Appendix D FLOOD FREQUENCY EXAMPLES

Example No. 10-1 Flood Frequency Analysis

Station Name - Agua Fria River near Mayer, Arizona

Station Number - 09512500

Drainage Area - 588 square miles

Period of Record - 1940 through 1989

Flood Data

A continuous, 50-year systematic record is available; the entire record is used in the analysis. All annual floods are considered to be caused by rainfall. There are no historic data. There are no zero flow years. The high and low floods of record are 31,100 cfs (1980) and 740 cfs (1974), respectively. The record is considered stationary.

Flood Frequency Analysis

The high outlier limit is calculated at 47,000 cfs, and no high outliers are identified. The low outlier limit is calculated at 652 cfs, and no low outliers are identified. No extraordinary floods are identified.

The length of the systematic record is for the period 1940 through 1989 ($N_t = 50$). There are no zero flow years or low outliers (Z = 0), and the effective length of the systematic record is 50-years ($N_s = N_t - Z = 50 - 0 = 50$). There is no special treatment in calculating the plotting positions.

The annual flood peak discharges are plotted on the three probability papers at their respective plotting positions. The extreme value (EV) graph shows a concave up form to the data points, and a linear trend to data with P_e less than about 0.17. The log-extreme value (LEV) graph shows a concave down form to the data points, and a linear trend to data with P_e less than about 0.31. The lognormal (LN) graph shows a good linear trend to the data points for all but the smallest flood peak discharges. The LN is selected as the best representation of the probability distribution of floods with return periods that are equal to or longer than 2-years.

Confidence limits are set about the LN best fit line. The 43 largest floods ($N_c = 43$) are used to establish the best fit line. The estimated 100-yr flood peak discharge is 37,000 cfs with 90 percent upper and lower confidence limits of 54,900 cfs and 25,000 cfs respectively.

Discussion

This example illustrates a flood frequency analysis that does not require any special treatment of the data. The LN graph provides the best straight line fit to the data. The results represent an example of the best graph to select. The range for the confidence limits is relatively tight because the 43 largest floods can be used to establish the best fit line.

542

GILA RIVER BASIN

09512500 AGUA FRIA RIVER NEAR MAYER, AZ

LOCATION.--Lat 34°18′55", long 112°03′48", in NW%SE% sec.20, T.11 N., R.3 E., Yavapai County, Hydrologic Unit 15070102, on left bank at Sycamore damsite, 700 ft downstream from Big Rug Creek and 12 mi southeast of Mayer.

DRAINAGE AREA.--585 mi2.

REMARKS.--Diversions above station for mining and irrigation of about 600 acres. Perry Canal, which previously headed 300 ft above the gage, was washed out on July 11, 1977, and was not rebuilt.

WATER		ANNUAL PEAK DISCHARGE	MATER		ANNUAL PEAK DISCHARGE
YEAR	DATE	(FT ⁸ /S)	YEAR	DATE	(FT ³ /S)
1940	06-26-40	5,920	1965	04-04-65	7,470
1941	03-01-41	13,000	1966	12-22-65	12,100
1942	08-06-42	6,280	1967	08-19-67	6,960
1943	09-25-43	3,500	1968	12-19-67	3,850
1944	09-16-44	3,810	. 1969	08-07-69	2,490
1945	07-27-45	2,620	1970	09-05-70.	19,800
1946	07-22-46	4,930	1971	08-25-71	7,280
1947	08-16-47	1,610	1972	08-12-72	6,800
1948	08-04-48	6,830	1973	10-07-72	10,700
1949	01-13-49	2,460	1974	07-20-74	740
1950	07-17-50	2,170	1975	07-27-75	2,190
1951	08-28-51	8,180	1976	02-09-76	9,700
1952	01-18-52	7,500	1977	08-23-77	5,480
1953	07-08-53	5,510	1978	03-01-78	9,900
1954	09-03-54	4,570	1979	12-18-78	18,300
1955	08-03-55	12,800	1980	02-19-80	33,100
1956	07-25-56	6,880	1981	09-23-81	2,850
1957	08-13-57	2,710	1982	09-10-82	3,040
1958	06-21-58	4,620	1983	09-23-83	9,940
1959	08-04-59	9,700	1984	08-14-84	3,620
1960	08-08-60	4,820	1985	12-27-84	2,880
1961	07-22-61	10,200	1986	11-26-85	3,970
1962	09-13-62	2,470	1987	10-11-86	6,070
1963	08-19-63	12,800	1988	08-29-88	25,500
1964	07-24-64	9,000	1989	08-18-89	1,280

ANNUAL PEAK DISCHARGE

BASIN CHARACTERISTICS

MAIN CHANNEL SLOPE (FT/MI)	STREAM LENGTH (MI)	MEAN BASIN ELEVA- TION (FT)	FORESTED AREA (PERCENT)	SOIL INDEX	MEAN ANNUAL PRECIPI- TATION (IN)	<u>RAINFALL_INTE</u> 2-YEAR (IN)	<u>SO-YEAR</u> (IN)
56.9	37.5	5,000	3.4	1.3	16.7	2.1	4.3

MONTH

OCTOBER

NOVEMBER

DECEMBER

JANUARY

FEBRUARY

MARCH

APRIL

MAY

JUNE

JULY

AUGUST

ANNUAL

......

SEPTEMBER

GILA RIVER BASIN

OF

ANNUAL RUNOFF

.....

3.7 3.8

12.6

19.7 17.2

8.0 1.1 0.8 4.5 13.7 6.3

100

.....

COEFFI- PERCENT

CIENT OF

.....

3.2

2.4 2.6 2.2 3.3 1.8 2.7 1.6 1.7 1.0

1.4

1.2

09512500 AGUA FRIA RIVER NEAR MAYER, AZ--Continued

MEAN MONTHLY AND ANNUAL DISCHARGES 1941-89 ------

MAXINUM MININUM MEAN TION VARI-(FT³/S) (FT³/S) (FT³/S) ATION

37

17

22

0.14 0.10

0.08

0.07

0.02 0.01

0.00 0.03

0.01

0.15

0.31

0.20

1.5

223

146 453 288

244 187

122

STAN-DARD

DEVIA-

52

36

26

	1	D I SCHARG	E, IN FT	³ /S, FOR	INDICATE	D
PERIOD		RECURREN	CE INTER	VAL, IN Y	EARS, AN	D
(CON-	N	ON-EXCEE	DANCE PR	OBABILITY	, IN PER	CENT
SECU-						
TIVE	2	5	10	20	50	100†
DAYS)	50%	20%	10%	5%	2%	1%
			•••••			•••••
1	0.00	0.00	0.00	0.00	0.00	0.00
3	0.00	0.00	0.00	0.00	0.00	0.00
7	0.00	0.00	0.00	0.00	0.00	0.00
14	0.00	0.00	0.00	0.00	0.00	0.00
30	0.00	0.00	0.00	0.00	0.00	0.00
60	0.57	0.19	0.11	0.06	0.03	0.02
90	0.90	0.29	0.16	0.09	0.05	0.03
120	1.9	0.66	0.34	0.19	0.09	0.05
183	4.4	1.6	0.85	0.48	0.24	0.15

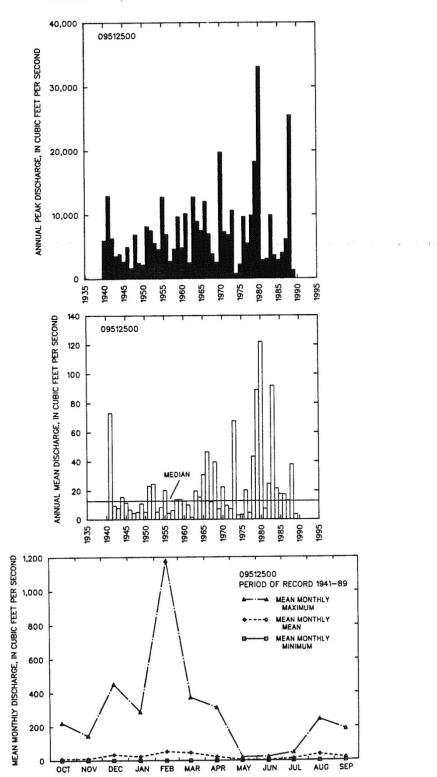
MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1941-89

MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1941-89

MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1940-89 DISCHARGE, IN FT ³ /S, FOR INDICATED RECURRENCE INTERVAL	PERIOD (CON- SECU-		RECURRE	NCE INTER	T ^S /S, FO RVAL, IN ABILITY,	YEARS,	AND
IN YEARS, AND EXCEEDANCE PROBABILITY, IN PERCENT	TIVE	2	5	10	25	50	100†
	DAYS)	50%	20%	10%	4%	2%	1%
50% 20% 10% 4% 2% 1% 5,920 10,600 14,500 20,500 25,800 31,700	1 3 7 15	793 388 216 130	2,000 998 564 333	3,290 1,680 946 549	5,670 2,970 1,660 943	8,110 4,340 2,390 1,340	11,200 6,150 3,350 1,850
WEIGHTED SKEW (LOGS)= 0.16	30	83	211	343	574	799	1,070
MEAN (LOGS)= 3.78	60	53	134	216	356	489	649
STANDARD DEV. (LOGS)= 0.30	90	38	95	155	258	359	483

DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1941-89

1% 5% 10% 15% 20% 30% 40% 50% 60% 70% 80% 90% 95% 98% 99% 99.5% 393 70 20 10 6.9 4.2 2.8 1.9 1.3 0.81 0.51 0.21 0.14 0.10 0.00 0.00				DISCHA	RGE, IN	FT ³ /S,	WHICH	WAS EQU	ALED OR	EXCEED	ed for	INDICAT	ED PER	ENT OF	TIME		
393 70 20 10 6.9 4.2 2.8 1.9 1.3 0.81 0.51 0.21 0.14 0.10 0.00 0.00	1%	5%															99.9%
	393	70	20	10	6.9	4.2	2.8	1.9	1.3	0.81	0.51	0.21	0.14	0.10	0.00	0.00	0.00


+ Reliability of values in column is uncertain, and potential errors are large.

January 2014

543

544

GILA RIVER BASIN 09512500 AGUA FRIA RIVER NEAR MAYER, AZ--Continued

Project No.	TRACS No.	
Project Name	Date	28 JUL 42
Location/Station AGUA	FRIA RIVER NEAL	Mayer AZ
Designer DTP	Checker	

FLOOD FREQUENCY ANALYSIS DATA COMPILATION FORM

Page 1 of 2

Gage Station Name	AGUA	FREA	RIVER	Nept	May	ier, Az	
Gage Station No.	0951250	00		Drainag	je Area	588	sq. mi.
Period of Systematic	Record9	40-198	29				

WATE YEA (1)	R	ANNUAL PEAK DISCHARGE (cfs) (2)	ОАТЕ (3)	FLOOD a TYPE (4)	COMMENTS (5)
190	40	5920	26 JUNE 40	R	
4	41	13000	1 MAR 41	R	
	42	6280	6 Ava 42	R	
LL	13	3500	25 Sept 43	R	
	44	3810	14 SEPT 44	ß	
L	15	2620	27 JULY 45	R	
2	46	4930	22 JULY 46	R	
1	47	1610	16 AUG 47	B	
L	+8	6830	4 AUG 48	R	
	49	2460	13 JAN 49	ß	
:	50	2170	17 July 50	R	
	51	8180	28 AUG 51	R	
	52	7500	18.JAN 52	R	
5	-3	5510	8 July 53	R	
5	4	4570	3SEPT54	R	
5	5	12800	3 AUG 55	R	
5	4	6880	35JULY56	R	
5	7	2710	13 Aug 57	R	
5	8	4620	21 JUN 58	R	
5	9	9700	4 AUG 59	B	
6	0	4820	8 AUG 60	R	
6	1	10200	22 Joly 61	R	
	2	2470	135ept 62	R	
	3	12 800	19 Aug 63	R	
6	4	9000	24501464	R	

a - rainfall (R), snowmelt (S), rain on snow (R/S), uncertain (U), other (X) - note in comments

Project No.	TRACS No.
Project Name	Date 28 JULY 92
	near MAYER, AZ
Designer	Checker

FLOOD FREQUENCY ANALYSIS DATA COMPILATION FORM

Page <u>2</u> of <u>2</u>

WATER YEAR (1)	ANNUAL PEAK DISCHARGE (cfs) (2)	DATE (3)	FLOOD a TYPE (4)	COMMENTS (5)
1965	7470	4 APR 65	R	
66	12100	22 DEC 65	R	
67	6960	19 AUG 67	R	
68	3850	19 DE 667	R	
69	2490	7 AUG 69	R	
70	19800	5 SEPT TO	ß	
- 71	7280	25 AUG 71	B	
72	6800	12 AUG 72	R	
73	10700	7 OCT 12	R	
44	740	20 JULY 74	R	
75	2190	27 JULY 75	Ŕ	
74	9700	9 FEB 76	Ŕ	
77	5480	23 AUG 77	R	
78	9900	1 MAR 78	R	
79	18300	18 DEC 78	R	
80	33100	19 FEB 80	R	
81	2850	23 SEPT 81	R	
82	3040	10 SEPT 82	R	
83	9940	23 SEPT 83	R	
84	3620	14 AUG 84	R	
85	2880	27 DEC 84	R	
84	3970	26 NOV 85	R	
87	6070	11 OCT 86	R	
88		29 AUG-88	R	
89	1380	18 AUG 89	R	
				arith logio
			9.49.50.50.50.50.50.50.50.50.50.50.50.50.50.	Q 1420 3.7483
			999994 Malancan Constanting of the Canadian Constanting	5 6180 0.3334
				A=50
			an earl an tair a gu an	in (U), other (X) - note in comments

a - rainfall (R), snowmelt (S), rain on snow (R/S), uncertain (U), other (X) - note in comments

Project No	TRACS No.
Project Name	Date 20 /4 116 92
Location/Station AGUA FRIA REVER NEA-	MAYER AZ
Designer DrP	Checker

AGUA FRIA RIVER DEAR MAYER, AZ

TEST FOR HIGH and LOW OUTLIERS $\overline{\log Q} = 3.7483$ N=50 $S_{log} = 0.3334$ $K_{N} = 2.768$

HIGH OUTLIER: $log Q_{H} = \overline{log Q} + K_{w} S_{ig}$ = 3.7483 + 2.768(0.3334) = 4.6712 $\frac{42}{2} Q_{H} = 46,898 \text{ cfs}$ There are $N_{0} Q'_{5} > 46,898 \text{ cfs}$ $\therefore N_{0} H_{3GH} O_{UTLIERS}$

$$log Q_{L} = \overline{lag Q} - K_{n} S_{log}$$

= 3.7483 - 2.768 (0.3334) = 2.8254
$$S^{2} \quad Q_{2} = 669 \text{ cfs}$$

There are no Q's < 670 fs
:. NO LOW OUTLIERS

Project No.	TRACS No.
Project Name	Date 20 Aug 92
Location/Station AGUA FRIA REVER DE	<u>a- MAYER Az</u>
Designer <u>DP</u>	
<i>A</i> .	
The annual flood peak discharg	re data set contains:
no zero flow years, and	
no low outliers, and	
no high outliers, and	
no historic data, and	
no extraordinary floods	
Plotting Position Equation:	
$P_e = \frac{m4}{N_s + .2} \qquad \text{for}$	$m = l_1 \cdots l_s N_s$
where length of systematic r	
effective length of syste.	matic record, $N_s = N_{t} = 50$
$\frac{5_{0}}{P_{e}} = \frac{M-0.4}{50+0.2} = 0.0199 (m-1)$	-0.4) ¥ m=1,, 50
@ M=1 Pe=0.0199(1-0.4) = 0.0	$T_r = 84 yrs$

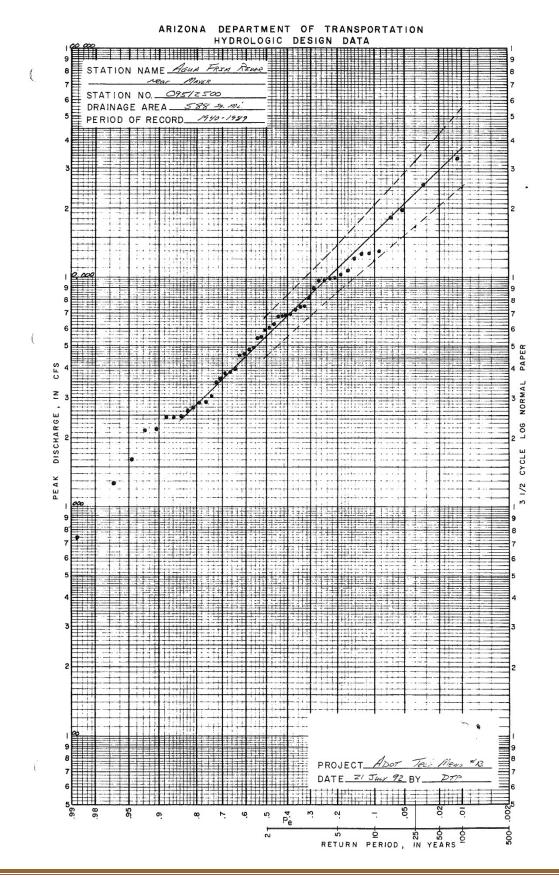
Project Name		Date 28 TULY 92						
Location/Station AGU	A FRIA RIVER	NEGL May	r, AZ.					
Designer <u>DTP</u>		Checker /	/					
FLOOD FREQUENCY ANALYSIS PLOTTING POSITION CALCULATION FORM Page 1 of 2								
Gage Station Name A Gage Station No Period of Systematic Re	<u>GUA FRIA</u> 7512500 ecord 1940-1989	ZIVER NERK Ma Drainaç	yer, <u>AZ</u> je Area <u>588</u>	_sq. mi.				
Check if the data conta	ins any of the following:							
Broken Record	Mixed Pop	ulation	High Outliers	Participation and Participation				
Extraordinary Data	Zero Flow	Year	Low Outliers	C.S. Sayage B. Rodeway				
Document	the plotting position equat	tion or data treatment on a	i separate sheet.					
FLOOD PEAK	RANK	PLOTTING POSITION						
DISCHARGE (cfs) (1)	(2)	P _e (3)	T _r	(4)				
33/00	1	0.012	83.7					
25500	2	0.032	31.3					
19800	3	0.052	19.2					
18300	4	0.072	13.9					
13000	5	0.092	10.8					
12800	4	0.112	8.9					
12800	7	0.131	7.6					
12100	8	0.151	6.6					
10 700	9	0.171	5.8					
10 200	10	0.191	5.2					
9946		6.211	4.7					
9 900	12	0.231	4.3					
9700	13	0.251	4.0					
9700	14	0.271	3.7					
9000	15	0.291	3.4					
8180	16	0.311	3.2	And some party distances of the party of the				
7500	17	0.33/	3.0					
7470	18	0.351	2.8					
7280	19	0.371	2.7					
6960	20	0.390	2.6					

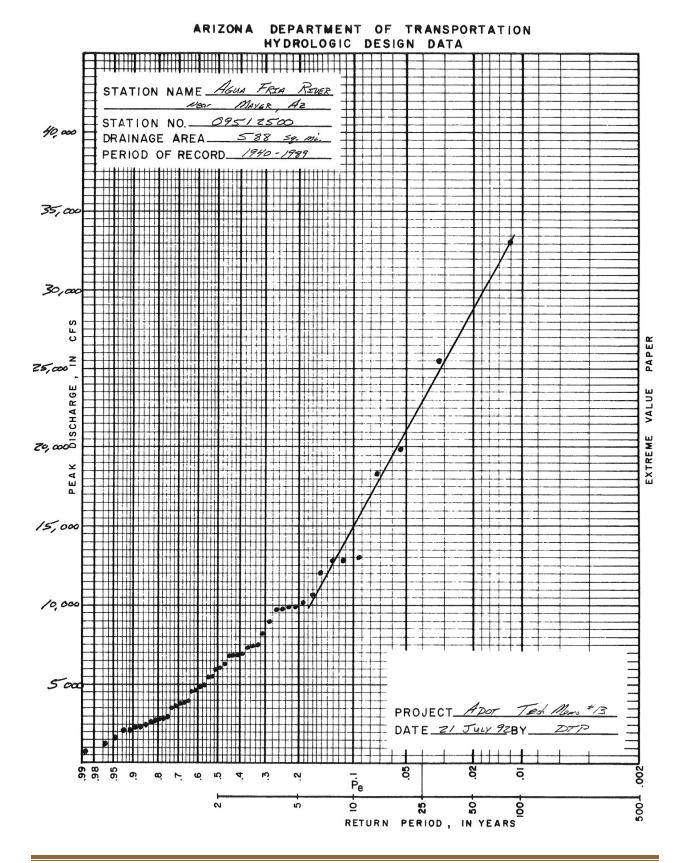
Project No.			TR	ACS No.				
Project Name				Date	28,	JULY	92	
Location/Station AGUA	FRIA	RIVER	nean	MAYER	R AZ			
Designer DTP			Che	ecker				
Non-second second s					The second s	Daths marked and been set of the set	service and the second states in the second	

FLOOD FREQUENCY ANALYSIS PLOTTING POSITION CALCULATION FORM

Page 2 of 3

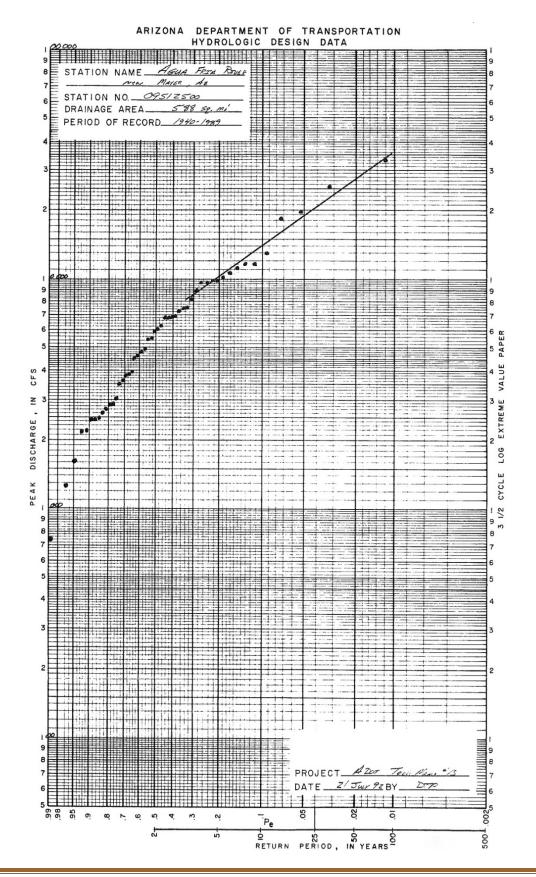
FLOOD PEAK	RANK	PLOTTING POSITION			
DISCHARGE (cfs) (1)	(2)	P _e (3)	T _r (4)		
6880	21	0.410	2.4		
68.30	22	0.430	2, 3		
6800	23	0.450	2.22		
6280	24	6.470	2.13		
6070	25	0.490	2.04		
5920	26	0.510	1.96		
5510	27	0.530	1.87		
5480	28	0.550	1.82		
4930	29	0.570	1.75		
4820	30	0.590	1.69		
4620	31	0.610	1.64		
4570	32	0.629	1.59		
3970	33	0.649	1.54		
3850	34	0.669	1.49		
3810	35	0.689	1.45		
3620	36	0.709	1.41		
3500	37	0.739	1.37		
3040	38	0.749	1.34		
2880	39	0:769	1.30		
2850	40	0.789	1.27		
2710	41	0.809	1.24		
2620	42	0.829	1.21		
2490	43	0.849	1.18		
2470	44	D.869	1.15		
2460	45	0.888	1.13		
2190	46	0.908	1.10		
2170	47	0.928	1.08		
1616	48	0.948	1.05		


Project No.	TRACS No.
Project Name	Date 28 JULY 92
Location/Station AGUA FRIA RIVER	NEAR MAYER, AZ
Designer DTP	Checker


FLOOD FREQUENCY ANALYSIS PLOTTING POSITION CALCULATION FORM

Page <u>3</u> of <u>3</u>

FLOOD PEAK RANK		PLOTTING POSITION				
DISCHARGE (cfs) (1)	(2)	P _e (3)	T _r (4)			
1280	49	0.968	1.03			
740	50	0.988	1.01			
	an a	an a				
		. 4 - 19 - 19 - 19 - 19 - 19 - 19 - 19 - 1	Carlo Car			
	a gy a change a na an a		a an			
		and a subserver and an an an and a subserver a				
		anna ann an Statistich an ann an Statistich an an Statistica an Statistica an Statistica an Statistica an Stati				



Project No Project Name Location/Station			TRACS No Dat	ie <u>28 Jn</u> i	1 92				
Designer			Checker						
FLOOD FREQUENCY ANALYSIS WORK SHEET FOR LOG-NORMAL CONFIDENCE LIMITS									
Gage Station Name <u>Agua Fria Riven vean Mayen</u> Gage Station No. <u>09512500</u>									
Confidence Level	(C.L.) =	<u>90</u> %							
Q = _{2-yr}	Q = 2-yr								
Q = 100-yr	Q = 2-yr <u>5.5.50</u> cfs $\alpha = \frac{100 - C.L.}{100} = $ <u>0.1</u> Q = 100-yr <u>37000</u> cfs $U_{1-\frac{\alpha}{2}} = $ <u>1.645</u>								
					43				
$\mathcal{Y} = \log_{10} (Q_2)$	-yr) = log ₁₀ (z	550)		=	3.7443				
$S_{ln} = \frac{\log_{10} \alpha}{10}$	Q _{100-yr} - log ₁₀ 2.327	$Q_{2-yr} = \frac{\log}{\log 1}$	1 ₁₀ (37000) – log 2.327	₁₀ (550) =	0.3541				
	,,	¥ (a)	O (h)	Lim	lits (c)				
T Years	$U_{1-\frac{1}{T}}$	Υ _Τ (a)	<i>S_T</i> (b)	Upper	Lower				
(1)	(2)	(3)	(4)	(5)	(6)				
2	0.0	3.7443	0.540	6816	4573				
5	0.842	4.0424	0.0628	13,986	8691				
. 10	1.282	4.1982	0.0729	20.803	11,975				
25	1.751	4.3643	0.0859	32,034	16,711				
50	2.052	4.4708	0.0951	42,388	20,623				
100	2.327	4.5682.	0.1040	54,1083	24,953				

(a)
$$Y_T = \overline{Y} + U_{1-\frac{1}{T}} S_{In}$$
 (c) $Q_L = 10^{(Y_T \pm U_{1-\frac{\alpha}{2}} S_T)}$

(b)
$$S_T = \left[\left(\frac{S_{ln}^2}{N_c} \right) \left(1 + .5 U_{1-\frac{1}{T}}^2 \right) \right]^{\frac{1}{2}}$$

....

Example No. 10-2 Flood Frequency Analysis

Station Name - Cave Creek near Cave Creek, Arizona

Station Number - 09512300

Drainage Area - 121 square miles

Period of Record - 1958 through 1979 and 1981 through 1989

Flood Data

A broken, 31-year systematic record is available; the entire record is used in the analysis. All annual floods are considered to be caused by rainfall. There are no historic data. Zero flow years occurred in 1969, 1977, 1981, 1987 and 1989. The high and low floods (other than zero flow years) of record are 12,400 cfs (1968) and 148 cfs (1984), respectively. The record is considered stationary.

Flood Frequency Analysis

The high outlier limit is calculated at 34,400 cfs, and no high outliers are identified. The low outlier limit is calculated at 83 cfs, and no low outliers are identified. No extraordinary floods are identified.

The data set contains zero flow years. The length of the broken, systematic record is for the period 1958 through 1979, and 1981 through 1989 ($N_t = 31$). There are five zero flow years (Z = 5). The effective length of the systematic record is 26-years ($N_s = N_t - Z = 31 - 5 = 26$). These parameters are used in calculating the plotting positions.

The annual flood peak discharges are plotted on the three probability papers at their respective plotting positions. The log-normal (LN) graph shows a concave down trend to the data and a poor linear trend to the data with P_e smaller than about 0.34. The log-extreme value (LEV) graph is also concave down and a linear trend to data with P_e smaller than about 0.18. The extreme value (EV) graph shows a good linear trend for data with P_e less than about 0.34. The EV graph is accepted as the best representation of the probability distribution of floods with return periods that are longer than about 3-years.

Confidence limits are set about the EV best fit line. The 11 largest floods ($N_c = 11$) are used to establish the best fit line. The estimated 100-yr flood peak discharge is 14,600 cfs with 90 percent upper and lower confidence limits of 22,600 cfs and 6,640 cfs, respectively.

Discussion

This example illustrates a flood frequency analysis for a data set that containing five zero flow years. The EV graph provides the best fit straight line to the large floods (P_e less than 0.34). This is a fairly clear choice of the best graph. The EV graph shows a linear trend for the 11 largest floods. The range for the confidence limits is broad because only the 11 largest floods can be used to establish the best fit line.

J4V

GILA RIVER BASIN

09512300 CAVE CREEK NEAR CAVE CREEK, AZ

LOCATION.--Lat 33°47′00⁴, long 112°00′24⁴, in SW% sec.12, T.5 N., R.3 E., Maricopa County, Hydrologic Unit 15060106, on left bank, 200 ft upstream from Prescott-to-Mesa transmission line, 5 mi southwest of town of Cave Creek, and 5.0 mi upstream from Cave Creek Dam.

DRAINAGE AREA. -- 121 mi².

..................

ANNUAL PEAK DISCHARGE

WATER YEAR	DATE	ANNUAL PEAK DISCHARGE (FT ^S /S)	WATER Year	DATE	ANNUAL PEA DISCHARGE (FT ⁹ /S)
1958	09-12-58	5,680	1974	08-05-74	1,390
1959	08-05-59	3,590	1975	11-02-74	856
1960	10-29-59	8,570	1976	02-09-76	1,260
1961	09-17-61	696	1977	00-00-77	0
1962	12-16-61	280	1978	03-02-78	7,500
1963	08-06-63	1,510	1979	12-18-78	6,900
1964	08-02-64	3,120	1981	00-00-81	0
1965	07-16-65	610	1982	10-02-81	1,200
1966	12-22-65	6,000	1983	03-03-83	1,420
1967	09-06-67	1,800	1984	08-09-84	148
1968	12-19-67	12,400	1985	12-27-84	910
1969	00-00-69	0	1986	07-22-86	1,350
1970	09-05-70	2,700	1987	00-00-87	0
1971	08-04-71	364	1988	08-21-88	170
1972	07-17-72	3,950	1989	00-00-89	0
1973	10-19-72	3,950			

15,000 09512300 SECOND MAGNITUDE AND PROBABILITY OF INSTANTANEOUS PEAK FLOW BASED ON PERIOD OF RECORD 1958-79, 1981-86 12,000 PER DISCHARGE, IN FT³/S, FOR INDICATED RECURRENCE INTERVAL FEET IN YEARS, AND EXCEEDANCE PROBABILITY, IN PERCENT CUBIC 9,000 5 50 100+ 2 10 25 50% 20% 10% 4% 2% 1% ž ************ DISCHARGE, 6,000 1,740 4,320 6,870 11,200 15,200 20,000 WEIGHTED SKEW (LOGS)= -0.12 MEAN (LOGS)= 3.23 STANDARD DEV. (LOGS)= 0.48 PEAK 3,000 ANNUAL t Reliability of values in column is uncertain, and potential errors are large. 0 1985 1980 1975 1965 1970 1955 1960 BASIN CHARACTERISTICS

MAIN		MEAN BASIN			MEAN ANNUAL		NSITY, 24-HOLR
CHANNEL SLOPE (FT/MI)	STREAM LENGTH (MI)	ELEVA- TION (FT)	FORESTED AREA (PERCENT)	SOIL INDEX	PRECIPI- TATION (IN)	2-YEAR (IN)	50-YEAR (IN)
123	18.4	3,470	0.1	1.17	15.7	2.3	4.4

0661

Project No.	TRACS No.
Project Name	Date 28 JULY 92
Location/Station CAVE CREEK NEAR	CAVE CREEK
Designer DrP	Checker

FLOOD FREQUENCY ANALYSIS DATA COMPILATION FORM

Page 1 of 2

 Gage Station Name CAVE CREEK
 DEAR. CAVE CREEK

 Gage Station No.
 69512306

 Drainage Area
 121

 Sq. mi.
 Sq. mi.

 Period of Systematic Record
 1958-1979, 1981-1984, 1988-1989

	WATER YEAR (1)	ANNUAL PEAK DISCHARGE (cfs) (2)	DATE (3)	FLOOD a TYPE (4)	COMMENTS (5)
ĥ	1958	5680	12 SEPT 58	R	
	59	3590	5 ADG 59	R	
	40	8570	29 DET 59	R	
	61	696	17 SEPT 61	R	
	62	280	16 DEC 61	R	
	63	1510	6 AUG 63	R	
	64	3120	2 AUG 1.4	R	
	65	610	16 JULY 65	R	
	66	6000	22 DEC 65	R	
	67	1800	6 SEPT 67	R	
	68	12,400	19 DEC 67	R	
	69	0	-		ZERD ELOW YEAR
	70	2700	5 SEPT 70	R	
	71	364	4 AUG 71	R	
	72	3950	17 JULY 72	R	
	73	3950	19 DET 72	R	
	74	1390	5 AUG 74	R	
	75	856	2 NOV 74	R	
	76	1260	9 FEB 76	R	
	77	0	-		ZERO FLOWYEAR
	78	1500	2 MAR 78	R	
	79	6900	18 DEC 78	R	
	80		-	*****	BROKEN
	81	6	-		ZERO FLOW YEAR
	82	1200	2 DET 81	R	

a -- rainfall (R), snowmelt (S), rain on snow (R/S), uncertain (U), other (X) - note in comments

Project No.			TRACS No.				
Project Name			Date	28	JULY	92	
Location/Station CANE	CREEK	NEAR	CAVE CREEK				
Designer <u>DTP</u>			Checker				

FLOOD FREQUENCY ANALYSIS DATA COMPILATION FORM Page 2_ of 2_							
WATER YEAR (1)	ANNUAL PEAK DISCHARGE (cfs) (2)	DATE (3)	FLOOD _a TYPE (4)	COMME (5)	NTS		
1983	1420	3 MAR 83	R				
84	148	9 AUG 84	R				
8.5	910	27 DEC 84	R				
86	1350	22 JULY 86	R				
87	0	-		ZERD FLOW	YEAR		
88	170	21 AUG 88	R	ana ang mananan ang mang mang mang mang			
89	0	-		ZERA FLOW	YEAR		
			A MARKAN AND A MARKA				
	47.77.4.4.4						
				9091-92-92-92-92-92-92-92-92-92-92-92-92-92-			
			anna an	a a a a a a a a a a a a a a a a a a a	g- gy goo an		
	4869-886 886-99-99-99-99-99-99-99-99-99-99-99-99-99			dala dana menyerin yang dajala kalan kana menyergi yang dala kala aka dala dengan ng upag-upag-upag-			
				Mar na ga na			
					مىسىلىك تەرىپىيە يەرە ^ر ە ئەلىكىلەر يەرەپىيە يەرەپىيە بىرىپىيە بىرىپىيە بىرىسىلەر بىرىپ		
	anna agus 1999 1997 1998 1998 1998 1999 1999 1999						
					ىيى سىنى يەرىپى يەرىپىيە بەر بىر بىر بىلى قىلىكى تەرىپىيە بىر بىرىنى يېرىپىيە بىر بىرىنى يېرىپىيە بىرىپىيە بىرى يېرىپىيە ئىلىكى يېرىپىيە بىرىپىيە بىرىپىيە بىرىپىيە بىرىپىيە بىرىپىيە بىرىپىيە بىرىپىيە بىرىپىيە بىرىپىيە بىرىپ		
	*						
				a Martin de commense y a post d'Alis Partin y comme y a pop della da Aliance en en en a pop a popularita della			
				en e			
	Anno a constant a successive a la constant a successive de la constant a successive de la constant a successive		danse wijeldingen oorgenige die soore				
				n /II) other (Y) note in			

a - rainfall (R), snowmelt (S), rain on snow (R/S), uncertain (U), other (X) - note in comments

Project No.				T	RACS N	o				
Project Name					Da	ate _	20	Aus	92	
Location/Station	CAVE	CREEK	near	Cave	Creek	A	2		,	and the second
Designer DEP				C	inecker _	locostal-filmat				
CHARGE REPORTED AND ADDRESS OF THE REPORT OF T									THE REAL PROPERTY OF	

CAVE CREEK Near CAUE CREEK, AZ TEST of HIGH AND LOW OUTLIERS $\overline{\log Q} = 3.2275$ N=26 $S_{log} = 0.5233$ K_H = 2.502

HIGH OUTLIER: $I_{03}Q_{H} = \overline{I_{03}Q} + K_{N} S_{NS}$ = 3.2275 + 2.502(0.5233) = 4.5368 $\stackrel{\text{de}}{=} Q_{H} = 34,419 \text{ cFs}$ There are No Q's > 34,419 cFs i. No High Outliers

LOW OUTLIER:

$$log Q_{L} = \overline{log Q} - K_{N} S_{log}$$

$$= 3.2275 - 2.502(0.5233) = 1.9182$$

$$\stackrel{2}{2} Q_{L} = 83 cFs$$

$$There are up Q's < 83 cFs$$

$$: No Low Outliers$$

Project No.					TRACS	S No.				
Project Name	India managina di Anglana di Angl					Date	20	AUG	92	and the second se
Location/Station	CAVE	CREEK	near	CAUE	CREEK					
Designer DTP					Check	er				
			1							

B
The annual flood peak discharge data set contains:
V gero flow years, and/or
low outliers, and
no high outliers, and
no historic data, and
no extraordinary floods.
Plotting Position Equation:

$$P_{e} = \left(\frac{N_{e}-Z}{N_{e}}\right) \left(\frac{m-.4}{N_{s}+.2}\right) \quad \text{for } m=1,\cdots,N_{s}$$
where length of systematic record, $N_{e} = \frac{3/.2}{N_{e}}$
number of gero flow years, and/or
number of low outliers, $Z = \frac{5}{.2}$
effective kngth of systematic record, $N_{s}=N_{e}-Z=\frac{26}{.2}$
 $R_{e} = \left(\frac{31-5}{31}\right) \left(\frac{m-a.4}{26+0.2}\right) = 0.0320 (m-0.4) \quad \forall m=1,\cdots,2$
 $R_{e} = 0.0320(1-0.4) = 0.0192$

Project No.	TRACS No.
Project Name	Date 28 JULY 92
Location/Station CAVE CREE	K NEAR CAVE CREEK
Designer <u>OTP</u>	Checker

FLOOD FREQUENCY ANALYSIS PLOTTING POSITION CALCULATION FORM

.

Page <u>1</u> of <u>2</u>

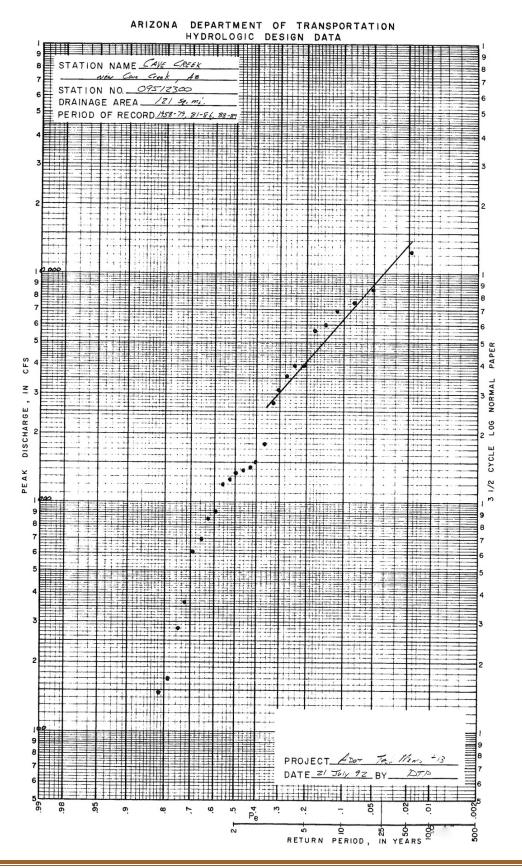
Gage Station Name CAVE	CREEK NEAH	CAVE CREEK	
Gage Station No. 0 951	2300	Drainage Area	121 sq. mi.
Period of Systematic Record	1958-1979	, 1981 - 1986 , 198	88-1989

Check if the data contains any of the following:

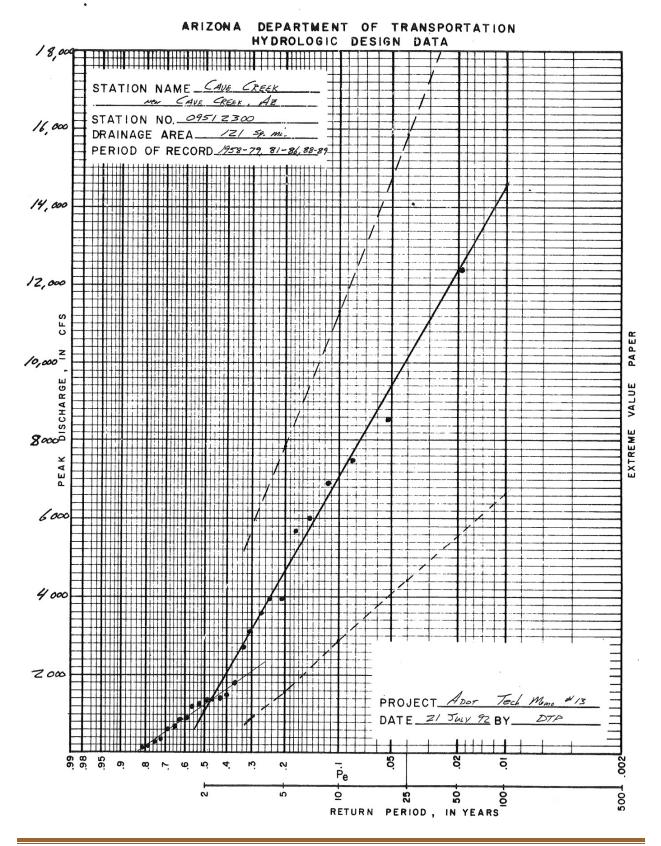
Broken Record Historic or	X	Mixed Population		High Outliers	
Extraordinary Data		Zero Flow Year	<u>×</u>	Low Outliers	

Document the plotting position equation or data treatment on a separate sheet.

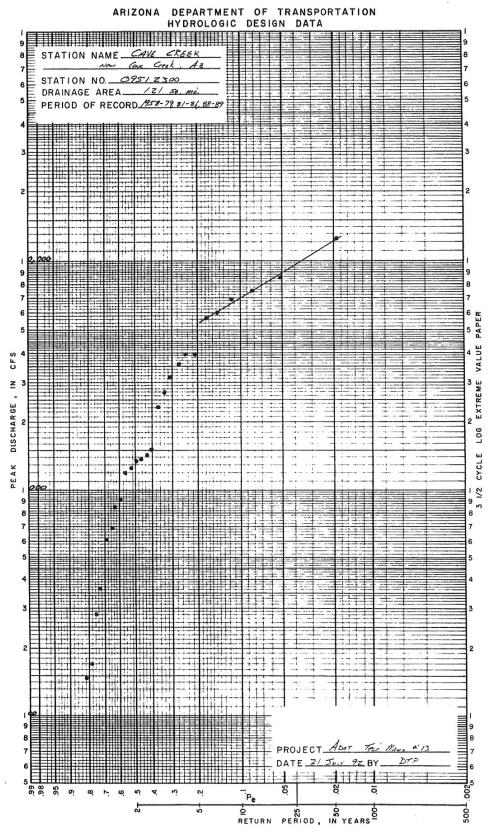
FLOOD PEAK	RANK	PLOTTING	G POSITION
DISCHARGE (cfs) (1)	(2)	P _e (3)	T _r (4)
12400	ļ	0.0192	52.1
8570	2	0.1512	19.5
7500	3	0.0832	12.0
6900	4	0.1152	8.7
6000	5	0.1472	6.8
5680	4	0.1792	5.6
3950	7	0.2112	4.7
3950	8	0.2432	4.1
3590	9	0.2752	3.6
3120	10	0.3072	3.3
2700	11	0.3392	2.9
1800	12	0.37/2	2.7
1516	13	0.4032	2.5
1420	14	0.4352	2.3
1390	15	0.4672	2.1
1350	16	0.4992	2.0
1260	17	0.5312	1.9
1200	18	0.5632	1.8
910	19	05952	1.7
856	20	0.6272	1.6


Project No.				TRACS	No.				
Project Name			•		Date	28	JULY	92	
Location/Station	CAVE	CREEK	NEAL	CAUE	CRE	EEK	/		
Designer	DTP			Checker	-				
Party and a second s			States To Departments	Contract of the second second		College of the second		The second second second second	

FLOOD FREQUENCY ANALYSIS PLOTTING POSITION CALCULATION FORM


Page 2_ of 2_

FLOOD PEAK	RANK	PLOTTIN	G POSITION
DISCHARGE (cfs) (1)	(2)	P _e (3)	T _r (4)
696	21	0.6592	1.5
610	22	0.6912	1.45
364	23	0.7232	1.38
280	24	0.7552	1.32
170	25	0.7872	1.27
148	26	0.8192	1.22
angen para mana mana mana mana mana mana mana m	na da sana di pang mang mang ming ming di da pana ana ana ana pang mga ang mga mga babaha ka ka sa pang mga mga	a na managana na sa	an a
	anna da Manuery of Property and Angele and Andrew and Andrew and Andrew and Andrew and Andrew and Andrew and An		
	······································		
	na na sana na mana na mang mang mang mang mang		



January 2014

Project No.			TRA	CS No Date28		
Project Name Location/Station _	CAUE CO	Arr Barred /	[_ Date28	JULY 9	2
Designer DT		EIL NEAN	CADE Chec			
			EQUENCY AN			
	WORK SHE	EET FOR EXTR	REME VALUE	CONFIDENCE L	IMITS	
Gage Station Na Gage Station No.			VEAR CAVE	(NEEK		
Gage Station No.	07912.50	00		-		
Confidence Level	(<i>C.L.</i>) =	<u>90</u> %	6			
Q = 2-yr	cf	s		$\alpha = \frac{100 - C.L}{100}$: =	
Q = 100-yr	<u>14600</u> cf	S		$U_{1-\frac{1}{2}}$	$\frac{\alpha}{2} = -1$	645
				N	0 =	
$A = \frac{Q_{100-yr}}{4.233}$	$\frac{Q_{2-yr}}{36} = \frac{(140)}{140}$	4.2336	0)		= <u>3</u>	189.8
$B = Q_{2-yr}3$	8665 A = (/1 <i>00</i>) – .3665(:	3188.8)		=	68.7
$\overline{Q} = B + .5772$	2A = (-68.7)	+ .5772 (3/88	·8)		=	1772
$S_{\theta V} = \frac{A}{.7797} =$	= <u>(3/88:87)</u> .7797				=	4090
Т	К	Z (a)	S _r (b)	Q _r (c)	Li	mits (d)
Years (1)	(2)	(3)	(4)	(5)	Upper (6)	Lower (7)
2	1643	.9179	1132	1100	2962	
5	.7195	1.5458	1906	47/5	7850	1580
10	1.3046	2.0878	2575	7108	11 344	1300

2575 7108 2.0438 2.8149 3471 10131 2.5923 3,3684 4154 12375 3.1367 3.9240 4839 14601 $\frac{1}{2}$

(a)
$$Z = (1.0 + 1.1396K + 1.1K^2)$$

 $\frac{Z}{N_c^{\frac{1}{2}}}$

25

50

100

 $S_T = S_{ev}$

(c)
$$Q_T = \overline{Q} + KS_{\theta v}$$

(d)
$$Q_L = Q_T \pm U_{1-\frac{\alpha}{2}} S_T$$

11.344

15.841

19.208

22,561

2872

4421

5542

6641

(b)

Example No. 10-3 Flood Frequency Analysis

Station Name - Hassayampa River near Wickenburg, Arizona

Station Number - 09515500

Drainage Area - 417 square miles

Period of Record - 1938, 1946 through 1982

Flood Data

A broken, 38 -year systematic record is available; the entire record is used in the analysis. All annual floods are considered to be caused by rainfall. There are no zero flow years. The high and low floods of record are 58,000 cfs (1970) and 154 cfs (1975), respectively. The 1925 (25,500 cfs), 1927 (27,000 cfs), and 1937 (22,000 cfs) floods are indicated in the records of the U.S. Geological Survey (USGS) as historic data. The 1951 flood (27,000 cfs) is indicated in the records of the USGS as being the largest since 1927. The 1970 flood (58,000 cfs) is indicated in the records of the USGS as being the largest since 1890. The record is considered stationary.

Flood Frequency Analysis

The high outlier limit is calculated at 130,000 cfs, and no high outliers are identified. The low outlier limit is calculated at 107 cfs, and no low outliers are identified. Extraordinary floods are identified for 1951 (27,000 cfs) and 1970 (58,000 cfs) because these floods, from the systematic record, are known to be larger than any flood since 1927 and 1890, respectively, prior to the start of the systematic record. The 1980 flood (24,000 cfs) is also extraordinary because it is larger than the 1937 historic data (22,000 cfs). The station was discontinued after 1982; however, the USGS records that were used are for a period through 1989. Because of the presence of historic data and extraordinary floods, the effective length of record can be extended, and because of the information that is available, the record can be extended at both ends of the record. The record can be extended backward to 1890 because the USGS records also be extended for the period 1982 to 1989 because estimated floods would be reported by the USGS, or others, for that period if floods had occurred that were as large as or larger than any of the six historic and extraordinary floods (22,000 cfs).

The effective record length, as previously described, is for the period 1890 through 1989 (N = 100). The length of the systematic record is for the period 1938 and 1946 through 1982 (N_t = 38). There are no zero flow years or low outliers (Z = 0), and the effective length of the systematic record is 38 years (N_s = N_t - Z = 38 - 0 = 38). There are three historic floods (h = 3), and there are three extraordinary floods in the systematic record (e = 3). The sum of historic plus extraordinary floods is six (k = h + e = 3 + 3 = 6). There are 41 systematic plus historic floods (N_g = N_s + h = 38 + 3 = 41). The parameters are used in calculating the plotting positions.

The annual flood peak discharges are plotted on the three probability papers at their respective plotting positions. The extreme value (EV) graph does not show a linear trend. The log-extreme value (LEV) graph shows a concave down trend to the data points, and a weak linear trend to

data with P_e less than 0.42. The log-normal (LN) shows a slight break in the data points at about $P_e = 0.45$, and a reasonable linear trend for the data points with P_e less than 0.42. The LN graph is selected as the best representation of the probability distribution of floods with' return periods that are longer than about 3-years.

Confidence limits are set about the LN best fit line. The 20 largest floods ($N_c = 20$) are used to establish the best fit line. The estimated 100-yr flood peak discharge is 42,000 cfs with 90 percent upper and lower confidence limits of 88,900 cfs and 19,800 cfs, respectively.

Discussion

This example illustrates a flood frequency analysis for a data set containing historic data and extraordinary floods. The effective record length was extended beyond the length of the systematic record. The LN graph is selected as the best straight line fit to the 20 largest floods. The results represent an example of the best graph paper to select. The range for the confidence limits is somewhat broad because only the 20 largest floods can be used to establish the best fit line.

571

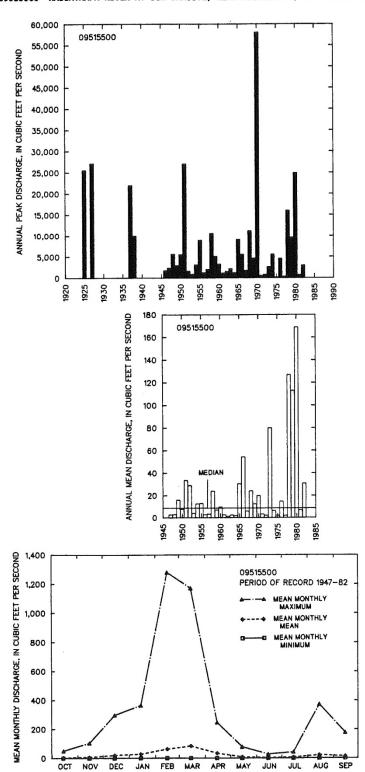
GILA RIVER BASIN

09515500 HASSAYAMPA RIVER AT BOX DAMSITE, NEAR WICKENBURG, AZ

LOCATION.--Lat 34°02′42", long 112°42′33", in SW%SE% sec.7, T.8 N., R.4 W., Yavapai County, Hydrologic Unit 15070103, on right bank at Box damsite, 5.5 mi northeast of Wickenburg.

DRAINAGE AREA. -- 417 mi 2.

REMARKS.--Small diversions for irrigation and mining above station.


ANNUAL PEAK DISCHARGE

WATER YEAR	DATE	ANNUAL PEAK DISCHARGE (FT ³ /S)	D I SCHARGE CODES	WATER YEAR	DATE	ANNUAL PEAK DISCHARGE (FT ³ /S)	D I SCHARGE CODES
1925	09-19-25	25,500	HP	1963	08-17-63	2,150	
1927	02-16-27	27,100	HP	1964	07-14-64	1,230	
1937	02-07-37	22,000	HP	1965	09-02-65	9,060	
1938	03-03-38	10,000		1966	12-10-65	5,560	
1946	08-11-46	1,710		1967	12-07-66	1,740	
1947	08-08-47	2,300		1968	12-19-67	11,200	
1948	08-05-48	5,600		1969	09-13-69	4,630	
1949	09-26-49	2,910		1970	09-05-70	² 58,000	
1950	10-18-49	5,500		1971	08-25-71	556	
1951	08-29-51	¹ 27,000		1972	08-27-72	800	
1952	12-30-51	1,590		1973	10-07-72	2,600	
1953	07-18-53	865		1974	07-20-74	5,560	
1954	03-23-54	3,090		1975	07-28-75	154	
1955	07-23-55	8,840		1976	02-09-76	4,560	
1956	08-18-56	1,210		1977	08-15-77	315	
1957	08-10-57	1,980		1978	03-02-78	16,000	
1958	09-05-58	10,600		1979	03-28-79	9,640	
1959	08-24-59	5,110		1980	02-19-80	24,900	
1960	12-26-59	3,210		1981	07-10-81	698	
1961	08-19-61	1,150		1982	03-15-82	2,940	
1962	09-21-62	1,510				- con 1982	
1 ні.	hest since 1	927.					

BASIN CHARACTERISTICS

MAIN CHANNEL	STREAM	MEAN BASIN ELEVA-	FORESTED		MEAN ANNUAL PRECIPI-	RAINFALL INT	ENSITY, 24-HOUR
SLOPE (FT/MI)	LENGTH (MI)	TION (FT)	AREA (PERCENT)	SOIL INDEX	TATION (IN)	2-YEAR (IN)	50-YEAR (IN)
71.0	45.0	4,750	9.6	1.0	19.3	2.4	4.7

GILA RIVER BASIN 09515500 HASSAYAMPA RIVER AT BOX DAMSITE, NEAR WICKENBURG, AZ--Continued

573

Project No TRACS No.	
Project Name Date	
Location/Station HASSAYAMPA RIVER NEAR WICKENBURG, AZ	
Designer DTP Checker	

FLOOD FREQUENCY ANALYSIS DATA COMPILATION FORM

Page 1_ of 2

Gage Station Name <u>HASSAYAMPA</u> RIVER <u>NEAR</u> WICKENBURG, AZ Gage Station No. <u>09515500</u> Drainage Area <u>417</u> sq. mi. Period of Systematic Record <u>1938 and 1946</u>, through 1982

WATER YEAR (1)	ANNUAL PEAK DISCHARGE (cfs) (2)	DATE (3)	FLOOD a TYPE (4)	COMMENTS (5)
1925	25506	19 SEPT 25	R	HISTORIC
1927	27100	16 FEB 27	R	HISTORIC.
1937	22000	7 FEB 37	R	HISTORIC
<u> </u>	10 000	<u>3 MAR 38</u> —		BROKEN RECORD
1946	1710	11 AUG 46	R	
47 48	2300	8 AUG 47 5 AUG 48	R	
49	2910	26 SEPT 49	<u>R</u>	
50	550D 27000	18 OCT 49 29 AVG 51	R	EXTRAORDINARY
52	1590	30 DEC. 51	R R	
53	865 3090	<u>18 JUL 53</u> 23 MAR 54	R	
55	8840	23 541 55	R R	
<u>56</u> 57	1210	18 AUG 56 10 AUG 57	R	
58	10600	5 SEPT 58	R	
66	5110 3210	24 AUG 59 26 DEC 59	R	
61	1150	19 AUG 61	R	
62	1510 2150	21 SEPT 62 17 ADG 63	R	

a - rainfall (R), snowmelt (S), rain on snow (R/S), uncertain (U), other (X) - note in comments

Project No.	TRACS No.	
Project Name	Date 28 JULY 92	
and the second of the second s	RIVER NEAR WICKENBURG AZ	
Designer <u>DTP</u>	Checker	

			REQUENCY A	2
WATER YEAR (1)	ANNUAL PEAK DISCHARGE (cfs) (2)	DATE (3)	FLOOD _a TYPE (4)	COMMENTS (5)
1964	1230	14 JUL 64	R	
65	9040	2 SEPT 65	R	
61,	5560	10 DEC 65	R	
67	1740	7 DEC 66	R	
68	11200	19 DEC 67	R	
69	4630	13 SEPT 69	R	
70	58000	5 SEPT 70	R	extraordinary
71	556	25 AUG 71	R	1
72	866	24 AUG72	R	
73	2600	700172	R	
74	5560	20 JULY 74	R	
75	154	28 JUL 75	R	
- 76	4560	9 FEB 74	R	
77	315	15 AUG 77	R	
78	16000	2 MAR 18	R	
79	9640	28 MAR 19	R	
80	24900	19 FEB 80	R	extraordinary
8/	698	10 JUL 81	R	1
82	2940	15 MAR 82	R	
				$\frac{N_g = 41}{A_{Ri+h}}$
			anna a bha na an	
	an a		and a substantial state of the second state of the second state of the second state of the second state of the	S 1/205 0.5726
		N 2		<u> </u>
rainfall /12	Doowmold (C)	ain on enour /	D/C) uncertai	n (U), other (X) - note in comments

a - rainfall (R), snowmelt (S), rain on snow (R/S), uncertain (U), other (X) - note in comments

Project No.			٩٢	ACS No.			A
Project Name				Date	20	AUG	92
Location/Station	HASSAVAMPA	REVER	NEAR	WICKEN	BURE	42	
Designer DTP	Checker						

HASSAYAMPA RIVER NEAR WICKENBURG, AZ TEST FOR HIGH and LOW OUTLIERS $\overline{IOSQ} = 3.5729$ Ng = 41 $S_{log} = 0.5726$ $K_{\mu} = 2.692$

HIGH OUTLIER:

$$log Q_{\mu} = log Q + K_{\mu} S_{log}$$

= 3.5729 + 2.692 (0.5726) = 5.1143
$$S_{\pi} = Q_{\mu} = 130,118 cfs$$

There are No Q's > 130,118 cfs
: No HIGH OUTLIERS

LOW OUTLIER:

$$log Q_L = \overline{log Q} - K_w S_{log}$$

 $= 3.5729 - 2.692(0.5726) = 2.0315^{-5}$
 $S_R^2 = 108 cFs$
There are NO Q's < 108 cFs
 $NO LOW OUTLIERS$

Designe	Name	TRACS No Date <u>ZO AUG 92</u> new WICKENBURG AZ Checker
	nio/flood peak discharg	
	no low outliers, and	
	high outliers, and/or historic data, and/or	
	extraordinary floods. Position Equation:	
	$\frac{24}{2+.2}\left(\frac{\frac{1}{2}}{N}\right)$	for m=1, ······, t
$P_e = \frac{k}{N}$	$+\left(\frac{N-k}{N}\right)\left(\frac{m-k-4}{N-k+2}\right)\left(\frac{N-k}{N-k+2}\right)$	<u>k</u>) for m = k+1,, Ng
where	effective record lengt:	К, N = <u>100</u>
	length of systematic rec	ord, $N_{t} = \underline{38}$
•	effective length of system	atic record, Ns = Nt = 38
	number of historic floca	15, h= <u>3</u>
ر د	number of extraordinary systematic record, e	floods in the =
:	k=h+e=_6_	
/	$N_{g} = N_{s} + h = 41_{s}$	

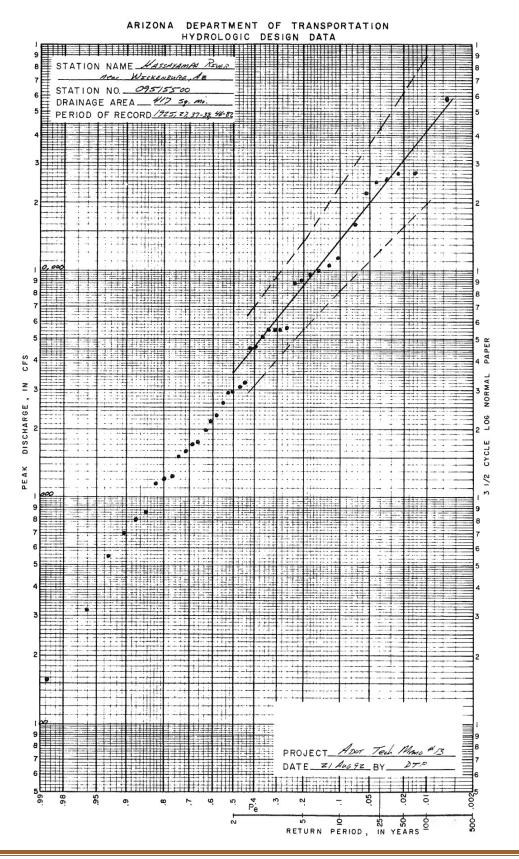
Project N	
Project N	ne Date <u>zo Avs 9z</u>
	ation HASSAYAMPA RIVER Near WICKENBURG AZ
Designer	DTP Checker
	$\overline{R} = \left(\frac{m - 0.4}{k + 0.7}\right) \left(\frac{k}{N}\right) \qquad \qquad \forall m = 1, \dots, k$
	e = (R + 0.2) (N)
	$P_{e} = \frac{k}{N} + \left(\frac{N-k}{N}\right) \left(\frac{m-k-0.4}{N-K+0.2}\right) \left(\frac{N-k}{N-e}\right)$
	$e = N + \left(\frac{N}{N} + \frac{N + 40.2}{N_5 - e} \right)$
	N = 100
	$N_s = N_t = 38$
	h=3
	e = 3
	$k = 6$; $N_G = 41$
4	
	$P = \left(\frac{m - 0.4}{4 + 0.2}\right) \left(\frac{6}{100}\right) = 0.0097 (m - 0.4) \forall m = 1, \dots, 6$
	$P = \left(\frac{m}{6+0.2}\right) \left(\frac{b}{100}\right) = 0.0097 (m-0.4) \forall m = 1, \cdots, 6$
4	
	1 (m (1) (m (-n 4)) (100 - 6))
	$= \frac{6}{100} + \left(\frac{100-6}{100}\right) \left(\frac{m-6-0.4}{100-6}\right) \left(\frac{100-6}{38-3}\right)$
	Pe= 0.06 + 0.0268 (m-6.4) + m=7,, 41
	$P_e = 0.06 + 0.6268(m-6.4)$ $\neq m = 7, \cdots, 41$
45	
45	
~	
@ m.	1 Pe = 0.0097 (1-0.4) = 0.0058 : Tr = 172 vis
•	$P_e = 0.0097(m-0.4)$
m	
@ m=	P= = 0.06 + 0.0268 (7-6.4) = 0.0761 \$ Tr = 13yrs
1113	1 = - 0,00 + 0,0000 (1-0.2) = 0,0161 ; 11-13y-s
•	
•	P= = 0.06 + 6-0268 (M-6.4)
	K - a al 16 an Ial ma I II

m= 41

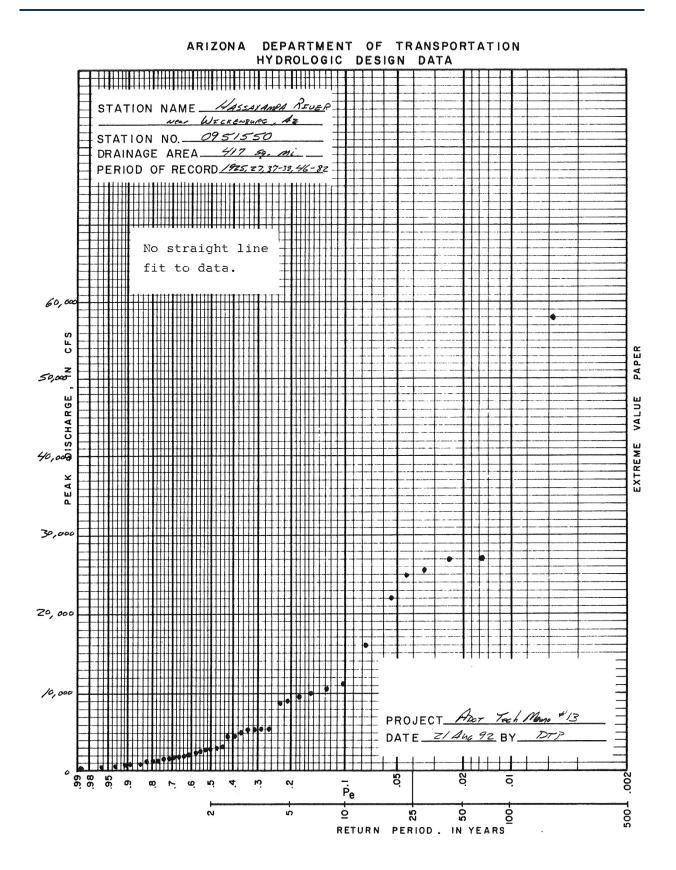
Project No.		TRACS No						
Project Name	SAVAMPA	RIVER Date	NAUG 92 VICKENBURG, AZ					
Designer DTP	5 317 / 17/11 17	Checker	VIENEIVBURG, ME					
		QUENCY ANALYSIS						
PLOTTING POSITION CALCULATION FORM Page <u>1</u> of 2								
Gage Station Name <u>HASSAYAMPA</u> RIVER NEAR WERENBURE, AZ Gage Station No. <u>09515500</u> Drainage Area <u>417</u> sq. mi. Period of Systematic Record <u>1938 and 1946</u> through 1982								
Check if the data conta	ins any of the following:							
Broken Record	Mixed Pop	ulation	High Outliers					
Extraordinary Data \times	_ Zero Flow	Year	Low Outliers					
Document	the plotting position equat	tion or data treatment on a	separate sheet.					
FLOOD PEAK	RANK	PLOTTING POSITION						
DISCHARGE (cfs) (1)	(2)	P _e (3)	T _r (4)					
58000	1	0.0058	172					
27100	2	0.0155	64					
27000	3	0.0252	40					
25500	4	0.0348	29					
24900	5	0.0445	22					
22000	6	0.0542	18					
16000	7	0.0761	13					
11200	8	0.1029	9.7					
10600	9	0.1297	7.7					
10000	10	0.1565	6.4					
9640		0.1833	5.4					
9060	12	0.2101	4.8					
8840	13	0.2369	4.2					
5600	14	0.2637	3.8					
5560	15	0.2905	3.4					
5560	16	0.3173	3.2					
5500		0.3441	2.9					
5110	18	0.3709	2.7					
4630	19	0.3977	2.5					
4560	20	0.4245	2.4					

I.

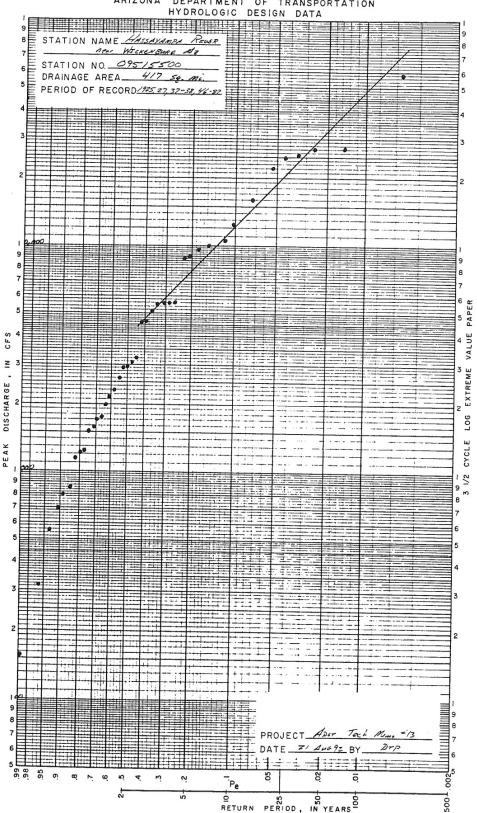
ARIZONA DEPARTMENT OF TRANSPORTATION HYDROLOGIC DESIGN DATA


Project No.			TRA	ACS No.			
Project Name				Date	4	AUG 92	
Location/Station	HASS	AVAMPA	RIVER	near	WICI	KENBURG	AZ
Designer	DTP		Che	ecker		/	, ,
A second s		and the second				Sector States	

FLOOD FREQUENCY ANALYSIS PLOTTING POSITION CALCULATION FORM


Page 2 of 2

	FLOOD PEAK RANK		PLOTTI	NG POSITION
	DISCHARGE (cfs) (1)	(2)	P _e (3)	T _r (4)
	3210	21	0.4513	2.2
	3090	22	0.4781	2.1
	2940	23	0.5049	1.98
	2910	24	0.5317	1.88
	2600	25	0.5585	1.79
	2300	26	0.5853	1.71
	2150	27	0.6121	1.63
	1980	28	0.6389	1.56
	1740	29	0.6657	1.50
	1710	30	0.6925	1.44
	1590	31	0.7193	1.39
	1510	32	0.7461	1.34
	1230	33	0.57729	1.29
L	1210	34	0.7997	1.25
	1150	35	0.8265	1.21
	865	36	0.8533	1.17
	800	37	0.8801	1.13
	698	38	0.9069	1.10
	556	39	0.9337	1.07
	315	40	0.9605	1.04
	154	41	0.9873	1.01
L			•	
L			7 a	
L				



oject No TRACS No Date Date 7 Aug- 92.									
HASSAYAM	PA RIVER NO	EAR WICKEN	BURG, AZ	an a					
πp		Checker							
and a good of the second second sec	a hand and the second		· · · · · · · · · · · · · · · · · · ·						
	FIGU	RE 9-10							
	FLOOD FREQU	JENCY ANALYSI	S						
WORK SH	EET FOR LOG-N	ORMAL CONFID	ENCE LIMITS						
. /		,	,						
Gage Station Name HASSAYAMPA TYUER NEAR WICKENBURG									
. <u>0951550</u>)	n de Carlon de La Carlo de Car							
(C.L.) =	90 %								
()	an a								
		01	100– <i>C.L.</i>	01					
<u>Crs</u>		α =	100	().]					
11-000		С	U. α _	1 145					
<u>42000</u> cis			$1 - \frac{1}{2}$						
			$N_c =$	20					
$\overline{Y} = \log_{10} (Q_{2-vr}) = \log_{10} (3570) = 3.5527$									
$(-1) = \log_{10} (-1)$	(570)		=	3.5527					
$(2 - yr) = \log_{10} (2$	3570)		=	3.5527					
		(4200) - 100							
		₁₀ (42 <i>00</i>) – log							
		₁₀ (42 <i>00</i>) – log 2.327		<u>3.5527</u>					
		₁₀ (42 <i>00</i>) – log 2.327							
		₁₀ (42 <i>00</i> °) – log 2.327	10 (3570) =	0.4601					
Q _{100-yr} - log ₁₀ 2.327	$Q_{2-yr} = \frac{\log}{\log r}$			0.4601					
		₁₀ (42 <i>00</i>) – log 2.327 S _T (b)	10 (3570) =	0.4601					
$\frac{Q_{100-yr} - \log_{10}}{2.327}$	$\frac{Q_{2-yr}}{Y_T} = \frac{\log x_T}{1}$	S_{T} (b)	<u>10 (3570)</u> = Lim Upper	 nits (c) Lower					
Q _{100-yr} - log ₁₀ 2.327	$\frac{Q_{2-yr}}{Y_T} = \frac{\log x}{2}$	S _T (b) (4)	10 (3570) = Lim Upper (5) _	<u>(). 460</u> nits (c) Lower (6)					
$\frac{Q_{100-yr} - \log_{10}}{2.327}$	$\frac{Q_{2-yr}}{Y_T} = \frac{\log x_T}{1}$	S_{T} (b)	<u>10 (3570)</u> = Lim Upper	 nits (c) Lower					
$ \begin{array}{r} Q_{100-yr} - \log_{10} \\ 2.327 \\ U_{1-\frac{1}{7}} \\ (2) \end{array} $	$\frac{Q_{2-yr}}{Y_T} = \frac{\log}{100}$ Y_T (a) (3) 3.5527	S _T (b) (4) 0. 1029	10 (35%) = Lin Upper (5) _ .5272	_ <i>(). 4(60)</i> nits (c) Lower (6) 8					
$ \begin{array}{r} Q_{100-yr} - \log_{10} \\ 2.327 \\ U_{1-\frac{1}{7}} \\ (2) \\ 0.0 \\ 0.842 \end{array} $	$\frac{Q_{2-yr}}{Y_T} = \frac{\log x}{2}$ $\frac{Y_T}{3.5527}$	S _T (b) (4) 0. 1029 0. 1197	10 (3570) = Lin Upper (5) _ .5272 /3,706	<u>0.460</u> nits (c) Lower (6) <u>2418</u> .55.35					
$Q_{100-yr} - \log_{10} \frac{1}{2.327}$ $U_{1-\frac{1}{7}}$ (2) 0.0 0.842 1.282	$\frac{Q_{2-yr}}{Y_T} = \frac{\log x}{\log x}$ (a) (3) (3) (3) (3) (3) (3) (3) (4) (4) (4) (4) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5	S _T (b) (4) 0.1029 0.1197 0.1389	10 (3570) = Lin Upper (5) _ .52.72 	<u>(). 460</u> hits (c) Lower (6) <u>2418</u> 5535 8204					
$ \begin{array}{r} Q_{100-yr} - \log_{10} \\ 2.327 \\ U_{1-\frac{1}{7}} \\ (2) \\ 0.0 \\ 0.842 \end{array} $	$\frac{Q_{2-yr}}{Y_T} = \frac{\log x}{2}$ $\frac{Y_T}{3.5527}$	S _T (b) (4) 0. 1029 0. 1197	10 (3570) = Lin Upper (5) _ .5272 /3,706	<u>0.460</u> nits (c) Lower (6) <u>2418</u> .55.35					
$Q_{100-yr} - \log_{10} \frac{1}{2.327}$ $U_{1-\frac{1}{7}}$ (2) 0.0 0.842 1.282	$\frac{Q_{2-yr}}{Y_T} = \frac{\log x}{\log x}$ (a) (3) (3) (3) (3) (3) (3) (3) (4) (4) (4) (4) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5	S _T (b) (4) 0.1029 0.1197 0.1389	10 (3570) = Lin Upper (5) _ .52.72 	<u>(). 460</u> hits (c) Lower (6) <u>2418</u> 5535 8204					
	<u>НАЗВАЧАМ</u> DTP WORK SH me <u>НАЗВА</u> 0. <u>095/550</u> I (C.L.) = <u>3570</u> _cfs	HASSAYAMPA TRIVER MO DTP FIGU FLOOD FREQU WORK SHEET FOR LOG-N	$\frac{\mu_{ASSAYAMPA} Triven Near Wickenson TP Checker FIGURE 9-10 FLOOD FREQUENCY ANALYSI WORK SHEET FOR LOG-NORMAL CONFID The meHASSAYAMPA Triven NEAR W D 0$	$HA.55A.4A.MPA TRIVER VEAR WICKENBURG, AZ Checker FIGURE 9-10 FLOOD FREQUENCY ANALYSIS WORK SHEET FOR LOG-NORMAL CONFIDENCE LIMITS ame HASSA4AMPA TRIVER, NEAR WICKENBURG 0. 09515500 1 (C.L.) = 90% 3570 cfs \alpha = \frac{100-C.L.}{100} =42000 cfs U_{1-\frac{\alpha}{2}} =$					

(a) $Y_T = \overline{Y} + U_{1-\frac{1}{T}}S_{In}$

(c)
$$Q_L = 10^{(Y_T \pm U_{1-\frac{\alpha}{2}} S_T)}$$

(b) $S_T = \left[\left(\frac{S_{ln}^2}{N_c} \right) \left(1 + .5 U_{1-\frac{1}{T}}^2 \right) \right]^{\frac{1}{2}}$

Example No. 10-4 Flood Frequency Analysis

Station Name - Santa Cruz River near Lochiel, Arizona

Station Number - 09480000

Drainage Area - 82.2 square miles

Period of Record - 1949 through 1989

Flood Data

A continuous, 41-year systematic record is available: the entire record was used in the analysis. All annual floods are considered to be caused by rainfall. There are no historic data. There are no zero flow years. The high and low floods of record are 12,000 cfs (1978 and 1984) and 8 cfs (1962), respectively. Two floods of 12,000 cfs in 1978 and 1984 are indicated in the records of the U.S. Geological Survey as being the largest since 1926. The record is considered stationary.

Flood Frequency Analysis

The high outlier limit is calculated at 35,600 cfs, and no high outliers are identified. The low outlier limit is calculated at 50 cfs, and a low outlier is identified for 1962 (8 cfs). Extraordinary floods are identified for 1978 and 1984 (12,000 cfs each) because these floods, from the systematic record, are known to be larger than any flood since 1926, prior to the start of the systematic record.

The data set contains a low outlier and extraordinary floods. The effective record length is the period 1926 through 1989 (N = 64). The length of the systematic record is the period 1949 through 1989 (N_t = 41). There is one low outlier (Z = 1), and the effective length of the systematic record is 40 years (N_s = N_t - Z = 41 - 1 = 40). There are no historic data (h = 0), but there are two extraordinary floods (e = 2); and, k = h + e = 0 + 2 = 2. There are 40 systematic plus historic floods (N_g = N_s + h = 40 + 0 = 40). These parameters are used in calculating the plotting positions.

The annual flood peak discharges are plotted on the three probability papers at their respective plotting positions. The extreme value (EV) graph does not show a linear relation for the two largest floods. The log-extreme value (LEV) graph indicates a concave down trend to the data. The log-normal (LN) graph indicates a reasonably good linear fit for virtually all of the data. The two largest floods, being at the same magnitude, make it impossible for those two points to lie in a straight line with the other data. The LN graph is clearly the best linear fit to the data, and it represents the probability distribution of floods with return periods that are equal to or longer than 2 years.

Confidence limits are set about the LN best fit line. The 40 largest floods ($N_c = 40$) are used to establish the best fit line. The estimated 100-yr flood peak discharge is 12,000 cfs with 90 percent upper and lower confidence limits of 19,200 cfs and 7,500 cfs, respectively.

Discussion

This example illustrates a flood frequency analysis for a data set containing a low outlier and extraordinary floods. The effective length of record was extended beyond the length of the systematic record. The LN graph is selected as the best straight line fit to the data. The results represent an example of the best graph paper to select. The data are nearly linear with little scatter about the line. The range of the confidence limits is tight because all 40 data points are used to establish the best fit line.

286

GILA RIVER BASIN

09480000 SANTA CRUZ RIVER NEAR LOCHIEL, AZ

LOCATION.--Lat 31°21′19", long 110°35′20", in SW; sec.11, T.24 S., R.17 E. (unsurveyed), Santa Cruz County, Hydrologic Unit 15050301, on southern border of Spanish land grant of San Rafael, near left bank on downstream side of pier of bridge on county road, 1.7 mi upstream from international boundary and 2.5 mi northeast of Lochiel.

DRAINAGE AREA.--82.2 mi².

REMARKS.-Small diversions for irrigation of 200 acres above station, mostly by pumping from ground water.

ANNUAL PEAK DISCHARGE

DATE 09-13-49 07-30-50 08-02-51 08-16-52 07-14-53	(FT ³ /S) 1,650 4,520 2,560 550	YEAR 1970 1971 1972	DATE 08-03-70 08-10-71	(FT ³ /S) 880
07-30-50 08-02-51 08-16-52	4,520 2,560	1971		
08-02-51 08-16-52	2,560		08-10-71	0 070
08-16-52	2,560	1072		2,830
	550	17/6	07-16-72	2,070
07-14-53		1973	06-30-73	1,490
01 14 22	3,320	1974	08-04-74	1,730
07-22-54	1,570	1975	07-22-75	3,330
08-06-55	4,300	1976	07-22-76	3,540
07-17-56	1,360	1977	09-05-77	1,130
08-09-57	688	1978	10-09-77	¹ 12,000
08-07-58	380	1979	01-25-79	1,060
08-14-59	243	1980	06-30-80	406
07-30-60	625	1981	07-15-81	1,110
08-08-61	1,120	1982	08-11-82	2,640
07-29-62	7.6	1983	03-04-83	1,120
08-25-63	2,390	1984	08-15-84	12,000
09-09-64	2,330	1985	07-19-85	850
09-12-65	4,810	1986	08-29-86	4,210
08-18-66		1987	08-10-87	291
08-03-67	1,870	1988	08-23-88	804
12-20-67	986	1989	08-04-89	871
08-05-69	484			
	07-17-56 08-09-57 08-07-58 08-14-59 07-30-60 08-08-61 07-29-62 08-25-63 09-09-64 09-12-65 08-05-64 08-05-69 	07-17-56 1,360 08-09-57 688 08-07-58 380 08-14-59 243 07-30-60 625 08-08-61 1,120 07-29-62 7.6 08-25-63 2,390 09-09-64 2,330 09-12-65 4,810 08-18-66 1,780 08-03-67 1,870 12-20-67 986	07-17-56 1,360 1977 08-09-57 688 1978 08-07-58 380 1979 08-14-59 243 1980 07-30-60 625 1981 08-08-61 1,120 1982 07-29-62 7.6 1983 08-25-63 2,330 1985 09-09-64 2,330 1985 09-12-65 4,810 1987 08-03-67 1,870 1988 12-20-67 986 1989 08-05-69 484 1989	07-17-56 1,360 1977 09-05-77 08-09-57 688 1978 10-09-77 08-07-58 380 1979 01-25-79 08-14-59 243 1980 06-30-80 07-30-60 625 1981 07-15-81 08-08-61 1,120 1982 08-11-82 07-29-62 7.6 1983 03-04-83 08-25-63 2,330 1985 07-19-85 09-09-64 2,330 1985 07-19-85 09-12-65 4,810 1986 08-29-86 08-18-66 1,780 1988 08-23-88 12-20-67 986 1989 08-04-89 08-05-69 484 -489 -489

BASIN CHARACTERISTICS

MAIN CHANNEL	STREAM	MEAN BASIN ELEVA-	FORESTED		MEAN ANNUAL PRECIPI-	RAINFALL INTE	NSITY, 24-HOUR	
SLOPE (FT/MI)	LENGTH (MI)	TION (FT)	AREA (PERCENT)	SOIL	TATION (IN)	2-YEAR (IN)	50-YEAR (IN)	
42.2	12.0	5,150	31.0	2.3	18.2	1.9	4.3	

GILA RIVER BASIN

09480000 SANTA CRUZ RIVER NEAR LOCHIEL, AZ--Continued

MEAN MONTHLY AND ANNUAL DISCHARGES 1950-89

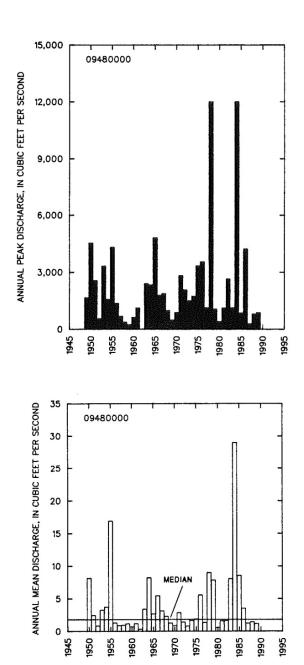
• • • • • • • • • •				STAN-		
	MAXIMUM	MINIMUM	MEAN	DARD DEVIA- TION	COEFFI- CIENT OF VARI-	PERCENT OF ANNUAL
MONTH	(FT ³ /S)	(FT ^S /S)	(FT ⁹ /S)	(FT 3/S)	ATION	RUNOFF
0070050	77	0.00	5.2	17	3.2	11.1
OCTOBER NOVEMBER	6.8	0.00	1.1	1.5	1.4	2.3
DECEMBER	18	0.00	1.8	3.7	2.0	3.9
JANUARY	47	0.02	2.7	8.3	3.1	5.7
FEBRUARY	18	0.02	1.7	3.4	2.0	3.6
			1.9	5.6	2.9	4.0
MARCH	34	0.01				
APRIL	5.2	0.00	0.74	1.2	1.6	1.6
MAY	2.8	0.00	0.39	0.67	1.7	0.8
JUNE	2.8	0.00	0.30	0.65	2.2	0.6
JULY	69	0.03	8.4	16	1.8	17.8
AUGUST	187	0.00	17	38	2.2	37.0
SEPTEMBER	44	0.00	5.3	9.5	1.8	11.4
ANNUAL	29	0.31	3.9	5.3	1.3	100

PERIOD (CON- SECU-		RECURREN	E, IN FT CE INTER DANCE PR	VAL, IN	YEARS, A	NÐ
TIVE	2	5	10	20	50	100+
DAYS)	50%	20%	10%	5%	2%	1%
1 3 7 14 30	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
60	0.00	0.00	0.00	0.00	0.00	0.06
90	0.00	0.00	0.00	0.00	0.01	0.10
120	0.00	0.00	0.00	0.05	0.12	0.41
183	0.74	0.21	0.10	0.05	0.02	0.01

MAGNITUDE AND PROBABILITY OF ANNUAL LOW FLOW BASED ON PERIOD OF RECORD 1950-89

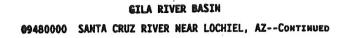
MAGNITUDE AND PROBABILITY OF ANNUAL HIGH FLOW BASED ON PERIOD OF RECORD 1950-89

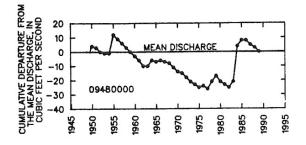
	BASED ON	PERIOD OF	RECORD	1949-89		PERIOD (CON- SECU-		RECURREN	NCE INTER	RVAL, IN	R INDICAT YEARS, A IN PERCE	ND
		XCEEDANCE			E INTERVAL PERCENT	TIVE	2 50%	5 20%	10 10%	25 4%	50 2%	100† 1%
2 50%	5 20%	10 10%	25 4%	50 2%	100† 1%		170	439	661	963	1,190	1,410
1,460	2,950	4,330	6,590	8,700	11,200	3 7 15	75 38 22	211 114 66	343 196 115	553 341 202	735 482 290	937 651 398
MEAN	(LC	DGS)= 0.2 DGS)= 3.2 DGS)= 0.2	17	,		30 60 90	14 8.7 6.3	41 25 17	72 43 30	130 77 54	190 114 80	267 161 114

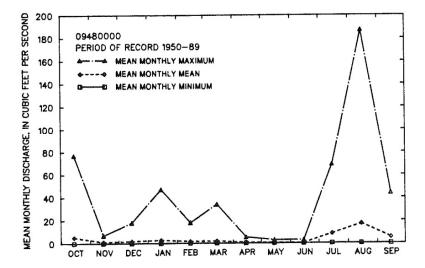

DURATION TABLE OF DAILY MEAN FLOW FOR PERIOD OF RECORD 1950-89

•••••			DISCHA	RGE, IN	FT ⁹ /S,	WHICH	WAS EG	WALED OR	EXCEED	ed for	INDICAT	ED PER	ENT OF	TIME		
1%	5%	10%	15%					60%							99.5%	99.95
	9.1	4.3	2.5	1.6	0.95	0.64	0.45	0.30	0.20	0.10	0.00	0.00	0.00	0.00	0.00	0.00

† Reliability of values in column is uncertain, and potential errors are large.


January 2014




GILA RIVER BASIN 09480000 SANTA CRUZ RIVER NEAR LOCHIEL, AZ--Continued

Project No.	TRACS No.
Project Name	Date 24 JULY 92
Location/Station SANTA	CRUZ RIVER NEAR LOCHIEL AZ
Designer DTP	Checker

FLOOD FREQUENCY ANALYSIS DATA COMPILATION FORM

Page 1 of 2

 Gage Station Name
 SAINTA
 CRUZ
 RIVER
 Deeper
 Lochiel, AZ

 Gage Station No.
 0948000
 Drainage Area
 \$2-2
 sq. mi.

 Period of Systematic Record
 1949-1989
 Drainage Area
 \$2-2
 sq. mi.

	WATER YEAR (1)	ANNUAL PEAK DISCHARGE (cfs) (2)	DATE (3)	FLOOD a TYPE (4)	COMMENTS (5)
ľ	1949	1650	135EPT49	R	
	50		30 JOL 50	R	
	51	2560	2 AUG51	R	
	52	550	16 AUG 52	R	
	53	3320	14 301 53	R	
	54	1570	22 501 54	R	
	55	4300	6 AUG 55	R	
	56	1360	17 JUL 56	R	
	57	688	9 AUG 57	R	
	58	380	7 AUG 58	R	
	59	243	14 AUG 59	R	
	60	6 25	30 JUL 60	R	
	61	1120	8 AUG 61	R	
	62	8	29 JUL 62	R	
	63	2390	25 AUG-63	R	
	64	2 330	9 SEPT 64	R	
	65	4810	12 SEPT 65	R	
	66	1786	18 AUG 66	R	
	67	1870	3 AUG 67	R	
	1.8	986	20 DEC 67	R	
	69	484	5 AUG 69	R	
	70	880	3 AUG- 90	R	
	71	2830	10 AUG 11	R	
	72	2010	16 JUL 72	R	
	73	1490	30 JUN 73	R	

a - rainfall (R), snowmelt (S), rain on snow (R/S), uncertain (U), other (X) - note in comments

Project No.	TRACS No
Project Name	Date 24 JULY 92
Location/Station_SANTA	CRUZRIVER Near Lochiel, AZ
Designer DTP	Checker

FLOOD FREQUENCY ANALYSIS DATA COMPILATION FORM

Page 2 of 2

WATER YEAR (1)	ANNUAL PEAK DISCHARGE (cfs) (2)	DATE (3)	FLOOD a TYPE (4)	COMMENTS (5)
74	1730	4 AUG 74	R	
75	3 3 30	22 JUL 75	R	
76	3540	22 JUL 74	R	
77	1130	5SEPT77	R	-
78	12.000	90CT 78	R	Extraordinary
79	1060	25 JAN 79	R	
80	406	30 JUN 80	R	
81	1110	15 JUL 81	R	
82	2640	11 AUG 82	R	
83	1120	4 MAR 83	R	
84	12000	15 AUG 84	R	Extraordinary
85	850	17 JUL 85	R	
86	4210	29 AUG 86	Ŕ	
87	291	10 AUG 87	R	
88	864	23 AUG 88	R	
89	871	4 AUG 89	R	
			-	$N_{g}=41$
				Q=2242 Q10g=3,1245
				Ng= 41 Q=2242 Q10g=3,1245 S=2569 S10g=0.5276
				in (11) other (X) - note in comments

a - rainfall (R), snowmelt (S), rain on snow (R/S), uncertain (U), other (X) - note in comments

Project No.	TRACS No.								
Project Name			4		Date	20	AUG	92	
Location/Station	SANTA	LRUZ	River	APGC	Lochiel.	4=			
Designer DTP				C	inecker				un angen and an and a state of the

TEST of HIGH and LOW OUTLIERS $\overline{\log Q} = 3.1245$ Ng = 41 $S_{log} = 0.5276$ K_N = 2.692

SANTA CRUZ REJUGE MEAT LOCHIEL, AZ

HIGH OUTLIER:

 $log Q_{H} = log Q + K_{N} S_{Log}$ = 3.1245 + 2.692(0.5276) = 4.5448 $Q_{H} = 35059 \ cfs$ $There are No Q's > 35,059 \ cfs$ $No \ Hish \ Outliers$

LOW OUTLIER:

$$l_{05} Q_{L} = \overline{l_{05} Q} - K_{N} - S_{los}$$

$$= 3.1/245 - 7.692(0.5276) = 1.704/2$$

$$S_{Z}^{S_{Z}} Q_{L} = 51 \text{ cfs}$$

$$There is one Q < 51 \text{ cfs} \Rightarrow 7.6 \text{ cfs} in 1962$$

$$ONE Low Outlier = One Zero flow year (1962)$$

Project No.				TR	ACS No.			
Project Name					Date	20	AUG 92	
Location/Station	SANTA	TRUZ	RIVER	Mear	LOCHIEL ,	Az		
Designer				Ch	ecker			-

D,
The annual flood peok discharge data set contains:
gero flow years, and/or
Nlow outliers, and/or
high outlier, and/or
historic data, and/or
Neatroardinary floods.
Plotting Position Equation:

$$R = \left(\frac{N_{L}-Z}{N_{L}}\right)\left(\frac{m-.4}{K+.2}\right)\left(\frac{K}{N}\right)$$
 for $m=1, \dots, K$
 $R = \left(\frac{N_{L}-Z}{N_{L}}\right)\left(\frac{m-.4}{K+.2}\right)\left(\frac{K}{N}\right)$ for $m=k+1, \dots, K$
where effective record length, $N = 64$
 $kngth$ of systematic record, $N_{L} = 4/$
number of gero flow years, and/or
number of historic floods, $R = 0$
number of extraordinary floods in the
systematic record, $C = 2$
 $N_{L} = N_{L} + K = 40$

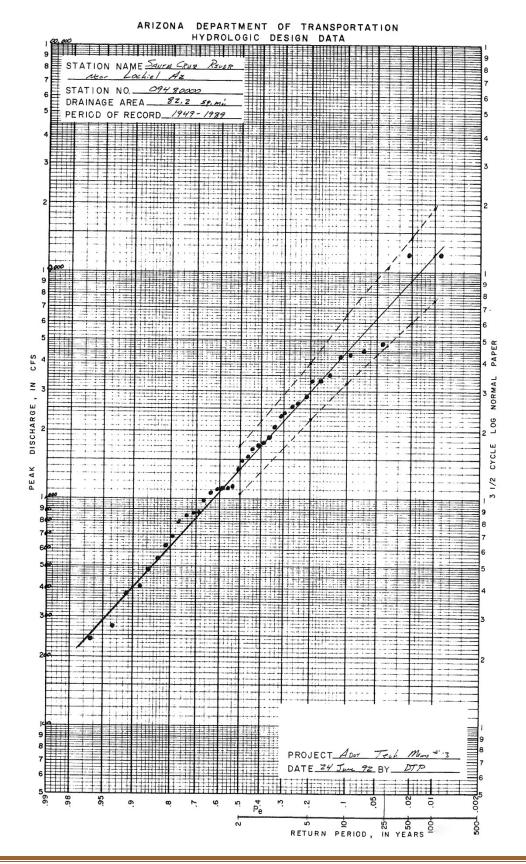
ARIZONA DEPARTMENT OF TRANSPORTATION HYDROLOGIC DESIGN DATA

TRACS No. _____ Date

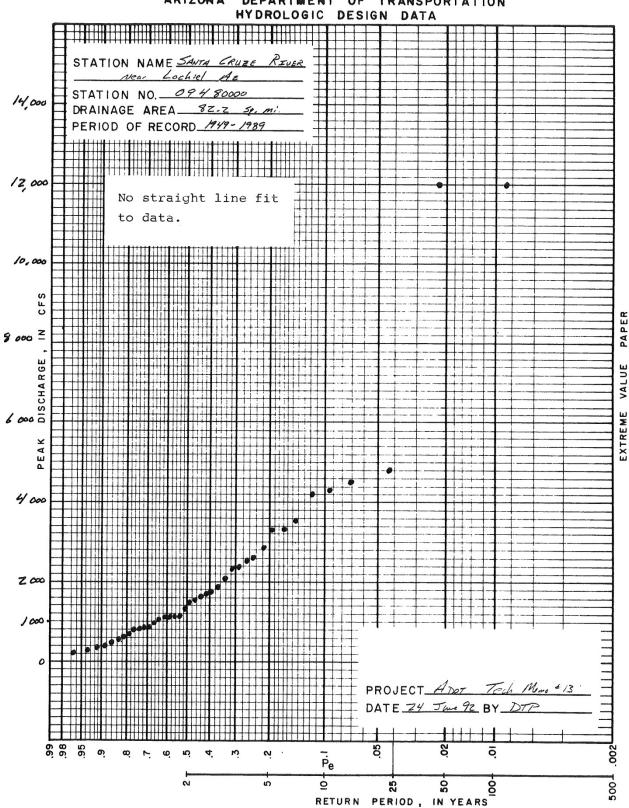
Project No.	TRACS No
Project Name	Date <u>ZO Aug 92</u>
	P SANTA CRUZ REVER New LOCHIEL AZ P Checker
Designer <u>Dr</u>	
	$ \frac{\left(N_{L}-z\right)}{\left(\frac{M}{2}-0.4\right)} \frac{\left(\frac{M}{2}\right)}{\left(\frac{M}{2}+0.2\right)} \frac{\left(\frac{M}{2}\right)}{\left(\frac{M}{2}\right)} + M = 1 \dots K $
Pe=	$ \frac{\binom{N_{L}-2}{N_{L}}\binom{m-0.4}{R+0.2}\binom{K}{n}}{K} \qquad \qquad$
	$(n) = 1/k (n) = k \cdot (n - k - p \cdot k) \cdot (n - k)$
Pe=	$\frac{(N_{1}-2)}{N_{1}}\left(\frac{k}{N}+\left(\frac{N-k}{N}\right)\left(\frac{m-k-\alpha\cdot t}{N-k+\alpha\cdot z}\right)\left(\frac{N-k}{N_{2}-e}\right)\right] \forall m=K+1, \cdots, N_{q}$
2006 1000 •	
	N = 64
	$N_t = 41$
	Z = /
	$N_{5} = 40$
	h = 0
	e = z
	k = z
	$N_{g} = 40$
SOM	
-	$ \mu = 1 m - c_{2} + 1 z $
Pe=	$\frac{(41-1)}{(41-1)} \frac{(m-0.4)}{(z+0.2)} \frac{(z)}{(54)} \qquad \text{for } m=1 \text{if } m=2$
	- ()
/	$P_e = 0.0139(m-0.4)$ For $m=1$
-	m=Z
,	$c_{2} = \left(\frac{41}{41}\right) \left[\frac{2}{54} + \left(\frac{54-2}{54}\right) \left(\frac{m-2-0.4}{54-2+0.2}\right) \left(\frac{54-2}{40-2}\right)\right] \forall m = 3, \dots, 4$
	$\mathbf{e} = \left(\frac{4}{4}\right) \left[\frac{1}{64} + \left(\frac{1}{64}\right) \left(\frac{1}{64} - \frac{1}{2} + \frac{1}{64}\right) \left(\frac{1}{64} - \frac{1}{2} + \frac{1}{62}\right) \left(\frac{1}{40} - \frac{1}{2}\right)\right] \forall \ \mathbf{M} = 3, \cdots, 4$
	Pe = 0.9756 [0.0313 + 0.0254 (m-2.4)] ¥ m= 3,, 40
	$P_{e} = 0.9756 \left[0.0313 + 0.0254 (m-2.4) \right] \forall m = 3, \dots, 40$
	Pe = 0.0305 + 0.0248 (m-2.4) & m= 3,, 40
	$P_{e} = 0.0305 + 0.0248 (m-2.4) \forall m=3,,40$
-	
Thus:	
	$P = a a p a \left(\frac{1}{2} a \mu \right) = a a a a p a c c T = 170$
m=	Pe = 0.0139 (1-0.4) = 0.0083 ; Tr = 120 yr
	Pe = 0.0139(2-0.4) = 0.0222 ! Tr = 45 yr
M=Z	re - 0,0137[- 0,7] - 0.0222 ; r. 10 yr
M=>	Pe = 0.0305 + 0.0248 (3-2.4) = 0.0454
M=3	1e - 0,0200 - 0,0270 (0 - 2.7) - 0,0 - 1 - 1
•	
•	Pe = 0.0305 + 0.0248 (m-2.4)
•	

m= 40

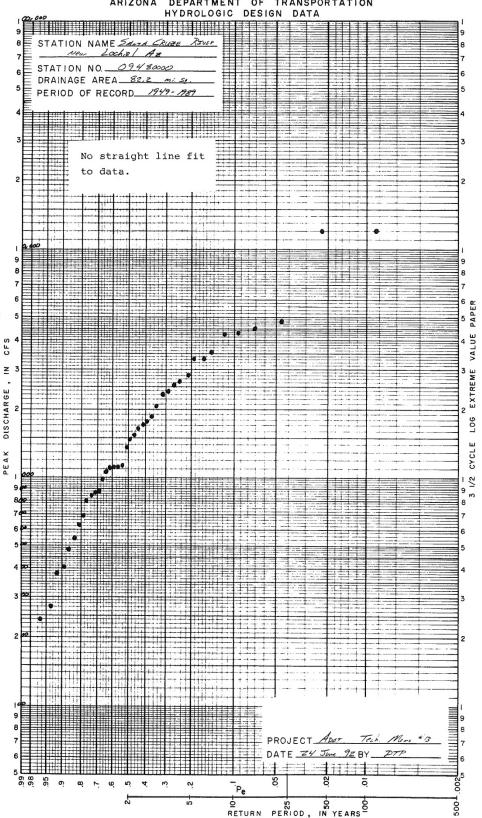
Project Name	ra CRIIZ RIU	Date 24	JULY 92 hiel, Az.	
	PLOTTING POSITIC	QUENCY ANALYSIS ON CALCULATION FORM		
Gage Station Name Gage Station No Period of Systematic Re	<u>ANTA CRUZ</u> <u>480000</u> ecord <u>1949-19</u>	RLVER Near LO Drainage	<u>CHTEL, AZ</u> Area <u>82.2</u>	_sq. mi.
Check if the data conta	ins any of the following:			
Broken Record	Mixed Pop	ulation	High Outliers	and the substantian
Extraordinary Data X	Zero Flow	Year	Low Outliers	<u>X</u>
Document	the plotting position equat	tion or data treatment on a	separate sheet.	
FLOOD PEAK	RANK	PLOTTIN	G POSITION	
DISCHARGE (cfs) (1)	(2)	P _e (3)	T _r	(4)
12000	/	0.0083	120	
12000	2	0.0222	45	
4810	3	0.0454	22	
4520	4	D.0702	14	
4300	5	0.0949	10.5	
4210	6	0.1197	8.4	
3540	7	0.1445	7.D	
3330	8	0.1693	5.9	
3320	9	0.1941	5.1	
2830	10	0.2/89	4.6	
2640	11	0.2437	4.1	
2560	12	0.2685	3.7	
2390	13	1.2935	3.4	
2330	14	0.3/81	3.1	
2070	15	0.3429	2.9	
1870	16	0.3677	2.71	
1780	17	0.3924	2.54	
1730	18	0.4172	2.40	
1650	19	0.4420	2.26	
1540	20	0.4668	2.14	


Project No TRACS	No
Project Name	Date 24 July 92
Location/Station SANTA CRUZ RIVER Neg	LOCHIEL AZ.
Designer DTP Checker	r

FLOOD FREQUENCY ANALYSIS PLOTTING POSITION CALCULATION FORM


Page 2 of 2

FLOOD PEAK	RANK	PLOTTING POSITION				
DISCHARGE (cfs) (1)	(2)	P _e (3)	T _r (4)			
1490	21	0.4916	2.03			
1360	22	0.5164	1.93			
1130	23	0.5412	1.85			
1120	24	0.5660	1.77			
1120	25	0.5908	1.69			
1110	26	0.6156	1.63			
1060	27	0.6404	1.56			
986	28	0.6652	1.50			
880	29	0.6899	1.45			
871	ZO	0.7147	1.40			
850	31	0.7395	1.35			
804	32	0.7643	1.31			
6.88	33	0.7891	1.27			
625	34	0.8139	1.23			
550	35	0.8387	1.19			
484	36	0.8635	1.16			
406	37	0.8883	1.13			
380	38	0.9131	1.10			
271	39	0.9379	רם.ן			
243	40	0.9627	1.01			
		er er ansamste siche bereine sammtitik i start angemannt blir byr gename unter hit siger unterstöre u	an garaanaa dalah karee asaa adalah da da ka sa			
			an fel man a fen a state a stat			
and a first of the state of the first of the state of the			allenger of a state allenger of the state of the			
			adamine ya <u>mwaka kuka kuka na manya ya kuka kuka kuka kuka na na na na na na na na na manya kuka kuka kuka na na panjeka k</u>			
			ana ang mang mang mang mang mang mang ma			



ARIZONA DEPARTMENT OF TRANSPORTATION

Project No.	an an ann an tha ann an an an an an an ann an an an an		TRACS No						
Project Name Location/Station Designer/77		D	Da	.e. 24 Лис	1 92				
Designer	DANTA CRUZ	KIVEN NEAR	LOCHIET, AZ	a 					
				a ta Marataka Seri	an a				
FLOOD FREQUENCY ANALYSIS WORK SHEET FOR LOG-NORMAL CONFIDENCE LIMITS									
Gage Station Na	me <u>Santa</u>	CRUZ RIVER	NEAN LOC	HIEL AZ					
Gage Station No	. 0948000	2							
Confidence Level (C.L.) = $\underline{90}$ %									
Q = 2-yr	<u></u> crs	5	α =	100 =	0.[
Q = 100-yr	_/2 <i>000</i> cfs	3		$U_{1-\frac{\alpha}{2}} =$	0.[
				$N_C =$	40				
$\overline{Y} = \log_{10} (Q_2)$	$(y_{r-yr}) = \log_{10} (y_{r-yr})$	1350)		=	3.1303				
$S_{ln} = \frac{\log_{10} G}{10}$	Q _{100-yr} - log ₁₀ 2.327	$\frac{Q_{2-yr}}{Q_{2-yr}} = \frac{\log Q_{2-yr}}{\log Q_{2-yr}}$	I ₁₀ (<i>120</i> 20) – log 2.327	₁₀ (<i>135</i> 7) =	0.4078				
	, ,		0 (1)	Lin	nits (c)				
T	$U_{1-\frac{1}{T}}$	Υ _Τ (a)	<i>S</i> _T (b)	Upper	Lower				
Years (1)	(2)	(3)	(4)	(5)	(6)				
2	0.0	3.1303	0.0645	1723	10.57				
5	0.842	3.4737	0.0750	3954	7240				
10	1.282								
25	1.751	3.6531	0.0870	10255	3236				
		3.8443	0.1026	10,306	4737				
50	2.052	3.9670	0.1136	14, 252	6027				
100	2.327	4.0792	0.1241	19,202	7.500				

(a) $Y_T = \overline{Y} + U_{1-\frac{1}{T}}S_{ln}$

(c)
$$Q_L = 10^{(Y_T \pm U_{1-\frac{\alpha}{2}} S_T)}$$

(b) $S_T = \left[\left(\frac{S_{ln}^2}{N_c} \right) \left(1 + .5 U_{1-\frac{1}{T}}^2 \right) \right]^{\frac{1}{2}}$

Flood Frequency Forms and Graphs

