratory control sample associated with this sample was within the laboratory control limits.

Sample Duplicate Analysis

For analytical batch WG439493 sample duplicate analysis was performed on sample L420111-08. The relative percent differences were within the method limits.

For analytical batch WG439493 sample duplicate analysis was performed on sample L420588-01. The relative percent difference exceeded the method limits for Hardness.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG439493, matrix spike/matrix spike duplicate analysis was performed on sample L419669-11. The spike recoveries were below the laboratory control limits. The relative percent difference was within control limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Nitrate-Nitrite by Method 353.2

Laboratory Control Sample

Sample L420220-01 was analyzed in analytical batch WG439702. The laboratory control sample associated with this sample was within the laboratory control limits.

YOUR LAB OF CHOICE

Quality Control Summary

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

SDG: L420220

For: Engineering & Env. Consultants, INC. -AZ Project: Durango Sign Factory September 09, 2009

Sample Duplicate Analysis

For analytical batch WG439702 sample duplicate analysis was performed on sample L420201-09. The relative percent differences were within the method limits.

For analytical batch WG439702 sample duplicate analysis was performed on sample L420167-04. The relative percent differences were within the method limits.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG439702, matrix spike/matrix spike duplicate analysis was performed on sample L420702-02. The spike recoveries and relative percent differences were within laboratory control limits.

Blank Analysis

The method blank, the initial, and all continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Trace Metals by Method 6010B

Laboratory Control Sample

Sample L420220-01 was analyzed in analytical batch WG439327. The laboratory control sample associated with this sample was within the laboratory control limits for all compounds.

Sample Duplicate Analysis

For analytical batch WG439327 sample duplicate analysis was performed on sample L420201-09. The relative percent differences were within the method limits.

Matrix Spike/Matrix Spike Duplicate

For analytical batch WG439327 matrix spike/matrix spike duplicate analysis was performed on sample L420201-09. The matrix spike recoveries and relative percent differences were within laboratory control limits for all target analytes.

Blank Analysis

For batch WG439327, the concentration of Iron was above the method reporting limit.

The the initial and continuing calibration blanks contained no analytes at concentrations above the method reporting limit.

Nancy F. Winters ESC Representative ESC Lab Sciences

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

John Burton Engineering & Env. Consultants, INC. -AZ 7878 N. 16th Street, Suite 140

Phoenix, AZ 85020

Report Summary

Wednesday September 09, 2009

Report Number: L420220 Samples Received: 09/02/09 Client Project: 308032.05

Description: Durango Sign Factory

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Entire Report Reviewed By:

Laboratory Certification Numbers

A2LA - 1461-01, AIHA - 100789, AL - 40660, CA - I-2327, CT - PH-0197, FL - E87487 GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - ENV375,DW21704, ND - R-140 NJ - TN002, NJ NELAP - TN002, SC - 84004, TN - 2006, VA - 00109, WV - 233 AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910

Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

This report may not be reproduced, except in full, without written approval from Environmental Science Corp. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

> 1 Samples Reported: 09/09/09 10:18 Revised: 09/09/09 14:30 Page 1 of 7

ESC

nards

Quality Control Summary SDG: L420220

SAMPLE NUMBER MS4-D

Customer : Source : Location : Lab Sample ID :	Engineering & Env. C MS4-DURANGO Durango Sign Factory L420220-01	<u>Consultants, INC</u> ¥	Project : Date Sam Sampled Date Rec	npled : By : eived :	<u>308032.03</u> 9/1/2009 Phillip Ma 9/2/2009	<u>5</u> 11:45 AM cNamara
<i>130.1</i> Analytic Batch: WG Instrument: LACHA Method: 130.1	439493 T3	Analysis Date: 9/4/20 Analyst: 236 Dilution: 1	009	Analysis Preparat	s Time: 2:07 H ion Date: 9/4/	PM /2009 2:32 PM
CAS NO	Analyte		RL mg/l	R m	ESULTS g/l	FLAG
471-34-1	Hardness		30	16	50	
353.2 Analytic Batch: WG Instrument: LACHA Method: 353.2 CAS NO	439702 T2 Analyte	Analysis Date: 9/8/20 Analyst: 236 Dilution: 1	009 RL	Analysis Preparat R	s Time: 5:09 ion Date: 9/4/ ESULTS	2009 5:29 PM FLAG
7727-37-9	Nitrate-Nitrite		0.10	<u> </u>	<u>8</u>	
2540D Analytic Batch: WG Instrument: BAL Method: 2540D	439280	Analysis Date: 9/3/20 Analyst: 193 Dilution: 1	009	Analysis Preparat	s Time: 12:48 ion Date: 9/2/	'2009 3:49 PM
CAS NO	Analyte		RL mg/l	R m	ESULTS g/l	FLAG
	Suspended Solids		1.0	9()	

Comments:

1) Sample results are reported as rounded values.

2) These results are applicable only to the items tested.

SAMPLE NUMBER MS4-D

Customer : Source : Location : Lab Sample ID :	Engineering & Env. (MS4-DURANGO Durango Sign Factor L420220-01	<u>Consultants, INC</u> ¥	Project : Date San Sampled Date Rec	npled : By : <u>eived :</u>	<u>308032.0</u> <u>9/1/2009</u> <u>Phillip M</u> <u>9/2/2009</u>	<u>5</u> 11:45 AM cNamara
<i>6010B</i> Analytic Batch: WG Instrument: ICP5 Method: 6010B	439327	Analysis Date: 9/4/20 Analyst: 438 Dilution: 1	009	Analysis Preparat	s Time: 10:42 ion Date: 9/3	2 /2009 8:16 AM
CAS NO	Analyte		RL mg/l	R m	ESULTS g/l	FLAG
7429-90-5	Aluminum		0.10	4.	3	
7439-89-6	Iron		0.10	5.	0	B1
7440-66-6	Zinc		0.030	1.	3	
LEGEND						
RL -	Reporting Limit					
QUALIFIERS B1	Target analyte detected	in method blank at or a	hove the mot	hod repor	ting limit	
D1 -	i aiget analyte delected	in method brank at of a			ung mmt.	

Comments:

1) Sample results are reported as rounded values.

2) These results are applicable only to the items tested.

CE Quality Control Summary SDG: L420220 Engineering & Env. Consultants, INC. -AZ

Hardness by Method 130.1		,	
308032.05		Matrix:	Water - mg/L
Durango Sign Factory		EPA ID:	TN00003
9/1/2009		Analytic Batch:	WG439493
9/4/2009 2:07:00 PM		Analyst:	236
LACHAT3		Extraction Date:	9/3/2009
L420220-01			
	Hardness by Method 130.1 308032.05 Durango Sign Factory 9/1/2009 9/4/2009 2:07:00 PM LACHAT3 L420220-01	Hardness by Method 130.1 308032.05 Durango Sign Factory 9/1/2009 9/4/2009 2:07:00 PM LACHAT3 L420220-01	Hardness by Method 130.1308032.05Matrix:Durango Sign FactoryEPA ID:9/1/2009Analytic Batch:9/4/2009 2:07:00 PMAnalyst:LACHAT3Extraction Date:L420220-01L420220-01

	Method Blank		
Analyte	CAS	PQL	Qualifiers
Hardness		<30.0	

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Hardness	200	191	95.5	85 - 115	

Laboratory Control Sample Duplicate (LCSD)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Hardness	200	191	95.5	85 - 115	

Quality Control Summary SDG: L420220 Engineering & Env. Consultants, INC. -AZ

Test:	Hardness by Method 130.1	-	
Project No:	308032.05	Matrix:	Water - mg/L
Project:	Durango Sign Factory	EPA ID:	TN00003
Collection Date:	9/1/2009	Analytic Batch:	WG439493
Analysis Date:	9/4/2009 2:07:00 PM	Analyst:	236
Instrument ID:	LACHAT3	Extraction Date:	9/3/2009
Sample Numbers:	L420220-01		

Laboratory	Control Sam	ple/ Laboratory	Control Sample	Duplicate
			- · · · · · · · ·	····

Analyte	Spike	LCS	% Rec	LCSD	% Rec	Control Limits	Qualifier	% RPD	Control Limits	Qualifier
Hardness	200	191	95.5	191	95.5	85-115		0.0	20	

Sample Duplicate L420111-08

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
Hardness	200	201	0.5	20	

Sample Duplicate

L420588-01

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
Hardness	130	106	20	20	R8

Quality Control Summary SDG: L420220 Engineering & Env. Consultants, INC. -AZ

Test:	Hardness by Method 130.1		
Project No:	308032.05	Matrix:	Water - mg/L
Project:	Durango Sign Factory	EPA ID:	TN00003
Collection Date:	9/1/2009	Analytic Batch:	WG439493
Analysis Date:	9/4/2009 2:07:00 PM	Analyst:	236
Instrument ID:	LACHAT3	Extraction Date:	9/3/2009
Sample Numbers:	L420220-01		

		Matrix	Spike	/Matri	x Spik	e Dupl	licate					
L419669-11												
	Spike			%		%	Control	% Rec	%	Control	RPD	
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual	
Hardness	300	380	578	66.0	582	67.3	80-120	M2	0.7	20		

. . . - -~ • ~ ~ -

Quality Control Summary SDG: L420220 Engineering & Env. Consultants, INC. -AZ

Test:	Nitrate-Nitrite by Method 353.2		
Project No:	308032.05	Matrix:	Water - mg/L
Project:	Durango Sign Factory	EPA ID:	TN00003
Collection Date:	9/1/2009	Analytic Batch:	WG439702
Analysis Date:	9/8/2009 5:09:00 AM	Analyst:	236
Instrument ID:	LACHAT2	Extraction Date:	9/4/2009
Sample Numbers:	L420220-01		

Method BlankAnalyteCASPQLQualifiersNitrate-Nitrite<0.100</td>

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Nitrate-Nitrite	5.00	4.57	91.4	85 - 115	

Laboratory Control Sample Duplicate (LCSD)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Nitrate-Nitrite	5.00	4.57	91.4	85 - 115	

VOUR LAB OF CHOICE Quality Control Summary SDG: L420220 Engineering & Env. Consultants, INC. -AZ

Test:	Nitrate-Nitrite by Method 353.2		
Project No:	308032.05	Matrix:	Water - mg/L
Project:	Durango Sign Factory	EPA ID:	TN00003
Collection Date:	9/1/2009	Analytic Batch:	WG439702
Analysis Date:	9/8/2009 5:09:00 AM	Analyst:	236
Instrument ID:	LACHAT2	Extraction Date:	9/4/2009
Sample Numbers:	L420220-01		

Laboratory Control Sample/ Laboratory Control Sample Duplicate

			%		%	Control		%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier	RPD	Limits	Qualifier
Nitrate-Nitrite	5.00	4.57	91.4	4.55	91.0	85-115		0.4	20	

Sample Duplicate L420201-09

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
Nitrate-Nitrite	0.780	0.773	0.9	20	

Sample Duplicate

L420167-04

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
Nitrate-Nitrite	0.0000	0.0000			

YOUR LAB OF CHOICE **Quality Control Summary** SDG: L420220 Engineering & Env. Consultants, INC. -AZ

Test:	Nitrate-Nitrite by Method 353.2		
Project No:	308032.05	Matrix:	Water - mg/L
Project:	Durango Sign Factory	EPA ID:	TN00003
Collection Date:	9/1/2009	Analytic Batch:	WG439702
Analysis Date:	9/8/2009 5:09:00 AM	Analyst:	236
Instrument ID:	LACHAT2	Extraction Date:	9/4/2009
Sample Numbers:	L420220-01		

Matrix Spike/Matrix Spike Duplicate												
L420702-02												
	Spike			%		%	Control	% Rec	%	Control	RPD	
Analyte	Value	Sample	MS	Rec	MSD	Rec	Limits	Qualifier	RPD	Limits	Qual	
Nitrate-Nitrite	5.00	0.0000	5.56	111	5.62	112	80-120		1.1	20		-

Quality Control Summary SDG: L420220 Engineering & Env. Consultants, INC. -AZ

Test:	Suspended Solids by Method 2540D		
Project No:	308032.05	Matrix:	Water - mg/L
Project:	Durango Sign Factory	EPA ID:	TN00003
Collection Date:	9/1/2009	Analytic Batch:	WG439280
Analysis Date:	9/3/2009 12:48:00 PM	Analyst:	193
Instrument ID:	BAL	Extraction Date:	9/2/2009
Sample Numbers:	L420220-01		

Method BlankAnalyteCASPQLQualifiersSuspended Solids<1.00</td>

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Suspended Solids	773	800	103	85 - 115	

Laboratory Control Sample Duplicate (LCSD)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Suspended Solids	773	800	103	85 - 115	

Quality Control Summary SDG: L420220 Engineering & Env. Consultants, INC. -AZ

Suspended Solids by Method 2540D Test: 308032.05 Matrix: Project No: Water - mg/L Project: Durango Sign Factory EPA ID: TN00003 Collection Date: 9/1/2009 Analytic Batch: WG439280 Analysis Date: 9/3/2009 12:48:00 PM Analyst: 193 Extraction Date: 9/2/2009 Instrument ID: BAL Sample Numbers: L420220-01

Laboratory Control Sample/ Laboratory Control Sample Duplicate

			%		%	Control	%	Control	
Analyte	Spike	LCS	Rec	LCSD	Rec	Limits	Qualifier RP	D Limits	Qualifier
Suspended Solids	773	800	103	752	97.3	85-115	6.2	2 20	

Sample Duplicate L420268-01

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
Suspended Solids	2.90	2.89	0.4	5	

CE Quality Control Summary SDG: L420220 Engineering & Env. Consultants, INC. -AZ

Test:	Trace Metals by Method 6010B		
Project No:	308032.05	Matrix:	Water - mg/L
Project:	Durango Sign Factory	EPA ID:	TN00003
Collection Date:	9/1/2009	Analytic Batch:	WG439327
Analysis Date:	9/3/2009	Analyst:	438
Instrument ID:	ICP5	Extraction Date:	9/3/2009
Sample Numbers:	L420220-01		

Method Blank

Analyte	CAS	PQL	Qualifiers
Aluminum	7429-90-5	< 0.100	
Aluminum	7429-90-5	< 0.100	
Iron	7439-89-6	0.152	B1
Zinc	7440-66-6	< 0.0300	

Laboratory Control Sample (LCS)

Analyte	True Value	Found	Recovery %	Control Limits	Qualifiers
Aluminum	1.13	1.15	102	85 - 115	
Iron	1.13	1.22	108	85 - 115	
Zinc	1.13	1.08	95.6	85 - 115	
Aluminum Iron Zinc	1.13 1.13 1.13	1.15 1.22 1.08	102 108 95.6	85 - 115 85 - 115 85 - 115	

12065 Lebanon Rd Mt. Juliet, TN 37122 (615) 758-5858 (800) 767-5859 Fax (615) 758-5859 Tax I.D 62-0814289 Est. 1970

VOUR LAB OF CHOICE Quality Control Summary SDG: L420220 Engineering & Env. Consultants, INC. -AZ

Test:	Trace Metals by Method 6010B		
Project No:	308032.05	Matrix:	Water - mg/L
Project:	Durango Sign Factory	EPA ID:	TN00003
Collection Date:	9/1/2009	Analytic Batch:	WG439327
Analysis Date:	9/3/2009	Analyst:	438
Instrument ID:	ICP5	Extraction Date:	9/3/2009
Sample Numbers:	L420220-01		

Sample Duplicate

L420201-09

Name	Sample Results	Duplic Results	%RPD	Limit	Qualifiers
Aluminum	0.00000	0.0960			
Iron	0.00000	0.0336			
Zinc	0.00000	0.0080			

Matrix Spike/Matrix Spike Duplicate

	a '1		L	.42020	1-09	0/			0/	a . 1	DDD
Analyte	Spike Value	Sample	MS	% Rec	MSD	% Rec	Control Limits	% Rec Qualifier	% RPD	Limits	RPD Qual
Aluminum	1.13	0.0960	1.17	95.0	1.14	92.4	75-125		2.6	20	
Iron	1.13	0.0336	1.12	96.1	1.10	94.4	75-125		1.8	20	
Zinc	1.13	0.00000	1.09	96.5	1.06	93.8	75-125		2.8	20	

Company Name/Address			Alternate B	illing		· · · · ·		Analy	/sis/C	ontain	er/Pre	servat	ive	C	hain of Custody
EEC 7878 N. 16th St., Suite 140 Phoenix, AZ 85020													P Prepared by:	age1_of1_	
			Report to: E-mail to: JBUR	oha Burt TONEE	ON SCPHX -	(am	04		NO3					ENVIRONMENTA Science corp 12065 Lebanon Roa Mt. Juliet TN 37122	۲L d
Project Description: Durango Sign Fa	actory			City. PHOGNI	/State Collected: X,Aこ		H2S		ΕH	03		2001	ў З	Phone (615)758-585	i8
PHONE:602-248-7702 FAX: 602-248-7851	Client Project #	۱٥. د ن ۲		Lab Project a	#		HDPE	es	HDP	E HN			1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	Phone (800) 767-58 B028	59
Collected by: Phillip Mc Nomana	Site/Facility IDA MSY-1	# Duncarri	ģ.	P.O.#			50ml	No Pr	500m	HDP				CoCode (lab u	se only)
Collected by(signature): Packed on Ice N_Y	Rush? (L	ab MUST Next Day. Two Day Three Da	be Notified) 100% 50% ay25%	Email?	Its Needed No_X_Yes No_Yes	No of	rate+Nitrite 2	S 1L HDPE	tal Al, Fe, Zn	rdness 250n	-			ENGENVPAZ Template/Pretogin Shipped Via:	
Sample ID	Comp/Grab	Matrix	Depth	Date	Time	Cntrs	Ī	۲	To	На				Remarks/contaminant San	1ple # (lab only)
MSY-D	GRAB		SURFACE	<u>9/1/09</u>	11:45 m	4	X	X	X	X				242	0710-01
-		\square				 									
													99 - 		
						<u> </u>									
							3		-						
		5													
Matrix: SS-Seil/Solid GW-Groundwa	ater WW-Wa	stewater	DW-Drinking \	Water OT- C	Dther <u></u>								рН(.7 Temp 9 4.7	

Y K 🖡

Remarks:			\bigcirc 1-	Flow	Other
Relinquisher by (Signature	Date: 9/1/09	Time: 12:46	Received by (Signature)	Samples returned via: FedEx_ UPS_Other	Condition (lab use only)
Rélinquisher Бу:(Signature	Date:	Time:	Received by Signature)	Temp: 3. 0 °C Bottles Received:	autody soal intact
Relinquisher by:(Signature	Date:	Time:	Received for lab by (Signature)	Date: 1 -2-09 0900	pH Checked NCF: 18 of 18

YOUR LAB OF CHOICE

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

John Burton Engineering & Env. Consultants, INC. -AZ 7878 N. 16th Street, Suite 140

Phoenix, AZ 85020

Report Summary

Tuesday March 02, 2010

Report Number: L446240 Samples Received: 02/23/10 Client Project: 308032.07

Description: Durango Sign Factory - ADOT

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Entire Report Reviewed By:

Laboratory Certification Numbers

A2LA - 1461-01, AIHA - 100789, AL - 40660, CA - I-2327, CT - PH-0197, FL - E87487 GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - ENV375,DW21704, ND - R-140 NJ - TN002, NJ NELAP - TN002, SC - 84004, TN - 2006, VA - 00109, WV - 233 AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910

Richards

-ESC

Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

This report may not be reproduced, except in full, without written approval from Environmental Science Corp. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

> 1 Samples Reported: 03/02/10 11:37 Printed: 03/02/10 14:58 Page 1 of 5

					12065 Lebanon Rd. Mt. Juliet, TN 371 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859	22
					Tax I.D. 62-081428	9
YOUR LAB OF CHOICE					Est. 1970	
John Burton Engineering & Env. Consultants, INC 7878 N. 16th Street, Suite 140 Phoenix, AZ 85020	REPO	RT OF ANALYSIS		March 02, 20	10	
Date Received : February 23, 2010 Description : Durango Sign Facto) ory - ADOT			ESC Sample #	: L446240-01	
Sample ID : DURANGO SIGN FACTO	DRY			SICE ID .	DURANGO SIGN	
Collected By : Phillip McNamara Collection Date : 02/22/10 09:15				Project # :	308032.07	
Parameter	Result	Det. Limit	Units	Method	Date	Dil.
Total Nitrogen	5.0	0.10	mg/l	Calc.	03/02/10	1
Nitrate-Nitrite	0.96	0.10	mg/l	353.2	02/26/10	1
Kjeldahl Nitrogen, TKN	4.1	0.10	mg/l	351.2	03/02/10	1
Suspended Solids	180	1.0	mg/l	2540D	02/25/10	1

BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL) Note: The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC. . Reported: 03/02/10 11:37 Printed: 03/02/10 14:58

Page 2 of 5

Summary of Remarks For Samples Printed 03/02/10 at 14:58:26

TSR Signing Reports: 288 R5 - Desired TAT

Sample: L446240-01 Account: ENGENVPAZ Received: 02/23/10 09:00 Due Date: 03/02/10 00:00 RPT Date: 03/02/10 11:37

ESC SICILE NICLES

YOUR LAB OF CHOICE

Engineering & Env. Consultants, INC. -AZ John Burton

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

7878 N. 16th Street, Suite 140 Phoenix, AZ 85020	et, Suite 140 Quality Assurance Report Level II L446240									
Analyte	Result	L	aboratory B Units	lank % Rec		Limit		Batch	Date Ana	alyzed
Summanded Solida	- 1		ma / 1					WCAGATOG	02/25/10	<u> </u>
Suspended Solids	< 1		1119/1					WG404780	02/25/10	1 10.09
Nitrate-Nitrite	< .1	1	mg/l					WG465215	02/26/10) 01:52
Kjeldahl Nitrogen, TKN	< .1	1	mg/l					WG464795	03/02/10) 09:04
Analyte	Units	Resul	Duplicat t Dupli	e cate	RPD	Limit		Ref Sam	ip Ba	atch
Suspended Solids	mg/l	88.0	87.0		1.14	5		L446062	-01 WC	3464786
Suspended Solids	mg/l	180.	180.		2.20	5		L446240	-01 WG	3464786
Nitrate-Nitrite	mg/l	0.970	0.960		0.830	20		L446240	-01 WC	3465215
Nitrate-Nitrite	mg/l	22.0	22.0		1.80	20		L446269	-01 WG	\$465215
Kjeldahl Nitrogen, TKN Kjeldahl Nitrogen, TKN	mg/l mg/l	26.0 4.00	26.0 4.10		0.384 1.23	20 20		L446265 L446240	-08 WG	3464795 3464795
Analyte	Units	Labor Know	atory Contr n Val	ol Samp Res	le ult	% Rec		Limit	Ba	atch
Suspended Solids	mg/l	773		788.		102.		85-115	WC	3464786
Nitrate-Nitrite	mg/l	5		4.94		98.8		85-115	WC	3465215
Kjeldahl Nitrogen, TKN	mg/l	30.9		30.5		98.7		85-115	WC	3464795
Analyte	Units	Laboratory Result	Control Sa Ref	mple Du %Rec	plicate	Limit	RPD	Li	mit Ba	<u>atc</u> h
Suspended Solids	mg/l	780.	788.	101.		85-115	1.02	20	WC	3464786
Nitrate-Nitrite	mg/l	4.76	4.94	95.0		85-115	3.71	20	WC	3465215
Kjeldahl Nitrogen, TKN	mg/l	30.0	30.5	97.0		85-115	1.65	20	WC	<u>34</u> 64795
Analyte	Units	MS Res	Matrix Spi Ref Res	ke TV	% Rec	Limit		Ref Samp	Ba	<u>atc</u> h
Nitrate-Nitrite	mg/l	4.82	0	5	96.4	80-120)	L446267-	01 WC	3465215
Kjeldahl Nitrogen, TKN	mg/l	5.81	0.520	5	106.	80-120)	L446137-	05 WG	<u>34</u> 64795
		Matr	ix Spike Du	plicate						

Analyte	Units	MSD	Ref	%Rec	Limit	RPD	Limi	t Ref Samp	Batch
Nitrate-Nitrite	mg/l	4.84	4.82	96.8	80-120	0.414	20	L446267-01	WG465215
Kjeldahl Nitrogen, TKN	mg/l	5.08	5.81	91.2	80-120	13.4	20	L446137-05	WG464795

* Performance of this Analyte is outside of established criteria.

For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

Page 3 of 5

YOUR LAB OF CHOICE

Engineering & Env. Consultants, INC. -AZ John Burton 7878 N. 16th Street, Suite 140

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Phoenix, AZ 85020

Quality Assurance Report Level II

L446240

March 02, 2010

Batch number /Run number / Sample number cross reference

WG464786: R1129068: L446240-01 WG465215: R1129588: L446240-01 WG464795: R1132493: L446240-01

 \star * Calculations are performed prior to rounding of reported values . \star Performance of this Analyte is outside of established criteria. For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

Page 4 of 5

YOUR LAB OF CHOICE

Engineering & Env. Consultants, INC. -AZ John Burton 7878 N. 16th Street, Suite 140

Phoenix, AZ 85020

Quality Assurance Report Level II

L446240

The data package includes a summary of the analytic results of the quality control samples required by the SW-846 or CWA methods. The quality control samples include a method blank, a laboratory control sample, and the matrix spike/matrix spike duplicate analysis. If a target parameter is outside the method limits, every sample that is effected is flagged with the appropriate qualifier in Appendix B of the analytic report.

Method Blank - an aliquot of reagent water carried through the entire analytic process. The method blank results indicate if any possible contamination exposure during the sample handling, digestion or extraction process, and analysis. Concentrations of target analytes above the reporting limit in the method blank are qualified with the "B" qualifier.

Laboratory Control Sample - is a sample of known concentration that is carried through the digestion/extraction and analysis process. The percent recovery, expressed as a percentage of the theoretical concentration, has statistical control limits indicating that the analytic process is "in control". If a target analyte is outside the control limits for the laboratory control sample or any other control sample, the parameter is flagged with a "J4" qualifier for all effected samples.

Matrix Spike and Matrix Spike Duplicate - is two aliquots of an environmental sample that is spiked with known concentrations of target analytes. The percent recovery of the target analytes also has statistical control limits. If any recoveries that are outside the method control limits, the sample that was selected for matrix spike/matrix spike duplicate analysis is flagged with either a "J5" or a "J6". The relative percent difference (%RPD) between the matrix spike and the matrix spike duplicate recoveries is all calculated. If the RPD is above the method limit, the effected samples are flagged with a "J3" qualifier. 12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

March 02, 2010

APPENDIX N Construction Discharge Monitoring Reports

Sedona

I. AZPDES # AZSO	000018-2008					Project/Site	Name: S	Sedona S	SR 179-Pr	oject # I				
Monitoring Period:	7/01/09 to 6/30/10						Monito	oring Poi	nt 1					
II. Contact Informat	tion						V. Pollut	ants Mon	itored					
Name: ADOT - Flags	staff District		A. V	isual Monit	oring:					B. Analyt	ical Monito	oring		
Address: 1801 South Flagstaff, AZ Flagsta Phone Number 928-7 Chuck Howe	n Milton Road ff, Arizona 86001 779-7591	Sheen	Color	Foam	Solids	Odor	Turbidity	Stream Flow	DO	рН	Conducti vity	SSC	TSS	TDS
III. Discharge Date	IV. Sample Date													
7/2/2009	7/2/2009	No Data	No Data	No Data	No Data	No Data	2.3	0.7	7.3	8.8	315.0	6	6	129
7/9/2009	7/9/2009	No Data	No Data	No Data	No Data	No Data	2.3	0.7	7.2	8.7	316	6	6	152
7/15/2009	7/15/2009	No Data	No Data	No Data	No Data	No Data	2.4	0.5	7.7	8.8	314	1	1	123
7/23/2009	7/23/2009	No Data	No Data	No Data	No Data	No Data	2.3	0.7	7.81	8.67	310	8	8	125
7/31/2009	7/31/2009	No Data	No Data	No Data	No Data	No Data	3.9	<1	5.76	8.92	320.0	4	4	109
8/6/2009	8/6/2009	No Data	No Data	No Data	No Data	No Data	3.4	0.2	6.6	8.8	312	5	5	148
8/13/2009	8/13/2009	No Data	No Data	No Data	No Data	No Data	3.4	0.3	6.3	8.8	303	10	10	142
8/20/2009	8/20/2009	No Data	No Data	No Data	No Data	No Data	3.4	0.3	6.5	8.7	313	3	2	111
8/27/2009	8/27/2009	No Data	No Data	No Data	No Data	No Data	1.8	<1	8.3	8.1	298	2	2	132
9/3/2009	9/3/2009	No Data	No Data	No Data	No Data	No Data	4.9	<1	7.1	7.8	295.0	5	5	133
9/10/2009	9/10/2009	No Data	No Data	No Data	No Data	No Data	5.8	<1	7.8	8.2	295	4	4	132
9/11/2009	9/11/2009	No Data	No Data	No Data	No Data	No Data	21	.94	8.81	8.54	267	20	20	134
9/13/2009	9/13/2009	No Data	No Data	No Data	No Data	No Data	20.0	1.0	9.3	8.5	297	3	13	142
9/18/2009	9/18/2009	No Data	No Data	No Data	No Data	No Data	5.3	0.35	7.81	8.12	299	6	6	121
9/24/2009	9/24/2009	No Data	No Data	No Data	No Data	No Data	9.6	0.1	8.6	7.9	316	122	121	182
10/1/2009	10/1/2009	No Data	No Data	No Data	No Data	No Data	3.8	.5	9.92	8.27	303	1	1	112
10/4/2009	10/4/2009	No Data	No Data	No Data	No Data	No Data	3.8	.74	9.42	8.49	296	4	4	126
10/8/2009	10/8/2009	No Data	No Data	No Data	No Data	No Data	1.1	<0.1	10.5	8.4	296	1	1	164
10/15/2009	10/15/2009	No Data	No Data	No Data	No Data	No Data	1.3	<0.1	5.0	7.2	300	3	3	120
10/22/2009	10/22/2009	No Data	No Data	No Data	No Data	No Data	1.7	0.3	8.1	7.5	312	3	3	141
10/28/2009	10/28/2009	No Data	No Data	No Data	No Data	No Data	3.4	0.6	9.6	8.4	307	2	2	96
11/5/2009	11/5/2009	No Data	No Data	No Data	No Data	No Data	2.4	0.4	11.3	8.4	308	3	3	129
11/12/2009	11/12/2009	No Data	No Data	No Data	No Data	No Data	2.2	0.5	6.0	8.4	307	7	7	138
11/13/2009	11/13/2009	No Data	No Data	No Data	No Data	No Data	2.8	0.5	5.6	8.1	311	3	3	138
11/18/2009	11/18/2009	No Data	No Data	No Data	No Data	No Data	2.0	.44	8.98	8.14	311	5	5	113
11/19/2009	11/19/2009	No Data	No Data	No Data	No Data	No Data	4.1	0.3	8.9	8.3	320	20	20	96
11/26/2009	11/26/2009	No Data	No Data	No Data	No Data	No Data	3.0	0.4	8.2	7.8	310.0	2.0	2.0	147.0
11/29/2009	11/29/2009	No Data	No Data	No Data	No Data	No Data	6.5	0.5	5.5	8.5	310.0	7.0	7.0	120.0
12/3/2009	12/3/2009	No Data	No Data	No Data	No Data	No Data	5.8	<0.1	1.38	7.94	316	7	7	142
12/8/2009	12/8/2009	No Data	No Data	No Data	No Data	No Data	2.6	no data	9.49	7.92	311	1	1	145
12/10/2009	12/10/2009	No Data	No Data	No Data	No Data	No Data	3.7	.45	no data	8.17	324	2	2	182
12/17/2009	12/17/2009	No Data	No Data	No Data	No Data	No Data	3.4	<0.1	9.38	7.45	319	6	6	130
12/24/2009	12/24/2009	No Data	No Data	No Data	No Data	No Data	1.5	.97	10.09	7.70	321	6	6	107

Name: ADOT - Flags	staff District		A. V	isual Monit	oring:					B. Analyti	ical Monite	oring		
Address: 1801 South Flagstaff, AZ Flagsta Phone Number 928-7 Chuck Howe	i Milton Road ff, Arizona 86001 779-7591	Sheen	Color	Foam	Solids	Odor	Turbidity	Stream Flow	DO	рН	Conducti vity	SSC	TSS	TDS
12/31/2009	12/31/2009	No Data	No Data	No Data	No Data	No Data	.3	.24	9.24	7.45	322	3	3	166
1/7/2010	1/7/2010	No Data	No Data	No Data	No Data	No Data	1.3	0.6	8.7	7.39	321	7	7	135
1/14/2010	1/14/2010	No Data	No Data	No Data	No Data	No Data	2.4	0.8	10.2	8.14	296	10	10	163
1/20/2010	1/20/2010	No Data	No Data	No Data	No Data	No Data	5.0	1.5	11.0	7.61	149	5	5	179
1/21/2010	1/21/2010	No Data	No Data	No Data	No Data	No Data	122.8	High	No Data	7.55	248	116	116	140
1/22/2010	1/22/2010	No Data	No Data	No Data	No Data	No Data	31.6	No Data	No Data	7.09	135	37	37	90
1/23/2010	1/23/2010	No Data	No Data	No Data	No Data	No Data	15.6	No Data	No Data	7.65	189	6	6	119
1/24/2010	1/24/2010	No Data	No Data	No Data	No Data	No Data	8.4	No Data	No Data	8.17	217	11	11	139
1/28/2010	1/28/2010	No Data	No Data	No Data	No Data	No Data	8.5	<0.1	6.4	6.17	203	2	2	110
2/4/2010	2/4/2010	No Data	No Data	No Data	No Data	No Data	5.1	<0.1	8.6	6.3	202	3	3	91
2/11/2010	2/11/2010	No Data	No Data	No Data	No Data	No Data	13.6	<0.1	10.3	6.5	240	2	2	154
2/18/2010	2/18/2010	No Data	No Data	No Data	No Data	No Data	3.5	4.5	8.8	7.2	206	2	2	116
2/22/2010	2/22/2010	No Data	No Data	No Data	No Data	No Data	14.9	<0.1	7.7	5.9	205	16	16	110
2/25/2010	2/25/2010	No Data	No Data	No Data	No Data	No Data	2.1	<0.1	5.13	6.42	232	1	1	137
3/4/2010	3/4/2010	No Data	No Data	No Data	No Data	No Data	4.6	<0.1	6.79	5.07	161	4	4	84
3/7/2010	3/7/2010	No Data	No Data	No Data	No Data	No Data	17.5	.82	7.18	6.79	104.7	34	34	54
3/11/2010	3/11/2010	No Data	No Data	No Data	No Data	No Data	2.8	.1	6.35	6.78	226	1	1	11
3/19/2010	3/19/2010	No Data	No Data	No Data	No Data	No Data	12.4	1.25	6.40	5.76	106	6	6	68
3/25/2010	3/25/2010	No Data	No Data	No Data	No Data	No Data	6.3	.90	3.26	7.77	113	4	4	99
4/1/2010	4/1/2010	No Data	No Data	No Data	No Data	No Data	9.7	0.5	10.09	6.58	97	8	8	29
4/8/2010	4/8/2010	No Data	No Data	No Data	No Data	No Data	3.2	0.3	6.2	7.0	140	7	7	39
4/15/2010	4/15/2010	No Data	No Data	No Data	No Data	No Data	3.0	0.5	8.6	6.3	156	11	11	67
4/19/2010	4/19/2010	No Data	No Data	No Data	No Data	No Data	4.1	0.4	7.9	7.8	198	16	16	98
4/29/2010	4/29/2010	No Data	No Data	No Data	No Data	No Data	1.5	<0.1	4.6	6.9	291	4	4	167
5/6/2010	5/6/2010	No Data	No Data	No Data	No Data	No Data	2.5	<0.1	4.8	7.7	269.0	4	4	157
5/13/2010	5/13/2010	No Data	No Data	No Data	No Data	No Data	1.0	0.6	6.0	8.5	305	3	3	127
5/20/2010	5/20/2010	No Data	No Data	No Data	No Data	No Data	1.9	<0.1	3.8	7.6	314	9	9	165
5/27/2010	5/27/2010	No Data	No Data	No Data	No Data	No Data	1.6	0.3	5.9	8.2	310	6	6	132
6/3/2010	6/3/2010	No Data	No Data	No Data	No Data	No Data	2.5	<0.1	4.6	7.6	317	8	8	169
6/10/2010	6/10/2010	No Data	No Data	No Data	No Data	No Data	2.1	<0.1	4.4	7.5	306	8	8	186
6/17/2010	6/17/2010	No Data	No Data	No Data	No Data	No Data	1.4	<0.1	4.5	7.5	315	2	2	125
6/24/2010	6/24/2010	No Data	No Data	No Data	No Data	No Data	1.9	<0.1	4.2	7.7	310	7	7	156

I. AZPDES # <u>AZS</u> Monitoring Period	6000018-2008 : 7/01/09 to 6/30/10	-				Project/S	ite Name Mon	: Sedona itoring P	SR 179- oint 2	Project #	: 			
II. Contact Information	ation		V. Pollutants Monitored											
Name: ADOT - Flag	staff District		A. Vi	sual Monit	oring:					B. Analyt	ical Monito	oring		
Address: 1801 Sout Flagstaff, AZ Flagst Phone Number 928	th Milton Road aff, Arizona 86001 -779-7591	Sheen	Color	Foam	Solids	Odor	Turbidity	Stream Flow	DO	рН	Conducti vity	SSC	TSS	TDS
III. Discharge Date	IV. Sample Date													
7/1/2009	7/1/2009	No Data	No Data	No Data	No Data	No Data	3.2	<1	6 55	8.61	321	4	4	131
7/2/2009	7/2/2009	No Data	No Data	No Data	No Data	No Data	1.8	<1	6.67	8.62	322	6	6	182
7/3/2009	7/3/2009	No Data	No Data	No Data	No Data	No Data	4.4	<1	6.47	8.82	318	3	3	128
7/4/2009	7/4/2009	No Data	No Data	No Data	No Data	No Data	4.8	<1	6.03	8.46	327	7	7	140
7/5/2009	7/5/2009	No Data	No Data	No Data	No Data	No Data	4.8	<1	6.45	8.51	319	6	6	146
7/6/2009	7/6/2009	No Data	No Data	No Data	No Data	No Data	3.3	<1	6.79	8.72	325	7	7	138
7/7/2009	7/7/2009	No Data	No Data	No Data	No Data	No Data	3.5	<1	8.61	6.42	326	5	5	152
7/8/2009	7/8/2009	No Data	No Data	No Data	No Data	No Data	2.8	<1	6.28	8.74	322	4	4	151
7/9/2009	7/9/2009	No Data	No Data	No Data	No Data	No Data	2.2	<1	6.50	8.57	326	2	2	157
7/10/2009	7/10/2009	No Data	No Data	No Data	No Data	No Data	2.4	<1	6.01	8.53	321	2	2	163
7/11/2009	7/11/2009	No Data	No Data	No Data	No Data	No Data	1.9	<1	6.60	8.74	315	3	3	122
7/12/2009	7/12/2009	No Data	No Data	No Data	No Data	No Data	3.7	<1	6.67	8.59	322	3	3	144
7/13/2009	7/13/2009	No Data	No Data	No Data	No Data	No Data	3.8	<1	6.44	8.73	317	3	3	129
7/14/2009	7/14/2009	No Data	No Data	No Data	No Data	No Data	3.3	<1	6.19	8.86	328	3	3	121
7/15/2009	7/15/2009	No Data	No Data	No Data	No Data	No Data	2.0	<1	5.55	8.73	318	2	2	131
7/16/2009	7/16/2009	No Data	No Data	No Data	No Data	No Data	6.5	<1	6.45	8.86	315	4	4	130
7/17/2009	7/17/2009	No Data	No Data	No Data	No Data	No Data	6.4	<1	5.94	8.76	316	2	2	128
7/18/2009	7/18/2009	No Data	No Data	No Data	No Data	No Data	2.4	<1	6.55	8.61	320	3	3	122
7/19/2009	7/19/2009	No Data	No Data	No Data	No Data	No Data	1.6	<1	6.35	8.75	324	2	2	136
7/20/2009	7/20/2009	No Data	No Data	No Data	No Data	No Data	6.5	<1	6.18	8.81	323	4	4	136
7/21/2009	7/21/2009	No Data	No Data	No Data	No Data	No Data	7.4	<1	6.21	8.74	320	2	2	119
7/22/2009	7/22/2009	No Data	No Data	No Data	No Data	No Data	3.3	<1	6.36	8.70	313	9	9	133
7/23/2009	7/23/2009	No Data	No Data	No Data	No Data	No Data	4.1	<1	6.80	8.59	321	5	5	126
7/24/2009	7/24/2009	No Data	No Data	No Data	No Data	No Data	3.6	<1	6.20	8.72	815	12	12	114
7/25/2009	7/25/2009	No Data	No Data	No Data	No Data	No Data	4.8	<1	5.91	8.72	315	9	9	112
7/26/2009	7/26/2009	No Data	No Data	No Data	No Data	No Data	3.8	<1	5.96	8.65	317	1	1	138
7/27/2009	7/27/2009	No Data	No Data	No Data	No Data	No Data	2.1	<1	8.64	6.21	318	12	12	125
7/28/2009	7/28/2009	No Data	No Data	No Data	No Data	No Data	3.7	<1	8.37	8.07	357	5	5	120
7/29/2009	7/29/2009	No Data	No Data	No Data	No Data	No Data	4.9	<1	5.44	8.01	402	5	5	111
7/30/2009	7/30/2009	No Data	No Data	No Data	No Data	No Data	4.Z	<1	5.40	0.12	331	1	1	113
7/31/2009	7/31/2009	NO Data	INO Data	NO Data	NO Data	INO Data	6.2	<1	5.40	8.53	350	3	১	114

Name: ADOT - Flag	staff District		A. Vi	sual Monit	oring:	B. Analytical Monitoring								
Address: 1801 Sou Flagstaff, AZ Flagst Phone Number 928 Chuck Howe	th Milton Road aff, Arizona 86001 -779-7591	Sheen	Color	Foam	Solids	Odor	Turbidity	Stream Flow	DO	рН	Conducti vity	SSC	TSS	TDS
8/1/2009	8/1/2009	No Data	No Data	No Data	No Data	No Data	3.4	<1	6.21	8.68	314	3	3	122
8/2/2009	8/2/2009	No Data	No Data	No Data	No Data	No Data	3.9	<1	6.45	8.74	317	6	6	120
8/3/2009	8/3/2009	No Data	No Data	No Data	No Data	No Data	4.3	<1	5.29	7.64	333	6	6	125
8/4/2009	8/4/2009	No Data	No Data	No Data	No Data	No Data	5.6	<1	5.41	9.02	310	3	3	150
8/5/2009	8/5/2009	No Data	No Data	No Data	No Data	No Data	3.2	<1	5.18	7.66	331	4	4	137
8/6/2009	8/6/2009	No Data	No Data	No Data	No Data	No Data	5.2	<1	6.16	8.91	311	5	5	142
8/7/2009	8/7/2009	No Data	No Data	No Data	No Data	No Data	2.7	<1	6.08	8.62	312	6	6	150
8/8/2009	8/8/2009	No Data	No Data	No Data	No Data	No Data	1.9	<1	6.45	8.57	323	6	6	146
8/9/2009	8/9/2009	No Data	No Data	No Data	No Data	No Data	1.7	<1	6.60	8.68	334	6	6	143
8/10/2009	8/10/2009	No Data	No Data	No Data	No Data	No Data	2.0	<1	6.39	8.67	316	5	5	149
8/11/2009	8/11/2009	No Data	No Data	No Data	No Data	No Data	4.7	<1	6.19	8.67	320	10	10	153
8/12/2009	8/12/2009	No Data	No Data	No Data	No Data	No Data	3.0	<1	5.91	8.93	312	11	11	144
8/13/2009	8/13/2009	No Data	No Data	No Data	No Data	No Data	2.3	<1	6.02	8.43	308	6	6	152
8/14/2009	8/14/2009	No Data	No Data	No Data	No Data	No Data	2.4	<1	5.58	8.88	313	10	10	156
8/15/2009	8/15/2009	No Data	No Data	No Data	No Data	No Data	3.4	<1	5.26	8.53	316	6	6	146
8/16/2009	8/16/2009	No Data	No Data	No Data	No Data	No Data	3.2	<1	6.04	8.67	317	5	5	153
8/17/2009	8/17/2009	No Data	No Data	No Data	No Data	No Data	2.8	<1	5.92	8.53	312	6	6	149
8/18/2009	8/18/2009	No Data	No Data	No Data	No Data	No Data	2.3	<1	6.16	8.70	321	2	2	168
8/19/2009	8/19/2009	No Data	No Data	No Data	No Data	No Data	2.2	<1	6.00	8.72	335	2	2	117
8/20/2009	8/20/2009	No Data	No Data	No Data	No Data	No Data	2.6	<1	5.67	8.51	317	2	2	108
8/21/2009	8/21/2009	No Data	No Data	No Data	No Data	No Data	5.6	<1	5.48	8.64	724	3	3	121
8/22/2009	8/22/2009	No Data	No Data	No Data	No Data	No Data	1.9	<1	5.43	8.74	326	2	2	123
8/23/2009	8/23/2009	No Data	No Data	No Data	No Data	No Data	2.3	<1	5.38	8.73	323	2	2	132
8/24/2009	8/24/2009	No Data	No Data	No Data	No Data	No Data	4.2	<1	5.25	8.64	353	3	3	127
8/25/2009	8/25/2009	No Data	No Data	No Data	No Data	No Data	4.9	<1	5.10	8.48	333	2	2	139
8/26/2009	8/26/2009	No Data	No Data	No Data	No Data	No Data	4.7	<1	5.06	8.59	337	2	2	129
8/27/2009	8/27/2009	No Data	No Data	No Data	No Data	No Data	2.9	<1	7.96	6.72	304	4	4	134
8/28/2009	8/28/2009	No Data	No Data	No Data	No Data	No Data	4.2	<1	7.58	8.41	299	3	3	140
8/29/2009	8/29/2009	No Data	No Data	No Data	No Data	No Data	4.4	<1	7.90	8.56	294	4	4	145
8/30/2009	8/30/2009	No Data	No Data	No Data	No Data	No Data	4.1	<1	8.11	8.17	292	5	5	140
8/31/2009	8/31/2009	No Data	No Data	No Data	No Data	No Data	3.8	<1	6.58	8.50	297	4	4	143
9/1/2009	9/1/2009	No Data	No Data	No Data	No Data	No Data	2.9	<1.0	6.95	8.53	297	4	4	140
9/2/2009	9/2/2009	No Data	No Data	No Data	No Data	No Data	2.4	<1.0	7.40	8.56	287	3	3	136
9/3/2009	9/3/2009	No Data	No Data	No Data	No Data	No Data	2.9	<1.0	6.46	7.11	219	4	4	142
9/4/2009	9/4/2009	No Data	No Data	No Data	No Data	No Data	2.0	<1.0	7.29	8.60	287	4	4	142
9/5/2009	9/5/2009	No Data	No Data	No Data	No Data	No Data	3.6	<1.0	8.05	8.43	288	4	4	151

Name: ADOT - Flag	staff District		A. Vi	sual Monit	oring:	-				B. Analyt	ical Monito	oring		
Address: 1801 Sour Flagstaff, AZ Flagst Phone Number 928 Chuck Howe	th Milton Road aff, Arizona 86001 -779-7591	Sheen	Color	Foam	Solids	Odor	Turbidity	Stream Flow	DO	рН	Conducti vity	SSC	TSS	TDS
9/6/2009	9/6/2009	No Data	No Data	No Data	No Data	No Data	9.1	<1.0	8.46	7.46	294	17	17	148
9/7/2009	9/7/2009	No Data	No Data	No Data	No Data	No Data	7.4	<1.0	8.25	7.17	295	12	12	153
9/8/2009	9/8/2009	No Data	No Data	No Data	No Data	No Data	9.1	<1.0	7.76	7.66	303	24	24	148
9/9/2009	9/9/2009	No Data	No Data	No Data	No Data	No Data	5.6	<1.0	7.42	7.38	299	6	6	168
9/10/2009	9/10/2009	No Data	No Data	No Data	No Data	No Data	5.1	<1.0	7.51	7.65	301	10	10	158
9/11/2009	9/11/2009	No Data	No Data	No Data	No Data	No Data	23.0	<1.0	8.48	8.48	292	29	29	148
9/12/2009	9/12/2009	No Data	No Data	No Data	No Data	No Data	13.8	<1.0	8.24	8.46	301	6	16	167
9/13/2009	9/13/2009	No Data	No Data	No Data	No Data	No Data	22.0	<1.0	7.04	8.37	299	8	11	157
9/14/2009	9/14/2009	No Data	No Data	No Data	No Data	No Data	3.5	<1.0	7.74	8.35	300	4	15	156
9/15/2009	9/15/2009	No Data	No Data	No Data	No Data	No Data	5.9	<1.0	8.71	8.51	302	6	6	130
9/16/2009	9/16/2009	No Data	No Data	No Data	No Data	No Data	7.5	<1.0	9.09	8.02	304	13	13	109
9/17/2009	9/17/2009	No Data	No Data	No Data	No Data	No Data	5.3	<1.0	8.51	8.17	301	6	6	111
9/18/2009	9/18/2009	No Data	No Data	No Data	No Data	No Data	2.1	<1.0	7.57	7.63	307	6	6	116
9/19/2009	9/19/2009	No Data	No Data	No Data	No Data	No Data	5.7	<1.0	10.47	7.73	308	15	15	128
9/20/2009	9/20/2009	No Data	No Data	No Data	No Data	No Data	3.7	<1.0	11.67	7.97	300	8	8	123
9/21/2009	9/21/2009	No Data	No Data	No Data	No Data	No Data	6.0	<1.0	8.39	7.40	301	10	10	122
9/22/2009	9/22/2009	No Data	No Data	No Data	No Data	No Data	3.3	<1.0	9.70	7.81	305	7	7	162
9/23/2009	9/23/2009	No Data	No Data	No Data	No Data	No Data	3.6	<1.0	8.74	7.95	301	7	7	130
9/24/2009	9/24/2009	No Data	No Data	No Data	No Data	No Data	4.2	<1.0	9.03	7.97	307	8	8	149
9/25/2009	9/25/2009	No Data	No Data	No Data	No Data	No Data	4.1	<1.0	9.23	7.76	309	8	8	145
9/26/2009	9/26/2009	No Data	No Data	No Data	No Data	No Data	3.6	<1.0	9.12	7.75	308	5	5	154
9/27/2009	9/27/2009	No Data	No Data	No Data	No Data	No Data	3.8	<1.0	8.25	8.07	320	9	9	154
9/28/2009	9/28/2009	No Data	No Data	No Data	No Data	No Data	4.1	<1.0	8.44	8.28	304	2	2	111
9/29/2009	9/29/2009	No Data	No Data	No Data	No Data	No Data	4.9	<1.0	8.60	8.24	300	4	4	96
9/30/2009	9/30/2009	No Data	No Data	No Data	No Data	No Data	4.5	<1.0	8.22	8.26	297	2	2	103
10/1/2009	10/1/2009	No Data	No Data	No Data	No Data	No Data	2.7	<0.1	8.62	8.14	310	2	2	114
10/2/2009	10/2/2009	No Data	No Data	No Data	No Data	No Data	2.4	<0.1	9.51	8.39	304	2	2	130
10/3/2009	10/3/2009	No Data	No Data	No Data	No Data	No Data	3.5	<0.1	9.10	6.99	308	4	4	125
10/4/2009	10/4/2009	No Data	No Data	No Data	No Data	No Data	5.4	<0.1	8.67	7.97	302	3	3	154
10/5/2009	10/5/2009	No Data	No Data	No Data	No Data	No Data	4.3	<0.1	9.21	8.44	302	3	3	128
10/6/2009	10/6/2009	No Data	No Data	No Data	No Data	No Data	1.3	<0.1	8.91	7.78	326	3	3	178
10/7/2009	10/7/2009	No Data	No Data	No Data	No Data	No Data	3.0	<0.1	8.38	7.62	317	3	3	156
10/8/2009	10/8/2009	No Data	No Data	No Data	No Data	No Data	1.7	<0.1	9.87	8.26	300	2	2	146
10/9/2009	10/9/2009	No Data	No Data	No Data	No Data	No Data	1.8	<0.1	9.64	8.31	305	1	1	132
10/10/2009	10/10/2009	No Data	No Data	No Data	No Data	No Data	1.6	<0.1	9.29	8.26	305	2	2	150

Name: ADOT - Flag	staff District		A. Vi	sual Monit	oring:	-			-	B. Analyt	ical Monito	oring		
Address: 1801 Sou Flagstaff, AZ Flagst Phone Number 928 Chuck Howe	th Milton Road aff, Arizona 86001 -779-7591	Sheen	Color	Foam	Solids	Odor	Turbidity	Stream Flow	DO	рН	Conducti vity	SSC	TSS	TDS
10/11/2009	10/11/2009	No Data	No Data	No Data	No Data	No Data	1.8	<0.1	7.95	8.10	305	5	5	152
10/12/2009	10/12/2009	No Data	No Data	No Data	No Data	No Data	3.0	<0.1	9.95	8.37	304	4	4	149
10/13/2009	10/13/2009	No Data	No Data	No Data	No Data	No Data	2.6	<0.1	9.24	8.22	288	1	1	105
10/14/2009	10/14/2009	No Data	No Data	No Data	No Data	No Data	1.6	<0.1	6.60	7.25	302	3	3	126
10/15/2009	10/15/2009	No Data	No Data	No Data	No Data	No Data	1.7	<0.1	4.97	7.33	300	2	2	125
10/16/2009	10/16/2009	No Data	No Data	No Data	No Data	No Data	1.9	<0.1	7.98	8.08	304	2	2	122
10/17/2009	10/17/2009	No Data	No Data	No Data	No Data	No Data	2.7	<0.1	7.91	8.21	304	3	3	128
10/18/2009	10/18/2009	No Data	No Data	No Data	No Data	No Data	1.5	<0.1	7.97	8.05	305	4	4	124
10/19/2009	10/19/2009	No Data	No Data	No Data	No Data	No Data	1.2	<0.1	7.70	7.09	305	1	1	137
10/20/2009	10/20/2009	No Data	No Data	No Data	No Data	No Data	2.6	<0.1	8.50	7.56	308	2	2	130
10/21/2009	10/21/2009	No Data	No Data	No Data	No Data	No Data	3.5	<0.1	8.72	7.35	307	1	1	151
10/22/2009	10/22/2009	No Data	No Data	No Data	No Data	No Data	2.2	<0.1	6.19	7.82	308	2	2	134
10/23/2009	10/23/2009	No Data	No Data	No Data	No Data	No Data	2.5	<0.1	5.97	8.14	309	3	3	150
10/24/2009	10/24/2009	No Data	No Data	No Data	No Data	No Data	2.0	<0.1	7.21	8.15	304	2	2	176
10/25/2009	10/25/2009	No Data	No Data	No Data	No Data	No Data	1.5	<0.1	8.73	8.25	306	10	10	172
10/26/2009	10/26/2009	No Data	No Data	No Data	No Data	No Data	2.0	<0.1	8.91	8.34	297	1	1	189
10/27/2009	10/27/2009	No Data	No Data	No Data	No Data	No Data	3.7	<0.1	8.44	7.05	310	9	9	158
10/28/2009	10/28/2009	No Data	No Data	No Data	No Data	No Data	3.0	<0.1	10.60	8.20	311	2	2	93
10/29/2009	10/29/2009	No Data	No Data	No Data	No Data	No Data	1.8	<0.1	7.98	8.09	316	2	2	74
10/30/2009	10/30/2009	No Data	No Data	No Data	No Data	No Data	2.9	<0.1	9.81	8.71	315	3	3	88
10/31/2009	10/31/2009	No Data	No Data	No Data	No Data	No Data	1.8	<0.1	10.30	8.05	310	2	2	94
11/1/2009	11/1/2009	No Data	No Data	No Data	No Data	No Data	3.8	<0.1	989	7.81	309	18	18	74
11/2/2009	11/2/2009	No Data	No Data	No Data	No Data	No Data	2.8	<0.1	9.38	8.04	309	2	2	96
11/3/2009	11/3/2009	No Data	No Data	No Data	No Data	No Data	2.5	<0.1	11.12	8.39	312	2	2	114
11/4/2009	11/4/2009	No Data	No Data	No Data	No Data	No Data	3.5	<0.1	10.97	8.14	310	2	2	135
11/5/2009	11/5/2009	No Data	No Data	No Data	No Data	No Data	2.2	<0.1	11.01	7.73	310	3	3	122
11/6/2009	11/6/2009	No Data	No Data	No Data	No Data	No Data	2.6	<0.1	9.49	8.41	309	2	2	159
11/7/2009	11/7/2009	No Data	No Data	No Data	No Data	No Data	3.0	<0.1	9.80	7.94	312	5	5	139
11/8/2009	11/8/2009	No Data	No Data	No Data	No Data	No Data	3.5	<0.1	9.72	8.14	312	4	4	141
11/9/2009	11/9/2009	No Data	No Data	No Data	No Data	No Data	1.5	<0.1	4.62	7.35	315	4	4	148
11/10/2009	11/10/2009	No Data	No Data	No Data	No Data	No Data	2.8	<0.1	7.71	8.23	315	5	5	142
11/11/2009	11/11/2009	No Data	No Data	No Data	No Data	No Data	3.7	<0.1	8.08	8.18	315	9	9	144
11/12/2009	11/12/2009	No Data	No Data	No Data	No Data	No Data	1.7	<0.1	8.56	7.96	309	3	3	150
11/13/2009	11/13/2009	No Data	No Data	No Data	No Data	No Data	2.1	<0.1	6.31	8.37	312	4	4	150
11/14/2009	11/14/2009	No Data	No Data	No Data	No Data	No Data	2.5	<0.1	5.09	7.71	314	7	7	99
11/15/2009	11/15/2009	No Data	No Data	No Data	No Data	No Data	2.8	<0.1	7.91	7.98	313	1	1	136

Name: ADOT - Flag	staff District		A. Vi	sual Monit	oring:					B. Analyt	ical Monito	oring		
Address: 1801 Sour Flagstaff, AZ Flagst Phone Number 928 Chuck Howe	th Milton Road aff, Arizona 86001 -779-7591	Sheen	Color	Foam	Solids	Odor	Turbidity	Stream Flow	DO	рН	Conducti vity	SSC	TSS	TDS
11/16/2009	11/16/2009	No Data	No Data	No Data	No Data	No Data	13	<0.1	9 4 4	8 07	318	1	1	165
11/17/2009	11/17/2009	No Data	No Data	No Data	No Data	No Data	3.2	<0.1	8.60	7.87	314	1	1	167
11/18/2009	11/18/2009	No Data	No Data	No Data	No Data	No Data	1.6	<0.1	7.94	7 87	304	4	4	101
11/19/2009	11/19/2009	No Data	No Data	No Data	No Data	No Data	2.2	<0.1	8.16	8.05	306	96	96	92
11/20/2009	11/20/2009	No Data	No Data	No Data	No Data	No Data	1.0	<0.1	5.75	7.85	317	6	6	118
11/21/2009	11/21/2009	No Data	No Data	No Data	No Data	No Data	2.2	<0.1	4.92	7.95	308	4	4	79
11/22/2009	11/22/2009	No Data	No Data	No Data	No Data	No Data	1.5	<0.1	8.70	7.94	315	8	8	107
11/23/2009	11/23/2009	No Data	No Data	No Data	No Data	No Data	2.6	<0.1	6.15	7.76	315	3	3	160
11/24/2009	11/24/2009	No Data	No Data	No Data	No Data	No Data	1.7	<0.1	3.57	8.05	321	2	2	162
11/25/2009	11/25/2009	No Data	No Data	No Data	No Data	No Data	3.0	<0.1	3.01	7.74	316	6	6	153
11/26/2009	11/26/2009	No Data	No Data	No Data	No Data	No Data	3.4	<0.1	7.76	7.80	313	1	1	128
11/27/2009	11/27/2009	No Data	No Data	No Data	No Data	No Data	3.2	<0.1	4.92	7.33	314	1	1	162
11/28/2009	11/28/2009	No Data	No Data	No Data	No Data	No Data	3.3	<0.1	3.25	7.20	315	12	12	137
11/29/2009	11/29/2009	No Data	No Data	No Data	No Data	No Data	6.7	<0.1	4.55	7.98	313	7	7	144
11/30/2009	11/30/2009	No Data	No Data	No Data	No Data	No Data	3.5	<0.1	3.51	8.29	314	7	7	161
12/1/2009	12/1/2009	No Data	No Data	No Data	No Data	No Data	4.7	<0.1	3.67	7.99	313	2.0	2	170
12/2/2009	12/2/2009	No Data	No Data	No Data	No Data	No Data	3.0	<0.1	3.01	8.12	318	2.0	2	126
12/3/2009	12/3/2009	No Data	No Data	No Data	No Data	No Data	2.5	<0.1	0.37	6.69	314	2.0	2	124
12/4/2009	12/4/2009	No Data	No Data	No Data	No Data	No Data	2.7	<0.1	0.53	6.90	317	2.0	2	138
12/5/2009	12/5/2009	No Data	No Data	No Data	No Data	No Data	1.4	<0.1	0.58	7.93	316	2.0	2	141
12/6/2009	12/6/2009	No Data	No Data	No Data	No Data	No Data	1.9	<0.1	0.82	7.93	318	2.0	2	156
12/7/2009	12/7/2009	No Data	No Data	No Data	No Data	No Data	4.9	<0.1	0.58	6.40	179	13.0	13	176
12/8/2009	12/8/2009	No Data	No Data	No Data	No Data	No Data	3.9	<0.1	9.20	8.31	315	12.0	12	193
12/9/2009	12/9/2009	No Data	No Data	No Data	No Data	No Data	5.6	<0.1	0.72	7.64	321	1.0	1	187
12/10/2009	12/10/2009	No Data	No Data	No Data	No Data	No Data	3.9	<0.1	no data	7.50	325	6.0	6	169
12/11/2009	12/11/2009	No Data	No Data	No Data	No Data	No Data	1.8	<0.1	10.78	7.16	327	6.0	6	158
12/12/2009	12/12/2009	No Data	No Data	No Data	No Data	No Data	4.8	<0.1	9.45	8.23	317	3.0	3	167
12/13/2009	12/13/2009	No Data	No Data	No Data	No Data	No Data	4.3	<0.1	9.11	8.26	318	3.0	3	206
12/14/2009	12/14/2009	No Data	No Data	No Data	No Data	No Data	3.0	<0.1	no data	8.19	318	10.0	10	193
12/15/2009	12/15/2009	No Data	No Data	No Data	No Data	No Data	1.4	<0.1	10.38	8.20	315	7.0	7	134
12/16/2009	12/16/2009	No Data	No Data	No Data	No Data	No Data	2.0	<0.1	10.09	8.17	319	3.0	3	154
12/17/2009	12/17/2009	No Data	No Data	No Data	No Data	No Data	1.6	<0.1	9.46	7.17	320	6.0	6	130
12/18/2009	12/18/2009	No Data	No Data	No Data	No Data	No Data	1.2	<0.1	9.52	6.90	322	7.0	7	129
12/19/2009	12/19/2009	No Data	No Data	No Data	No Data	No Data	2.1	<0.1	9.20	8.00	319	8.0	8	140
12/20/2009	12/20/2009	No Data	No Data	No Data	No Data	No Data	2.5	<0.1	9.05	7.76	322	9.0	9	139
12/21/2009	12/21/2009	No Data	No Data	No Data	No Data	No Data	1.6	<0.1	9.18	7.52	322	8.0	8	153

Name: ADOT - Flag	staff District		A. Vi	isual Monit	oring:					B. Analyti	ical Monito	oring		
Address: 1801 Sout Flagstaff, AZ Flagst Phone Number 928 Chuck Howe	th Milton Road aff, Arizona 86001 -779-7591	Sheen	Color	Foam	Solids	Odor	Turbidity	Stream Flow	DO	рН	Conducti vity	SSC	TSS	TDS
12/22/2009	12/22/2009	No Data	No Data	No Data	No Data	No Data	1.2	<0.1	8.91	6.79	323	2.0	2	146
12/23/2009	12/23/2009	No Data	No Data	No Data	No Data	No Data	3.1	<0.1	8.99	6.62	316	3.0	3	158
12/24/2009	12/24/2009	No Data	No Data	No Data	No Data	No Data	1.1	<0.1	9.67	7.79	321	8.0	8	128
12/25/2009	12/25/2009	No Data	No Data	No Data	No Data	No Data	0.8	<0.1	9.50	7.26	322	7.0	7	167
12/26/2009	12/26/2009	No Data	No Data	No Data	No Data	No Data	1.0	<0.1	8.38	8.06	307	5.0	5	144
12/27/2009	12/27/2009	No Data	No Data	No Data	No Data	No Data	0.7	<0.1	no data	7.59	320	5.0	5	151
12/28/2009	12/28/2009	No Data	No Data	No Data	No Data	No Data	2.8	<0.1	9.76	7.27	331	3.0	3	159
12/29/2009	12/29/2009	No Data	No Data	No Data	No Data	No Data	1.2	<0.1	8.53	7.35	324	8.0	8	154
12/30/2009	12/30/2009	No Data	No Data	No Data	No Data	No Data	1.3	<0.1	8.91	6.74	321	5.0	5	110
12/31/2009	12/31/2009	No Data	No Data	No Data	No Data	No Data	0.8	<0.1	9.43	7.80	319	5.0	5	167
1/1/2010	1/1/2010	No Data	No Data	No Data	No Data	No Data	2.0	<0.1	8.39	7.91	320	7	7	163
1/2/2010	1/2/2010	No Data	No Data	No Data	No Data	No Data	1.8	<0.1	8.44	8.07	319	5	5	124
1/3/2010	1/3/2010	No Data	No Data	No Data	No Data	No Data	1.9	<0.1	9.01	7.93	317	4	4	132
1/4/2010	1/4/2010	No Data	No Data	No Data	No Data	No Data	1.4	<0.1	9.19	7.24	321	6	6	108
1/5/2010	1/5/2010	No Data	No Data	No Data	No Data	No Data	1.4	<0.1	9.11	7.53	318	6	6	132
1/6/2010	1/6/2010	No Data	No Data	No Data	No Data	No Data	1.5	<0.1	9.32	8.15	318	6	6	131
1/7/2010	1/7/2010	No Data	No Data	No Data	No Data	No Data	0.8	<0.1	8.84	7.55	330	7	7	138
1/8/2010	1/8/2010	No Data	No Data	No Data	No Data	No Data	2.1	<0.1	8.80	7.69	326	7	7	94
1/9/2010	1/9/2010	No Data	No Data	No Data	No Data	No Data	1.6	<0.1	10.07	7.93	316	5	5	126
1/10/2010	1/10/2010	No Data	No Data	No Data	No Data	No Data	1.9	<0.1	10.43	7.68	318	8	8	127
1/11/2010	1/11/2010	No Data	No Data	No Data	No Data	No Data	3.5	<0.1	10.69	8.30	315	10	10	128
1/12/2010	1/12/2010	No Data	No Data	No Data	No Data	No Data	8.0	<0.1	10.22	8.17	320	10	10	130
1/13/2010	1/13/2010	No Data	No Data	No Data	No Data	No Data	3.1	<0.1	10.54	8.24	298	6	6	151
1/14/2010	1/14/2010	No Data	No Data	No Data	No Data	No Data	2.6	<0.1	9.94	7.92	313	11	11	172
1/15/2010	1/15/2010	No Data	No Data	No Data	No Data	No Data	2.0	<0.1	9.67	8.30	316	11	11	163
1/16/2010	1/16/2010	No Data	No Data	No Data	No Data	No Data	3.5	<0.1	8.47	7.80	316	9	9	140
1/17/2010	1/17/2010	No Data	No Data	No Data	No Data	No Data	3.0	<0.1	8.83	8.13	307	9	9	150
1/18/2010	1/18/2010	No Data	No Data	No Data	No Data	No Data	1.4	<0.1	7.47	6.81	319	8	8	164
1/19/2010	1/19/2010	No Data	No Data	No Data	No Data	No Data	5.1	<0.1	10.34	6.68	309	11	11	154
1/20/2010	1/20/2010	No Data	No Data	No Data	No Data	No Data	6.0	<0.1	16.12	8.08	292	4	4	158
1/21/2010	1/21/2010	No Data	No Data	No Data	No Data	No Data	116.0	<0.1	no data	7.82	203	197	197	118
1/22/2010	1/22/2010	No Data	No Data	No Data	No Data	No Data	29.2	<0.1	no data	7.33	222	37	37	90
1/23/2010	1/23/2010	No Data	No Data	No Data	No Data	No Data	13.7	<0.1	no data	7.84	194	6	6	130
1/24/2010	1/24/2010	No Data	No Data	No Data	No Data	No Data	9.5	<0.1	no data	8.15	221	2	2	138
1/25/2010	1/25/2010	No Data	No Data	No Data	No Data	No Data	6.7	<0.1	10.95	8.00	241	3	3	154
1/26/2010	1/26/2010	No Data	No Data	No Data	No Data	No Data	6.5	<0.1	13.25	8.18	243	5	5	162

Name: ADOT - Flag	gstaff District		A. Vi	isual Monit	oring:					B. Analyt	ical Monito	oring		
Address: 1801 Sou Flagstaff, AZ Flagst Phone Number 928 Chuck Howe	th Milton Road taff, Arizona 86001 3-779-7591	Sheen	Color	Foam	Solids	Odor	Turbidity	Stream Flow	DO	pН	Conducti vity	SSC	TSS	TDS
1/27/2010	1/27/2010	No Data	No Data	No Data	No Data	No Data	7.4	<0.1	6.87	6.32	241	2	2	144
1/28/2010	1/28/2010	No Data	No Data	No Data	No Data	No Data	8.6	<0.1	6.62	6.39	201	4	4	133
1/29/2010	1/29/2010	No Data	No Data	No Data	No Data	No Data	7.2	<0.1	6.55	6.26	213	6	6	168
1/30/2010	1/30/2010	No Data	No Data	No Data	No Data	No Data	9.5	0.1	6.97	7.97	208	6	6	152
1/31/2010	1/31/2010	No Data	No Data	No Data	No Data	No Data	5.0	0.1	6.95	7.78	224	14	14	164
2/1/2010	2/1/2010	No Data	No Data	No Data	No Data	No Data	4.0	0.3	8.01	7.69	221	4	4	177
2/2/2010	2/2/2010	No Data	No Data	No Data	No Data	No Data	4.8	0.3	5.88	6.75	216	6	6	171
2/3/2010	2/3/2010	No Data	No Data	No Data	No Data	No Data	3.1	0.2	7.72	7.28	222	1	1	95
2/4/2010	2/4/2010	No Data	No Data	No Data	No Data	No Data	4.6	<0.1	7.51	6.24	206	5	5	158
2/5/2010	2/5/2010	No Data	No Data	No Data	No Data	No Data	3.8	0.8	11.81	7.33	191	9	9	135
2/6/2010	2/6/2010	No Data	No Data	No Data	No Data	No Data	3.5	0.5	7.68	7.30	188	2	2	239
2/7/2010	2/7/2010	No Data	No Data	No Data	No Data	No Data	5.5	0.59	7.8	7.76	186	2	2	122
2/8/2010	2/8/2010	No Data	No Data	No Data	No Data	No Data	3.2	0.8	7.6	7.8	218	3	3	132
2/9/2010	2/9/2010	No Data	No Data	No Data	No Data	No Data	2.6	<0.1	5.32	6.24	234	4	3	143
2/10/2010	2/10/2010	No Data	No Data	No Data	No Data	No Data	3.4	<0.1	5.97	6.74	236	2	2	140
2/11/2010	2/11/2010	No Data	No Data	No Data	No Data	No Data	3.8	<0.1	9.35	6.53	249	2	2	176
2/12/2010	2/12/2010	No Data	No Data	No Data	No Data	No Data	2.4	<0.1	8.05	6.54	257	4	4	127
2/13/2010	2/13/2010	No Data	No Data	No Data	No Data	No Data	3.1	0.1	8.13	7.98	223	2	2	107
2/14/2010	2/14/2010	No Data	No Data	No Data	No Data	No Data	2.7	0.1	6.49	7.20	207	1	1	123
2/15/2010	2/15/2010	No Data	No Data	No Data	No Data	No Data	1.3	<0.1	6.68	6.45	200	1	1	134
2/16/2010	2/16/2010	No Data	No Data	No Data	No Data	No Data	3.0	0.1	7.14	7.42	202	1	1	142
2/17/2010	2/17/2010	No Data	No Data	No Data	No Data	No Data	2.7	0.3	7.63	7.38	198	2	2	74
2/18/2010	2/18/2010	No Data	No Data	No Data	No Data	No Data	3.1	2.5	8.40	7.03	203	4	4	107
2/19/2010	2/19/2010	No Data	No Data	No Data	No Data	No Data	3.8	0.5	6.92	7.33	188	6	6	127
2/20/2010	2/20/2010	No Data	No Data	No Data	No Data	No Data	3.2	0.5	6.97	7.32	182	5	5	89
2/21/2010	2/21/2010	No Data	No Data	No Data	No Data	No Data	3.8	0.3	10.72	7.19	206	6	6	93
2/22/2010	2/22/2010	No Data	No Data	No Data	No Data	No Data	15.1	<0.1	7.17	5.93	198	17	17	99
2/23/2010	2/23/2010	No Data	No Data	No Data	No Data	No Data	4.1	<0.1	5.01	6.08	232	9	9	130
2/24/2010	2/24/2010	No Data	No Data	No Data	No Data	No Data	6.7	<0.1	4.89	6.89	227	3	3	118
2/25/2010	2/25/2010	No Data	No Data	No Data	No Data	No Data	2.2	<0.1	6.18	6.11	238	3	3	154
2/26/2010	2/26/2010	No Data	No Data	No Data	No Data	No Data	2.8	<0.1	3.45	6.52	199	8	8	128
2/27/2010	2/27/2010	No Data	No Data	No Data	No Data	No Data	2.7	0.4	5.61	7.80	209	6	6	141
2/28/2010	2/28/2010	No Data	No Data	No Data	No Data	No Data	3.2	0.5	12.20	7.78	210	5	5	152
3/1/2010	3/1/2010	No Data	No Data	No Data	No Data	No Data	2.5	<0.1	3.10	6.36	208	2	2	131
3/2/2010	3/2/2010	No Data	No Data	No Data	No Data	No Data	3.4	<0.1	13.66	6.58	289	5	5	80
3/3/2010	3/3/2010	No Data	No Data	No Data	No Data	No Data	4.9	<0.1	7.03	6.17	177	7	7	75

Name: ADOT - Flag	staff District		A. Vi	isual Monit	oring:					B. Analyti	ical Monito	oring		
Address: 1801 Sour Flagstaff, AZ Flagst Phone Number 928 Chuck Howe	th Milton Road aff, Arizona 86001 -779-7591	Sheen	Color	Foam	Solids	Odor	Turbidity	Stream Flow	DO	рН	Conducti vity	SSC	TSS	TDS
3/4/2010	3/4/2010	No Data	No Data	No Data	No Data	No Data	5.8	<0.1	6.70	5.46	162	9	9	61
3/5/2010	3/5/2010	No Data	No Data	No Data	No Data	No Data	4.2	<0.1	5.69	5.70	121	5	5	84
3/6/2010	3/6/2010	No Data	No Data	No Data	No Data	No Data	6.9	0.7	7.49	7.46	165	2	2	102
3/7/2010	3/7/2010	No Data	No Data	No Data	No Data	No Data	23.8	1.7	6.65	6.49	101	48	48	68
3/8/2010	3/8/2010	No Data	No Data	No Data	No Data	No Data	6.3	0.8	6.74	5.88	150	9	9	101
3/9/2010	3/9/2010	No Data	No Data	No Data	No Data	No Data	9.4	0.8	6.48	5.95	183	6	6	119
3/10/2010	3/10/2010	No Data	No Data	No Data	No Data	No Data	3.8	<0.1	6.51	5.97	204	5	5	72
3/11/2010	3/11/2010	No Data	No Data	No Data	No Data	No Data	3.3	0.3	6.55	6.90	236	2	2	59
3/12/2010	3/12/2010	No Data	No Data	No Data	No Data	No Data	1.6	0.5	6.93	7.64	219	4	4	70
3/13/2010	3/13/2010	No Data	No Data	No Data	No Data	No Data	3.4	0.5	7.09	7.83	202	1	1	30
3/14/2010	3/14/2010	No Data	No Data	No Data	No Data	No Data	4.6	0.5	7.52	7.60	208	4	4	56
3/15/2010	3/15/2010	No Data	No Data	No Data	No Data	No Data	3.3	0.6	7.03	7.76	185	1	1	80
3/16/2010	3/16/2010	No Data	No Data	No Data	No Data	No Data	4.0	0.6	7.17	7.81	158	7	7	69
3/17/2010	3/17/2010	No Data	No Data	No Data	No Data	No Data	7.4	0.5	6.39	6.53	140	8	8	85
3/18/2010	3/18/2010	No Data	No Data	No Data	No Data	No Data	9.3	1.6	7.33	6.87	117	10	10	80
3/19/2010	3/19/2010	No Data	No Data	No Data	No Data	No Data	12.8	1.4	7.30	7.64	106	9	9	85
3/20/2010	3/20/2010	No Data	No Data	No Data	No Data	No Data	10.1	1.3	7.86	7.09	102	7	7	118
3/21/2010	3/21/2010	No Data	No Data	No Data	No Data	No Data	8.5	1.0	6.80	6.95	120	5	5	115
3/22/2010	3/22/2010	No Data	No Data	No Data	No Data	No Data	7.3	1.3	7.38	7.29	110	2	2	103
3/23/2010	3/23/2010	No Data	No Data	No Data	No Data	No Data	8.7	1.2	7.84	7.48	103	8	8	105
3/24/2010	3/24/2010	No Data	No Data	No Data	No Data	No Data	5.0	1.2	6.01	7.70	115	3	3	138
3/25/2010	3/25/2010	No Data	No Data	No Data	No Data	No Data	7.0	0.9	2.97	7.26	108	4	4	81
3/26/2010	3/26/2010	No Data	No Data	No Data	No Data	No Data	7.4	1.2	2.35	7.08	108	6	6	116
3/27/2010	3/27/2010	No Data	No Data	No Data	No Data	No Data	5.4	0.8	6.21	7.04	108	4	4	92
3/28/2010	3/28/2010	No Data	No Data	No Data	No Data	No Data	4.5	0.9	no data	7.23	114	2	2	103
3/29/2010	3/29/2010	No Data	No Data	No Data	No Data	No Data	4.9	1.2	no data	7.32	108	5	5	47
3/30/2010	3/30/2010	No Data	No Data	No Data	No Data	No Data	6.3	1.2	10.89	7.49	101	5	5	49
3/31/2010	3/31/2010	No Data	No Data	No Data	No Data	No Data	11.8	0.4	6.81	6.09	113	13	13	28
4/1/2010	4/1/2010	No Data	No Data	No Data	No Data	No Data	7.0	0.6	10.27	6.72	95	11	11	34
4/2/2010	4/2/2010	No Data	No Data	No Data	No Data	No Data	5.1	<0.1	9.61	5.93	110	5	5	34
4/3/2010	4/3/2010	No Data	No Data	No Data	No Data	No Data	3.7	1.7	8.80	6.92	120	2	2	41
4/4/2010	4/4/2010	No Data	No Data	No Data	No Data	No Data	4.2	0.6	8.89	7.68	112	2	2	32
4/5/2010	4/5/2010	No Data	No Data	No Data	No Data	No Data	7.8	0.5	8.24	6.12	109	4	4	44
4/6/2010	4/6/2010	No Data	No Data	No Data	No Data	No Data	8.8	0.3	7.41	5.70	87	3	3	22
4/7/2010	4/7/2010	No Data	No Data	No Data	No Data	No Data	5.8	0.5	7.71	7.27	110	6	6	57
4/8/2010	4/8/2010	No Data	No Data	No Data	No Data	No Data	3.7	0.5	5.38	6.87	161	2	2	27

Name: ADOT - Flag	staff District		A. Vi	sual Monit	oring:					B. Analyt	ical Monito	oring		
Address: 1801 Sour Flagstaff, AZ Flagst Phone Number 928 Chuck Howe	th Milton Road aff, Arizona 86001 -779-7591	Sheen	Color	Foam	Solids	Odor	Turbidity	Stream Flow	DO	рН	Conducti vity	SSC	TSS	TDS
4/9/2010	4/9/2010	No Data	No Data	No Data	No Data	No Data	3.5	0.7	6.22	6.35	135	11	11	48
4/10/2010	4/10/2010	No Data	No Data	No Data	No Data	No Data	5.3	0.8	9.71	7.06	115	6	6	31
4/11/2010	4/11/2010	No Data	No Data	No Data	No Data	No Data	4.6	0.74	7.62	7.18	120	5	5	64
4/12/2010	4/12/2010	No Data	No Data	No Data	No Data	No Data	4.0	0.7	11.74	6.36	127	4	4	44
4/13/2010	4/13/2010	No Data	No Data	No Data	No Data	No Data	4.3	0.9	10.48	7.97	129	3	3	30
4/14/2010	4/14/2010	No Data	No Data	No Data	No Data	No Data	3.5	0.4	3.40	6.06	150	1	1	41
4/15/2010	4/15/2010	No Data	No Data	No Data	No Data	No Data	2.7	0.3	5.74	6.24	163	7	7	67
4/16/2010	4/16/2010	No Data	No Data	No Data	No Data	No Data	4.5	0.3	6.51	7.96	160	11	11	72
4/17/2010	4/17/2010	No Data	No Data	No Data	No Data	No Data	3.5	0.2	6.07	7.49	186	10	10	84
4/18/2010	4/18/2010	No Data	No Data	No Data	No Data	No Data	3.7	0.2	6.25	7.65	197	4	4	82
4/19/2010	4/19/2010	No Data	No Data	No Data	No Data	No Data	3.8	0.2	6.81	8.11	201	8	8	146
4/20/2010	4/20/2010	No Data	No Data	No Data	No Data	No Data	3.1	0.4	8.02	8.08	208	10	10	104
4/21/2010	4/21/2010	No Data	No Data	No Data	No Data	No Data	2.9	0.3	8.02	8.15	212	2	2	114
4/22/2010	4/22/2010	No Data	No Data	No Data	No Data	No Data	4.9	0.3	78.20	8.15	198	1	1	108
4/23/2010	4/23/2010	No Data	No Data	No Data	No Data	No Data	4.3	<0.1	11.21	6.78	219	1	1	134
4/24/2010	4/24/2010	No Data	No Data	No Data	No Data	No Data	1.4	<0.1	6.01	6.87	280	2	2	133
4/25/2010	4/25/2010	No Data	No Data	No Data	No Data	No Data	1.9	<0.1	5.33	6.03	250	1	1	146
4/26/2010	4/26/2010	No Data	No Data	No Data	No Data	No Data	1.0	<0.1	5.81	8.11	265	2	2	147
4/27/2010	4/27/2010	No Data	No Data	No Data	No Data	No Data	1.4	<0.1	5.08	6.71	267	2	2	154
4/28/2010	4/28/2010	No Data	No Data	No Data	No Data	No Data	1.2	<0.1	4.71	7.25	319	4	4	108
4/29/2010	4/29/2010	No Data	No Data	No Data	No Data	No Data	2.5	<0.1	4.68	7.09	281	1	1	152
4/30/2010	4/30/2010	No Data	No Data	No Data	No Data	No Data	2.8	<0.1	6.28	8.24	284	2	2	140
5/1/2010	5/1/2010	No Data	No Data	No Data	No Data	No Data	1.0	0.2	7.78	8.09	285	2	2	140
5/2/2010	5/2/2010	No Data	No Data	No Data	No Data	No Data	1.6	0.2	6.76	7.86	289	2	2	113
5/3/2010	5/3/2010	No Data	No Data	No Data	No Data	No Data	0.5	<.1	3.46	6.61	293	1	1	144
5/4/2010	5/4/2010	No Data	No Data	No Data	No Data	No Data	1.2	<.1	5.29	7.93	309	5	5	140
5/5/2010	5/5/2010	No Data	No Data	No Data	No Data	No Data	2.1	<.1	2.98	7.36	320	2	2	119
5/6/2010	5/6/2010	No Data	No Data	No Data	No Data	No Data	1.8	<.1	5.24	7.25	301	3	3	10
5/7/2010	5/7/2010	No Data	No Data	No Data	No Data	No Data	2.3	<.1	3.55	7.16	302	4	4	184
5/8/2010	5/8/2010	No Data	No Data	No Data	No Data	No Data	2.9	0.2	4.31	8.06	302	2	2	162
5/9/2010	5/9/2010	No Data	No Data	No Data	No Data	No Data	2.8	0.2	3.08	7.86	305	4	4	130
5/10/2010	5/10/2010	No Data	No Data	No Data	No Data	No Data	2.6	<.1	1.29	7.62	309	5	5	140
5/11/2010	5/11/2010	No Data	No Data	No Data	No Data	No Data	3.1	<.1	no data	7.46	345	4	4	136
5/12/2010	5/12/2010	No Data	No Data	No Data	No Data	No Data	2.7	<.1	5.33	6.68	306	3	3	123
5/13/2010	5/13/2010	No Data	No Data	No Data	No Data	No Data	1.0	<.1	5.56	8.39	305	5	5	139
5/14/2010	5/14/2010	No Data	No Data	No Data	No Data	No Data	2.3	<.1	4.16	7.89	301	6	6	134

Name: ADOT - Flag	gstaff District		A. Vi	sual Monit	oring:	-		-	-	B. Analyt	ical Monito	oring		
Address: 1801 Sou Flagstaff, AZ Flagst Phone Number 928 Chuck Howe	th Milton Road taff, Arizona 86001 3-779-7591	Sheen	Color	Foam	Solids	Odor	Turbidity	Stream Flow	DO	рН	Conducti vity	SSC	TSS	TDS
5/15/2010	5/15/2010	No Data	No Data	No Data	No Data	No Data	0.9	<.1	5.52	8.20	305	9	9	132
5/16/2010	5/16/2010	No Data	No Data	No Data	No Data	No Data	1.1	<.1	5.21	8.26	307	3	3	126
5/17/2010	5/17/2010	No Data	No Data	No Data	No Data	No Data	2.1	<.1	4.56	7.93	304	2	2	154
5/18/2010	5/18/2010	No Data	No Data	No Data	No Data	No Data	1.8	<.1	4.66	7.82	333	5	5	151
5/19/2010	5/19/2010	No Data	No Data	No Data	No Data	No Data	2.3	<.1	4.26	7.61	300	4	4	152
5/20/2010	5/20/2010	No Data	No Data	No Data	No Data	No Data	2.4	<.1	3.70	7.20	308	4	4	196
5/21/2010	5/21/2010	No Data	No Data	No Data	No Data	No Data	2.1	2.0	3.39	7.46	302	7	7	143
5/22/2010	5/22/2010	No Data	No Data	No Data	No Data	No Data	1.8	0.1	5.64	8.04	310	7	7	119
5/23/2010	5/23/2010	No Data	No Data	No Data	No Data	No Data	2.5	<.1	7.35	7.99	314	5	5	128
5/24/2010	5/24/2010	No Data	No Data	No Data	No Data	No Data	2.4	0.2	10.04	8.08	314	9	9	157
5/25/2010	5/25/2010	No Data	No Data	No Data	No Data	No Data	2.1	0.1	6.12	8.23	312	6	6	145
5/26/2010	5/26/2010	No Data	No Data	No Data	No Data	No Data	2.3	<.1	6.67	8.29	315	4	4	136
5/27/2010	5/27/2010	No Data	No Data	No Data	No Data	No Data	2.0	<.1	7.02	8.22	313	4	4	89
5/28/2010	5/28/2010	No Data	No Data	No Data	No Data	No Data	2.0	<.1	1.31	7.79	314	8	8	127
5/29/2010	5/29/2010	No Data	No Data	No Data	No Data	No Data	2.3	<.1	6.78	8.37	313	145	145	120
5/30/2010	5/30/2010	No Data	No Data	No Data	No Data	No Data	2.8	<.1	7.32	8.42	315	3	3	183
5/31/2010	5/31/2010	No Data	No Data	No Data	No Data	No Data	2.1	<.1	5.95	7.97	306	8.0	8	161
6/1/2010	6/1/2010	No Data	No Data	No Data	No Data	No Data	4.8	<0.1	4.82	7.27	306	4.0	4	159
6/2/2010	6/2/2010	No Data	No Data	No Data	No Data	No Data	2.5	<0.1	4.66	7.10	305	6.0	6	159
6/3/2010	6/3/2010	No Data	No Data	No Data	No Data	No Data	2.4	<0.1	4.54	7.61	371	4.0	4	177
6/4/2010	6/4/2010	No Data	No Data	No Data	No Data	No Data	2.6	<0.1	4.32	7.52	306	1.0	1	160
6/5/2010	6/5/2010	No Data	No Data	No Data	No Data	No Data	2.2	<0.1	4.17	7.75	301	2.0	2	156
6/6/2010	6/6/2010	No Data	No Data	No Data	No Data	No Data	2.4	<0.1	4.41	7.77	302	3.0	3	155
6/7/2010	6/7/2010	No Data	No Data	No Data	No Data	No Data	2.0	<0.1	4.69	8.12	299	5.0	5	141
6/8/2010	6/8/2010	No Data	No Data	No Data	No Data	No Data	3.1	<0.1	4.27	8.01	301	7.0	7	119
6/9/2010	6/9/2010	No Data	No Data	No Data	No Data	No Data	2.7	<0.1	4.15	7.57	302	9.0	9	166
6/10/2010	6/10/2010	No Data	No Data	No Data	No Data	No Data	3.0	<0.1	4.29	7.33	189	12.0	12	151
6/11/2010	6/11/2010	No Data	No Data	No Data	No Data	No Data	2.4	<0.1	4.11	7.58	306	4.0	4	133
6/12/2010	6/12/2010	No Data	No Data	No Data	No Data	No Data	2.5	<0.1	4.62	8.11	300	5.0	5	167
6/13/2010	6/13/2010	No Data	No Data	No Data	No Data	No Data	2.4	<0.1	4.27	8.09	301	4.0	4	176
6/14/2010	6/14/2010	No Data	No Data	No Data	No Data	No Data	2.7	<0.1	3.88	7.49	332	3.0	3	146
6/15/2010	6/15/2010	No Data	No Data	No Data	No Data	No Data	1.8	<0.1	5.76	7.42	305	4.0	4	153
6/16/2010	6/16/2010	No Data	No Data	No Data	No Data	No Data	1.9	<0.1	4.32	7.03	309	4.0	4	181
6/17/2010	6/17/2010	No Data	No Data	No Data	No Data	No Data	1.7	<0.1	4.39	7.51	300	8.0	8	137
6/18/2010	6/18/2010	No Data	No Data	No Data	No Data	No Data	1.5	<0.1	4.19	7.37	308	6.0	6	109
6/19/2010	6/19/2010	No Data	No Data	No Data	No Data	No Data	1.8	<0.1	4.69	8.12	302	5.0	5	110

Name: ADOT - Flag	staff District		A. Vi	sual Monite	oring:					B. Analyti	ical Monito	oring		
Address: 1801 Sout Flagstaff, AZ Flagst Phone Number 928 Chuck Howe	h Milton Road aff, Arizona 86001 -779-7591	Sheen	Color	Foam	Solids	Odor	Turbidity	Stream Flow	DO	рН	Conducti vity	SSC	TSS	TDS
6/20/2010	6/20/2010	No Data	No Data	No Data	No Data	No Data	2.0	<0.1	4.81	8.08	298	5.0	5	122
6/21/2010	6/21/2010	No Data	No Data	No Data	No Data	No Data	2.1	<0.1	4.44	7.17	336	6.0	6	128
6/22/2010	6/22/2010	No Data	No Data	No Data	No Data	No Data	3.0	<0.1	4.42	7.53	303	13.0	13	186
6/23/2010	6/23/2010	No Data	No Data	No Data	No Data	No Data	1.8	<0.1	4.32	7.52	355	9.0	9	159
6/24/2010	6/24/2010	No Data	No Data	No Data	No Data	No Data	2.0	<0.1	3.96	7.29	404	4.0	4	140
6/25/2010	6/25/2010	No Data	No Data	No Data	No Data	No Data	2.2	<0.1	4.61	8.19	299	12.0	12	172
6/26/2010	6/26/2010	No Data	No Data	No Data	No Data	No Data	1.8	<0.1	4.45	8.01	297	14.0	14	146
6/27/2010	6/27/2010	No Data	No Data	No Data	No Data	No Data	1.7	<0.1	4.85	8.15	298	4.0	4	169
6/28/2010	6/28/2010	No Data	No Data	No Data	No Data	No Data	1.6	<0.1	5.53	8.06	302	6.0	6	163
6/29/2010	6/29/2010	No Data	No Data	No Data	No Data	No Data	2.8	<0.1	4.09	7.54	352	1.0	1	168
6/30/2010	6/30/2010	No Data	No Data	No Data	No Data	No Data	1.7	<0.1	4.47	7.98	299	1.0	1	166

I. AZPDES # <u>AZS</u> Monitoring Period	5000018-2008 : 7/01/09 to 6/30/10					Project/S	ite Name Mon	: Sedona itoring P	SR 179-l oint 3	Project #	: 11			
II. Contact Inform	ation						V. Pol	lutants Mo	onitored					
Name: ADOT - Flag	gstaff District		A. Vi	sual Monit	oring:					B. Analyt	ical Monito	oring		
Address: 1801 Sour Flagstaff, AZ Flagst Phone Number 928 Chuck Howe	th Milton Road taff, Arizona 86001 3-779-7591	Sheen	Color	Foam	Solids	Odor	Turbidity	Stream Flow	DO	рН	Conducti vity	SSC	TSS	TDS
III. Discharge Date	IV. Sample Date													
9/10/2009	9/10/2009	No Data	No Data	No Data	No Data	No Data	611	.3	7.58	7.83	102	1989	1989	89
1/21/2010	1/21/2010	No Data	No Data	No Data	No Data	No Data	302	high	No Data	7.80	173.5	1041	1041	145
1/22/2010	1/22/2010	No Data	No Data	No Data	No Data	No Data	19.7	No Data	No Data	7.29	222	13	13	144
1/23/2010	1/23/2010	No Data	No Data	No Data	No Data	No Data	4.5	No Data	No Data	8.16	313	8	8	205
3/7/2010	3/7/2010	No Data	No Data	No Data	No Data	No Data	97.5	.08	6.39	7.15	168.5	81	81	83

I. AZPDES # <u>AZS000018-2008</u> Monitoring Period: 7/01/09 to 6/30/10	-				Project/S	ite Name Mon	: Sedona itoring P	n SR 179- oint 4	Project #	11			
II. Contact Information						V. Pol	lutants Mo	onitored					
Name: ADOT - Flagstaff District		A. Vi	isual Monit	oring:					B. Analyt	ical Monito	oring		
Address: 1801 South Milton Road Flagstaff, AZ Flagstaff, Arizona 86001 Phone Number 928-779-7591 Chuck Howe	Sheen	Color	Foam	Solids	Odor	Turbidity	Stream Flow	DO	рН	Conducti vity	SSC	TSS	TDS
III. Discharge Date IV. Sample Date													
				No Data	this reporti	ng period.							

I. AZPDES # <u>AZS0</u>	00018-2008					Project/S	Site Name	: Sedona	a SR 179-	Project #	‡			
Monitoring Period:	7/01/09 to 6/30/10						Mon	itoring P	Point 5					
II. Contact Informat	tion						V. Pol	lutants M	onitored					
Name: ADOT - Flags	staff District		A. Vis	sual Monito	oring:					B. Analyt	ical Monito	oring		
Address: 1801 South Flagstaff, AZ Flagsta Phone Number 928-7 Chuck Howe	n Milton Road ff, Arizona 86001 779-7591	Sheen	Color	Foam	Solids	Odor	Turbidity	Stream Flow	DO	pН	Conducti vity	SSC	TSS	TDS
III. Discharge Date	IV. Sample Date													
7/2/2009	7/2/2009	no data	no data	no data	no data	no data	5.7	.1	6.22	8.53	320	7	7	126
7/9/2009	7/9/2009	no data	no data	no data	no data	no data	5.6	.1	6.01	8.54	328	6	6	144
7/15/2009	7/15/2009	no data	no data	no data	no data	no data	4.5	.1	5.48	8.59	312	4	4	132
7/23/2009	7/23/2009	no data	no data	no data	no data	no data	5.9	0.6	6.3	8.59	318	6	6	121
7/31/2009	7/31/2009	no data	no data	no data	no data	no data	8.3	<1	5.62	8.86	314	5	5	119
8/6/2009	8/6/2009	no data	no data	no data	no data	no data	7.2	<1	6.30	8.83	316	7	7	146
8/13/2009	8/13/2009	no data	no data	no data	no data	no data	4.7	.10	5.56	8.71	311	8	8	150
8/20/2009	8/20/2009	no data	no data	no data	no data	no data	4.8	.9	6.10	8.68	317	4	4	121
8/27/2009	8/27/2009	no data	no data	no data	no data	no data	5.8	<1	6.75	8.01	300	3	3	141
9/3/2009	9/3/2009	no data	no data	no data	no data	no data	3.6	<1	6.71	7.22	299	4	4	140
9/10/2009	9/10/2009	no data	no data	no data	no data	no data	20.4	<1	7.08	7.32	307	32	32	151
9/11/2009	9/11/2009	no data	no data	no data	no data	no data	32.0	0.5	5.44	8.17	278	38	48	147
9/13/2009	9/13/2009	no data	no data	no data	no data	no data	96	.69	8.06	8.26	305	248	259	168
9/18/2009	9/18/2009	no data	no data	no data	no data	no data	10.8	0.4	6.76	8.33	306	5	5	116
9/24/2009	9/24/2009	no data	no data	no data	no data	no data	7.7	<1.0	8.24	8.16	312	72	72	150
10/1/2009	10/1/2009	no data	no data	no data	no data	no data	4.6	1.1	9.27	8.04	307.0	4.0	4.0	126.0
10/4/2009	10/4/2009	no data	no data	no data	no data	no data	8.6	.62	9.14	8.30	299	10	10	127
10/8/2009	10/8/2009	no data	no data	no data	no data	no data	7.7	<0.1	9.71	8.12	302	10	10	162
10/15/2009	10/15/2009	no data	no data	no data	no data	no data	2.8	<0.1	6.55	7.92	301	1	1	127
10/22/2009	10/22/2009	no data	no data	no data	no data	no data	4.1	.6	5.84	7.64	311	7	7	153
10/28/2009	10/28/2009	no data	no data	no data	no data	no data	5.9	0.1	8.65	8.35	315	2	2	96
11/5/2009	11/5/2009	no data	no data	no data	no data	no data	3.1	.12	9.86	7.96	312	15	15	143
11/12/2009	11/12/2009	no data	no data	no data	no data	no data	3.2	.12	6.22	7.92	314	3	3	150
11/13/2009	11/13/2009	no data	no data	no data	no data	no data	6.9	<0.1	6.01	8.20	314	6	6	124
11/18/2009	11/18/2009	no data	no data	no data	no data	no data	4.3	0.1	8.04	8.03	304	3	3	102
11/19/2009	11/19/2009	no data	no data	no data	no data	no data	4.7	.2	No Data	8.21	316	24	24	148
11/26/2009	11/26/2009	no data	no data	no data	no data	no data	5.9	.10	7.77	8.01	317	2	2	149
11/29/2009	11/29/2009	no data	no data	no data	no data	no data	6.2	.25	3.60	8.25	315	7	7	145
12/3/2009	12/3/2009	no data	no data	no data	no data	no data	2.5	<0.1	1.47	7.17	318	2	2	154
12/8/2009	12/8/2009	no data	no data	no data	no data	no data	3.4	-	9.12	8.18	319	6	6	164
12/10/2009	12/10/2009	no data	no data	no data	no data	no data	8.2	0.11	-	7.43	322	10	10	192
12/17/2009	12/17/2009	no data	no data	no data	no data	no data	2.9	<0.1	9.76	6.69	329	5	5	158

Name: ADOT - Flags	staff District		A. Vis	sual Monito	oring:		B. Analytical Monitoring							
Address: 1801 South Flagstaff, AZ Flagsta Phone Number 928- Chuck Howe	n Milton Road Iff, Arizona 86001 779-7591	Sheen	Color	Foam	Solids	Odor	Turbidity	Stream Flow	DO	рН	Conducti vity	SSC	TSS	TDS
12/24/2009	12/24/2009	no data	no data	no data	no data	no data	3.9	0.94	10.22	7.8	326	11	11	124
12/31/2009	12/31/2009	no data	no data	no data	no data	no data	2.8	0.81	8.91	7.28	287	5	5	168
1/7/2010	1/7/2010	no data	no data	no data	no data	no data	2.5	0.9	8.56	7.73	322	8	8	137
1/14/2010	1/14/2010	no data	no data	no data	no data	no data	4.9	1.2	10.27	8.34	317	7	7	182
1/20/2010	1/20/2010	no data	no data	no data	no data	no data	20.2	0.8	11.12	8.24	263	28	28	149
1/21/2010	1/21/2010	no data	no data	no data	no data	no data	202	high	no data	7.88	198.9	415	416	116
1/22/2010	1/22/2010	no data	no data	no data	no data	no data	31.4	no data	no data	7.56	156.3	79	79	124
1/23/2010	1/23/2010	no data	no data	no data	no data	no data	14.1	no data	no data	8.22	204	5	5	136
1/24/2010	1/24/2010	no data	no data	no data	no data	no data	9.7	no data	no data	8.14	224	4	4	145
1/28/2010	1/28/2010	no data	no data	no data	no data	no data	9.7	<0.1	6.59	6.06	206	4	4	134
2/4/2010	2/4/2010	no data	no data	no data	no data	no data	5.4	<0.1	5.57	6.2	202	6	6	135
2/11/2010	2/11/2010	no data	no data	no data	no data	no data	4.4	<0.1	9.31	7.66	252	5	5	154
2/18/2010	2/18/2010	no data	no data	no data	no data	no data	4.7	0.15	9.81	6.81	208	9	9	110
2/22/2010	2/22/2010	no data	no data	no data	no data	no data	33	<0.1	8.03	5.92	208	28	28	140
2/25/2010	2/25/2010	no data	no data	no data	no data	no data	3.5	<0.1	5.36	6.47	235	10	10	149
3/4/2010	3/4/2010	no data	no data	no data	no data	no data	5.4	<0.1	6.66	5.06	164	7	7	76
3/7/2010	3/7/2010	no data	no data	no data	no data	no data	32.8	0.41	7.17	6.37	104.1	80	80	119
3/11/2010	3/11/2010	no data	no data	no data	no data	no data	3.1	0.6	6.37	6.68	225	5	5	22
3/19/2010	3/19/2010	no data	no data	no data	no data	no data	12.8	0.35	6.69	6.6	110.3	10	10	97
3/25/2010	3/25/2010	no data	no data	no data	no data	no data	6.4	0.25	2.65	5.4	114.1	2	2	77
4/1/2010	4/1/2010	no data	no data	no data	no data	no data	6.8	0.75	10.27	7.09	95.3	9	9	28
4/8/2010	4/8/2010	no data	no data	no data	no data	no data	4	0.8	5.11	6.67	142.6	6	6	78
4/15/2010	4/15/2010	no data	no data	no data	no data	no data	3	0.45	8.63	6.28	156	3	3	83
4/19/2010	4/19/2010	no data	no data	no data	no data	no data	5.6	0.3	4.95	8.08	203	9	9	157
4/29/2010	4/29/2010	no data	no data	no data	no data	no data	1.8	<0.1	4.85	7.07	286	2	2	143
5/6/2010	5/6/2010	no data	no data	no data	no data	no data	2.3	<0.1	3.97	6.92	301	3	3	161
5/13/2010	5/13/2010	no data	no data	no data	no data	no data	1.5	0.5	5.43	8.3	313	6	6	150
5/20/2010	5/20/2010	no data	no data	no data	no data	no data	2.4	<0.1	3.42	7.29	349	8	8	138
5/27/2010	5/27/2010	no data	no data	no data	no data	no data	1.1	0.21	6.19	8.13	313	4	4	127
6/3/2010	6/3/2010	no data	no data	no data	no data	no data	3.3	<0.1	4.51	7.12	314	5	5	174
6/10/2010	6/10/2010	no data	no data	no data	no data	no data	3.9	<0.1	4.13	7.74	309	2	2	150
6/17/2010	6/17/2010	no data	no data	no data	no data	no data	15.3	<0.1	4.3	7.5	304	13	13	197
6/24/2010	6/24/2010	no data	no data	no data	no data	no data	4.3	<0.1	4.19	7.31	307	13	13	160

Meadow Valley

I. AZPDES # <u>AZS0</u> Monitoring Period:	00018-2008 7/01/09 to 6/30/10					Proje	ect/Site N M	ame: SR onitoring	-260 Mea J Point 1	dow Vall	еу				
II. Contact Informat	ion						V. P	ollutants	Monitored	ł					
Name: ADOT - Glob		A. V	isual Monit	oring:			B. Analytical Monitoring								
Address: PO Box 27 ⁻ 85002-2717 Phone Number 928- ² Richard Haddow	17 Globe, Arizona 402-5600	Sheen	Color	Foam	Solids	Odor	Turbidity	Stream Flow	DO	рН	Conducti vity	SSC	Temp.	TSS	TDS
III. Discharge Date	IV. Sample Date														
5/12/2010	5/12/2010	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data	8.20	No Data	27	13.2	No Data	No Data
5/18/2010	5/18/2010	No Data	No Data	No Data	No Data	No Data	9.72	No Data	No Data	7.65	No Data	9	9.5	No Data	No Data
5/25/2010	5/25/2010	No Data	No Data	No Data	No Data	No Data	4.96	No Data	No Data	7.89	No Data	8	11.6	No Data	No Data
6/1/2010	6/1/2010	No Data	No Data	No Data	No Data	No Data	9.5	No Data	No Data	8.04	No Data	13	12.4	No Data	No Data
6/1/2010	6/1/2010	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data	13	No Data	No Data	No Data
6/8/2010	6/8/2010	No Data	No Data	No Data	No Data	No Data	7.21	No Data	No Data	7.80	No Data	8	13.7	No Data	No Data
6/15/2010	6/15/2010	No Data	No Data	No Data	No Data	No Data	4.4	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data
6/22/2010	6/22/2010	No Data	No Data	No Data	No Data	No Data	8.81	No Data	No Data	7.91	No Data	13	20.3	No Data	No Data
6/29/2010	6/29/2010	No Data	No Data	No Data	No Data	No Data	5.45	No Data	No Data	9.2	No Data	15	19.2	No Data	No Data

I. AZPDES # <u>AZSC</u> Monitoring Period:	000018-2008 7/01/09 to 6/30/10					Proje	ect/Site N M	ame: SR onitoring	-260 Mea I Point 2	dow Vall	еу				
II. Contact Informat	tion		V. Pollutants Monitored												
Name: ADOT - Glob		A. V	isual Monit	oring:			B. Analytical Monitoring								
Address: PO Box 27 85002-2717 Phone Number 928-4 Richard Haddow	17 Globe, Arizona 402-5600	Sheen	Color	Foam	Solids	Odor	Turbidity	Stream Flow	DO	рН	Conducti vity	SSC	Temp.	TSS	TDS
III. Discharge Date	IV. Sample Date														
5/12/2010	5/12/2010	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data	7.88	No Data	15	9.55	No Data	No Data
5/18/2010	5/18/2010	No Data	No Data	No Data	No Data	No Data	7.55	No Data	No Data	8.20	No Data	8	10.7	No Data	No Data
5/25/2010	5/25/2010	No Data	No Data	No Data	No Data	No Data	5.70	No Data	No Data	8.21	No Data	10	12.1	No Data	No Data
6/1/2010	6/1/2010	No Data	No Data	No Data	No Data	No Data	11.6	No Data	No Data	8.38	No Data	26	14.3	No Data	No Data
6/1/2010	6/1/2010	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data	26	No Data	No Data	No Data
6/8/2010	6/8/2010	No Data	No Data	No Data	No Data	No Data	8.46	No Data	No Data	8.11	No Data	12	15.4	No Data	No Data
6/15/2010	6/15/2010	No Data	No Data	No Data	No Data	No Data	10.3	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data
6/22/2010	6/22/2010	No Data	No Data	No Data	No Data	No Data	12.3	No Data	No Data	8.17	No Data	24	18.8	No Data	No Data
6/29/2010	6/29/2010	No Data	No Data	No Data	No Data	No Data	7.97	No Data	No Data	8.38	No Data	23	18.1	No Data	No Data

I. AZPDES # <u>AZS0</u> Monitoring Period:)00018-2008 7/01/09 to 6/30/10					Projec	ct/Site Na Mo	ime: SR-: mitoring	260 Mead Point 3	low Valle	∍y					
II. Contact Informat	tion						V. Po	ollutants M	Monitored							
Name: ADOT - Glob	e District	A. Visual Monitoring:						B. Analytical Monitoring								
Address: PO Box 2717 Globe, Arizona 85002-2717 Phone Number 928-402-5600 Richard Haddow		Sheen	Color	Foam	Solids	Odor	Turbidity	Stream Flow	DO	pН	Conducti vity	SSC	Temp.	TSS	TDS	
III. Discharge Date	IV. Sample Date															
6/22/2010	6/22/2010	No Data	No Data	No Data	No Data	No Data	7.14	No Data	No Data	7.33	No Data	32	14.7	No Data	No Data	
6/29/2010	6/29/2010	No Data	No Data	No Data	No Data	No Data	0.64	No Data	No Data	7.48	No Data	10	13.6	No Data	No Data	

APPENDIX O SR179 In-Stream Monitoring Locations

- LegendMonitoring Point 1
- Monitoring Point 2
- Monitoring Point 3
- Monitoring Point 4
- O Monitoring Point 5
- Oak Creek
- **____** State Routes 89 & 179

In-stream Monitoring Locations Sedona, Arizona

ARIZONA DEPARTMENT OF TRANSPORTATION AZPDES STORM WATER MONITORING SITE

Engineering and Environmental Consultants, Inc. 7878 North 16th Street, Suite 140, Phoenix, AZ 85020

APPENDIX P Phoenix MS4 Pollutant Loading Estimates

Pollutant Loading Estimate ADOT Phoenix MS4 2009/2010 Reporting Period

Annual Pollutant Loading: Phoenix MS4-Summer (7/21/10)										
				Summer Event						
Pollutant	Annual Runoff	Pollutant Concentration	Area	Load (lbs)						
BOD	0.47025	40	3.7	15.73						
COD	0.47025	350	3.7	137.63						
TSS	0.47025	NA	3.7	NA						
TDS	0.47025	720	3.7	283.12						
Total Nitrogen	0.47025	4.77	3.7	1.88						
TKN	0.47025	12	3.7	4.72						
Total Phosphorous	0.47025	1.1	3.7	0.43						
Barium	0.47025	0.14	3.7	0.06						
Copper	0.47025	0.073	3.7	0.029						
Lead	0.47025	0.006	3.7	0.002						
Zinc	0.47025	0.14	3.7	0.06						
Nitrate (mg/L)	0.47025	4	3.7	1.57						
Nitrite (mg/L)	0.47025	0.77	3.7	0.30						
Antimony (mg/L)	0.47025	0.0037	3.7	0.0015						
Arsenic (mg/L)	0.47025	0.0064	3.7	0.0025						
Total Petroleum Hydrocarbons (TPH) (mg/L)	0.47025	2.7	3.7	1.06						

Summer Event Runoff	0.47025
Summer Event Rainfall	0.55
Percent of Rainfall Runoff	0.9
Percent of Site Impervious	100%
Runoff Factor	0.95

NA: Not Analyzed

** Pollutant concentration below detection limit

Pollutant Loading Estimate ADOT Phoenix MS4 2009/2010 Reporting Period

Annual Pollutant Loading: Phoenix MS4-Winter (3/1/10)												
				Winter Event Load								
Pollutant	Annual Runoff	Pollutant Concentration	Area	(lbs)								
BOD	0.19665	5	3.7	0.82	**							
COD	0.19665	70	3.7	11.51								
TSS	0.19665	76	3.7	12.50								
TDS	0.19665	97	3.7	15.95								
Total Nitrogen	0.19665	1.1	3.7	0.18								
TKN	0.19665	1.5	3.7	0.25								
Total Phosphorous	0.19665	0.25	3.7	0.04								
Barium	0.19665	0.074	3.7	0.01								
Lead	0.19665	0.0064	3.7	0.0011								
Zinc	0.19665	4.7	3.7	0.77								
Nitrate (mg/L)	0.19665	1.1	3.7	0.18								
Winter Event Rainfall	0.23											
Percent of Rainfall Runoff	0.9											
Percent of Site Impervious	100%]										
Runoff Factor	0.95]										

NA: Not Analyzed

** Pollutant concentration below detection limit
Pollutant Loading Estimate ADOT Phoenix MS4 2009/2010 Reporting Period

Annual Pollutant Loading: Phoenix MS4- Mean				
Pollutant	Annual Runoff	Pollutant Concentration	Area	Annual Load (lbs)
BOD	12.02985	22.5	3.7	226.34
COD	12.02985	420	3.7	4,224.93
TSS	12.02985	38	3.7	382.26
TDS	12.02985	408.5	3.7	4,109.25
Total Nitrogen	12.02985	2.935	3.7	29.52
TKN	12.02985	6.75	3.7	67.90
Total Phosphorous	12.02985	0.675	3.7	6.79
Barium	12.02985	0.107	3.7	1.08
Copper	12.02985	0.137	3.7	1.38
Lead	12.02985	0.0062	3.7	0.0624
Zinc	12.02985	2.42	3.7	24.34
Nitrate (mg/L)	12.02985	2.55	3.7	25.65
Nitrite (mg/L)	12.02985	0.385	3.7	3.87
Antimony (mg/L)	12.02985	0.0016	3.7	0.02
Arsenic (mg/L)	12.02985	0.0032	3.7	0.03
Total Petroleum Hydrocarbons (TPH) (mg/L)	12.02985	1.35	3.7	13.58
]		
Annual Runoff	12.02985			

Annual Runoff	12.02985
Annual Rainfall	14.07
Percent of Rainfall Runoff	0.9
Percent of Site Impervious	100%
Runoff Factor	0.95

NA: Not Analyzed

Miscellaneous Pollutant Loading Estimate ADOT Phoenix MS4 2009/2010 Reporting Period

Annual Miscellaneous Pollutant Loading: Phoenix MS4-Summer (7/21/10)				
				Summer Event
Pollutant	Annual Runoff	Pollutant Concentration	Area	Load (lbs)
Sulfates	0.47025	69	3.7	27.13
Phosphate, Ortho	0.47025	46	3.7	18.09
Total Amonia	0.47025	2.6	3.7	NA
Sodium (mg/L)	0.47025	85	3.7	33.42
Calcium (mg/L)	0.47025	64	3.7	25.17
Chloride (mg/L)	0.47025	130	3.7	51.12
MBAS	0.47025	1.1	3.7	0.43

Summer Event Runoff	0.47025
Summer Event Rainfall	0.55
Percent of Rainfall Runoff	0.9
Percent of Site Impervious	100%
Runoff Factor	0.95

Miscellaneous Pollutant Loading Estimate ADOT Phoenix MS4 2009/2010 Reporting Period

Annual Miscellaneous Pollutant Loading: Phoenix MS4-Winter (3/1/10)				
				Winter Event Load
Pollutant	Annual Runoff	Pollutant Concentration	Area	(lbs)
Sulfates	0.23	7.6	3.7	1.46
Phosphate, Ortho	0.23	0.48	3.7	0.09
Total Amonia	0.23	0.48	3.7	NA
Sodium (mg/L)	0.23	1.3	3.7	0.25
Calcium (mg/L)	0.23	150	3.7	28.85
Chloride (mg/L)	0.23	6.9	3.7	1.33
Winter Event Rainfall	0			
Percent of Rainfall Runoff	0.9			
Percent of Site Impervious	100%]		
Runoff Factor	0.95			

Miscellaneous Pollutant Loading Estimate ADOT Phoenix MS4 2009/2010 Reporting Period

Annual Miscellaneous Pollutant Loading: Phoenix MS4- Mean				
Pollutant	Annual Runoff	Pollutant Concentration	Area	Annual Load (lbs)
Sulfates	12.02985	38.3	3.7	385.27
Phosphate, Ortho	12.02985	23.24	3.7	233.78
Total Amonia	12.02985	1.54	3.7	15.49
Sodium (mg/L)	12.02985	43.15	3.7	434.06
Calcium (mg/L)	12.02985	107	3.7	1,076.35
Chloride (mg/L)	12.02985	68045	3.7	684,489.19
MBAS	12.02985	0.55	3.7	5.53
Annual Runoff	12.02985			
Annual Rainfall	14.07			
Percent of Rainfall Runoff	0.9			
Percent of Site Impervious	100%			
Runoff Factor	0.95			

APPENDIX Q Tucson MS4 Pollutant Loading Estimates

Pollutant Loading Estimate ADOT Tucson MS4 2009/2010 Reporting Period

Annual Pollutant Loading: Tucson MS4- Summer (6/30/09)				
				Summer Event
Pollutant	Annual Runoff	Pollutant Concentration	Area	Load (lbs)
BOD	0.342	44	4.8	16.32
COD	0.342	640	4.8	237.44
TSS	0.342	160	4.8	59.36
TDS	0.342	680	4.8	252.28
Total Nitrogen	0.342	0.31	4.8	0.12
TKN	0.342	14	4.8	5.19
Total Phosphorous	0.342	0.36	4.8	0.13
Barium	0.342	0.2	4.8	0.07
Copper	0.342	0.033	4.8	0.01
Zinc	0.342	0.18	4.8	0.07
Nitrate (mg/L)	0.342	0.21	4.8	0.08
Antimony (mg/L)	0.342	0.2	4.8	0.07
Arsenic (mg/L)	0.342	0.003	4.8	0.00
Total Petroleum Hydrocarbons (TPH) (mg/L)	0.342	24	4.8	8.90
Summer Event Runoff	0.342			
Summer Event Rainfall	0.4			
Percent of Rainfall Runoff	0.9			
Percent of Site Impervious	100%			
Runoff Factor	0.95]		
		-		

NA: Not Analyzed

Pollutant Loading Estimate ADOT Tucson MS4 2009/2010 Reporting Period

Annual Pollutant Loading: Tucson MS4- Winter (4/23/10)				
				Winter Event Load
Pollutant	Annual Runoff	Pollutant Concentration	Area	(lbs)
BOD	0.11115	90	4.8	10.85
COD	0.11115	490	4.8	59.08
TSS	0.11115	130	4.8	15.67
TDS	0.11115	910	4.8	109.72
Total Nitrogen	0.11115	20	4.8	2.41
TKN	0.11115	7.8	4.8	0.94
Total Phosphorous	0.11115	0.58	4.8	0.07
Barium	0.11115	0.2	4.8	0.02
Copper	0.11115	0.13	4.8	0.02
Zinc	0.11115	0.41	4.8	0.05
Nitrate (mg/L)	0.11115	9.9	4.8	1.2
Nitrite (mg/L)	0.11115	1.9	4.8	0.2
Total Petroleum Hydrocarbons (TPH) (mg/L)	0.11115	24	4.8	2.89
Winter Event Runoff	0.11115			
Winter Event Rainfall	0.13	1		
Percent of Rainfall Runoff	0.9	1		
Percent of Site Impervious	100%			
Runoff Factor	0.95	1		

NA: Not Analyzed

Pollutant Loading Estimate ADOT Tucson MS4 2009/2010 Reporting Period

Annual Pollutant Loading: Tucson MS4- Mean				
Pollutant	Annual Runoff	Pollutant Concentration	Area	Annual Load (lbs)
BOD	9.1143	67	4.8	662.44
COD	9.1143	565	4.8	5,586.26
TSS	9.1143	145	4.8	1,433.64
TDS	9.1143	795	4.8	7,860.32
Total Nitrogen	9.1143	10.155	4.8	100.40
TKN	9.1143	10.9	4.8	107.77
Total Phosphorous	9.1143	0.47	4.8	4.65
Barium	9.1143	0.2	4.8	1.98
Copper	9.1143	0.082	4.8	0.81075
Zinc	9.1143	0.3	4.8	2.97
Nitrate (mg/L)	9.1143	5.06	4.8	50.03
Nitrite (mg/L)	9.1143	0.95	4.8	9.39
Antimony (mg/L)	9.1143	0.1	4.8	0.98872
Arsenic (mg/L)	9.1143	0.0015	4.8	0.01483
Total Petroleum Hydrocarbons (TPH) (mg/L)	9.1143	24	4.8	237.29
				•
Annual Runoff	9.1143			
Annual Rainfall	10.66			
Percent of Rainfall Runoff	0.9			
Percent of Site Impervious	100%			

0.95

Runoff Factor NA: Not Analyzed

Miscellaneous Pollutant Loading Estimate ADOT Tucson MS4 2009/2010 Reporting Period

Annual Miscellaneous Pollutant Loading: Tucson MS4- Summer (6/30/09)				
Pollutant	Annual Runoff	Pollutant Concentration	Area	Summer Event Load (Ibs)
Sulfates	0.342	68	4.8	25.23
Total Amonia	0.342	6.7	4.8	2.49
Sodium (mg/L)	0.342	18	4.8	6.68
Calcium (mg/L)	0.342	100	4.8	37.10
Chloride (mg/L)	0.342	19	4.8	7.05
Selenium (mg/L)	0.342	0.02	4.8	0.01
MBAS	0.342	11	4.8	4.08
Summer Event Runoff	0.342			
Summer Event Rainfall	0.4			
Percent of Rainfall Runoff	0.9			
Percent of Site Impervious	100%			
Runoff Factor	0.95			

Miscellaneous Pollutant Loading Estimate ADOT Tucson MS4 2009/2010 Reporting Period

Annual Miscellaneous Pollutant Loading: Tucson MS4- Winter (4/23/10)				
				Winter Event Load
Pollutant	Annual Runoff	Pollutant Concentration	Area	(lbs)
Phosphate, Ortho	0.11115	310	4.8	37.38
Sodium (mg/L)	0.11115	18	4.8	2.17
Calcium (mg/L)	0.11115	150	4.8	18.09
Chloride (mg/L)	0.11115	14	4.8	1.69
Oil & Grease Hexane	0.11115	9.2	4.8	1.11
Summer Event Runoff	0.11115			
Summer Event Rainfall	0.13			
Percent of Rainfall Runoff	0.9			
Percent of Site Impervious	100%]		
Runoff Factor	0.95]		

Miscellaneous Pollutant Loading Estimate ADOT Tucson MS4 2009/2010 Reporting Period

Annual Miscellaneous Pollutant Loading: Tucson MS4- Mean					
Pollutant	Annual Runoff	Pollutant Concentration	Area	Annual Load (lbs)	
Sulfates	9.1143	189	4.8	1,868.68	
Total Amonia	9.1143	3.35	4.8	33.12	
Sodium (mg/L)	9.1143	18	4.8	177.97	
Calcium (mg/L)	9.1143	125	4.8	1,235.90	
Chloride (mg/L)	9.1143	16.5	4.8	163.14	
Selenium (mg/L)	9.1143	0.01	4.8	0.10	
MBAS	9.1143	5.5	4.8	54.38	
Phosphate, Ortho	9.1143	155	4.8	1,532.51	
Oil & Grease Hexane	9.1143	4.6	4.8	45.48109	
Annual Runoff	9 1143]			

Annual Runoff	9.1143
Annual Rainfall	10.66
Percent of Rainfall Runoff	0.9
Percent of Site Impervious	100%
Runoff Factor	0.95