FINAL REPORT

SR 347/SR 84 Corridor Profile Study

Junction I-8 to Junction I-10

ADOT WORK TASK NO. MPD 0041-17

adot contract no. 18-177731

Prepared by

SR 347/SR 84 CORRIDOR PROFILE STUDY

SR 347: I-10 то SR 84 SR 84: SR 347 то I-8

ADOT WORK TASK NO. MPD-0041-17 ADOT CONTRACT NO. 18-177731

FINAL REPORT

MARCH 2018

PREPARED FOR:

ARIZONA DEPARTMENT OF TRANSPORTATION

PREPARED BY:

This report was funded in part through grants from the Federal Highway Administration, U.S. Department of Transportation. The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data, and for the use or adaptation of previously published material, presented herein. The contents do not necessarily reflect the official views or policies of the Arizona Department of Transportation or the Federal Highway Administration, U.S. Department of Transportation. This report does not constitute a standard, specification, or regulation. Trade or manufacturers' names that may appear herein are cited only because they are considered essential to the objectives of the report. The U.S. government and the State of Arizona do not endorse products or manufacturers.

Table of Contents

EXE	CUT		ES-1
1.0	IN	TRODUCTION	1
	1.1	Corridor Study Purpose	2
	1.2	Study Goals and Objectives	2
	1.3	Corridor Overview and Location	2
	1.4	Corridor Segments	2
	1.5	Corridor Characteristics	5
	1.6	Corridor Stakeholders and Input Process	8
	1.7	Prior Studies and Recommendations	8
2.0	cc	ORRIDOR PERFORMANCE	14
	2.1	Corridor Performance Framework	14
	2.2	Pavement Performance Area	16
	2.3	Bridge Performance Area	19
	2.4	Mobility Performance Area	22
	2.5	Safety Performance Area	26
	2.6	Freight Performance Area	30
	2.7	Corridor Performance Summary	33
3.0	NE	EDS ASSESSMENT	37
	3.1	Corridor Objectives	37
	3.2	Needs Assessment Process	39
	3.3	Corridor Needs Assessment	40
4.0	ST	RATEGIC SOLUTIONS	49
	4.1	Screening Process	49
	4.2	Candidate Solutions	53
5.0	SC	DLUTION EVALUATION AND PRIORITIZATION	56
	5.1	Life-Cycle Cost Analysis	57
	5.2	Performance Effectiveness Evaluation	59
	5.3	Solution Risk Analysis	62
	5.4	Candidate Solution Prioritization	63
6.0	SU	IMMARY OF CORRIDOR RECOMMENDATIONS	65
	6.1	Prioritized Candidate Solution Recommendations	65
	6.2	Other Corridor Recommendations	65

6.3 Policy and Initiative Recommendations ...

6.4 Next Steps.....

 	 65
 	 68

List of Figures

Figure 1: Corridor Study Area	1
Figure 2: Corridor Location and Segments	4
Figure 3: Corridor Assets	7
Figure 4: Corridor Recommendations from Previous Studies	
Figure 5: Corridor Profile Performance Framework	
Figure 6: Performance Area Template	
Figure 7: Pavement Performance Measures	
Figure 8: Pavement Performance	
Figure 9: Bridge Performance Measures	
Figure 10: Bridge Performance	21
Figure 11: Mobility Performance Measures	
Figure 12: Mobility Performance	
Figure 13: Safety Performance Measures	
Figure 14: Safety Performance	
Figure 15: Freight Performance Measures	
Figure 16: Freight Performance	
Figure 17: Performance Summary by Primary Measure	
Figure 18: Corridor Performance Summary by Performance Measure	
Figure 19: Needs Assessment Process	
Figure 20: Initial Need Ratings in Relation to Baseline Performance (Bridge Example)	
Figure 21: Corridor Needs Summary	
Figure 22: Strategic Investment Areas	50
Figure 23: Candidate Solutions	
Figure 24: Candidate Solution Evaluation Process	
Figure 25: Risk Matrix	62
Figure 26: Numeric Risk Matrix	62
Figure 27: Prioritized Recommended Solutions	

List of Tables

Table 1: SR 347/SR 84 Corridor Segments	3
Table 2: Current and Future Population	6
Table 3: Corridor Recommendations from Previous Studies	10
Table 4: Corridor Performance Measures	15
Table 5: Pavement Performance	17
Table 6: Bridge Performance	20
Table 7: Mobility Performance	24
Table 8: Safety Performance	
Table 9: Freight Performance	31
Table 10: Corridor Performance Summary by Segment and Performance Measure	35
Table 11: Corridor Performance Goals and Objectives	38
Table 12: Final Pavement Needs	41
Table 13: Final Bridge Needs	42
Table 14: Final Mobility Needs	43
Table 15: Final Safety Needs	44
Table 16: Final Freight Needs	45
Table 17: Summary of Needs by Segment	46
Table 18: Strategic Investment Area Screening	51
Table 19: Candidate Solutions	54
Table 20: Bridge Life-Cycle Cost Analysis Results	58
Table 21: Pavement Life-Cycle Cost Analysis Results	58
Table 22: Performance Effectiveness Scores	61
Table 23: Prioritization Scores	64
Table 24: Prioritized Recommended Solutions	66
Appendices	

Appendices

Appendix	A: Corridor Performance Maps
Appendix	B: Performance Area Detailed Calculation
Appendix	C: Performance Area Data
Appendix	D: Needs Analysis Contributing Factors
Appendix	E: Life-Cycle Cost Analysis
Appendix	F: Crash Modification Factors and Factor
Appendix	G: Performance Area Risk Factors
Appendix	H: Candidate Solution Costs Estimates
Appendix	I: Performance Effectiveness Scores
Appendix	J: Solution Prioritization Scores
Appendix	K: Preliminary Scoping Reports for Prior

- ion Methodologies
- and Scores
- ored Unit Construction Costs

oritized Solutions

ACRON	YMS & ABBREVIATIONS	MPD	Multimodal Planning Division
AADT	Average Annual Daily Traffic	NB	Northbound
ABISS	Arizona Bridge Information and Storage System	NPV	Net Present Value
ADOT	Arizona Department of Transportation	P2P	Planning-to-Programming
AGFD	Arizona Game and Fish Department	PA	Project Assessment
ASLD	Arizona State Land Department	PARA	Planning Assistance for Rural Areas
AZTDM	Arizona Statewide Travel Demand Model	PDI	Pavement Distress Index
BLM	Bureau of Land Management	PES	Performance Effectiveness Score
BQAZ	Building a Quality Arizona	PSR	Pavement Serviceability Rating
CAG	Central Arizona Governments	PTI	Planning Time Index
CCTV	Closed Circuit Television	RTP	Regional Transportation Plan
CR	Cracking Rating	RWIS	Road Weather Information System
DCR	Design Concept Report	SATS	Small Area Transportation Study
DMS	Dynamic Message Sign	SB	Southbound
FHWA	Federal Highway Administration	SERI	Species of Economic and Recreationa
FY	Fiscal Year	SHSP	Strategic Highway Safety Plan
GRIC	Gila River Indian Community	SOV	Single Occupancy Vehicle
HCRS	Highway Condition Reporting System	SR	State Route
HERE	Real time traffic conditions database produced by American Digital Cartography Inc.	TAC	Technical Advisory Committee
HPMS	Highway Performance Monitoring System	TI	Traffic Interchange
I	Interstate	TIP	Transportation Improvement Plan
IRI	International Roughness Index	TPTI	Truck Planning Time Index
ITS	Intelligent Transportation System	TTI	Travel Time Index
LCCA	Life-Cycle Cost Analysis	TTTI	Truck Travel Time Index
LOS	Level of Service	UP	Underpass
LRTP	Long-Range Transportation Plan	USDOT	United States Department of Transpor
MAG	Maricopa Association of Governments	V/C	Volume-to-Capacity Ratio
MAP-21	Moving Ahead for Progress in the 21 st Century	VMT	Vehicle-Miles Travelled
MP	Milepost	WIM	Weigh-in-Motion

March 2018

nal Importance

oortation

Executive Summary

HI-

EXECUTIVE SUMMARY

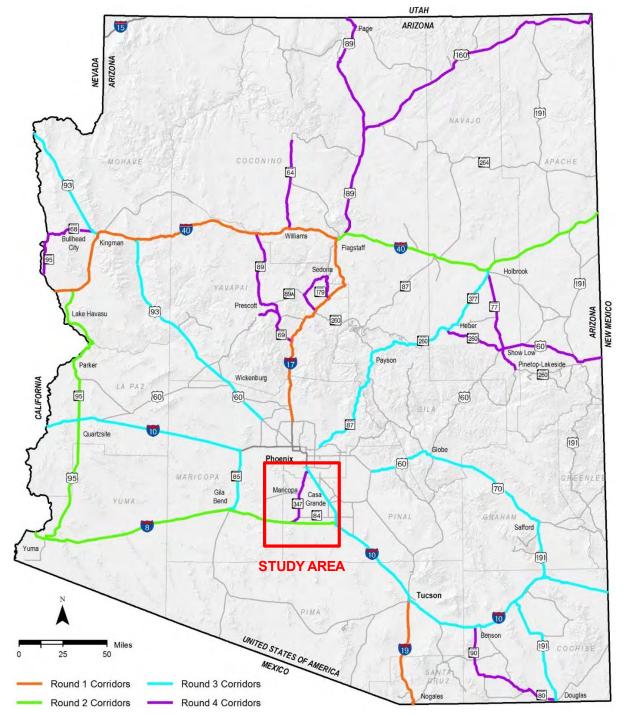
INTRODUCTION

The Arizona Department of Transportation (ADOT) is the lead agency for this Corridor Profile Study (CPS) of State Route 347 (SR 347) from Interstate 10 (I-10) to State Route 84 (SR 84) and SR 84 from SR 347 to Interstate 8 (I-8). The study examines key performance measures relative to the SR 347/SR 84 corridor, and the results of this performance evaluation are used to identify potential strategic improvements. The intent of the corridor profile program, and of ADOT's Planning-to-Programming (P2P) process, is to conduct performance-based planning to identify areas of need and make the most efficient use of available funding to provide an efficient transportation network.

ADOT has completed 21 CPS within four separate groupings or rounds. The SR 347/SR 84 corridor, depicted in Figure ES-1, is one of the strategic statewide corridors identified and the subject of this CPS.

Corridor Study Purpose, Goals and Objectives

The purpose of the CPS is to measure corridor performance to inform the development of strategic solutions that are cost-effective and account for potential risks. This purpose can be accomplished by following the process described below:


- Inventory past improvement recommendations
- Define corridor goals and objectives
- Assess existing performance based on quantifiable performance measures
- Propose various solutions to improve corridor performance
- Identify specific solutions that can provide quantifiable benefits relative to the performance measures
- Prioritize solutions for future implementation, accounting for performance effectiveness ٠ and risk analysis findings

The objective of this study is to identify a recommended set of prioritized potential solutions for consideration in future construction programs, derived from a transparent, defensible, logical, and replicable process. The SR 347/SR 84 CPS defines solutions and improvements for the corridor that are evaluated and ranked to determine which investments offer the greatest benefit to the corridor in terms of enhancing performance.

The following goals are identified as the outcome of this study:

- Link project decision-making and investments on key corridors to strategic goals
- Develop solutions that address identified corridor needs based on measured performance
- Prioritize improvements that cost-effectively preserve, modernize, and expand transportation infrastructure

Study Location and Corridor Segments

The SR 347/SR 84 corridor is divided into 5 planning segments for analysis and evaluation. The corridor is segmented at logical breaks where the context changes due to differences in characteristics such as terrain, daily traffic volumes, or roadway typical sections. Corridor segments are shown in Figure ES-2.

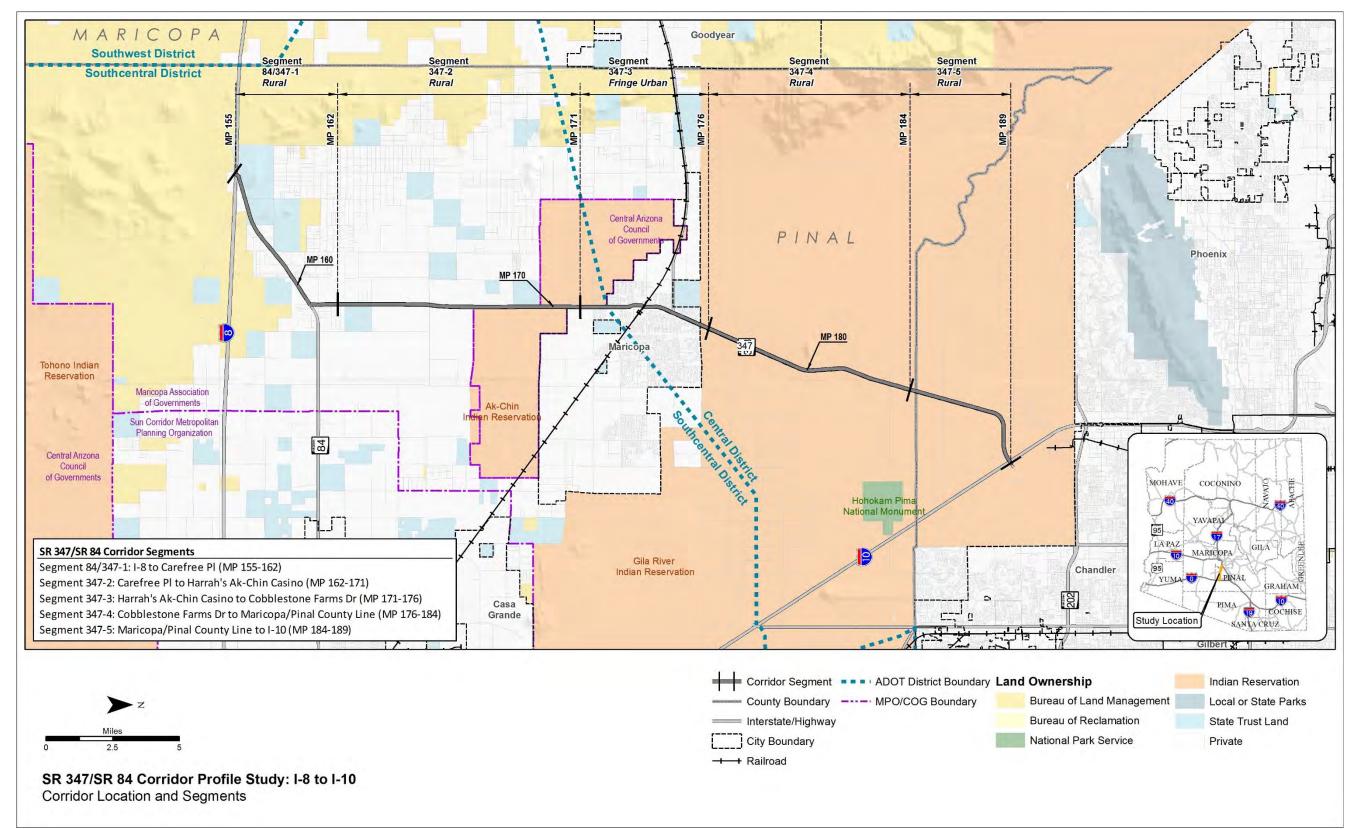
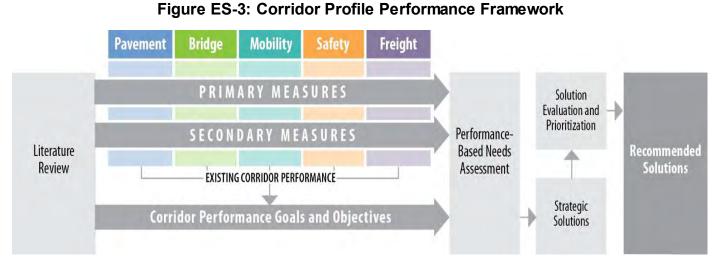


Figure ES-2: Corridor Location and Segments


CORRIDOR PERFORMANCE

A series of performance measures is used to assess the SR 347/SR 84 corridor. The results of the performance evaluation are used to define corridor needs relative to the long-term goals and objectives for the corridor.

Corridor Performance Framework

This study uses a performance-based process to define baseline corridor performance, diagnose corridor needs, develop corridor solutions, and prioritize strategic corridor investments. In support of this objective, a framework for the performance-based process was developed through a collaborative process involving ADOT and the CPS consultant teams.

Figure ES-3 illustrates the performance framework, which includes a two-tiered system of performance measures (primary and secondary) to evaluate baseline performance.

The following five performance areas guide the performance-based corridor analyses:

- Pavement •
- Bridge ٠
- Mobility
- Safety •
- Freight

The performance measures include five primary measures: Pavement Index, Bridge Index, Mobility Index, Safety Index, and Freight Index. Additionally, a set of secondary performance measures provides for a more detailed analysis of corridor performance. Table ES-1 provides the complete list of primary and secondary performance measures for each of the five performance areas.

Table ES-1: Corridor Performance Measures

Performance Area	Primary Measure	
Pavement	Pavement Index Based on a combination of International Roughness Index and cracking	• C • P • P
Bridge	Bridge Index Based on lowest of deck, substructure, superstructure and structural evaluation rating	• B • F • B
Mobility	Mobility Index Based on combination of existing and future daily volume-to-capacity ratios	• F • P • T
Safety	Safety Index Based on frequency of fatal and incapacitating injury crashes	• • • • •
Freight	Freight Index Based on bi-directional truck planning time index	• R N C B B

Each of the primary and secondary performance measures identified in the table above is comprised of one or more quantifiable indicators. A three-level scale was developed to standardize the performance scale across the five performance areas, with numerical thresholds specific to each performance measure:

Good/Above Average Performance	 Rating is al
Fair/Average Performance	 Rating is w
Poor/Below Average Performance	 Rating is be

The terms "good", "fair", and "poor" apply to the Pavement, Bridge, Mobility, and Freight performance measures, which have defined thresholds. The terms "above average", "average", and "below average" apply to the Safety performance measures, which have thresholds referenced to statewide averages.

Secondary Measures

- Directional Pavement Serviceability Pavement Failure Pavement Hot Spots
- Bridge Sufficiency Functionally Obsolete Bridges Bridge Rating Bridge Hot Spots
- Future Congestion Peak Congestion Travel Time Reliability Multimodal Opportunities
- Directional Safety Index Strategic Highway Safety Plan Emphasis Areas Crash Unit Types Safety Hot Spots Recurring Delay
- Non-Recurring Delay **Closure Duration** Bridge Vertical Clearance Bridge Vertical Clearance Hot Spots
- bove the identified desirable/average range
- vithin the identified desirable/average range
- below the identified desirable/average range

Corridor Performance Summary

Table ES-2 shows a summary of corridor performance for all primary measures and secondary measure indicators for the SR 347/SR 84 corridor. A weighted corridor average rating (based on the length of the segment) was calculated for each primary and secondary measure as shown in **Table ES-2**. The following general observations were made related to the performance of the SR 347/SR 84 corridor:

- Overall Performance: The Pavement and Bridge performance areas show generally "good" or "fair" performance; the Mobility, Safety, and Freight performance areas show a mix of "good/above average", "fair/average", and "poor/below average" performance
- Pavement Performance: The weighted average of the Pavement Index shows "good" overall performance for the SR 347/SR 84 corridor; Segments 84/347-1, 347-2, 347-4, and 347-5 show "good" or "fair" performance for all Pavement performance area measures
- Bridge Performance: The weighted average of the Bridge Index shows "fair" overall performance for the SR 347/SR 84 corridor; Segments 84/347-1, 347-2, 347-3, and 347-5 contain no bridges; Segment 347-4 shows "fair" performance for the Lowest Bridge Rating measure and "good" performance for the Sufficiency Rating and % of Deck Area on Functionally Obsolete Bridges measures
- Mobility Performance: The weighted average of the Mobility Index shows "fair" overall performance for the SR 347/SR 84 corridor; Segments 347-3, 347-4, and 347-5 show "poor" performance for the Mobility Index and Future Daily V/C measures; Segments 347-4 and 347-5 show "poor" performance for the Existing Peak Hour V/C measure; many segments show "fair" or "poor" performance for the Directional PTI measure
- Safety Performance: The weighted average of the Safety Index shows "average" overall performance for the SR 347/SR 84 corridor; in the 2011-2015 analysis period, there were 9 fatal crashes and 32 incapacitating injury crashes; there was "insufficient data" for crashes involving trucks, motorcycles, and non-motorized travelers, meaning there was not enough data available to generate reliable performance ratings so no values were calculated; Segments 347-4 and 347-5 show "below average" and "average" performance for crashes involving SHSP Top 5 Emphasis Areas
- Freight Performance: The weighted average of the Freight Index shows "fair" overall performance for the SR 347/SR 84 corridor; Segments 347-3, 347-4, and 347-5 show either "poor" or "fair" performance for the Freight Index, Directional TTTI, and Directional TPTI measures; Segment 347-2 shows "fair" performance for the Freight Index and Directional TPTI measures
- Lowest Performing Segments: Segments 347-3, 347-4, and 347-5 show "poor/below average" performance for many performance measures
- Highest Performing Segments: Segments 84/347-1 shows "good/above average" performance for many performance measures

	Pavement Performance Area Bridge Performance Area							Mobility Performance Area													
Segment#	Segment Length (miles)	Pavement Index	Directic NB/EB	onal PSR SB/WB	% Area Failure	Bridge Index	Sufficiency Rating	% of Deck Area on Functionally Obsolete Bridges	Lowest Bridge Rating	Mobility Index	Future Daily V/C	Existin Hou NB/EB	ng Peak r V/C S B/W B	Closure (insta milepo mi NB/EB	e Extent inces/ st/year/	Directio (all vel	onal TTI	Directi	onal PTI hicles) SB/WB	% Bicycle Accommodation	% Non-Single Occupancy Vehicle (SOV) Trips
84/347-1 ^{^b2}	7	4.13	4.09	4.18	0.0%		No Br	idaes		0.12	0.17	0.09	0.08	0.03	0.00	1.00	1.07	2.05	2.86	100%	19.9%
347-2 ^{Aa2}	9	3.86	4.07	4.23	11.1%		No Br	0		0.11	0.14	0.06	0.06	0.09	0.13	1.22	1.26	4.72	3.06	100%	20.2%
347-3* ^{a1}	5	3.60	3.21	3.59	29.2%		No Br			1.03	1.33	0.63	0.63	0.16	0.12	1.43	1.43	6.13	4.51	43%	19.1%
347-4* ^{a2}	8	3.95	3.86	3.95	0.0%	6.20	98.60	0.0%	6	1.47	1.75	1.01	1.03	0.24	0.15	1.24	1.19	3.25	2.24	98%	9.4%
347-5* ^{a2}	5	3.97	3.76	4.03	10.0%		No Br	idges		1.35	1.61	0.90	0.89	0.61	0.12	1.16	1.15	3.05	2.83	98%	9.3%
Weighted C Avera		3.91	3.85	4.03	8.7%	6.20	98.60	0.0%	6	0.76	0.93	0.50	0.50	0.20	0.11	1.20	1.21	3.78	3.01	91%	15.7%
									SCA	LES											
Performan			Non-Interstate			All			Urban and Fringe Urban All			JI	Uninterrupted				All				
Good/Above Performa		> 3.50	> 3	.50	< 5%	> 6.5	> 80	< 12%	> 6		< 0.	71		< 0	.22	< 1	.15	<	1.3	> 90%	> 17%
Fair/Ave Performa		2.90 - 3.50	2.90	- 3.50	5% - 20%	5.0 - 6.5	50 - 80	12% - 40%	5 - 6		0.71 -	0.89		0.22 ·	0.62	1.15 -	- 1.33	1.3	- 1.5	60% - 90%	11% - 17%
Poor/Below Performa		< 2.90	< 2	.90	> 20%	< 5.0	< 50	> 40%	< 5		> 0.	89		> 0	.62	> 1	.33	>	1.5	< 60%	< 11%
Performan	ce Le vel									Rural					Interrupted		upted				
Good/Above Performa											< 0.	56				< ^	1.3	<	3.0		
Fair/Ave Performa											0.56 -	0.76				> 1.3 a	& < 2.0	> 3.0	& < 6.0		
Poor/Below Performa	U										> 0.	76				> 2	2.0	>	6.0		
	ance	2 or 3 or 4 L ano D	ivided High	¹	Irban Operating E	invironment					> 0.	76				> 2	2.0	>	6.0		

Table ES-2: Corridor Performance Summary by Segment and Performance Measure

^AUninterrupted Flow Facility ^a2 or 3 or 4 Lane Divided Highway *Interrupted Flow Facility ^b2 or 3 Lane Undivided Highway

¹Urban Operating Environment ²Rural Operating Environment

				Safe	ty Performance A	Area					Frei	ight Per	formanc	e Area		
Segment#	Segment Length	Safety	Directional Safet		% of Fatal + Incapacitating Injury Crashes Involving	% of Fatal + Incapacitating	% of Fatal + Incapacitating Injury	% of Fatal + Incapacitating Injury Crashes	Freight	Directional TTTI		Directional TPTI		Closure Duration (minutes/milepost/year/ mile)		Bridge Vertical
	(miles)	Index	NB/EB	SB/WB	SHSP Top 5 Emphasis Areas Behaviors	Injury Crashes Involving Trucks	Crashes Involving Motorcycles	Involving Non- Motorized Travelers	Index	NB/EB	SB/WB	NB/EB	SB/WB	NB/EB	SB/WB	Clearance (feet)
84/347-1 ^{/b2}	7	0.34	0.00	0.68	Insufficient Data	Insufficient Data	Insufficient Data	Insufficient Data	0.45	1.02	1.14	1.94	2.50	6.34	0.00	No UP
347-2 ^{^a2}	9	1.21	1.11	1.31	Insufficient Data	Insufficient Data	Insufficient Data	Insufficient Data	0.30	1.14	1.26	3.73	3.01	13.33	24.27	No UP
347-3*a1	5	0.06	0.06	0.06	Insufficient Data	Insufficient Data	Insufficient Data	Insufficient Data	0.11	1.50	1.58	8.00	10.06	29.16	9.40	No UP
347-4* ^{a2}	8	0.87	0.57	1.17	80%	Insufficient Data	Insufficient Data	Insufficient Data	0.11	1.46	1.34	10.53	7.12	40.59	20.25	No UP
347-5* ^{a2}	5	1.93	1.00	2.86	48%	Insufficient Data	Insufficient Data	Insufficient Data	0.14	1.42	1.30	9.18	5.13	106.80	10.96	No UP
Weighted C Avera		0.90	0.59	1.21	67%	Insufficient Data	Insufficient Data	Insufficient Data	0.23	1.29	1.31	6.43	5.22	35.26	14.19	No UP
SCAL																
Performan					2 or 3 or 4 Lane D	Divided Highway		1		Unin	terrupte	b			All	
Good/Above Perform			< 0.77		< 44%	< 4%	< 16%	< 2%	> 0.77	< 1	.15	< '	1.3	< 4	4.18	> 16.5
Fair/Ave Perform			0.77 - 1.23		44% - 54%	4% - 7%	16% - 26%	2% - 4%	0.67 - 0.77	1.15	- 1.33	1.3	- 1.5	44.18	-124.86	16.0 - 16.5
Poor/Below Perform	\sim		> 1.23		> 54%	> 7%	> 26%	> 4%	< 0.67	> 1	.33	> `	1.5	> 12	24.86	< 16.0
Performan	ce Le vel	2 or 3 Lane Undivided Highway								Inte	rrupted					
Good/Above Perform			< 0.94		< 51%	< 5%	< 18%	< 2%	> 0.33	< '	1.3	< (3.0			
Fair/Ave Perform	ance		0.94 - 1.06		51% - 58%	5% - 7%	18% - 27%	2% - 4%	0.17 - 0.33	1.3	- 2.0	3.0	- 6.0			
Poor/Below Perform	\sim		> 1.06		> 58%	> 7%	> 27%	> 4%	< 0.17	> 2	2.0	> (5.0			

Table ES-2: Corridor Performance Summary by Segment and Performance Measure (continued)

^Uninterrupted Flow Facility*2 or 3 or 4 Lane Divided Highway*Interrupted Flow Facility*2 or 3 Lane Undivided Highway

¹Urban Operating Environment ²Rural Operating Environment

Notes: "Insufficient Data" indicates there was not enough data available to generate reliable performance ratings "No UP" indicates no underpasses are present in the segment

March 2018 **Executive Summary**

NEEDS ASSESSMENT

Corridor Description

The SR 347/SR 84 corridor between I-8 and I-10 provides movement for agricultural, freight, recreational, commuting, and regional travel within southcentral Arizona. It provides a key link between the southern portion of the Phoenix metropolitan area and the southern region of the state and serves intrastate, interstate, and international commerce.

Corridor Objectives

Statewide goals and performance measures were established by the ADOT Long-Range Transportation Plan (LRTP) 2010-2035 goals and objectives that were updated in 2017. Statewide performance goals that are relevant to SR 347/SR 84 performance areas were identified and corridor goals were then formulated for each of the five performance areas that aligned with the overall statewide goals established by the LRTP. Based on stakeholder input, corridor goals, corridor objectives, and performance results, three "emphasis areas" were identified for the SR 347/SR 84 corridor: Mobility, Safety, and Freight.

Taking into account the corridor goals and identified emphasis areas, performance objectives were developed for each quantifiable performance measure that identify the desired level of performance based on the performance scale levels for the overall corridor and for each segment of the corridor. For the performance emphasis areas, the corridor-wide weighted average performance objectives are identified with a higher standard than for the other performance areas.

Achieving corridor and segment performance objectives will help ensure that investments are targeted toward improvements that support the safe and efficient movement of travelers on the corridor. Corridor performance is measured against corridor and segment objectives to determine needs - the gap between observed performance and performance objectives.

Needs Assessment Process

The performance-based needs assessment evaluates the difference between the baseline performance and the performance objectives for each of the five performance areas used to characterize the health of the corridor: Pavement, Bridge, Mobility, Safety, and Freight. The performance-based needs assessment process is illustrated in Figure ES-4.

The needs assessment compares baseline corridor performance with performance objectives to provide a starting point for the identification of performance needs. This mathematical comparison results in an initial need rating of None, Low, Medium, or High for each primary and secondary performance measure. An illustrative example of this process is shown in Figure ES-5.

The initial level of need for each segment is refined to account for hot spots and recently completed or under construction projects, resulting in a final level of need for each segment. The final levels of need for each primary and secondary performance measure are combined to produce a weighted final need rating for each segment. A detailed review of available data helps identify contributing factors to the need and if there is a high level of historical investment.

Figure ES-4: Needs Assessment Process

	STEP 1	STEP 2	STEP
	Initial Need Identification	Need Refinement	Contribu Factor
ACTION	Compare results of performance baseline to performance objectives to identify initial performance need	Refine initial performance need based on recently completed projects and hotspots	Perform "drill-c investigation refined need confirm need to identify contributing fa
RESULT	Initial levels of need (none, low, medium, high) by performance area and segment	Refined needs by performance area and segment	Confirmed need contributing fa by performance and segme

Figure ES-5: Initial Need Ratings in Relation to Baseline Performance (Bridge Example)

Performance Thresholds	Performance Level	Initial Level of Need	Description			
	Good					
	Good	None*	All levels of Good and top 1/3 of Fair (>6.0)			
6.5	Good	NONE				
0.5	Fair					
	Fair	Low	Middle 1/3 of Fair (5.5-6.0)			
5.0	Fair	Medium	Lower 1/3 of Fair and top 1/3 of Poor (4.5-5.5)			
5.0	Poor	Medium				
	Poor	High	Lower 2/3 of Poor (<4.5)			
	Poor	r ngi i				

^{*}A segment need rating of 'None' does not indicate a lack of needed improvements; rather, it indicates that the segment performance score exceeds the established performance thresholds and strategic solutions for that segment will not be developed as part of this study.

March 2018 **Executive Summary**

Summary of Needs

Table ES-3 provides a summary of needs for each segment across all performance areas, with the average need score for each segment presented in the last row of the table. A weighting factor of 1.5 is applied to the need scores of the performance areas identified as emphasis areas (Mobility, Safety, and Freight for the SR 347/SR 84 corridor). There is one segment with a High average need, two segments with a Medium average need, one segment with a Low average need, and one segment with no average need. More information on the identified final needs in each performance area is provided below.

Pavement Needs

- Three segments (347-2, 347-3, and 347-5) contain Pavement hot spots
- Segments 347-2, 347-3, and 347-5 have final segment needs of Low while Segments 84/347-1 and 347-4 have a final segment need of None
- Segments 347-3 and 347-4 have potential pavement repetitive historical investment issues

Bridge Needs

- No segments along the corridor have Bridge hot spots or potential repetitive historical investment issues
- No bridges are considered functionally obsolete or structurally deficient along the corridor
- All segments along the corridor have a final segment need of None

Mobility Needs

- Segments 347-3, 347-4, and 347-5 have a final segment need of High; all other segments on the corridor have a final segment need of Low or None
- Mobility needs are primarily related to high existing and projected traffic volumes and high PTI values

Safety Needs

- Segments 347-5 and 347-2 have final segment needs of High and Medium, respectively
- Safety hot spots exist in Segments 347-4 and 347-5

Freight Needs

- No Freight hot spots exist along the corridor
- Segments 347-3, 347-4, and 347-5 have a final segment need of High while Segments 347-2 and 84/347-1 have a final segment need of None
- Freight needs are primarily related to high truck PTI

Overlapping Needs

This section identifies overlapping performance needs on the SR 347/SR 84 corridor, which provides guidance to develop strategic solutions that address more than one performance area with elevated levels of need. Completing projects that address multiple needs presents the opportunity to more effectively improve overall performance. A summary of the overlapping needs that relate to locations with elevated levels of need is provided below:

- Segment 347-5, which has the highest average need score of all the segments of the corridor, has elevated needs in Mobility, Safety, and Freight performance areas
- Segments 347-3 and 347-4 contains elevated needs in the Mobility and Freight performance areas

	Segment Number and Mileposts (MP)									
Performance Area	84/347-1	347-2	347-3	347-4	347-5					
	MP 155-162	MP 155-162 MP 162-171		MP 176-184	MP 184-189					
Pavement	None*	Low	Low	None	Low					
Bridge	None	None	None	None	None					
Mobility⁺	None	Low	High	High	High					
Safety⁺	None	Medium	None	Low	High					
Freight⁺	None	None	High	High	High					
Average Need	0.00	0.85	1.54	1.62	2.23					

Table ES-3: Summary of Needs by Segment

⁺ Identified as Emphasis Areas for SR 347/SR 84 Corridor

* A segment need rating of 'None' does not indicate a lack of needed improvements; rather, it indicates that the segment performance score exceeds the established performance thresholds and strategic solutions for that segment will not be developed as part of this study

Level of Need	Average Need Range
None*	< 0.1
Low	0.1 - 1.0
Medium	1.0 - 2.0
High	> 2.0

STRATEGIC SOLUTIONS

The principal objective of the CPS is to identify strategic solutions (investments) that are performance-based to ensure that available funding resources are used to maximize the performance of the State's key transportation corridors. One of the first steps in the development of strategic solutions is to identify areas of elevated levels of need as addressing these needs will have the greatest effect on corridor performance. Segments with Medium or High needs and specific locations of hot spots are considered strategic investment areas for which strategic solutions should be developed. Segments with lower levels of need or without identified hot spots are not considered candidates for strategic investment and are expected to be addressed through other ADOT programming processes. The SR 347/SR 84 strategic investment areas (resulting from the elevated needs) are shown in Figure ES-6.

Screening Process

In some cases, needs that are identified do not advance to solutions development and are screened out from further consideration because they have been or will be addressed through other measures includina:

- A project is programmed to address this need
- The need is a result of a Pavement or Bridge hot spot that does not show historical investment issues; these hot spots will likely be addressed through other ADOT programming means
- A bridge is not a hot spot but is located within a segment with a Medium or High level of need; this bridge will likely be addressed through current ADOT bridge maintenance and preservation programming processes
- The need is determined to be non-actionable (i.e., cannot be addressed through an ADOT project)
- The conditions/characteristics of the location have changed since the performance data was collected that was used to identify the need

Candidate Solutions

For each elevated need within a strategic investment area that is not screened out, a candidate solution is developed to address the identified need. Each candidate solution is assigned to one of the following three P2P investment categories based on the scope of the solution:

- Preservation
- Modernization
- Expansion •

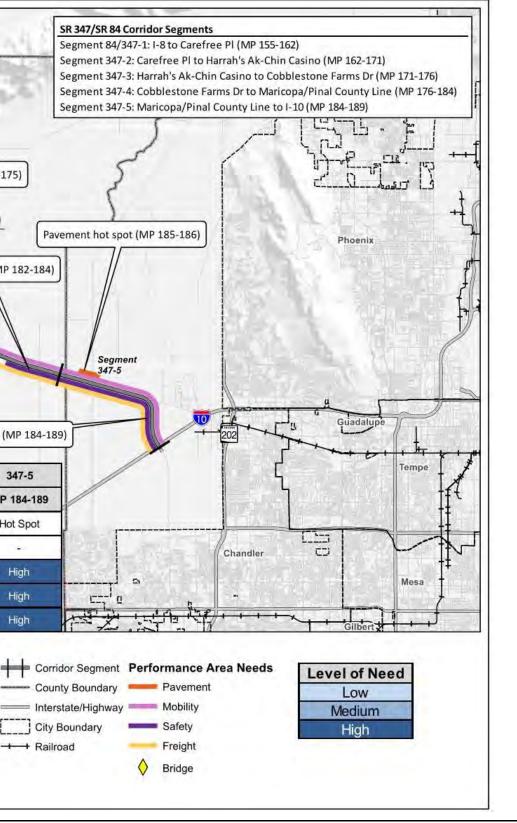
Documented performance needs serve as the foundation for developing candidate solutions for corridor preservation, modernization, and expansion. Candidate solutions are not intended to be a substitute or replacement for traditional ADOT project development processes where various ADOT technical groups and districts develop candidate projects for consideration in the performancebased programming in the P2P process. Rather, these candidate solutions are intended to complement ADOT's traditional project development processes through a performance-based process to address needs in one or more of the five performance areas of Pavement, Bridge, Mobility, Safety, and Freight. Candidate solutions developed for the SR 347/SR 84 corridor will be considered along with other candidate projects in the ADOT statewide programming process.

Candidate solutions include some or all of the following characteristics:

- Do not recreate or replace results from normal programming processes • May include programs or initiatives, areas for further study, and infrastructure projects • Address elevated levels of need (High or Medium) and hot spots
- Focus on investments in modernization projects (to optimize current infrastructure)
- Address overlapping needs
- Reduce costly repetitive maintenance
- Extend operational life of system and delay expansion
- Leverage programmed projects that can be expanded to address other strategic elements
- Provide measurable benefit

Candidate solutions developed to address an elevated need in the Pavement or Bridge performance areas include two options; rehabilitation or full replacement. These solutions are initially evaluated through a Life-Cycle Cost Analysis (LCCA) to provide insights into the cost-effectiveness of these options so a recommended approach can be identified. Candidate solutions developed to address an elevated need in the Mobility, Safety, or Freight performance areas are advanced directly to the Performance Effectiveness Evaluation. In some cases, there may be multiple solutions identified to address the same area of need.

Candidate solutions that are recommended to expand or modify the scope of an already programmed project are noted and are not advanced to solution evaluation and prioritization. These solutions are directly recommended for programming.


Goodyear MARICOPA 238 Pavement hot spot (MP 173-175) Pavement hot spot (MP 162-164) Segment 84/347-1 PINAL P 160 MP 170 Safety hot spot (MP 182-184) Segment 347-2 Segm 347-3 Segment 347-4 Segment 347-5 84 Safety hot spot (MP 184-189) 84/347-1 347-2 347-3 347-4 347-5 Performance Area MP 162-171 MP 155-162 MP 171-176 MP 176-184 MP 184-189 Pavement Hot Spot Hot Spot Hot Spot -1. Bridge ---141 4 High Mobility⁺ High High --Safety* -Medium Hot Spot High -E----High Freight⁺ --High High * Identified as Emphasis Areas for SR 347/SR 84 Corridor County Boundary

Note: Figure shows strategic investment areas, which are segments with Medium and High levels of need and locations of hot spots. A "-" symbol indicates a segment level of need of Low or None, which is not considered strategic

SR 347/SR 84 Corridor Profile Study: I-8 to I-10 Strategic Investment Areas

SR 347/SR 84 Corridor Profile Study Final Report

SOLUTION EVALUATION AND PRIORITIZATION

Candidate solutions are evaluated using the following steps: LCCA (where applicable), Performance Effectiveness Evaluation, Solution Risk Analysis, and Candidate Solution Prioritization. The methodology and approach to this evaluation is shown in Figure ES-7 and described more fully below.

Life-Cycle Cost Analysis

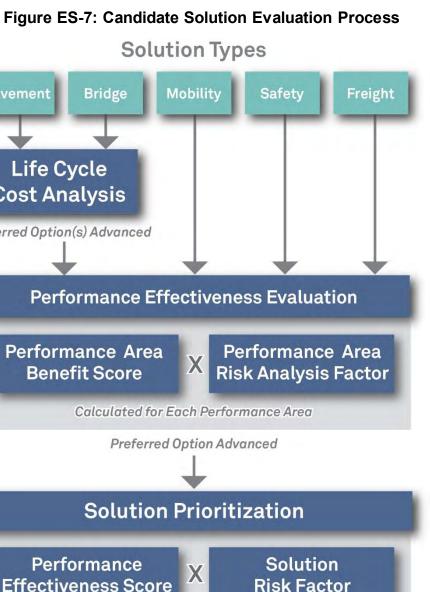
All Pavement and Bridge candidate solutions have two options: rehabilitation/repair or reconstruction. These options are evaluated through an LCCA to determine the best approach for each location where a Pavement or Bridge solution is recommended. The LCCA can eliminate options from further consideration and identify which options should be carried forward for further evaluation.

All Mobility, Safety, and Freight strategic investment areas that result in multiple independent candidate solutions are advanced directly to the Performance Effectiveness Evaluation.

Performance Effectiveness Evaluation

After completing the LCCA process, all remaining candidate solutions are evaluated based on their performance effectiveness. This process includes determining a Performance Effectiveness Score (PES) based on how much each solution impacts the existing performance and needs scores for each segment. This evaluation also includes a Performance Area Risk Analysis to help differentiate between similar solutions based on factors that are not directly addressed in the performance system.

Solution Risk Analysis


All candidate solutions advanced through the Performance Effectiveness Evaluation are also evaluated through a Solution Risk Analysis process. A solution risk probability and consequence analysis is conducted to develop a solution-level risk weighting factor. This risk analysis is a numeric scoring system to help address the risk of not implementing a solution based on the likelihood and severity of the performance failure.

Candidate Solution Prioritization

The PES, weighted risk factor, and segment average need score are combined to create a prioritization score. The candidate solutions are ranked by prioritization score from highest to lowest. The highest prioritization score indicates the candidate solution that is recommended as the highest priority. Solutions that address multiple performance areas tend to score higher in this process.

Solution Types Mobility Pavement Life Cycle **Cost Analysis** Preferred Option(s) Advanced **Performance Effectiveness Evaluation** Performance Area X **Benefit Score** Calculated for Each Performance Area **Preferred Option Advanced Solution Prioritization** Performance X **Effectiveness Score**

SUMMARY OF CORRIDOR RECOMMENDATIONS

Prioritized Candidate Solution Recommendations

Table ES-4 and Figure ES-8 show the prioritized candidate solutions recommended for the SR 347/SR 84 corridor. Implementation of these solutions is anticipated to improve performance of the SR 347/SR 84 corridor, primarily in the Mobility, Safety, and Freight performance areas. The highest priority solutions address needs in the Wild Horse Pass area (SR 347 MP 184-189) and Casa Blanca area (SR 347 MP 176-184).

Other Corridor Recommendations

As part of the investigation of strategic investment areas and candidate solutions, other corridor recommendations can also be identified. These recommendations could include modifications to the existing Statewide Construction Program, areas for further study, or other corridor specific recommendations that are not related to construction or policy. The list below identifies other corridor recommendations for the SR 347/SR 84 corridor:

An RSA is recommended on SR 347 between MP 171.4 and MP 175.4

Policy and Initiative Recommendations

In addition to location-specific needs, general corridor and system-wide needs have also been identified through the CPS process. While these needs are more overarching and cannot be individually evaluated through the CPS process, it is important to document them. A list of recommended policies and initiatives was developed for consideration when programming future projects not only on the SR 347/SR 84 corridor, but across the entire state highway system where conditions are applicable. The following list, which is in no particular order of priority, was derived from the four CPS rounds:

- Install Intelligent Transportation System (ITS) conduit with all new infrastructure projects
- Prepare strategic plans for Closed Circuit Television (CCTV) camera and Road Weather Information System (RWIS) locations statewide
- Leverage power and communication at existing weigh-in-motion (WIM), dynamic messaging signs (DMS), and call box locations to expand ITS applications across the state
- Consider solar power for lighting and ITS where applicable
- Investigate ice formation prediction technology where applicable ٠
- Conduct highway safety manual evaluation for all future programmed projects •
- Develop infrastructure maintenance and preservation plans (including schedule and funding) for all pavement and bridge infrastructure replacement or expansion projects
- Develop standardized bridge maintenance procedures so districts can do routine maintenance work
- Review historical ratings and level of previous investment during scoping of pavement and bridge projects; in pavement locations that warrant further investigation, conduct subsurface investigations during project scoping to determine if full replacement is warranted

- investigations to address issues specific to the varying conditions along the project
- Expand programmed and future pavement projects as necessary to include shoulders
- Expand median cable barrier guidelines to account for safety performance
- Install CCTV cameras with all DMS
- than streaming video
- Develop statewide program for pavement replacement
- traffic count data
- feasible
- constructed with a Safety Edge
- data on tribal lands is recommended to ensure adequate reflection of safety issues
- Expand data collection devices statewide to measure freight delay
- Evaluate and accommodate potential changes in freight and goods movement trends that may result from improvements and expansions to the state roadway network
- At traffic interchanges with existing communication connectivity to the ADOT Traffic vehicle detection with the capability for wrong way vehicle detection
- should be deployed at traffic interchanges for improved traffic control

Next Steps

Candidate solutions developed for the SR 347/SR 84 corridor will be considered along with other candidate projects in the ADOT statewide programming process. It is important to note that the candidate solutions are intended to represent strategic solutions to address existing performance needs related to the Pavement, Bridge, Mobility, Safety, and Freight performance areas. Therefore, the strategic solutions are not intended to preclude recommendations related to the ultimate vision for the corridor that may have been defined in the context of prior planning studies and/or design concept reports. Recommendations from such studies are still relevant to addressing the ultimate corridor objectives.

Upon completion of all four CPS rounds, the results will be incorporated into a summary document comparing all corridors that is expected to provide a performance-based review of statewide needs and candidate solutions.

• For pavement rehabilitation projects, enhance the amount/level of geotechnical

• In locations with limited communications, use CCTV cameras to provide still images rather

Install additional continuous permanent count stations along strategic corridors to enhance

• When reconstruction or rehabilitation activities will affect existing bridge vertical clearance, the dimension of the new bridge vertical clearance should be a minimum of 16.25 feet where

All new or reconstructed roadway/shoulder edges adjacent to an unpaved surface should be

Collision data on tribal lands may be incomplete or inconsistent; additional coordination for

Operations Center, consideration should be given to adding thermal detection cameras for

Improved vehicle detection systems, as recommended by ADOT Systems Technology group,

Table ES-4: Prioritized Recommended Solutions

Rank	Candidate Solution #	Option	Candidate Solution Name	Candidate Solution Scope	Estimated Cost (in millions)	Investment Category (Preservation [P], Modernization [M], Expansion [E])	Prioritization Score
1	CS347.5	-	Wild Horse Pass Area Safety Improvements (MP 184-189)	-Rehabilitate shoulders in both directions (striping, delineators, RPMs, safety edge, and rumble strips for both shoulders), MP 184-189 -Install advanced warning signal system with detectors and beacons in both directions at Riggs Road intersection (MP 185.3) -Construct traffic signal at Maricopa Road intersection (MP 187.5) and provide an advanced warning signal system with detectors and beacons (both directions) and widen intersection to provide dual southbound left- turn lanes -Install intersection lighting at Maricopa Road intersection (MP 187.5)	\$4.4	М	798
2	CS347.6		Wild Horse Pass Area Mobility and Freight Improvements (MP 184-189)	-Widen to the inside to provide a total of 6 lanes (3 in each direction) with a median concrete barrier -Construct 1,200' SB acceleration lane and lengthen SB deceleration lane to 300' at Maricopa Road intersection (MP 187.5) -Construct 1,200' NB/SB acceleration lanes and lengthen NB/SB deceleration lanes to 300' at Riggs Road intersection (MP 185.3)	\$39.2	E	299
3	CS347.3	_	Improvements (MP 176-184)	-Rehabilitate shoulders in both directions (striping, delineators, RPMs, safety edge, and rumble strips for both shoulders), MP 176-184 -Install advanced warning signal system with detectors and beacons in both directions at Cement Plant intersection (MP 182.5) and lengthen NB deceleration lane to 300'	\$4.8	М	140
4	CS347.4		Freight Improvements (MP 176- 184)	-Widen to the inside to provide a total of 6 lanes (3 in each direction) with a median concrete barrier -Construct 1,200' NB acceleration lane at Casa Blanca Road intersection (MP 178.4) -Widen NB and SB Gila River Bridges (MP 181.8) -Widen NB and SB Santa Cruz Wash Bridges (MP 178.3) -Widen NB and SB Santa Cruz Wash Bridges (MP 176.2)	\$78.6	E	118
5	CS347.2	-	Maricopa Area Mobility and Freight Improvements (MP 174- 176)	-Widen to the inside to provide a total of 6 lanes (3 in each direction) with a raised median; for NB, widening limits are MP 174.8-176; for SB, widening limits are MP 175.5-176	\$6.5	E	78
6	CS347.1	-		-Rehabilitate shoulders in both directions (striping, delineators, RPMs, safety edge, and rumble strips for both shoulders), MP 162-165 and MP 168-171 -Improve delineation (striping, delineators and RPMs), MP 165-168	\$3.7	М	76
7	CS347.7	-	SR 347/I-10 Interchange Mobility and Freight Improvements (MP 189)	-Convert SR 347/I-10 traffic interchange from conventional diamond to diverging diamond interchange	\$5.7	М	18

SR 347/SR 84 Corridor Profile Study Final Report

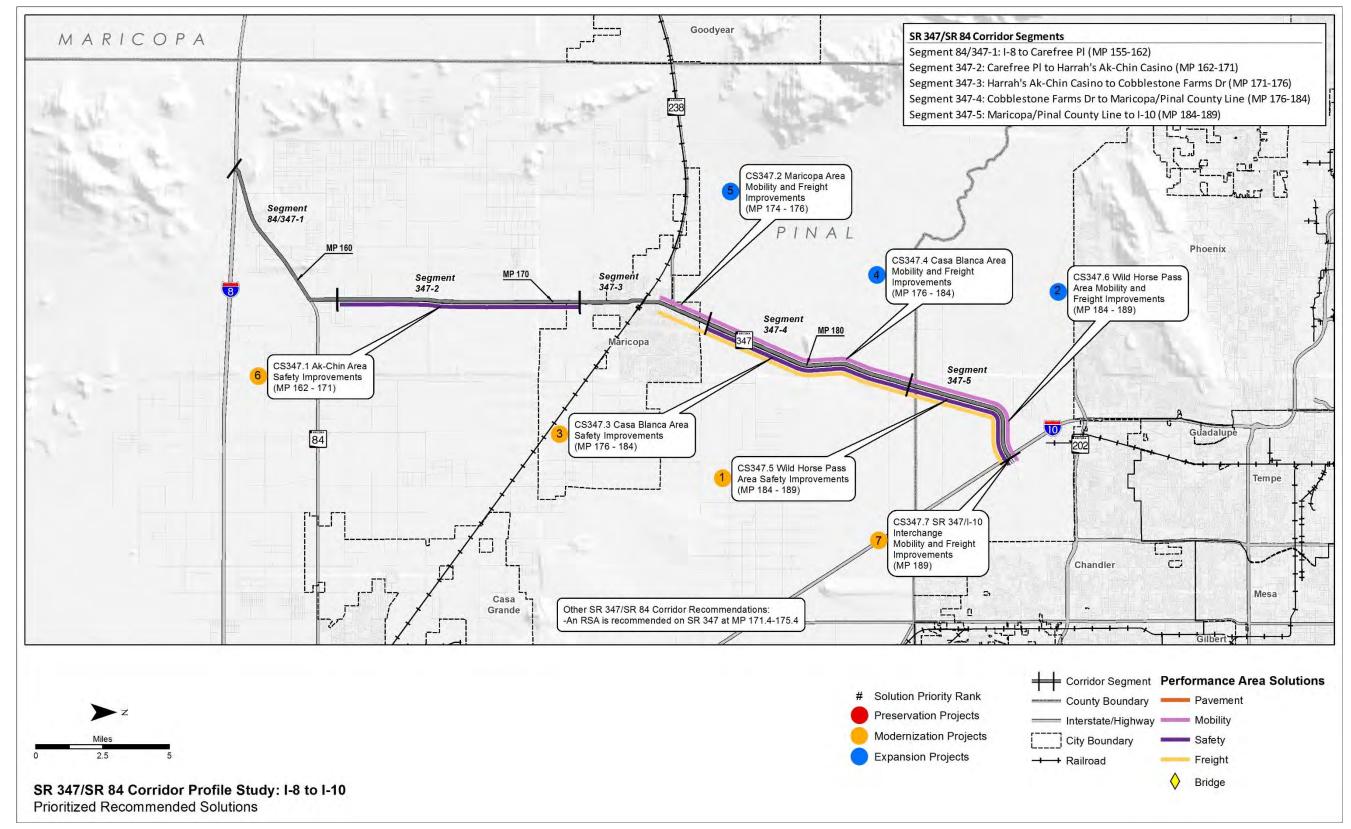
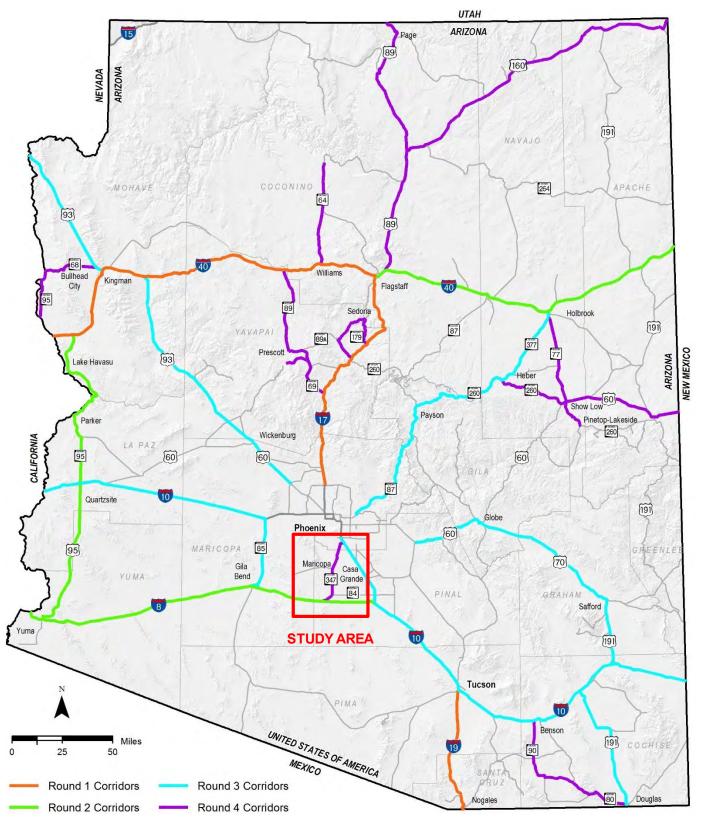


Figure ES-8: Prioritized Recommended Solutions

SR 347/SR 84 Corridor Profile Study Final Report

1.0 INTRODUCTION

The Arizona Department of Transportation (ADOT) is the lead agency for this Corridor Profile Study (CPS) of State Route 347 (SR 347) from Interstate 10 (I-10) to State Route 84 (SR 84) and SR 84 from SR 347 to Interstate 8 (I-8). The study examines key performance measures relative to the SR 347/SR 84 corridor, and the results of this performance evaluation are used to identify potential strategic improvements. The intent of the corridor profile program, and of ADOT's Planning-to-Programming (P2P) process, is to conduct performance-based planning to identify areas of need and make the most efficient use of available funding to provide an efficient transportation network.


ADOT has completed 21 CPS within four separate groupings or rounds.

The fourth round (Round 4) of studies began in Spring 2017, and includes:

- SR 64: I-40 to Grand Canyon National Park
- SR 68: SR 95 North to US 93 and SR 95 North: California State Line to Nevada State Line
- SR 69: I-17 to SR 89; Fain Rd: SR 69 to SR 89A; SR 89A: Fain Rd to SR 89; SR 89: SR 89A to I-40
- SR 77: US 60 to SR 377
- US 89: Flagstaff to Utah State Line
- SR 90: I-10 to SR 80 and SR 80: SR 90 to US 191
- US 160: US 89 to New Mexico State Line
- SR 179: I-17 to SR 89A; SR 89A: SR 179 to SR 260; and SR 260: SR 89A to I-17
- SR 260: SR 277 to SR 73 and US 60: SR 260 to New Mexico State Line
- SR 347: I-10 to SR 84 and SR 84: SR 347 to I-8

The studies under this program assess the overall health, or performance, of the state's strategic highways. The CPS will identify candidate solutions for consideration in the Multimodal Planning Division's (MPD) P2P project prioritization process, providing information to guide corridor-specific project selection and programming decisions.

The SR 347/SR 84 corridor, depicted in **Figure 1** along with other previously completed CPS, is one of the strategic statewide corridors identified and the subject of this Round 4 CPS.

Figure 1: Corridor Study Area

SR 347/SR 84 Corridor Profile Study Final Report

1.1 Corridor Study Purpose

The purpose of the CPS is to measure corridor performance to inform the development of strategic solutions that are cost-effective and account for potential risks. This purpose can be accomplished by following the process described below:

- Inventory past improvement recommendations
- Define corridor goals and objectives
- Assess existing performance based on quantifiable performance measures
- Propose various solutions to improve corridor performance
- Identify specific solutions that can provide quantifiable benefits relative to the performance measures
- Prioritize solutions for future implementation, accounting for performance effectiveness and risk analysis findings

1.2 Study Goals and Objectives

The objective of this study is to identify a recommended set of prioritized potential solutions for consideration in future construction programs, derived from a transparent, defensible, logical, and replicable process. The SR 347/SR 84 CPS defines solutions and improvements for the corridor that are evaluated and ranked to determine which investments offer the greatest benefit to the corridor in terms of enhancing performance. Corridor benefits can be categorized by the following three investment types:

- Preservation: Activities that protect transportation infrastructure by sustaining asset condition or extending asset service life
- Modernization: Highway improvements that upgrade efficiency, functionality, and safety without adding capacity
- Expansion: Improvements that add transportation capacity through the addition of new facilities and/or services

This study identifies potential actions to improve the performance of the SR 347/SR 84 corridor. Proposed actions are compared based on their likelihood of achieving desired performance levels, life-cycle costs, cost-effectiveness, and risk analysis to produce a prioritized list of solutions that help achieve corridor goals.

The following goals are identified as the desired outcome of this study:

- Link project decision-making and investments on key corridors to strategic goals
- Develop solutions that address identified corridor needs based on measured performance
- Prioritize improvements that cost-effectively preserve, modernize, and expand transportation infrastructure

1.3 Corridor Overview and Location

The SR 347/SR 84 corridor between I-10 and I-8 provides movement for agricultural, freight, commuting, recreation needs, and regional travel within Arizona. It provides a key link between the southern portion of the Phoenix metropolitan area and the southern region of the state and serves intrastate, interstate, and international commerce. The corridor connects the City of Maricopa, the Ak-Chin Indian Community, and the Gila River Indian Community (GRIC). This corridor also serves recreational areas within and near the Sonoran Desert National Monument via SR 238 and I-8. The SR 347/SR 84 corridor includes all of SR 347 and a small portion of SR 84. The SR 347/SR 84 corridor between I-10 and I-8 is approximately 34 miles in length.

1.4 Corridor Segments

The SR 347/SR 84 corridor is divided into 5 planning segments to allow for an appropriate level of detailed needs analysis, performance evaluation, and comparison between different segments of the corridor. The corridor is segmented at logical breaks where the context changes due to differences in characteristics such as terrain, daily traffic volumes, or roadway typical sections. Corridor segments are described in **Table 1** and shown in **Figure 2**.

Segment #	Route	Begin	End	Approx. Begin Milepost	Approx. End Milepost	Approx. Length (miles)	Typical Through Lanes (NB/EB, SB/WB)	2015/2035 Average Annual Daily Traffic Volume (vpd)	Charao
84/347-1	SR 84/ SR 347	I-8	Carefree Place	155	162	7	1,1	1,000/2,000	This rural segment has uninterrupted flee movement at SR 84, consistent topogra section.
347-2	SR 347	Carefree Place	Harrah's Ak- Chin Casino	162	171	9	2,2	6,000/10,000	This rural segment has uninterrupted fl four-lane divided section.
347-3	SR 347	Harrah's Ak- Chin Casino	Cobblestone Farms Drive	171	176	5	2,2 3,3	26,000/44,000	This fringe urban segment has interrup grade railroad crossing, consistent topo comprised of four/five/six-lane divided s
347-4	SR 347	Cobblestone Farms Drive	Maricopa/Pinal County Line	176	184	8	2,2	40,000/68,000	This rural segment has interrupted flow is comprised of a four-lane divided sect segment, at Casa Blanca Rd and at the entrance.
347-5	SR 347	Maricopa/Pinal County Line	I-10	184	189	5	2,2	36,000/63,000	This rural segment has interrupted flow is comprised of a four-lane divided sec segment, at Riggs Rd and at the I-10 ra

Table 1: SR 347/SR 84 Corridor Segments

acter Description

l flow (except for the southbound SR 347 graphy, and is comprised of a two-lane undivided

I flow, consistent topography, and is comprised of a

upted flow due to many traffic signals and an atpography, numerous access points, and is d sections.

ow, consistent topography and traffic volumes, and ection. There are two traffic signals located in this he Gila River Sand and Gravel Maricopa Plant

ow, consistent topography and traffic volumes, and ection. There are two traffic signals located in this ramps.

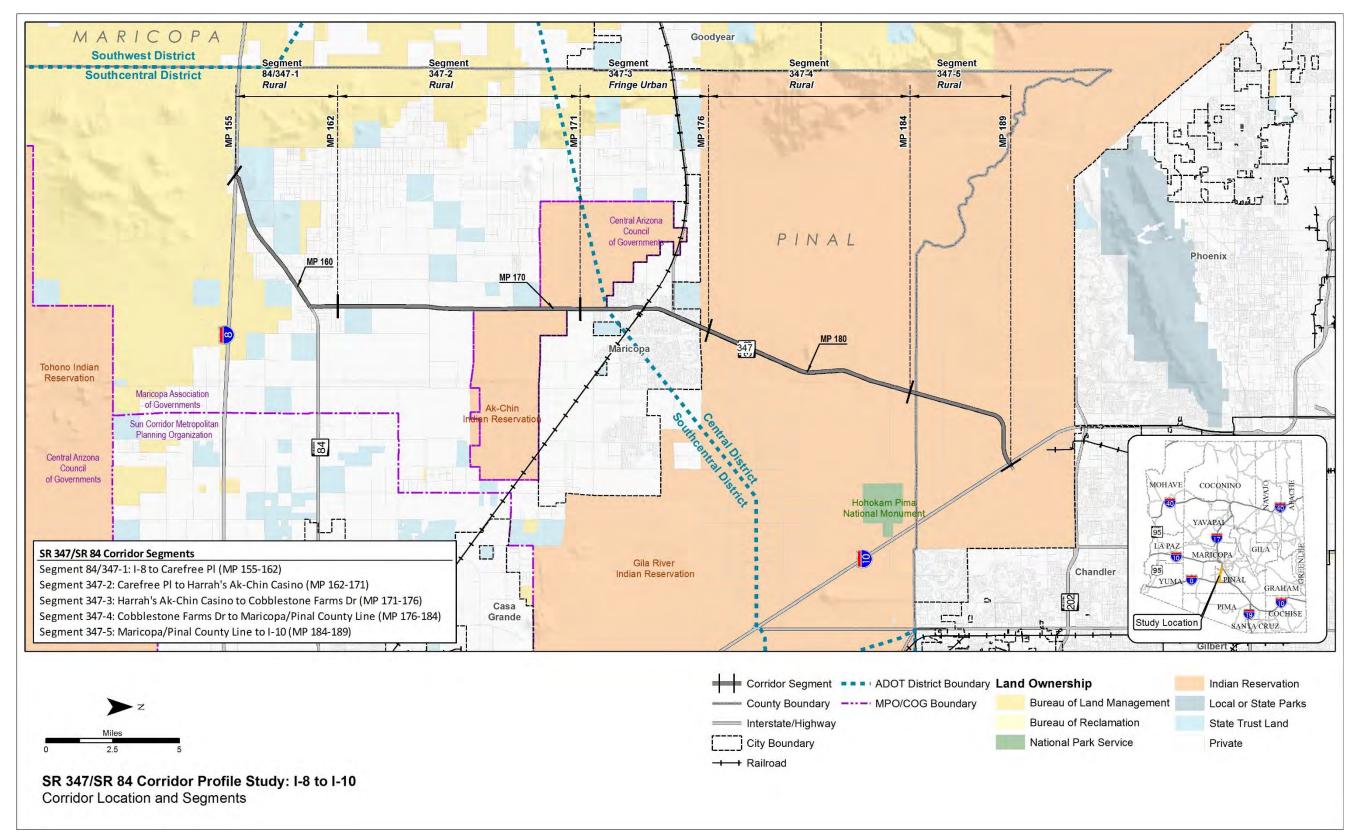


Figure 2: Corridor Location and Segments

1.5 Corridor Characteristics

The SR 347/SR 84 corridor is an important travel corridor in the southcentral part of the state. The corridor functions as a route for agricultural, freight, recreational, commuting, and regional traffic and provides critical connections between the communities it serves and the rest of the regional and interstate network.

National Context

The SR 347/SR 84 corridor is a vital link across southcentral Arizona that connects the City of Maricopa, GRIC, and the Ak-Chin Indian Community to the Phoenix metropolitan area. It is a strategic transportation link across southcentral Arizona for freight and intercity travel.

Regional Connectivity

The SR 347/SR84 corridor between I-8 and I-10 provides movement for travel within southcentral Arizona. The corridor is located in two ADOT Districts (Central and Southcentral); two planning areas (Maricopa Association of Governments [MAG] and Central Arizona Governments [CAG]); and two counties (Maricopa and Pinal). Within the corridor study limits, SR 347/SR 84 offers connections to several major roadways, including I-10, Riggs Road, SR 238, Maricopa-Casa Grande Highway, and I-8. This corridor serves the City of Maricopa as well as GRIC and the Ak-Chin Indian Community.

Commercial Truck Traffic

Communities along the SR 347/SR 84 corridor are dependent on the corridor to access the state economy through freight deliveries and travel to other locations. Freight traffic (trucks) comprise from 6% to 13% of the total traffic flow on the corridor, with the higher truck percentages within the southern portion of the corridor. The section of SR 347 between I-10 and SR 238 is frequently traveled by trucks hauling loads to the regional landfill on SR 238 west of SR 347. The corridor is also used as an oversized truck route.

Commuter Traffic

A majority of the commuter traffic along the SR 347/SR 84 corridor occurs between the City of Maricopa and I-10. The SR 347/84 corridor is considered rural in character except within the City of Maricopa. According to the most recent traffic volume data maintained by ADOT, traffic volumes range from approximately 1,200 vehicles per day on SR 84 near the I-8 traffic interchange (TI) to over 40,000 vehicles per day north of the City of Maricopa on SR 347.

According to the 2013 American Community Survey data from the US Census Bureau, 80% to 90% of the workforce in areas along the corridor relies on a private vehicle to get to work.

Recreation and Tourism

The SR 347/SR 84 corridor provides access to the Sonoran Desert National Monument via SR 238 or I-8.

Multimodal Uses

Freight Rail

The Union Pacific Railroad (UPRR) "Sunset Route" crosses the corridor within the City of Maricopa. The UPRR Sunset Route connects Los Angeles with El Paso and passes through Southern Arizona in an east-west direction through Yuma, Wellton, Gila Bend, Maricopa, Casa Grande, Eloy, Marana, Tucson, Benson and Willcox. The UPRR Sunset Route typically carries between 45 and 65 trains per day.

Passenger Rail

Amtrak's Sunset Limited (New Orleans to Los Angeles) and Texas Eagle (Chicago to Los Angeles) routes serve long-distance tourist travel with daily service. The Sunset Limited and Texas Eagle routes share track with the UPRR Sunset Route and are subject to delays caused by freight traffic. There is a passenger station in the City of Maricopa. Other passenger stations are located in Yuma, Tucson, and Benson.

Bicycles/Pedestrians

Opportunities for bicycle and pedestrian travel are somewhat limited on SR 347/SR 84. Bicycle traffic is permitted on the mainline outside shoulder in rural areas. Outside shoulder widths on the rural SR 347 portions of the corridor are around ten feet wide. Outside shoulder widths on the SR 84 portion are five feet wide. Sidewalks are provided along SR 347 through parts of the City of Maricopa but are not continuous.

Bus/Transit

The City of Maricopa provides several types of transit services through the City of Maricopa Express Transit (COMET) system. These transit types include local demand response, local limited demand response, route deviation services, regional demand response, and Valley Metro vanpool. These transit options typically require a reservation or run on a very limited basis. The route deviation services generally have stops at the Pinal County Public Health Clinic/Library, Legacy School, Central Arizona College, Copper Sky Recreation Center, Sun Life Medical, COPA Senior Center, and Sun Life Women's Center.

Aviation

There are two general aviation facilities in proximity to the SR 347/SR 84 corridor. These include Stellar Airpark, owned and operated by the Stellar Runway Utilizers Association, and the Ak-Chin Regional Airport (formerly Phoenix Regional Airport), owned and operated by the Ak-Chin Indian Community. The northern portion of the corridor serves as a connection to numerous other airports located in the Phoenix metropolitan area via I-10 and the Loop 202.

Land Ownership. Land Uses and Jurisdictions

As shown previously in Figure 2, the SR 347/SR 84 corridor traverses multiple jurisdictions and land owned or managed by various entities. The southern section of the corridor traverses privately held and State Trust land. A portion of the central segment of the corridor traverses the Ak-Chin Indian Community. The northern section of the corridor traverses GRIC. Land ownership in and surrounding the City of Maricopa is mainly private land.

Population Centers

Population centers of various sizes exist along the SR 347/SR 84 corridor. Table 2 provides a summary of the populations for communities along the corridor. Significant population growth is projected between 2010 and 2040 in the City of Maricopa and in the corridor vicinity according to the Arizona State Demographer's Office.

Community	2010 Population	2015 Population	2040 Population	% Change 2010-2040	Total Growth
Maricopa County	3,824,058	4,076,438	6,030,950	58%	2,206,892
Gila River	3,000	3,000	3,300	10%	300
Pinal County	376,369	406,468	800,707	113%	424,338
Maricopa	43,598	48,374	97,013	123%	53,415

Table 2: Current and Future Population

Source: U.S. Census, Arizona Department of Administration – Employment and Population Statistics

Major Traffic Generators

The Phoenix metropolitan area, along with the City of Maricopa, are major traffic generators for the SR 347/SR 84 corridor.

Tribes

Portions of the SR 347/SR 84 corridor lie within GRIC and the Ak-Chin Indian Community.

Wildlife Linkages

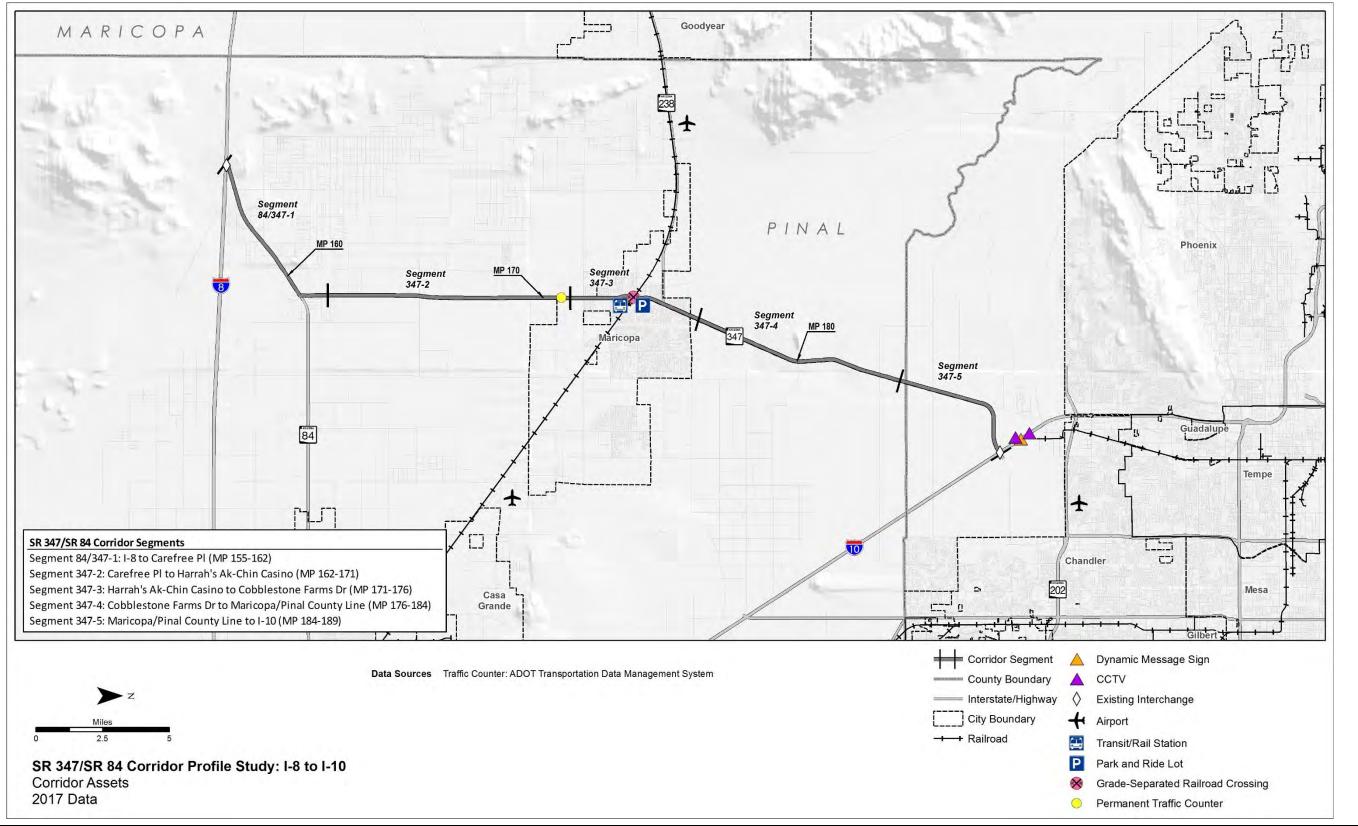
The Arizona State Wildlife Action Plan (SWAP) provides a 10-year vision for the entire state, identifying wildlife and habitats in need of conservation, insight regarding the stressors to those resources, and actions that can be taken to alleviate those stressors. Using the Habimap Tool that creates an interactive database of information included in the SWAP, the following were identified in relation to the SR 347/SR 84 corridor:

- Arizona Game and Fish Department (AGFD) Wildlife Waters are located near the southern portion of the corridor, specifically in the areas to the north and south of the SR 84/I-8 TI
- The corridor travels through a few allotments controlled by the Arizona State Land Department (ASLD)
- Riparian areas include a few small areas adjacent to SR 347 near the City of Maricopa and on the east and west sides of SR 347 near the SR347/SR84 junction

- Arizona Wildlife Linkages: No missing or potential wildlife linkages are noted
- SR 84 section of the corridor
- conservation need located along the SR 84 section of the corridor
- of the corridor

Corridor Assets

Corridor transportation assets are summarized in Figure 3. An at-grade railroad crossing is located on SR 347 near MP 173.4. ADOT is currently in the process of constructing this crossing to be grade-separated. Construction for this project is scheduled to be complete in late 2019. The Maricopa Amtrak transit station is currently located on the east side of SR 347 near MP 173.4 but will be relocating to the west side of SR 347 in near future.


The corridor includes two grade-separated TIs: one at the northern terminus of the corridor involving SR 347 and I-10 and another at the southern terminus of the corridor involving SR 84 and I-8. There is a permanent traffic counter on SR 347 at MP 171.7. Within the corridor vicinity there are closed circuit television (CCTV) cameras and Dynamic Message Signs (DMS) on I-10, along with various small General Aviation or private airports. There is a park and ride facility near MP 173.5 in Maricopa.

• According to the Species and Habitat Conservation Guide (SHCG), sensitive habitats that have moderate to high conservation potential exist along the corridor; these areas are located primarily on the southern half of the corridor, with the highest conservation potential on the

• Areas where Species of Greatest Conservation Need (SGCN) are high or moderately vulnerable are similar to the areas identified in the SHCG (see above), with those of highest

• Identified areas of moderate or high levels of Species of Economic and Recreational Importance (SERI) exist along the corridor; these are located primarily on the southern half Figure 3: Corridor Assets

1.6 Corridor Stakeholders and Input Process

A Technical Advisory Committee (TAC) was created that was comprised of representatives from key stakeholders. TAC meetings were held at key milestones to present results and obtain feedback. In addition, meetings were conducted with key stakeholders between July 2017 and November 2017 to present the results and obtain feedback.

Key stakeholders identified for this study included:

- ADOT Central District
- ADOT Southcentral District
- ADOT Technical Groups
- MAG
- CAG
- AGFD
- ASLD
- Federal Highway Administration (FHWA)

Several chapter deliverables were developed during the course of the CPS. The chapters were provided to the TAC for review and comment.

1.7 Prior Studies and Recommendations

This study identified recommendations from previous studies, plans, and preliminary design documents. Studies, plans, and programs pertinent to the SR 347/SR 84 corridor were reviewed to understand the full context of future planning and design efforts within and around the study area. These studies are organized below into four categories: Framework and Statewide Studies, Regional Planning Studies, Planning Assistance for Rural Areas (PARAs) and Small Area Transportation Studies (SATS), and Design Concept Reports (DCRs) and Project Assessments (PAs).

Framework and Statewide Studies

- ADOT Bicycle and Pedestrian Plan Update (2013)
- ADOT Pedestrian Safety Action Plan (2017)
- ADOT Five-Year Transportation Facilities Construction Program (2018 2022)
- ADOT Climbing and Passing Lane Prioritization Study (2015)
- ADOT Arizona Key Commerce Corridors (2014)
- ADOT Arizona Multimodal Freight Analysis Study (2009)
- ADOT Arizona Ports of Entry Study (2013) ٠
- ADOT Arizona State Airport Systems Plan (2008)
- ADOT Arizona State Freight Plan (2016)
- ADOT Arizona State Rail Plan (2011)
- AGFD Arizona State Wildlife Action Plan (2012) / Arizona Wildlife Linkages Assessment

- ADOT Arizona Statewide Dynamic Message Sign Master Plan (2011)
- ADOT Arizona Statewide Rail Framework Study (2010)
- ADOT Arizona Statewide Rest Area Study (2011)
- ADOT Arizona Statewide Shoulders Study (2015)
- ADOT Arizona Strategic Highway Safety Plan (2014)
- ADOT Arizona Roadway Departure Safety Implementation Plan (RDSIP) (2014)
- ADOT AASHTO U.S. Bicycle Route System (2015)
- ADOT Low Volume State Routes Study (2017)
- (2010)
- ADOT What Moves You Arizona? Long-Range Transportation Plan (2010-2035)

Regional Planning Studies

- MAG 2035 Regional Transportation Plan (2014)
- MAG Draft 2040 Regional Transportation Plan (2017)
- MAG FY 2017-2021 Transportation Improvement Program (2016)
- MAG Draft FY 2018-2022 Transportation Improvement Program (2017)
- Interstates 8 and 10 Hidden Valley Transportation Framework Study (2009)
- Pinal County Regional Transportation Authority Proposed Projects (2017)
- MAG Regional Transit Framework (2010)
- CAG Regional Transportation Plan (2015)

Planning Assistance for Rural Areas and Small Area Transportation Studies

- Pinal County SATS (2006)
- City of Maricopa Area Transportation Plan (2015)
- Southern Maricopa/Northern Pinal County Area Transportation Study (2003)

Design Concept Reports and Project Assessments

- (2015)
- Pinal County's East-West Corridor Study Final Design Concept Report (2015)
- Wild Horse Pass Circulation Study (2016)

Summary of Prior Recommendations

Various studies and plans, including several DCRs, have recommended improvements to the SR 347/SR 84 corridor as shown in **Table 3** and **Figure 4**. They include, but are not limited to:

- Widening SR 84 to 4 lanes
- Widening SR 347 to 6 lanes or 8 lanes through the City of Maricopa

ADOT Statewide Transportation Planning Framework – Building a Quality Arizona (BQAZ)

• SR 347: SR 347 at Union Pacific Railroad - Final DCR and Environmental Assessment

- Constructing a grade-separated railroad crossing with bike lanes and sidewalks in the City of Maricopa
- New grade-separated TIs at the following locations:
 - With proposed West Pinal County Freeway
 - With proposed SR 238 Freeway
- New signalized intersections along SR 347 at the following locations:
 - With proposed Val Vista Parkway
 - \circ With proposed East-West Corridor
 - o SR 347/Maricopa Road intersection
- Constructing pedestrian safety improvements along SR 347 through the City of Maricopa including sidewalks and hybrid beacons
- Enhancing transit use along the corridor

Map Key	Begin MP	End MP	Length	Project Description	(Pres Mode	ment Ca ervatio rnizatio ansion	n [M],		us of Recon	nmendation	Name of Study
Ref. #	IVI P	IVI P	(miles)		Ρ	Μ	E	Program Year	Project No.	Environmental Documentation (Y/N)?	
SR 84											
1	155	161	6	Widen SR 84 to 4 lanes and classify as an arterial or parkway			\checkmark	-	N/A	N	Pinal County Small Area Transportation Study (2006); Pinal County Regionally Significant Routes for Safety and Mobility (2008)
SR 347											
2	161	173	12	Widen SR 347 to 6-lane arterial or 8-lane parkway and extend it down from SR 84 to I-8			Ą	-	N/A	N	MAG Interstates 8 and 10 Hidden Valley Transportation Framework Study (2009); MAG Draft 2040 Regional Transportation Plan (2017); Pinal County Regionally Significant Routes for Safety and Mobility (2008); Pinal County Small Area Transportation Study (2006); CAG Regional Transportation Plan (2015)
3	161	173	12	Bus rapid transit with proposed park-and-ride near the SR 347/McCartney Road intersection				-	N/A	N	MAG 2035 Regional Transportation Plan (2014); MAG Draft 2040 Regional Transportation Plan (2017)
4	164	164	-	New traffic interchange with proposed West Pinal County Freeway			\checkmark	-	N/A	N	Proposed Pinal County Regional Transportation Authority Projects (2017); Pinal County East-West Corridor Study Final DCR (2015); MAG Interstates 8 and 10 Hidden Valley Transportation Framework Study (2009)
5	166	166	-	New signalized intersection with proposed Val Vista Parkway			\checkmark	-	N/A	N	Pinal County East-West Corridor Study Final DCR (2015); Pinal County Regionally Significant Routes for Safety and Mobility (2008); MAG Interstates 8 and 10 Hidden Valley Transportation Framework Study (2009)
6	171	171	-	New signalized intersection with proposed East-West Corridor that becomes east leg of existing signalized Harrah's Ak-Chin Casino entrance along SR 347			\checkmark	-	N/A	N	Pinal County East-West Corridor Study Final DCR (2015)
7	171.4	175.4	4.0	Construct a raised median and sidewalk between MP 172.9- 173.8; provide a pedestrian hybrid beacon at the intersection of Alterra Parkway/M.L.K. Jr. Boulevard; recommended location for RSA				-	N/A	N	ADOT Pedestrian Safety Action Plan (2017)

Table 3: Corridor Recommendations from Previous Studies

Map Key	Begin MP	End MP	Length	Project Description	(Pres Mode	ment Ca ervatio rnizatio ansion	n [P], n [M],	Status of Recommendation			Name of Study
Ref. #	IVI F	IVI F	(miles)		Р	м	Е	Program Year	Project No.	Environmental Documentation (Y/N)?	
8	171	189	18	New adaptive traffic signal control and microwave link for signals		\checkmark		-	N/A	N	City of Maricopa Area Transportation Plan (2015); MAG FY 2017-2021 Transportation Improvement Program (2016)
9	172	175	3	Add sidewalks where gaps exist		\checkmark		-	N/A	N	CAG Regional Transportation Plan (2015); ADOT Statewide Bicycle and Pedestrian Plan Update (2013)
10	173	173	-	Grade-separated railroad crossing with bike lanes and sidewalks			\checkmark	2017	6350	Y	MAG FY 2017-2021 Transportation Improvement Program (2016); City of Maricopa Area Transportation Plan (2015); ADOT SR 347: SR 347 at Union Pacific Railroad – Final DCR and Environmental Assessment (2015); ADOT 2017-2021 Five-Year Transportation Facilities and Construction Program; ADOT Arizona State Rail Plan (2011)
11	173	173	-	Relocate existing Amtrak station 1.25 miles to the northwest along existing rail line		\checkmark		-	N/A	N	City of Maricopa Area Transportation Plan (2015)
12	173	173	-	Traffic signal communication link on Honeycutt Road across SR 347		\checkmark		-	N/A	N	MAG FY 2017-2021 Transportation Improvement Program (2016)
13	174	174	-	New traffic interchange with proposed SR 238 freeway			\checkmark	-	N/A	N	MAG Interstates 8 and 10 Hidden Valley Transportation Framework Study (2009)
14	174	189	15	Widen SR 347 to 6 lanes			V	-	N⁄A	N	Pinal County Small Area Transportation Study (2006); Pinal County Regionally Significant Routes for Safety and Mobility (2008); CAG Regional Transportation Plan (2015); City of Maricopa Area Transportation Plan (2015); MAG Interstates 8 and 10 Hidden Valley Transportation Framework Study (2009); BQAZ 2010 Statewide Transportation Planning Framework Final Report (2010); MAG Wild Horse Pass Circulation Study (2016)
15	176	189	13	 Roadway departure countermeasures: Edge line rumble strips or shoulder rumble strips (MPs 176.5-177.0, 178.0-180.50, 181.0-185.5, 186.0-188.5, 189.0-189.5) Alignment delineation, lighting (MPs 184.0-184.5, 187.0-187.5, 189.0-189.5) 				-	N/A	N	ADOT Arizona RDSIP (2014)

Table 3: Corridor Recommendations from Previous Studies (continued)

Map Key	Begin MP	End MP	Length	Project Description		Investment Category (Preservation [P], Modernization [M], Expansion [E])			us of Recon	nmendation	Name of Study
Ref. #		IVIF	(miles)			М	E	Program Year	Project No.	Environmental Documentation (Y/N)?	
16	174	189	15	Enhanced transit and express bus with proposed park-and-ride at SR 347/SR 238 and local transit in Maricopa		V		-	N/A	N	MAG 2035 Regional Transportation Plan (2014); MAG Draft 2040 Regional Transportation Plan (2017); MAG Regional Transit Framework Final Report (2010); MAG Interstates 8 and 10 Hidden Valley Transportation Framework Study (2009); BQAZ 2010 Statewide Transportation Planning Framework Final Report (2010)
17	187	187	-	Signalize existing SR 347/Maricopa Road intersection and provide dual southbound left turn lanes and a westbound acceleration lane		\checkmark		-	N/A	N	MAG Wild Horse Pass Circulation Study (2016)
18	189	189	-	Convert SR 347/I-10 traffic interchange from conventional diamond to diverging diamond interchange				-	N/A	N	MAG Wild Horse Pass Circulation Study (2016)

Table 3: Corridor Recommendations from Previous Studies (continued)

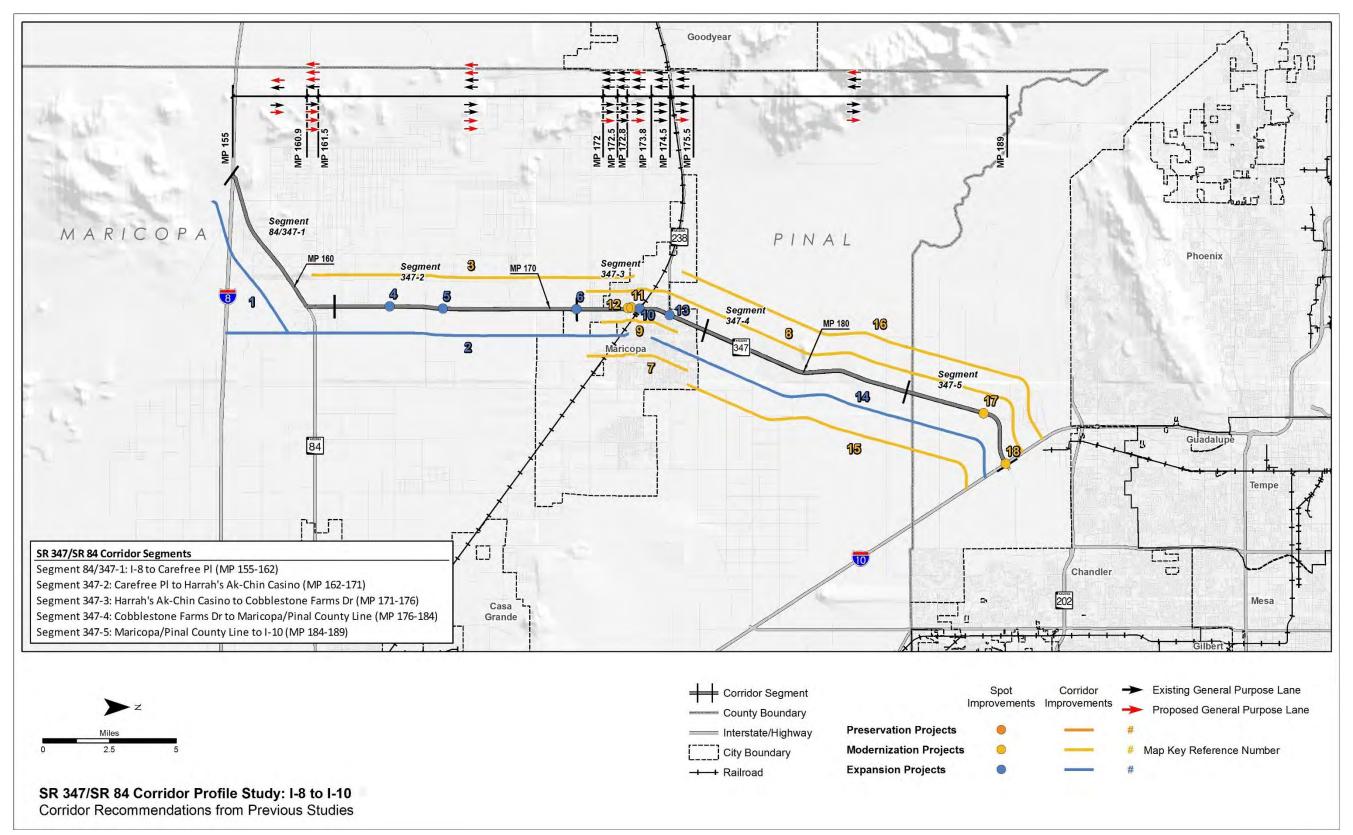
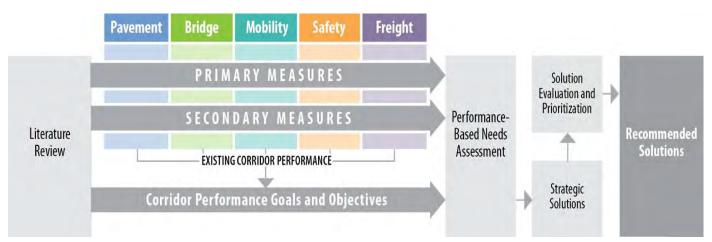


Figure 4: Corridor Recommendations from Previous Studies

SR 347/SR 84 Corridor Profile Study Final Report


CORRIDOR PERFORMANCE 2.0

This chapter describes the evaluation of the existing performance of the SR 347/SR 84 corridor. A series of performance measures is used to assess the corridor. The results of the performance evaluation are used to define corridor needs relative to the long-term goals and objectives for the corridor.

2.1 Corridor Performance Framework

This study uses a performance-based process to define baseline corridor performance, diagnose corridor needs, develop corridor solutions, and prioritize strategic corridor investments. In support of this objective, a framework for the performance-based process was developed through a collaborative process involving ADOT and the CPS consultant teams.

Figure 5 illustrates the performance framework, which includes a two-tiered system of performance measures (primary and secondary) to evaluate baseline performance. The primary measures in each of five performance areas are used to define the overall health of the corridor, while the secondary measures identify locations that warrant further diagnostic investigation to delineate needs. Needs are defined as the difference between baseline corridor performance and established performance objectives.

Figure 5: Corridor Profile Performance Framework

The following five performance areas guide the performance-based corridor analyses:

- Pavement •
- Bridge
- Mobility
- Safety •
- Freight

March 2018

These performance areas reflect national performance goals stated in Moving Ahead for Progress in the 21st Century (MAP-21):

- roads
- good repair
- Highway System
- System Reliability: To improve the efficiency of the surface transportation system
- support regional economic development
- protecting and enhancing the natural environment
- and expedite the movement of people and goods by accelerating project completion

The MAP-21 performance goals were considered in the development of ADOT's P2P process, which integrates transportation planning with capital improvement programming and project delivery. Because the P2P program requires the preparation of annual transportation system performance reports using the five performance areas adopted for the CPS, consistency is achieved in the performance measures used for various ADOT analysis processes.

The performance measures include five primary measures: Pavement Index, Bridge Index, Mobility Index, Safety Index, and Freight Index. Additionally, a set of secondary performance measures provides for a more detailed analysis of corridor performance.

Each of the primary and secondary performance measures is comprised of one or more quantifiable indicators. A three-level scale was developed to standardize the performance scale across the five performance areas, with numerical thresholds specific to each performance measure:

Good/Above Average Performance	 Rating is al
Fair/Average Performance	 Rating is w
Poor/Below Average Performance	– Rating is be

Table 4 provides the complete list of primary and secondary performance measures for each of the five performance areas.

• Safety: To achieve a significant reduction in traffic fatalities and serious injuries on all public

• Infrastructure Condition: To maintain the highway infrastructure asset system in a state of

• Congestion Reduction: To achieve a significant reduction in congestion on the National

Freight Movement and Economic Vitality: To improve the national freight network, strengthen the ability of rural communities to access national and international trade markets, and

• Environmental Sustainability: To enhance the performance of the transportation system while

• Reduced Project Delivery Delays: To reduce project costs, promote jobs and the economy,

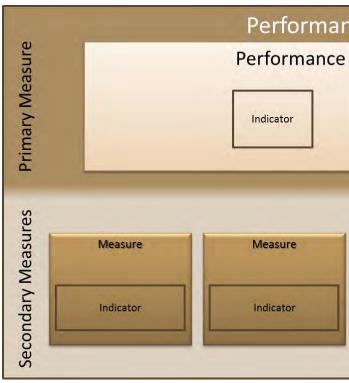
above the identified desirable/average range

- within the identified desirable/average range
- below the identified desirable/average range

Performance Area	Primary Measure	Secondary Measures
Pavement	Pavement Index Based on a combination of International Roughness Index and cracking	 Directional Pavement Serviceability Pavement Failure Pavement Hot Spots
Bridge	Bridge Index Based on lowest of deck, substructure, superstructure and structural evaluation rating	 Bridge Sufficiency Functionally Obsolete Bridges Bridge Rating Bridge Hot Spots
Mobility	Mobility Index Based on combination of existing and future daily volume-to-capacity ratios	 Future Congestion Peak Congestion Travel Time Reliability Multimodal Opportunities
Safety	Safety Index Based on frequency of fatal and incapacitating injury crashes	 Directional Safety Index Strategic Highway Safety Plan Emphasis Areas Crash Unit Types Safety Hot Spots
Freight	Freight Index Based on bi-directional truck planning time index	 Recurring Delay Non-Recurring Delay Closure Duration Bridge Vertical Clearance Bridge Vertical Clearance Hot Spots

Table 4: Corridor Performance Measures


The general template for each performance area is illustrated in Figure 6.


The guidelines for performance measure development are:

- Indicators and performance measures for each performance area should be developed for relatively homogeneous corridor segments
- Performance measures for each performance area should be tiered, consisting of primary measure(s) and secondary measure(s)
- Primary and secondary measures should assist in identifying those corridor segments that warrant in-depth diagnostic analyses to identify performance-based needs and a range of corrective actions known as solution sets
- One or more primary performance measures should be used to develop a Performance Index • to communicate the overall health of a corridor and its segments for each performance area; the Performance Index should be a single numerical index that is quantifiable, repeatable,

scalable, and capable of being mapped; primary performance measures should be transformed into a Performance Index using mathematical or statistical methods to combine one or more data fields from an available ADOT database

Performance Index and/or "hot spot" features

One or more secondary performance measure indicators should be used to provide additional details to define corridor locations that warrant further diagnostic analysis; secondary performance measures may include the individual indicators used to calculate the

ce	Area	Temp	late
LE.	Alea	remp	ale

ce Area	
Area Index	
Indicator	
Measure	Measure
Indicator Indicator	Indicator Indicator

2.2 Pavement Performance Area

The Pavement performance area consists of a primary measure (Pavement Index) and three secondary measures, as shown in Figure 7. These measures assess the condition of the existing pavement along the SR 347/SR 84 corridor. The detailed calculations and equations developed for each measure are available in Appendix B and the performance data for this corridor is contained in Appendix C.

Pavement Performance Area Primary Measure Pavement Index Pavement Pavement Distress (Cracking only) Serviceability Secondary Measures **Directional Pavement Pavement Failure** Pavement Hot Spots Serviceability % of pavement area Map locations on **Directional PSR** above failure thresholds **Pavement Index and** for IRI or Cracking **Pavement Serviceability**

Figure 7: Pavement Performance Measures

Primary Pavement Index

The Pavement Index is calculated using two pavement condition ratings: the Pavement Serviceability Rating (PSR) and the Pavement Distress Index (PDI).

The PSR is extracted from the International Roughness Index (IRI), a measurement of pavement roughness based on field-measured longitudinal roadway profiles. The PDI is extracted from the Cracking Rating (CR), a field-measured sample from each mile of highway.

Both the PSR and PDI use a 0 to 5 scale with 0 representing the lowest performance and 5 representing the highest. The Pavement Index for each segment is a weighted average of the directional ratings based on the number of travel lanes. Therefore, the condition of a section with more travel lanes will have a greater influence on the resulting segment Pavement Index than the condition of a section with fewer travel lanes.

Each corridor segment is rated on a scale with other segments in similar operating environments. Within the Pavement performance area, the relevant operating environments are designated as interstate and non-interstate segments. For the SR 347/SR 84 corridor, the following operating environment was identified:

• Non-interstate: all segments

Secondary Pavement Measures

Three secondary measures provide an in-depth evaluation of the different characteristics of pavement performance.

Directional Pavement Serviceability

of travel

Pavement Failure

Percentage of pavement area rated above failure thresholds for IRI or Cracking

Pavement Hot Spots

- "poor" condition
- calculations

Pavement Performance Results

The Pavement Index provides a high-level assessment of the pavement condition for the corridor and for each segment. The three secondary measures provide more detailed information to assess pavement performance.

Based on the results of this analysis, the following observations were made:

- 347/SR 84 corridor
- According to the Pavement Index, all segments have pavement in "good" condition
- good ratings via the field review
- 347/SR 84 corridor
- Failure ratings; Segment 347-3 shows "poor" ratings

• Weighted average (based on number of lanes) of the PSR for the pavement in each direction

• A Pavement "hot spot" exists where a given one-mile section of roadway rates as being in

• Highlights problem areas that may be under-represented in a segment average; this measure is recorded and mapped, but not included in the Pavement performance area rating

• The weighted average of the Pavement Index shows "good" overall performance for the SR

Pavement condition data was missing for MP 155-161 on SR 84 in Segment 84/347-1; the pavement condition ratings were assumed to be the same as the adjacent mile and show

• The weighted average of the Directional PSR shows "good" overall performance for the SR

• Segments 347-2 and 347-5 and the weighted average for the corridor show "fair" % Area

- Pavement hot spots along the corridor include:
 - Segment 347-2: NB/EB MP 162-164
 - o Segment 347-3: MP 173-174
 - Segment 347-3: NB/EB MP 174-175
 - Segment 347-5: NB/EB MP 185-186

Table 5 summarizes the Pavement performance results for the SR 347/SR 84 corridor. **Figure 8** illustrates the primary Pavement Index performance and locations of Pavement hot spots along the SR 347/SR 84 corridor. Maps for each secondary measure can be found in **Appendix A**.

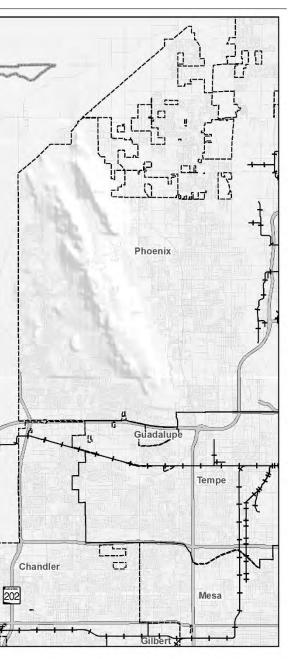

	Segment	Deve ment in dev	Directio	nal PSR			
Segment #	Length (miles)	Pavement Index	NB/EB	SB/WB	% Area Failure		
84/347-1	7	4.13	4.09	4.18	0.0%		
347-2	9	3.86	4.07	4.23	11.1%		
347-3	5	3.60	3.21	3.59	29.2%		
347-4	8	3.95	3.86	3.95	0.0%		
347-5	5	3.97	3.76	4.03	10.0%		
Weighted Co	rridor Average	3.91	3.85	4.03	8.7%		
		SCALES					
Performa	nce Level	Non-Interstate					
Go	ood	>	3.50		< 5%		
Fa	air	2.90	5% - 20%				
Po	oor	<	> 20%				

Table 5: Pavement Performance

Goodyear MARICOPA Segment 84/347-1 PINAL MP 162 - 164 MP 160 MP 173 - 174 and NB/EB MP 174 - 175 MP 170 Segment 347-2 Segme 347-3 MP 185 - 186 Segment 347-4 MP 180 Segment 347-5 84 P-LT SR 347/SR 84 Corridor Segments Segment 84/347-1: I-8 to Carefree PI (MP 155-162) Segment 347-2: Carefree PI to Harrah's Ak-Chin Casino (MP 162-171) Segment 347-3: Harrah's Ak-Chin Casino to Cobblestone Farms Dr (MP 171-176) Casa Grande Segment 347-4: Cobblestone Farms Dr to Maricopa/Pinal County Line (MP 176-184) Segment 347-5: Maricopa/Pinal County Line to I-10 (MP 184-189) Corridor Segment PAVEMENT INDEX PAVEMENT HOT SPOT Interstate/Highway FAIR (2.9 - 3.5) City Boundary POOR (<2.9) +++ Railroad SR 347/SR 84 Corridor Profile Study: I-8 to I-10 Pavement Index and Hot Spots 2015-2016 Data

----- County Boundary ----- GOOD (>3.5) 💥 LOCATIONS OF PAVEMENT FAILURE

2.3 Bridge Performance Area

The Bridge performance area consists of a primary measure (Bridge Index) and four secondary measures, as shown in Figure 9. These measures assess the condition of the existing bridges along the SR 347/SR 84 corridor. Only bridges that carry mainline traffic or bridges that cross the mainline are included in the calculation. The detailed calculations and equations developed for each measure are available in Appendix B and the performance data for this corridor is contained in Appendix C.

Bridge Performance Area Primary Measure Bridge Index Substructure Deck Rating Rating Superstructure Structural Rating **Evaluation Rating** Secondary Measures **Functionally Obsolete Bridge Rating Bridge Hot Spots Bridge Sufficiency** Bridges Lowest Bridge Rating Map locations on % deck area on Sufficiency Rating Bridge Index and on Segment Functionally Obsolete Bridge Sufficiency Bridges

Figure 9: Bridge Performance Measures

Primary Bridge Index

The Bridge Index is calculated based on the use of four different bridge condition ratings from the ADOT Bridge Database, also known as the Arizona Bridge Information and Storage System (ABISS). The four ratings are the Deck Rating, Substructure Rating, Superstructure Rating, and Structural Evaluation Rating. These ratings are based on inspection reports and establish the structural adequacy of each bridge. The performance of each individual bridge is established by using the lowest of these four ratings. The use of these ratings, and the use of the lowest rating, is consistent with the approach used by the ADOT Bridge Group to assess the need for bridge rehabilitation. The Bridge Index is calculated as a weighted average for each segment based on deck area.

Secondary Bridge Measures

Four secondary measures provide an in-depth evaluation of the characteristics of each bridge:

Bridge Sufficiency

- Multipart rating includes structural adequacy and safety factors as well as functional aspects such as traffic volume and length of detour
- Rates the structural and functional sufficiency of each bridge on a 100-point scale

Functionally Obsolete Bridges

- Percentage of total deck area in a segment that is on functionally obsolete bridges • Identifies bridges that no longer meet standards for current traffic volumes, lane width,
- shoulder width, or bridge rails
- A bridge that is functionally obsolete may still be structurally sound

Bridge Rating

- The lowest rating of the four bridge condition ratings (substructure, superstructure, deck, and structural evaluation) on each segment
- Identifies lowest performing evaluation factor on each bridge

Bridge Hot Spots

- A Bridge "hot spot" is identified where a given bridge has a bridge rating of 4 or lower or multiple ratings of 5 between the deck, superstructure, and substructure ratings • Identifies particularly low-performing bridges or those that may decline to low performance in
- the immediate future

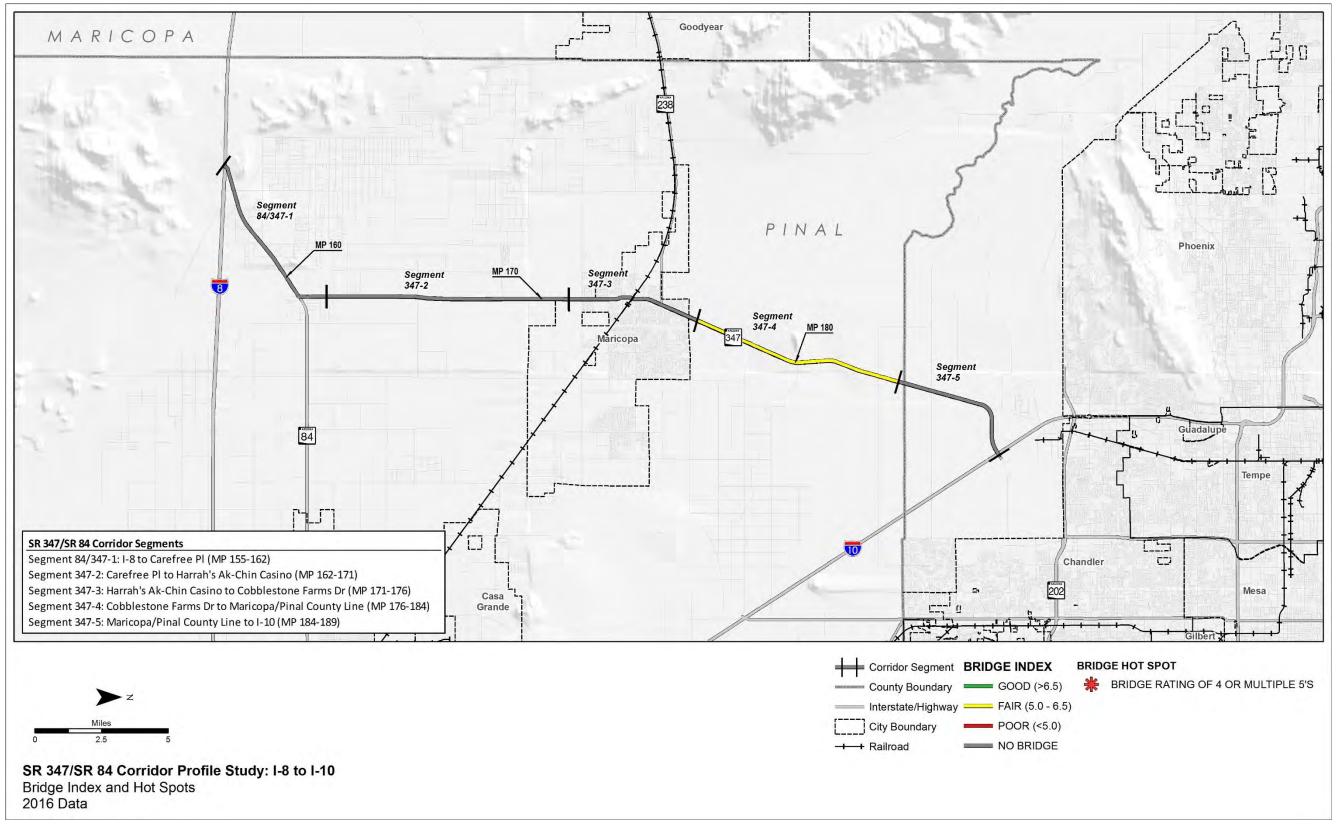
Bridge Performance Results

The Bridge Index provides a high-level assessment of the structural condition of bridges for the corridor and for each segment. The four secondary measures provide more detailed information to assess bridge performance.

Based on the results of this analysis, the following observations were made:

- Only Segment 347-4 contains bridges on the SR 347/SR 84 corridor • The Bridge Index and Lowest Bridge Rating show "fair" performance for the SR 347/SR 84 corridor
- The Sufficiency Rating and % of Deck Area on Functionally Obsolete Bridges show "good" performance for the SR 347/SR 84 corridor
- There are no bridge hot spots along the corridor

Table 6 summarizes the Bridge performance results for the SR 347/SR 84 corridor. Figure 10 illustrates the primary Bridge Index performance and locations of Bridge hot spots along the SR 347/84 corridor. Maps for each secondary measure can be found in Appendix A.



Segment #	Segment Length (miles)	# of Bridges	Bridge Index	Sufficiency Rating	% of Deck Area on Functionally Obsolete Bridges	Lowest Bridge Rating			
84/347-1	7	0		No Bridges					
347-2	9	0		No	Bridges				
347-3	5	0		No	Bridges				
347-4	8	6	6.20	98.60	0.0%	6			
347-5	5	0							
Weight	ed Corrido	r Average	6.20	6.20 98.60 0.0%					
			S	CALES					
Pei	Performance Level				All				
	Good		> 6.5	> 80	< 12%	> 6			
	Fair			50 - 80	12% - 40%	5 - 6			
	Poor		< 5.0	< 50	> 40 %	< 5			

Table 6: Bridge Performance

Figure 10: Bridge Performance

2.4 Mobility Performance Area

The Mobility performance area consists of a primary measure (Mobility Index) and four secondary measures, as shown in **Figure 11**. These measures assess the condition of existing mobility along the SR 347/SR 84 corridor. The detailed calculations and equations developed for each measure are available in Appendix B and the performance data for this corridor is contained in Appendix C.

Figure 11: Mobility Performance Measures

Primary Mobility Index

The Mobility Index is an average of the existing (2015) daily volume-to-capacity (V/C) ratio and the future (2035 AZTDM) daily V/C ratio for each segment of the corridor. The V/C ratio is an indicator of the level of congestion. This measure compares the average annual daily traffic (AADT) volume to the capacity of the corridor segment as defined by the service volume for level of service (LOS) E. By using the average of the existing and future year daily volumes, this index measures the level of daily congestion projected to occur in approximately ten years (2025) if no capacity improvements are made to the corridor.

Each corridor segment is rated on a scale with other segments in similar operating environments. Within the Mobility performance area, the relevant operating environments are urban vs. rural setting and interrupted flow (e.g., signalized at-grade intersections are present) vs. uninterrupted flow (e.g., controlled access grade-separated conditions such as a freeway or interstate highway). For the SR 347/SR 84 corridor, the following operating environments were identified:

- Urban Interrupted Flow: Segments 347-3
- Rural Interrupted Flow: Segments 84/347-1, 347-2, 347-4 and 347-5

Secondary Mobility Measures

Four secondary measures provide an in-depth evaluation of operational characteristics of the corridor:

Future Congestion – Future Daily V/C

- calculation of the Mobility Index
- corridor

Peak Congestion – Existing Peak Hour V/C

- The peak hour V/C ratio for each direction of travel
- Provides a measure of existing peak hour congestion during typical weekdays

Travel Time Reliability- Three separate travel time reliability indicators together provide a comprehensive picture of how much time may be required to travel within the corridor:

- Closure Extent:
 - closure occurs
 - analysis
- Directional Travel Time Index (TTI):
 - the posted speed limit) in a given direction
 - (non-freeways) to account for flow characteristics
- Directional Planning Time Index (PTI):
 - posted speed limit) in a given direction

• The future (2035 AZTDM) daily V/C ratio; this measure is the same value used in the

• Provides a measure of future congestion if no capacity improvements are made to the

• The average number of instances a particular milepost is closed per year per mile on a given segment of the corridor in a specific direction of travel; a weighted average was applied to each closure that takes into account the distance over which the

 Closures related to crashes, weather, or other incidents are a significant contributor to non-recurring delays; construction-related closures were excluded from the

• The ratio of the average peak period travel time to the free-flow travel time (based on

• The TTI recognizes the delay potential from recurring congestion during peak periods: different thresholds are applied to uninterrupted flow (freeways) and interrupted flow

• The ratio of the 95th percentile travel time to the free-flow travel time (based on the

• The PTI recognizes the delay potential from non-recurring delays such as traffic crashes, weather, or other incidents; different thresholds are applied to uninterrupted flow (freeways) and interrupted flow (non-freeways) to account for flow characteristics • The PTI indicates the amount of time in addition to the typical travel time that should be allocated to make an on-time trip 95% of the time in a given direction

Multimodal Opportunities – Three multimodal opportunity indicators reflect the characteristics of the corridor that promote alternate modes to the single occupancy vehicle (SOV) for trips along the corridor:

- % Bicycle Accommodation:
 - Percentage of the segment that accommodates bicycle travel; bicycle accommodation on the roadway or on shoulders varies depending on traffic volumes, speed limits, and surface type
 - Encouraging bicycle travel has the potential to reduce automobile travel, especially on non-interstate highways
- % Non-SOV Trips:
 - The percentage of trips (less than 50 miles in length) by non-SOVs
 - The percentage of non-SOV trips in a corridor gives an indication of travel patterns along a section of roadway that could benefit from additional multimodal options
- % Transit Dependency:
 - The percentage of households that have zero or one automobile and households where the total income level is below the federally defined poverty level
 - Used to track the level of need among those who are considered transit dependent and more likely to utilize transit if it is available

Mobility Performance Results

The Mobility Index provides a high-level assessment of mobility conditions for the corridor and for each segment. The four secondary measures provide more detailed information to assess mobility performance.

Based on the results of this analysis, the following observations were made:

- Future 2035 volumes for Segments 347-3, 347-4, and 347-5 were obtained from the MAG travel demand model rather than the AZTDM model because the 2035 AZTDM model projections result in negative growth compared to current volumes, which doesn't appear reasonable given the projected population growth in the corridor vicinity
- The weighted average of the Mobility Index shows "fair" overall performance for the SR 347/SR 84 corridor, with Segments 347-3, 347-4, and 347-5 indicating "poor" performance
- During the existing peak hour, traffic operations are "good" for all segments except Segments 347-4 and 347-5
- Segments 347-3, 347-4, and 347-5 are anticipated to have "poor" performance in the future, according to the Future Daily V/C performance indicator

- in the Closure Extent performance indicator for NB/EB travel
- levels
- The PTI performance indicator shows many of the SR 347/SR 84 segments, both NB/EB and SB/WB, have "poor" or "fair" performance in terms of reliability
- A majority of the corridor shows "good" performance in % Bicycle Accommodation, indicating bicycles
- occupant trips are common

Table 7 summarizes the Mobility performance results for the SR 347/SR 84 corridor. Figure 12 illustrates the primary Mobility Index performance along the SR 347/SR 84 corridor. Maps for each secondary measure can be found in Appendix A

• A majority of the segments have "good" performance in the Closure Extent performance indication for NB/EB and SB/WB travel; Segments 347-4 and 347-5 have "fair" performance

• The TTI performance indicator shows that all segments have "fair" or "good" performance

most of the corridor except Segment 347-3 has adequate shoulders for accommodating

• Segments 347-4 and 347-5 show "poor" performance for % Non-SOV Trips, indicating single

Segment #	Segment Length	Mobility Index	Future Daily V/C	Existing Po	eak Hour V/C		Closure Extent instances/milepost/year/mile)		Directional TTI (all vehicles)		onal PTI hicles)	% Bicycle Accommodation	% Non-Single Occupancy Vehicle (SOV)	
	(miles)			NB/EB	SB/WB	NB/EB	SB/WB	NB/EB	SB/WB	NB/EB	SB/WB	1	Trips	
84/347-1 ^{2*}	7	0.12	0.17	0.09	0.08	0.03	0.00	1.00	1.07	2.05	2.86	100%	19.9%	
347-2 ^{2*}	9	0.11	0.14	0.06	0.06	0.09	0.13	1.22	1.26	4.72	3.06	100%	20.2%	
347-3 ^{1*}	5	1.03	1.33	0.63	0.63	0.16	0.12	1.43	1.43	6.13	4.51	43%	19.1%	
347-4 ^{2*}	8	1.47	1.75	1.01	1.03	0.24	0.15	1.24	1.19	3.25	2.24	98%	9.4%	
347-5 ^{2*}	5	1.35	1.61	0.90	0.89	0.61	0.12	1.16	1.15	3.05	2.83	98%	9.3%	
Weighted Ave	l Corridor rage	0.76	0.93	0.50	0.50	0.20	0.11	1.20	1.21	3.78	3.01	91%	15.7%	
							SCALES							
Performa	nce Level			ban ural			A II	Uninterrupted Interrupted				All		
Go	ood).71 ¹).56 ²		< (< 0.22		.15^ .30*	< 1.30^ < 3.00*		> 90%	> 17%	
Fa	air			- 0.89 ¹ - 0.76 ²		0.22	- 0.62		- 1.33^ - 2.00*	1.30 - 1.50^ 3.00 - 6.00*		60% - 90%	11% - 17%	
Pc	oor).89 ¹).76 ²		> (> 0.62 > 1.33^ > 2.00*		> 1 > 6	.50^ .00*	< 60%	< 11%		

Table 7: Mobility Performance

¹Urban Operating Environment ²Rural Operating Environment [^]Uninterrupted Flow Facility *Interrupted Flow Facility

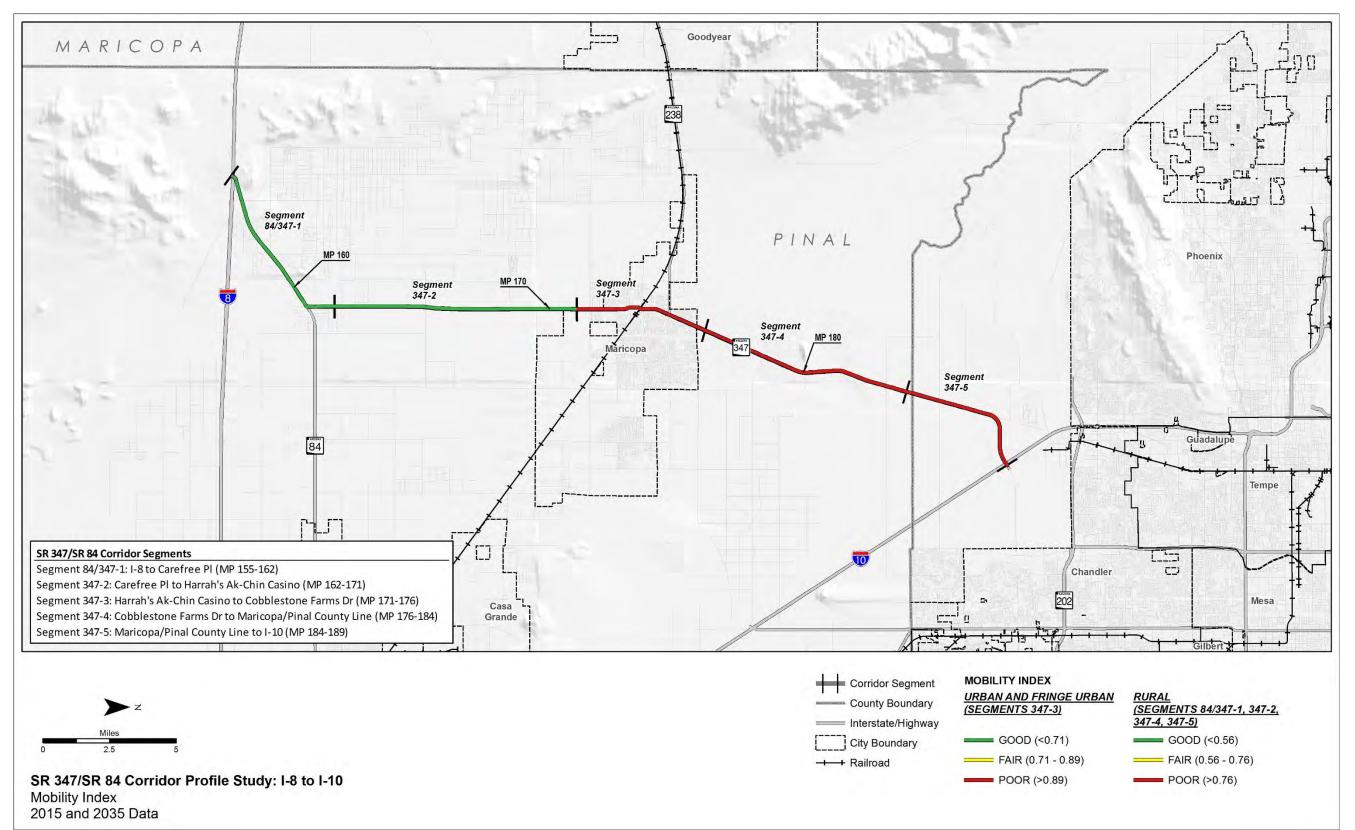


Figure 12: Mobility Performance

SR 347/SR 84 Corridor Profile Study Final Report

Safety Performance Area 2.5

The Safety performance area consists of a primary measure (Safety Index) and four secondary measures, as illustrated in Figure 13. All measures relate to crashes that result in fatal and incapacitating injuries, as these types of crashes are the emphasis of the ADOT Strategic Highway Safety Plan (SHSP), FHWA, and MAP-21. The detailed calculations and equations developed for each measure are available in Appendix B and the performance data for this corridor is contained in Appendix C.

Figure 13: Safety Performance Measures

Primary Safety Index

The Safety Index is based on the bi-directional frequency and rate of fatal and incapacitating injury crashes, the relative cost of those types of crashes, and crash occurrences on similar roadways in Arizona. According to ADOT's 2010 Highway Safety Improvement Program Manual, fatal crashes have an estimated cost that is 14.5 times the estimated cost of incapacitating injury crashes (\$5.8 million compared to \$400,000).

Each corridor segment is rated on a scale by comparing the segment score with the average statewide score for similar operating environments. Because crash frequencies and rates vary depending on the operating environment of a particular roadway, statewide values were developed for similar operating environments defined by functional classification, urban vs. rural setting,

number of travel lanes, and traffic volumes. For the SR 347/SR 84 corridor, the following operating environments were identified:

- 2 or 3 Lane Undivided Highway: Segments 84/347-1
- 2 or 3 or 4 Lane Divided Highway: Segments 347-2, 347-3, 347-4, and 347-5

Secondary Safety Measures

Four secondary measures provide an in-depth evaluation of the different characteristics of safety performance:

Directional Safety Index

crashes

SHSP Emphasis Areas

ADOT's 2014 SHSP identified several emphasis areas for reducing fatal and incapacitating injury crashes. This measure compared rates of crashes in the top five SHSP emphasis areas to other corridors with a similar operating environment. The top five SHSP emphasis areas related to the following driver behaviors:

- Speeding and aggressive driving
- Impaired driving
- Lack of restraint usage
- Lack of motorcycle helmet usage
- Distracted driving

Crash Unit Types

• The percentage of total fatal and incapacitating injury crashes that involves crash unit types roads with similar operating environments

Safety Hot Spots

• The hot spot analysis identifies abnormally high concentrations of fatal and incapacitating injury crashes along the study corridor by direction of travel

For the Safety Index and the secondary safety measures, any segment that has too small of a sample size to generate statistically reliable performance ratings for a particular performance measure is considered to have "insufficient data" and is excluded from the safety performance evaluation for that particular performance measure.

Safety Performance Results

The Safety Index provides a high-level assessment of safety performance for the corridor and for each segment. The four secondary measures provide more detailed information to assess safety performance.

• This measure is based on the directional frequency and rate of fatal and incapacitating injury

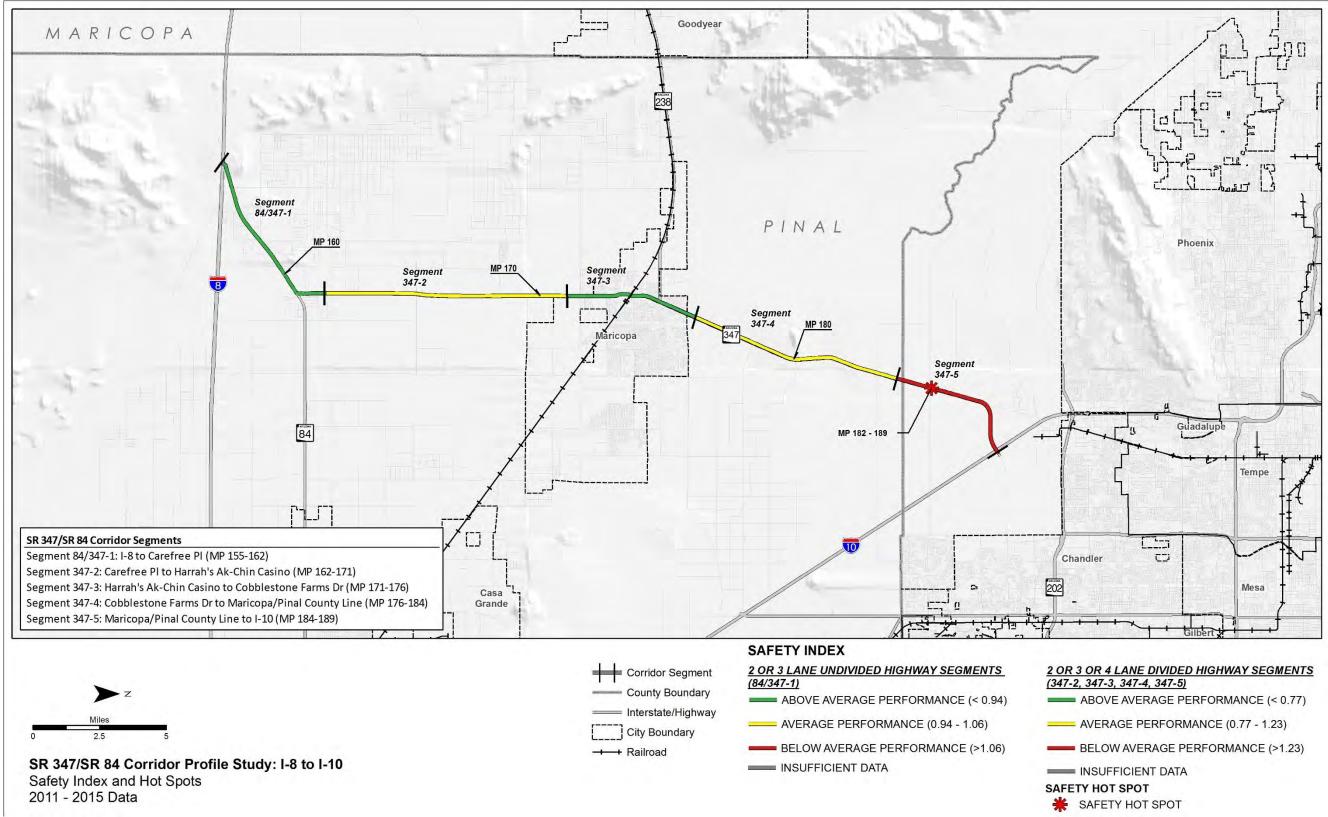
of motorcycles, trucks, or non-motorized travelers is compared to the statewide average on

Based on the results of this analysis, the following observations were made:

- The weighted average of the Safety Index shows "average" performance for the SR 347/SR 84 corridor compared to other segments statewide that have similar operating environments
- The Safety Index value for Segment 347-5 is "below average", meaning this segment has more crashes than is typical statewide
- The crash unit type performance measures for crashes involving trucks, motorcycles, and non-motorized travelers had insufficient data to generate reliable performance ratings for the SR 347/SR 84 corridor
- Segments 84/347-1, 347-2, and 347-3 had insufficient data to generate reliable performance ratings for crashes involving behaviors associated with the SHSP Top 5 Emphasis Areas
- A total of 41 fatal and incapacitating injury crashes occurred along the SR 347/SR 84 corridor in 2011-2015; of these crashes, 9 were fatal and 32 involved incapacitating injuries
- The Directional Safety Index value for SB/WB Segments 347-2 and 347-5 is "below average", along with the weighted average for the corridor in the SB/WB direction
- There is one Safety hot spot covering MP 182-189

Table 8 summarizes the Safety performance results for the SR 347/SR 84 corridor.**Figure 14**illustrates the primary Safety Index performance and locations of Safety hot spots along the SR347/SR 84 corridor.Maps for each secondary measure can be found in **Appendix A**.

Segment #	Segment Length (miles)	Total Fatal & Incapacitating Injury Crashes	Safety Index	Directional	Safety Index	% of Fatal + Incapacitating Injury Crashes Involving SHSP Top 5 Emphasis	% of Fatal + Incapacitating Injury Crashes Involving Trucks	% of Fatal + Incapacitating Injury Crashes Involving Motorcycles	% of Fatal + Incapacitating Injury Crashes Involving Non-Motorized
		(F/I)		NB/EB	SB/WB	Areas Behaviors	THUCKS	motorcycles	Travelers
84/347-1 ^b	7	0/2	0.34	0.00	0.68	Insufficient Data	Insufficient Data	Insufficient Data	Insufficient Data
347-2ª	9	2/3	1.21	1.11	1.31	Insufficient Data	Insufficient Data	Insufficient Data	Insufficient Data
347-3ª	5	0/2	0.06	0.06	0.06	Insufficient Data	Insufficient Data	Insufficient Data	Insufficient Data
347-4ª	8	3/7	0.87	0.57	1.17	80%	Insufficient Data	Insufficient Data	Insufficient Data
347-5ª	5	4/17	1.93	1.00	2.86	48%	Insufficient Data	Insufficient Data	Insufficient Data
Weigh	nted Corrid	or Average	0.90	90 0.59 1.21		67%	Insufficient Data	Insufficient Data	Insufficient Data
						SCALES		I	1
P	erformance	e Le vel				2 or 3 or 4 La	ane Divided Highway		
	Above Ave	rage		< 0.77		< 44%	< 4%	< 16%	< 2%
	Average	e		0.77 – 1.23		44% - 54%	4% - 7%	16% - 26%	2% - 4%
	Below Average			> 1.23		> 54%	> 7%	> 26%	> 4%
P	erformance	e Le vel				2 or 3 Lane	Undivided Highway		
	Above Ave	rage		< 0.94		< 51%	< 5%	< 18%	< 2%
	Average	9		0.94 – 1.06		51% - 58%	5% - 7%	18% - 27%	2% - 4%
	Below Aver	age		> 1.06		> 58%	> 7%	> 27%	> 4%


Table 8: Safety Performance

^a2 or 3 or 4 Lane Divided Highway ^b2 or 3 Lane Undivided Highway

Note: "Insufficient Data" indicates there was not enough data available to generate reliable performance ratings.

Figure 14: Safety Performance

SR 347/SR 84 Corridor Profile Study Final Report

2.6 Freight Performance Area

The Freight performance area consists of a single primary measure (Freight Index) and five secondary measures, as illustrated in Figure 15. All measures related to the reliability of truck travel as measured by observed truck travel time speed and delays to truck travel from freeway closures or physical restrictions to truck travel. The detailed calculations and equations developed for each measure are available in Appendix B and the performance data for this corridor is contained in Appendix C.

Freight Performance Area Primary Measure **Freight Index Bi-Directional Truck Planning Time Index** Secondary Measures Non-Recurring **Recurring Delay Closure Duration Bridge Vertical Bridge Vertical** Clearance Hot Spots Delay Clearance Clearance < 16.25' Directional Directional Truck **Directional Road** & No Ramp **Bridge Height** Truck Travel **Planning Time Closure Duration** Map on Bridge Time Index Index Vertical Clearance

Figure 15: Freight Performance Measures

Primary Freight Index

The Freight Index is a reliability performance measure based on the PTI for truck travel. The Truck Planning Time Index (TPTI) is the ratio of the 95th percentile truck travel time to the free-flow truck travel time. The TPTI reflects the extra buffer time needed for on-time delivery while accounting for non-recurring delay. Non-recurring delay refers to unexpected or abnormal delay due to closures or restrictions resulting from circumstances such as crashes, inclement weather, and construction activities.

Each corridor segment is rated on a scale with other segments in similar operating environments. Within the Freight performance area, the relevant operating environments are interrupted flow (e.g., signalized at-grade intersections are present) and uninterrupted flow (e.g., controlled access gradeseparated conditions such as a freeway or interstate highway).

For the SR 347/SR 84 corridor, the following operating environments were identified:

• Interrupted Flow: Segments 84/347-1, 347-2, 347-3, 347-4, and 347-5

Secondary Freight Measures

The Freight performance area includes five secondary measures that provide an in-depth evaluation of the different characteristics of freight performance:

Recurring Delay (Directional Truck Travel Time Index [TTTI])

- on the posted speed limit up to a maximum of 65 miles per hour) in a given direction
- freeways) to account for flow characteristics

Non-Recurring Delay (Directional TPTI)

- the posted speed limit up to a maximum of 65 miles per hour) in a given direction
- The TPTI recognizes the delay potential from non-recurring delays such as traffic crashes, and interrupted flow (non-freeways) to account for flow characteristics
- allocated to make an on-time trip 95% of the time in a given direction

Closure Duration

closure that takes into account the distance over which the closure occurs

Bridge Vertical Clearance

• The minimum vertical clearance (in feet) over the travel lanes for underpass structures on each segment

Bridge Vertical Clearance Hot Spots

- to bypass the low clearance location
- If a location with a vertical clearance less than 16.25 feet can be avoided by using spot

March 2018

• The ratio of the average peak period truck travel time to the free-flow truck travel time (based • The TTTI recognizes the delay potential from recurring congestion during peak periods; different thresholds are applied to uninterrupted flow (freeways) and interrupted flow (non-

• The ratio of the 95th percentile truck travel time to the free-flow truck travel time (based on

weather, or other incidents; different thresholds are applied to uninterrupted flow (freeways)

• The TPTI indicates the amount of time in addition to the typical travel time that should be

• The average time (in minutes) a particular milepost is closed per year per mile on a given segment of the corridor in a specific direction of travel; a weighted average is applied to each

• A Bridge vertical clearance "hot spot" exists where the underpass vertical clearance over the mainline travel lanes is less than 16.25 feet and no exit/entrance ramps exist to allow vehicles

immediately adjacent exit/entrance ramps rather than the mainline, it is not considered a hot

Freight Performance Results

The Freight Index provides a high-level assessment of freight mobility for the corridor and for each segment. The five secondary measures provide more detailed information to assess freight performance.

Based on the results of this analysis, the following observations were made:

- The weighted average of the Freight Index shows "fair" overall performance for the SR 347/SR 84 corridor; each of the segments shows "poor" performance with the exception of Segment 84/347-1 and Segment 347-2, which shows "good" and "fair" performance, respectively
- Many segments show "poor" performance for Directional TPTI measures with the exception of Segment 84/347-1 and Segment 347-2, meaning the corridor has mostly "poor" travel time reliability in the NB/EB and SB/WB direction due to non-recurring congestion
- Most of the segments show "good" performance in the closure duration performance measures
- No bridge vertical clearance hot spots exist along the SR 347/SR 84 corridor

Table 9 summarizes the Freight performance results for the SR 347/SR 84 corridor. Figure 16 illustrates the primary Freight Index performance and locations of freight hot spots along the SR 347/SR 84 corridor. Maps for each secondary measure can be found in **Appendix A**.

Segment #	gment # Segment Length (miles) Freigh			tional TI		tional PTI	Dura (min mile	sure ation utes/ post/ /mile)	Bridge Vertical Clearance (feet)		
			NB/EB	SB/WB	NB/EB	SB/WB	NB/EB	SB/WB	(1001)		
84/347-12*	7	0.45	1.02	1.14	1.94	2.50	6.34	0.00	No UP		
347-22*	9	0.30	1.14	1.26	3.73	3.01	13.33	24.27	No UP		
347-3 ^{1*}	5	0.11	1.50	1.58	8.00	10.06	29.16	9.40	No UP		
347-4 ^{2*}	8	0.11	1.46	1.34	10.53	7.12	40.59	20.25	No UP		
347-5 ^{2*}	5	0.14	1.42	1.30	9.18	5.13	106.80	10.96	No UP		
Weighted Aver		0.23	1.29	1.31	6.43	5.22	35.26	14.19	No UP		
				SCA	ES						
Performan	ce Level		Uninterrupted Interrupted					All			
Good	> 0.1 > 0.3			.15^ .30*	< 1.30^ < 3.00*		< 44	4.18	> 16.5		
Fair	0.67 - 0.77^ 0.17 - 0.33*		1.15 -1.33^ 1.30 - 2.00*		1.30 - 1.50^ 3.00-6.00*		44.18 -	-124.86	16.0 - 16.5		
Poor	< 0.67^ < 0.17*			.33^ .00*	> 1.50^ > 6.00*		> 12	24.86	< 16.0		

¹Urban Operating Environment ²Rural Operating Environment [^]Uninterrupted Flow Facility *Interrupted Flow Facility

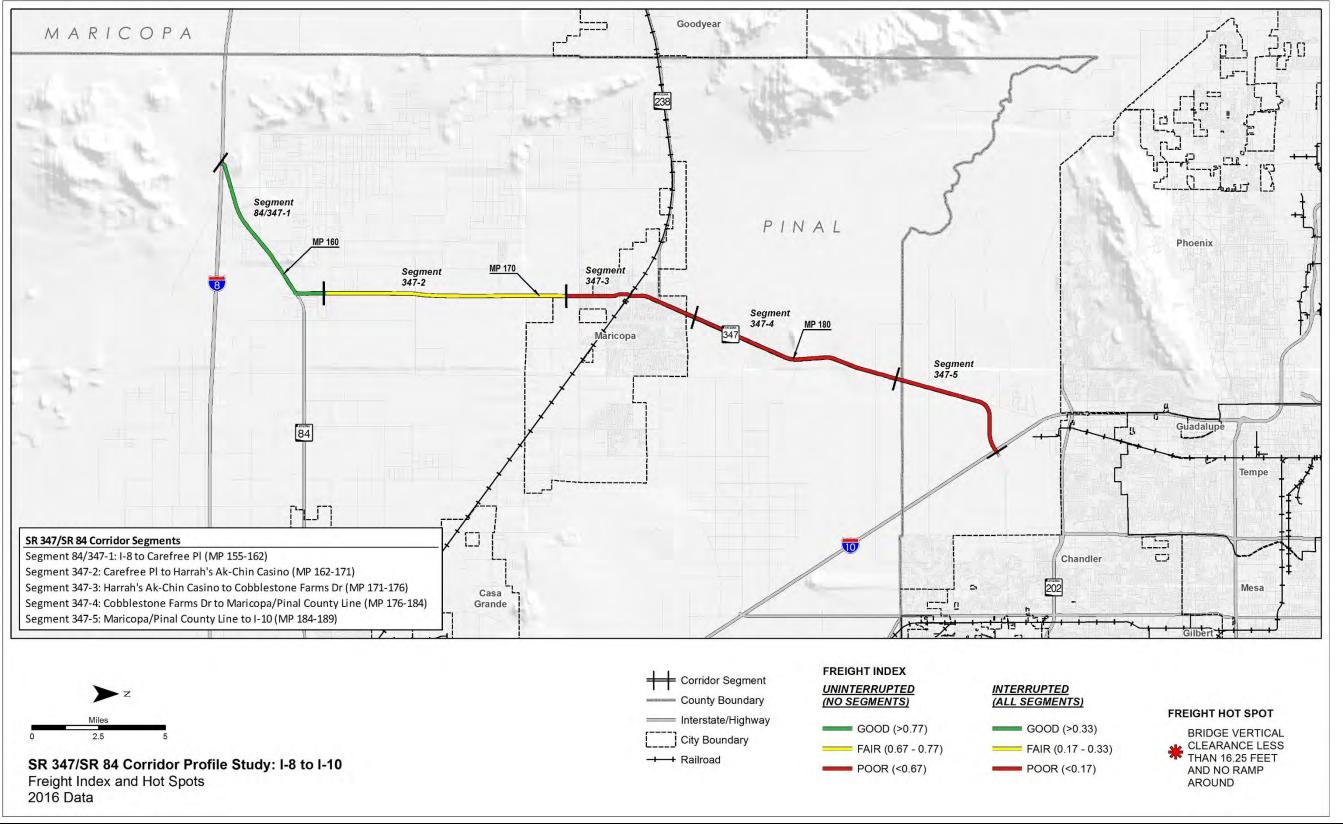
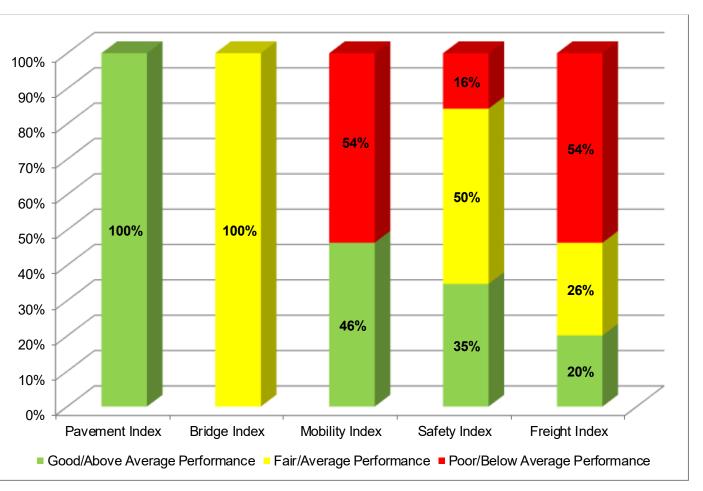


Figure 16: Freight Performance

SR 347/SR 84 Corridor Profile Study Final Report

2.7 Corridor Performance Summary


Based on the results presented in the preceding sections, the following general observations were made related to the performance of the SR 347/SR 84 corridor:

- Overall Performance: The Pavement and Bridge performance areas show generally "good" or "fair" performance; the Mobility, Safety, and Freight performance areas show a mix of "good/above average", "fair/average", and "poor/below average" performance
- Pavement Performance: The weighted average of the Pavement Index shows "good" overall performance for the SR 347/SR 84 corridor; Segments 84/347-1, 347-2, 347-4, and 347-5 show "good" or "fair" performance for all Pavement performance area measures
- Bridge Performance: The weighted average of the Bridge Index shows "fair" overall performance for the SR 347/SR 84 corridor; Segments 84/347-1, 347-2, 347-3, and 347-5 contain no bridges; Segment 347-4 shows "fair" performance for the Lowest Bridge Rating measure and "good" performance for the Sufficiency Rating and % of Deck Area on Functionally Obsolete Bridges measures
- Mobility Performance: The weighted average of the Mobility Index shows "fair" overall performance for the SR 347/SR 84 corridor; Segments 347-3, 347-4, and 347-5 show "poor" performance for the Mobility Index and Future Daily V/C measures; Segments 347-4 and 347-5 show "poor" performance for the Existing Peak Hour V/C measure; many segments show "fair" or "poor" performance for the Directional PTI measure
- Safety Performance: The weighted average of the Safety Index shows "average" overall performance for the SR 347/SR 84 corridor; in the 2011-2015 analysis period, there were 9 fatal crashes and 32 incapacitating injury crashes; there was "insufficient data" for crashes involving trucks, motorcycles, and non-motorized travelers, meaning there was not enough data available to generate reliable performance ratings so no values were calculated; Segments 347-4 and 347-5 show "below average" and "average" performance for crashes involving SHSP Top 5 Emphasis Areas
- Freight Performance: The weighted average of the Freight Index shows "fair" overall performance for the SR 347/SR 84 corridor; Segments 347-3, 347-4, and 347-5 show either "poor" or "fair" performance for the Freight Index, Directional TTTI, and Directional TPTI measures; Segment 347-2 shows "fair" performance for the Freight Index and Directional TPTI measures
- Lowest Performing Segments: Segments 347-3, 347-4, and 347-5 show "poor/below average" performance for many performance measures
- Highest Performing Segments: Segments 84/347-1 shows "good/above average" performance for many performance measures

Figure 17 shows the percentage of the SR 347/SR 84 corridor that rates either "good/above average" performance, "fair/average" performance, or "poor/below average" performance for each

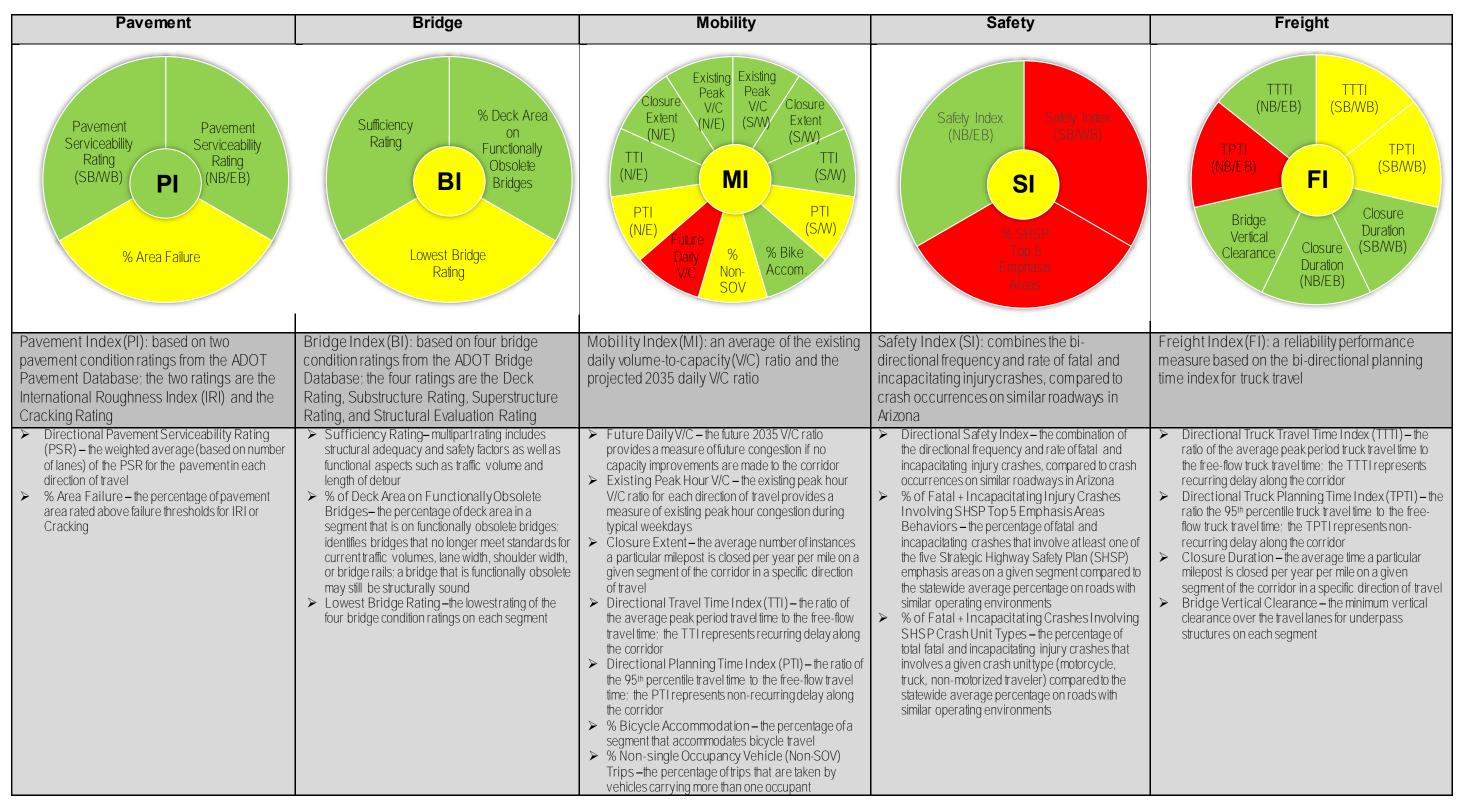

primary measure. On the SR 347/SR 84 corridor, Freight and Mobility are the lowest performing areas with 54% of the corridor in "poor" condition as it relates to the primary measures. Pavement is the highest performing area along the SR 347/SR 84 corridor with 100% of the corridor in "good" condition as it relates to the primary measure. The Bridge performance area shows "fair" performance. The Safety performance areas shows a more even mix of "above average", "average", and "below average" performance.

Table 10 shows a summary of corridor performance for all primary measures and secondary measure indicators for the SR 347/SR 84 corridor. A weighted corridor average rating (based on the length of the segment) was calculated for each primary and secondary measure. The weighted average ratings are summarized in **Figure 18** which also provides a brief description of each performance measure. **Figure 18** represents the average for the entire corridor and any given segment or location could have a higher or lower rating than the corridor average.

Figure 17: Performance Summary by Primary Measure

Figure 18: Corridor Performance Summary by Performance Measure

		Paveme	ent Per	formand	e Area	Bri	dge Perfo	rmance Area	1					М	obility	Perform	nance /	Area			
Segment#	Segment Length (miles)	Pavement Index	Directic NB/EB	onal PSR SB/WB	% Area Failure	Bridge Index	Sufficiency Rating	% of Deck Area on Functionally Obsolete Bridges	Lowest Bridge Rating	Mobility Index	Future Daily V/C		ng Peak Ir V/C SB/WB	Closure (insta milepo mi NB/EB	ances/ st/year/	Directio (all vel			onal PTI hicles) SB/WB	% Bicycle Accommodation	% Non-Single Occupancy Vehicle (SOV) Trips
84/347-1 ^{/b2}	7	4.13	4.09	4.18	0.0%		L No Bri	l idaes		0.12	0.17	0.09	0.08	0.03	0.00	1.00	1.07	2.05	2.86	100%	19.9%
347-2 ^{^a2}	9	3.86	4.07	4.23	11.1%		No Bri	0		0.11	0.14	0.06	0.06	0.09	0.13	1.22	1.26	4.72	3.06	100%	20.2%
347-3*a1	5	3.60	3.21	3.59	29.2%		No Bri	idges		1.03	1.33	0.63	0.63	0.16	0.12	1.43	1.43	6.13	4.51	43%	19.1%
347-4* ^{a2}	8	3.95	3.86	3.95	0.0%	6.20	98.60	0.0%	6	1.47	1.75	1.01	1.03	0.24	0.15	1.24	1.19	3.25	2.24	98%	9.4%
347-5* ^{a2}	5	3.97	3.76	4.03	10.0%		No Bri	idges		1.35	1.61	0.90	0.89	0.61	0.12	1.16	1.15	3.05	2.83	98%	9.3%
Weighted (Avera		3.91	3.85	4.03	8.7%	6.20	98.60	0.0%	6	0.76	0.93	0.50	0.50	0.20	0.11	1.20	1.21	3.78	3.01	91%	15.7%
									SCA	LES											
Performan			Non-In	terstate			Α	<u>II</u>		Urba	n and F	ringe Ur	ban	Α	JI		Uninte	rrupted		AI	1
Good/Above Perform		> 3.50	> 3	.50	< 5%	> 6.5	> 80	< 12%	> 6		< 0.	71		< 0	.22	< 1	.15	<	1.3	> 90%	> 17%
Fair/Ave Perform		2.90 - 3.50	2.90	- 3.50	5% - 20%	5.0 - 6.5	50 - 80	12% - 40%	5 - 6		0.71 -	0.89		0.22 -	- 0.62	1.15	- 1.33	1.3	- 1.5	60% - 90%	11% - 17%
Poor/Below Perform		< 2.90	< 2	.90	> 20%	< 5.0	< 50	> 40%	< 5		> 0.	89		> 0	.62	> 1	.33	>	1.5	< 60%	< 11%
Performan	ce Le vel										Rur	al					Interr	upted			
Good/Above Perform											< 0.	56				< '	1.3	<	3.0		
Fair/Ave	rade										0.56 -	0.76				> 1.3	& < 2.0	> 3.0	& < 6.0		
Performation																					
	ance Average										> 0.	76				> 2	2.0	>	6.0		

Table 10: Corridor Performance Summary by Segment and Performance Measure

"On interrupted Flow Facili Interrupted Flow Facility ⁵2 or 3 or 4 Lane Divided Highwa ^b2 or 3 Lane Undivided Highway ¹Urban Operating Environment ²Rural Operating Environment

				Safe	ty Performance A	Area					Frei	ight Per	formanc	e Area		
Segment#	Segment Length	Safety	Directional	Safety Index	% of Fatal + Incapacitating Injury Crashes Involving	% of Fatal + Incapacitating	% of Fatal + Incapacitating Injury	% of Fatal + Incapacitating Injury Crashes	Freight	Directional TTTI		Directional TPTI		(minutes/n	e Duration nilepost/year/ ile)	Bridge Vertical
	(miles)	Index	NB/EB	SB/WB	SHSP Top 5 Emphasis Areas Behaviors	Injury Crashes Involving Trucks	Crashes Involving Motorcycles	Involving Non- Motorized Travelers	Index	NB/EB	SB/WB	NB/EB	SB/WB	NB/EB	SB/WB	Clearance (feet)
84/347-1 ^{/b2}	7	0.34	0.00	0.68	Insufficient Data	Insufficient Data	Insufficient Data	Insufficient Data	0.45	1.02	1.14	1.94	2.50	6.34	0.00	No UP
347-2^a2	9	1.21	1.11	1.31	Insufficient Data	Insufficient Data	Insufficient Data	Insufficient Data	0.30	1.14	1.26	3.73	3.01	13.33	24.27	No UP
347-3*a1	5	0.06	0.06	0.06	Insufficient Data	Insufficient Data	Insufficient Data	Insufficient Data	0.11	1.50	1.58	8.00	10.06	29.16	9.40	No UP
347-4* ^{a2}	8	0.87	0.57	1.17	80%	Insufficient Data	Insufficient Data	Insufficient Data	0.11	1.46	1.34	10.53	7.12	40.59	20.25	No UP
347-5* ^{a2}	5	1.93	1.00	2.86	48%	Insufficient Data	Insufficient Data	Insufficient Data	0.14	1.42	1.30	9.18	5.13	106.80	10.96	No UP
Weighted C Avera		0.90	0.59	1.21	67%	Insufficient Data	Insufficient Data	Insufficient Data	0.23	1.29	1.31	6.43	5.22	35.26	14.19	No UP
SCAL										<u></u>					<u></u>	
Performan					2 or 3 or 4 Lane D	Divided Highway				Unin	terrupte	b			All	
Good/Above Perform			< 0.77		< 44%	< 4%	< 16%	< 2%	> 0.77	< 1	.15	< '	1.3	< 4	4.18	> 16.5
Fair/Ave Perform			0.77 - 1.23		44% - 54%	4% - 7%	16% - 26%	2% - 4%	0.67 - 0.77	1.15	- 1.33	1.3	- 1.5	44.18-	-124.86	16.0 - 16.5
Poor/Below Perform	\sim		> 1.23		> 54%	> 7%	> 26%	> 4%	< 0.67	> 1	.33	> `	1.5	> 12	24.86	< 16.0
Performan	ce Le vel	2 or 3 Lane Undivided Highway				-			Inte	rrupted						
Good/Above Perform			< 0.94		< 51%	< 5%	< 18%	< 2%	> 0.33	< '	1.3	< (3.0			
Fair/Ave Perform	ance		0.94 - 1.06		51% - 58%	5% - 7%	18% - 27%	2% - 4%	0.17 - 0.33	1.3	- 2.0	3.0	- 6.0			
Poor/Below Perform	\sim		> 1.06		> 58%	> 7%	> 27%	> 4%	< 0.17	> 1	2.0	> (6.0			

Table 10: Corridor Performance Summary by Segment and Performance Measure (continued)

^Uninterrupted Flow Facility*2 or 3 or 4 Lane Divided Highway*Interrupted Flow Facility*2 or 3 Lane Undivided Highway

¹Urban Operating Environment ²Rural Operating Environment

Notes: "Insufficient Data" indicates there was not enough data available to generate reliable performance ratings "No UP" indicates no underpasses are present in the segment

3.0 NEEDS ASSESSMENT

3.1 Corridor Objectives

Statewide goals and performance measures were established by the ADOT Long-Range Transportation Plan (LRTP) 2010-2035 goals and objectives that were updated in 2017. Statewide performance goals that are relevant to SR 347/SR 84 performance areas were identified and corridor goals were then formulated for each of the five performance areas that aligned with the overall statewide goals established by the LRTP. Based on stakeholder input, corridor goals, corridor objectives, and performance results, three "emphasis areas" were identified for the SR 347/SR 84 corridor: Mobility, Safety, and Freight.

Taking into account the corridor goals and identified emphasis areas, performance objectives were developed for each quantifiable performance measure that identify the desired level of performance based on the performance scale levels for the overall corridor and for each segment of the corridor. For the performance emphasis areas, the corridor-wide weighted average performance objectives are identified with a higher standard than for the other performance areas. **Table 11** shows the SR 347/SR 84 corridor goals, corridor objectives, and performance objectives, and how they align with the statewide goals.

It is not reasonable within a financially constrained environment to expect that every performance measure will always be at the highest levels on every corridor segment. Therefore, individual corridor segment objectives have been set as "fair/average" or better and should not fall below that standard.

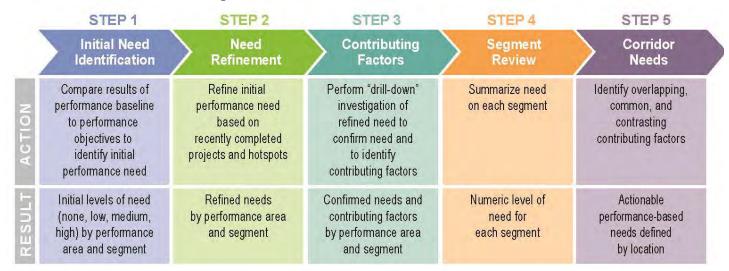
Achieving corridor and segment performance objectives will help ensure that investments are targeted toward improvements that support the safe and efficient movement of travelers on the corridor. Addressing current and future congestion, thereby improving mobility on congested segments, will also help the corridor fulfill its potential as a significant contributor to the region's economy.

Corridor performance is measured against corridor and segment objectives to determine needs – the gap between observed performance and performance objectives.

Goal achievement will improve or reduce current and future congestion, increase travel time reliability, and reduce fatalities and incapacitating injuries resulting from vehicle crashes. Where performance is currently rated "good", the goal is always to maintain that standard, regardless of whether or not the performance is in an emphasis area.

ADOT Statewide LRTP	SR 347/SR 84 Corridor Goals	SR 347/SR 84 Corridor Objectives	Performance	Primary Measure	Performance (Objective
Goals	SK 347/SK 64 Comdor Goals	SK 347/SK 64 Comuor Objectives	Area	Secondary Measure Indicators	Corridor Average	Segment
Improve Mobility, Reliability, and	Improve mobility through additional capacity and improved roadway geometry	Reduce current congestion and plan to facilitate future congestion that accounts for anticipated growth,	Mobility (<i>Emphasis</i>	Mobility Index	Good	
Accessibility		particularly from the City of Maricopa and the nearby	Area)	Future Daily V/C		
Make Cost Effective	Provide a safe and reliable route for recreational and tourist travel	Phoenix metropolitan area	,	Existing Peak Hour V/C	_	
Investment Decisions		Reduce delays from recurring and non-recurring events		Closure Extent	-	Fair or better
and Support Economic	Provide safe, reliable and efficient connection to all	to improve reliability		Directional Travel Time Index	-	
Vitality	communities along the corridor to permit efficient regional travel	Better accommodate bicycle and pedestrian use on the state system		Directional Planning Time Index	-	
	Implement critical/cost-effective investments to improve	Emphasize the deployment of technology to optimize		% Bicycle Accommodation		
	access to multimodal transportation	existing system capacity and performance		% Non-SOV Trips		
	Provide a safe, reliable and efficient freight route	Implement the most cost effective transportation solutions	Freight	Freight Index	Good	
			(Emphasis Area)	Directional Truck Travel Time Index	-	Fair or better
		Reduce delays and restrictions to freight movement to improve reliability	,	Directional Truck Planning Time		
		Improve travel time reliability (including impacts to		Index		
		motorists due to freight traffic)		Closure Duration	-	
				Bridge Vertical Clearance		
Preserve and Maintain	Maintain, preserve, extend service life, and modernize State Transportation System infrastructure	Maintain structural integrity of bridges	Bridge	Bridge Index	Fair or better	
the System				Sufficiency Rating		Fair or better
				% of Deck Area on Functionally		
				Obsolete Bridges	-	
				Lowest Bridge Rating		
		Improve pavement ride quality for all corridor users	Pavement	Pavement Index	Fair or better	
		Reduce long-term pavement maintenance costs		Directional Pavement Serviceability		Fair or better
				Rating % Area Failure	-	
Enhance Safety	Provide a safe, reliable, and efficient connection for the communities along the corridor	Reduce the number and rate of fatal and incapacitating injury crashes for all roadway users	Safety <i>(Emphasis</i>	Safety Index	Above Average	
			Area)	Directional Safety Index		Average or
	Improve transportation system safety for all modes			% of Crashes Involving SHSP Top 5 Emphasis Areas Behaviors		better
				% of Crashes Involving Crash Unit Types		

Table 11: Corridor Performance Goals and Objectives



3.2 Needs Assessment Process

The following guiding principles were used as an initial step in developing a framework for the performance-based needs assessment process:

- Corridor needs are defined as the difference between the corridor performance and the performance objectives
- The needs assessment process should be systematic, progressive, and repeatable, but also allow for engineering judgment where needed
- The process should consider all primary and secondary performance measures developed for the study
- The process should develop multiple need levels including programmatic needs for the entire length of the corridor, performance area-specific needs, segment-specific needs, and location-specific needs (defined by MP limits)
- The process should produce actionable needs that can be addressed through strategic investments in corridor preservation, modernization, and expansion

The performance-based needs assessment process is illustrated in Figure 19 and described in the following sections.

Figure 19: Needs Assessment Process

Step 1: Initial Needs Identification

The first step in the needs assessment process links baseline (existing) corridor performance with performance objectives. In this step, the baseline corridor performance is compared to the performance objectives to provide a starting point for the identification of performance needs. This mathematical comparison results in an initial need rating of None, Low, Medium, or High for each primary and secondary performance measure. An illustrative example of this process is shown below in Figure 20.

Performance Thresholds	Performance Level	Initial Level of Need	Description				
	Good						
	Good	None*	All levels of Good and top 1/3 of Fair (>6.0)				
6.5	Good	None					
0.0	Fair						
	Fair	Low	Middle 1/3 of Fair (5.5-6.0)				
5.0	Fair	Medium	Lower 1/3 of Fair and top 1/3 of Poor (4.5-5.5)				
0.0	Poor	Wediam					
	Poor	High	Lower 2/3 of Poor (<4.5)				
	Poor	9					

Figure 20: Initial Need Ratings in Relation to Baseline Performance (Bridge Example)

*A segment need rating of 'None' does not indicate a lack of needed improvements; rather, it indicates that the segment performance score exceeds the established performance thresholds and strategic solutions for that segment will not be developed as part of this study.

The initial level of need for each segment is refined to account for hot spots and recently completed or under construction projects, resulting in a final level of need for each segment. The final levels of need for each primary and secondary performance measure are combined to produce a weighted final need rating for each segment. Values of 0, 1, 2, and 3 are assigned to the initial need levels of None, Low, Medium, and High, respectively. A weight of 1.0 is applied to the Performance Index need and equal weights of 0.20 are applied to each need for each secondary performance measure. For directional secondary performance measures, each direction of travel receives a weight of 0.10.

Step 2: Need Refinement

In Step 2, the initial level of need for each segment is refined using the following information and engineering judgment:

- increased from None to Low
- should be reduced or eliminated as appropriate

• For segments with an initial need of None that contain hot spots, the level of need should be

 For segments with an initial level of need where recently completed projects or projects under construction are anticipated to partially or fully address the identified need, the level of need

 Programmed projects that are expected to partially or fully address an identified need are not justification to lower the initial need because the programmed projects may not be implemented as planned; in addition, further investigations may suggest that changes in the scope of a programmed project may be warranted

The resulting final needs are carried forward for further evaluation in Step 3.

Step 3: Contributing Factors

In Step 3, a more detailed review of the condition and performance data available from ADOT is conducted to identify contributing factors to the need. Typically, the same databases used to develop the baseline performance serve as the principal sources for the more detailed analysis. However, other supplemental databases may also be useful sources of information. The databases used for diagnostic analysis are listed below:

Pavement Performance Area

• Pavement Rating Database

Bridge Performance Area

• ABISS

Mobility Performance Area

- Highway Performance Monitoring System (HPMS) Database
- AZTDM
- Real-time traffic conditions data produced by American Digital Cartography Inc. (HERE) Database
- Highway Conditions Reporting System (HCRS) Database

Safety Performance Area

• Crash Database

Freight Performance Area

- HERE Database
- HCRS Database

In addition, other sources considered helpful in identifying contributing factors are:

- Maintenance history (from ADOT PeCoS database for pavement), the level of past investments, or trends in historical data that provide context for pavement and bridge history
- Field observations from ADOT district personnel can be used to provide additional information regarding a need that has been identified
- Previous studies can provide additional information regarding a need that has been identified

Step 3 results in the identification of performance-based needs and contributing factors by segment (and MP locations, if appropriate) that can be addressed through investments in preservation,

modernization, and expansion projects to improve corridor performance. See **Appendix D** for more information.

Step 4: Segment Review

In this step, the needs identified in Step 2 and refined in Step 3 are quantified for each segment to numerically estimate the level of need for each segment. Values of 0 to 3 are assigned to the final need levels (from Step 3) of None, Low, Medium, and High, respectively. A weighting factor is applied to the performance areas identified as emphasis areas and a weighted average need is calculated for each segment. The resulting average need score can be used to compare levels of need between segments within a corridor and between segments in different corridors.

Step 5: Corridor Needs

In this step, the needs and contributing factors for each performance area are reviewed on a segment-by-segment basis to identify actionable needs and to facilitate the formation of solution sets that address multiple performance areas and contributing factors. The intent of this process is to identify overlapping, common, and contrasting needs to help develop strategic solutions. This step results in the identification of corridor needs by specific location.

3.3 Corridor Needs Assessment

This section documents the results of the needs assessment process described in the prior section. The needs in each performance area were classified as either None, Low, Medium, or High based on how well each segment performed in the existing performance analysis. The needs for each segment were numerically combined to estimate the average level of need for each segment of the corridor.

The final needs assessments for each performance measure, along with the scales used in analysis, are shown in **Table 12** through **Table 16**.

Pavement Needs Refinement and Contributing Factors

< 2.70

- The level of need in Segment 347-5 was increased from None to Low due to the presence of a hot spot
- There are two segments along the corridor, Segment 347-3 and 347-4, that have pavement repetitive historical investment issues

> 25%

> 2.5

• See **Appendix D** for detailed information on contributing factors

	Perfor	mance Sco	ore and Lev	el of Need	Initial			Final		
Segment #	Pavement	Directio	onal PSR	% Area	Segment	Hot Spots	Recently Completed Projects	Segment		
	Index	NB/EB	SB/WB	Failure	Need			Need		
84/347-1	4.13	4.09	4.18	0%	0.00	None	None None			
347-2	3.86	4.07	4.23	11%	0.20	NB MP 162-164	4 None			
347-3	3.60	3.21	3.59	29%	0.70	MP 173-174; NB MP 174-175 None		Low		
347-4	3.95	3.86	3.95	0%	0.00	None None		None		
347-5	3.97	3.76	4.03	10%	0.00	NB MP 185-186	None	Low		
Level of Need (Score)	Per	rformance	Score Need	l Scale	Segment Level Need Scale	*A segment need rating of 'None' does not indicate a lack of needed improvements; rather, it indicates that the segment performance score exceeds the established performance thresholds and strategic solutions for that segment will not be				
None* (0)		> 3.30		< 10%	0	developed as part of this study.				
Low (1)	3	3.10 - 3.30		10% - 15%	< 1.5					
Medium (2)	2	2.70 - 3.10		15% - 25%	1.5 - 2.5					

Table 12: Final Pavement Needs

High (3)

Bridge Needs Refinement and Contributing Factors

- No changes were made to the level of need to account for hot spots or recently completed projects
- The Gila River Bridge NB (#991, MP 181.79) has a potential repetitive investment issue due to deck rating decreases
- See Appendix D for detailed information on contributing factors

Table 13: Final Bridge Need	ble 13: Final Bric	dge Needs
-----------------------------	--------------------	-----------

		Performance Score and Level of Need								
Segment #	Bridge Index	Sufficiency Rating	% of Deck on Functionally Obsolete Bridges	Lowest Bridge Rating	Initial Segment Hot Spots Need		Recently Completed Projects	Final Segment Need		
84/347-1	No Bridges					None	None	None*		
347-2	No Bridges			0.0	None	None	None			
347-3	No Bridges		0.0	None	None	None				
347-4	6.20	98.60	0.00%	6.00	0.0	None None		None		
347-5		No Bridges 0.0 None					None	None		
Level of Need (Score)		Performa	nce Score Need S	Scale	Segment Level Need Scale	rather, it indicates that the se	lone' does not indicate a lack of needed improvements; agment performance score exceeds the established			
None* (0)	> 6.0	> 70	> 5.0	< 21.0%	0	performance thresholds and strategic solutions for that segment will not be				
Low (1)	5.5 - 6.0	60 - 70	5.0	21.0% - 31.0%	< 1.5	developed as part of this study.				
Medium (2)	4.5 - 5.5	40 - 60	4.0	31.0% - 49.0%	1.5 - 2.5					
High (3)	< 4.5	< 40	< 4.0	> 49.0%	> 2.5					

Mobility Needs Refinement and Contributing Factors

- No changes were made to the level of need to account for recently completed projects
- See **Appendix D** for detailed information on contributing factors

		Performance Score and Level of Need									Initial	Final		
Segment #	Mobility	Future Daily	Existing Pe	ak Hour V/C	Closur	e Extent	Directi	onal TTI	Directi	onal PTI	% Bicycle	Segment	Recently Completed Projects	Segment
	Index	V/C	NB/EB	SB/WB	NB/EB	SB/WB	NB/EB	SB/WB	NB/EB	SB/WB	Accommodation	Need		Need
84/347-1	0.12	0.17	0.09	0.08	0.03	0.00	1.00	1.07	2.05	2.86	100%	0.0	None	None*
347-2	0.11	0.14	0.06	0.06	0.09	0.13	1.22	1.26	4.72	3.06	100%	0.1	None	Low
347-3	1.03	1.33	0.63	0.63	0.16	0.12	1.43	1.43	6.13	4.51	43%	4.5	Grade separated railroad crossing with bike lanes and sidewalks is underway	High
347-4	1.47	1.75	1.01	1.03	0.24	0.15	1.24	1.19	3.25	2.24	98%	4.2	None	High
347-5	1.35	1.61	0.90	0.89	0.61	0.12	1.16	1.15	1.15 3.05 2.83 98%		98%	4.4	None	High
Level of Need (Score)				Р	erforman	ce Score	Need Sca	le				Segment Level Need Scale	a: Uninterrupted b: Interrupted	
None* (0)			7 (Urban) 33 (Rural)		< 0	.35		.21ª .53 ^b		37 ª 00 ^b	> 80%	0	*A segment need rating of 'None' does lack of needed improvements; rather, i	
Low (1)	0.77 - 0.83 (Urban) 0.35 - 0.49 1.21 - 1.27 a 1.37 - 1.43 a 70% - 80% 0.63 - 0.69 (Rural) 0.35 - 0.49 1.53 - 1.77 b 4.00 - 5.00 b 70% - 80%			70% - 80%	< 1.5	the segment performance score excee established performance thresholds ar	ds the							
Medium (2)).95 (Urban) 0.83 (Rural)		0.49	- 0.75		1.39ª 2.23 ^b) ^a 1.43 - 1.57 ^a 50% - 70%		50% - 70%	1.5 - 2.5	solutions for that segment will not be de part of this study.	eveloped as
High (3)				< 50%	> 2.5									

Table 14: Final Mobility Needs

Safety Needs Refinements and Contributing Factors

- No changes were made to the level of need to account for hot spots
- There are a few recently completed projects in Segment 347-3 but the initial safety need was None so no changes were made to the level of need
- See Appendix D for detailed information on contributing factors

					Performance Sc	ore and Level of N	leed					
Segment	Segment # Safety Index NB/EB SB/W B			% of Fatal + Incapacitating	% of Fatal + Incapacitating	% of Fatal + Incapacitating	% of Fatal + Incapacitating	Initial Segment	Hot Spots	Recently Completed Projects	Final Segment	
					Injury Crashes Involving SHSP Top 5 Emphasis Area Behaviors	Injury Crashes Involving Trucks	Injury Crashes Involving Motorcycles	Injury Crashes Involving Non- Motorized Travelers	Need			Need
84/347-1 ^b)	0.34	0.00	0.68	Insufficient Data	Insufficient Data	Insufficient Data	Insufficient Data	0.0	None	None	None*
347-2ª		1.21	1.11	1.31	Insufficient Data	Insufficient Data	Insufficient Data	Insufficient Data	2.4	None	None	Medium
347-3ª		0.06	0.06	0.06	Insufficient Data	Insufficient Data	Insufficient Data	Insufficient Data	0.0	None	Grade separated railroad crossing with bike lanes and sidewalks is underway	None
347-4ª		0.87	0.87 0.57 1.17 80		80%	Insufficient Data	Insufficient Data	Insufficient Data	0.8	MP 182- 184	None	Low
347-5ª		1.93	1.00	2.86	48%	Insufficient Data	Insufficient Data	Insufficient Data	3.6	MP 184- 189	None	High
Level of Ne (Score)	ed				Performance	Score Needs Sca	le		Segment Level Need Scale		r 4 Lane Divided Highway ane Undivided Highway	
None* (0)	a b				<u><</u> 47% <u><</u> 53%	<u>≤</u> 5% <u>≤</u> 6%	<u><</u> 19% <u><</u> 22%	<u><</u> 3% <u><</u> 3%	0		nt need rating of 'None' does not indicate a lack of nee	
Low (1)	a 0.92 - 1.		0.92 - 1.07 0.98 - 1.02	47% - 50%				3% - 4% 3% - 4%	<u><</u> 1.5	exceeds th	improvements; rather, it indicates that the segment performance score exceeds the established performance thresholds and strategic solutions for that segment will not be developed as part of this study.	
Medium (2)	a b				50% - 57% 55% - 59%	6% - 8% 7% - 8%	22% - 29% 25% - 30%	4% - 5% 4% - 5%	1.5 - 2.5			
High (3)	a b	<u>></u> 1.38		<u>></u> 57% <u>></u> 59%	<u>≥</u> 8% <u>≥</u> 8%	<u>></u> 29% <u>></u> 30%	<u>≥</u> 5% ≥ 5%	<u>></u> 2.5				

Freight Needs Refinements and Contributing Factors

- No changes were made to the level of need to account for hot spots as there are no bridge vertical clearance hot spots on the corridor
- The project under construction in Segment 347-3 does not substantially affect the overall segment performance so no changes were made to the level of need
- See Appendix D for detailed information on contributing factors

				Perform	mance Score and Level of Need									
Segmen	t#	Freight	Directio	onal TTTI	Directio	onal TPTI	וושוופח		TPTI Closure Duration		Bridge Vertical	Initial Segment Need	Hot Spots	Recently Com
		Index	NB/EB	SB/WB	NB/EB	SB/WB	NB/EB	SB/WB	Clearance					
84/347-	1 ^b	0.45	1.02	1.14	1.94	2.50	6.34	0.00	No UP	0.0	None	N		
347-2 ^t)	0.30	1.14	1.26	3.73	3.01	13.33	24.27	No UP	0.0	None	N		
347-3 ^t)	0.11	1.50	1.58	8.00	10.06	29.16	9.40	No UP	3.7	None	Grade separated railroad sidewalks		
347-4 ^t)	0.11	1.46	1.34	10.53	7.12	40.59	20.25	No UP	3.6	None	N		
347-5 ^t)	0.14	1.42	1.30	9.18	5.13	106.80	10.96	No UP	2.7	None	N		
Level o Need (Score			-	Perfo	ormance S	Score Nee	d Scale			Segment Level Need Scale	a: Uninterrup b: Interrupte			
None* (0)	a b	≥ 0.74 ≥ 0.28		l.21 l.53		.37 .00	<u><</u> 7	1.07	<u>></u> 16.33	0	*A segment need rating of 'None' does not improvements; rather, it indicates that the			
Low (1)	a b			- 1.27 - 1.77		- 1.43 - 5.00	71.07	- 97.97	16.17 - 16.33	<u><</u> 1.5	exceeds the e	established performance thres will not be developed as part c		
Medium (2)	a b			- 1.39 - 2.23		- 1.57 - 7.00	97.97 -	151.75	15.83 - 16.17	1.5 - 2.5				
High (3)	a b	<u>≤</u> 0.64 <u>≤</u> 0.12		1.39 2.23		.57 7.00	<u>></u> 15	51.75	<u><</u> 15.83	<u>></u> 2.5				

Table 16: Final Freight Needs

/ Completed Projects	Final Segment Need
None	None*
None	None
lroad crossing with bike lanes and walks is underway	High
None	High
None	High

not indicate a lack of needed the segment performance score thresholds and strategic solutions for part of this study.

Segment Review

The needs for each segment were combined to numerically estimate the average level of need for each segment of the corridor. Table 17 provides a summary of needs for each segment across all performance areas, with the average need score for each segment presented in the last row of the table. A weighting factor of 1.5 is applied to the need scores of the performance areas identified as emphasis areas (Mobility, Safety, and Freight for the SR 347/SR 84 corridor). There is one segment with a High average need, two segments with a Medium average need, one segment with a Low average need, and one segment with no average need.

	Segment Number and Mileposts (MP)										
Performance Area	84/347-1	347-2	347-3	347-4	347-5						
	MP 155-162	MP 162-171	MP 171-176	MP 176-184	MP 184-189						
Pavement	None*	Low	Low	None	Low						
Bridge	None	None	None	None	None						
Mobility⁺	None	Low	High	High	High						
Safety⁺	None	Medium	None	Low	High						
Freight⁺	None	None	High	High	High						
Average Need	0.00	0.85	1.54	1.62	2.23						

Table 17: Summary of Needs by Segment

⁺ Identified as Emphasis Areas for SR 347/SR 84 Corridor

* A segment need rating of 'None' does not indicate a lack of needed improvements; rather, it indicates that the segment performance score exceeds the established performance thresholds and strategic solutions for that segment will not be developed as part of this study

Level of Need	Average Need Range
None*	< 0.1
Low	0.1 - 1.0
Medium	1.0 - 2.0
High	> 2.0

Summary of Corridor Needs

The needs in each performance area are shown in Figure 21 and summarized below:

Pavement Needs

- Three segments (347-2, 347-3, and 347-5) contain Pavement hot spots
- Segments 347-2, 347-3, and 347-5 have final segment needs of Low while Segments 84/347-1 and 347-4 have a final segment need of None
- Segments 347-3 and 347-4 have potential pavement repetitive historical investment issues

Bridge Needs

- No segments along the corridor have Bridge hot spots or potential repetitive historical investment issues
- No bridges are considered functionally obsolete or structurally deficient along the corridor
- All segments along the corridor have a final segment need of None

Mobility Needs

- Segments 347-3, 347-4, and 347-5 have a final segment need of High; all other segments on the corridor have a final segment need of Low or None
- Mobility needs are primarily related to high existing and projected traffic volumes and high PTI values

Safety Needs

- Segments 347-5 and 347-2 have final segment needs of High and Medium, respectively
- Safety hot spots exist in Segments 347-4 and 347-5

Freight Needs

- No Freight hot spots exist along the corridor
- Segments 347-3, 347-4, and 347-5 have a final segment need of High while Segments 347-2 and 84/347-1 have a final segment need of None
- Freight needs are primarily related to high truck PTI

Overlapping Needs

This section identifies overlapping performance needs on the SR 347/SR 84 corridor, which provides guidance to develop strategic solutions that address more than one performance area with elevated levels of need (i.e., Medium or High). Completing projects that address multiple needs presents the opportunity to more effectively improve overall performance. A summary of the overlapping needs that relate to locations with elevated levels of need is provided below:

• Segment 347-5, which has the highest average need score of all the segments of the corridor, has elevated needs in Mobility, Safety, and Freight performance areas

 Segments 347-3 and 347-4 contains elevate areas

• Segments 347-3 and 347-4 contains elevated needs in the Mobility and Freight performance


Goodyear ____ MARICOPA Segment 84/347-1 PINAL MP 170 Segmen 347-3 Segment 347-2 Segment 347-4 Segmer 347-5 Segment Number and Mileposts (MP) 84 Performance 84/347-1 347-2 347-3 347-4 347-5 Area MP 155-162 MP 162-171 MP 171-176 MP 176-184 MP 184-189 Pavement None* Low Low None Low Bridge None None None None None Mobility⁺ None Low High High High Medium None None Low High Safety* None None High High High Freight⁺ 1---2.23 Average Need 0.00 0.85 1.54 1.62 ⁺ Identified as Emphasis Areas for SR 347/SR 84 Corridor * A segment need rating of 'None' does not indicate a lack of needed improvements; Corridor Segment Performance Area Needs rather, it indicates that the segment performance score exceeds the established performance - County Boundary Pavement thresholds and strategic solutions for that segment will not be developed as part of this study

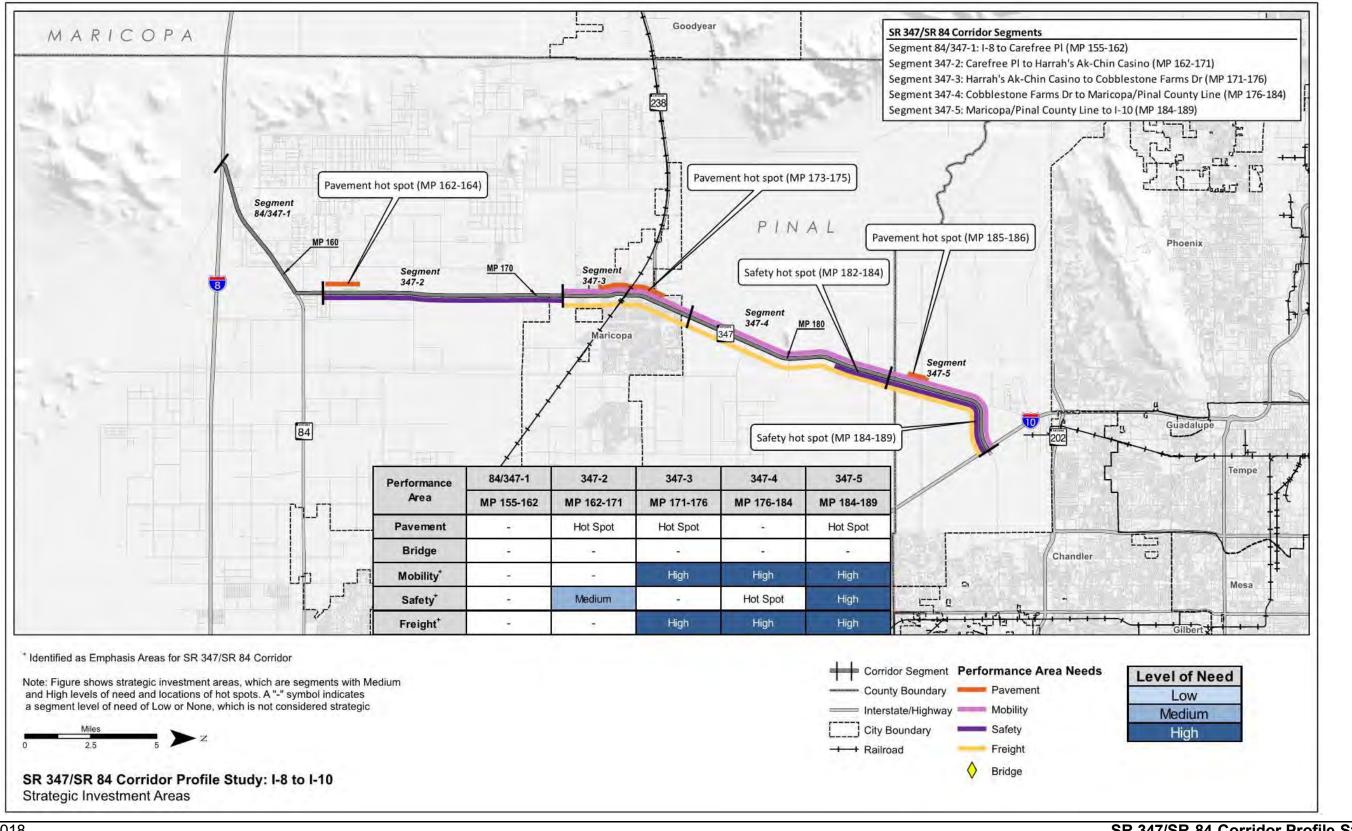
SR 347/SR 84 Corridor Profile Study: I-8 to I-10 Corridor Needs Summary

SR 347/SR 84 Corridor Profile Study Final Report

4.0 STRATEGIC SOLUTIONS

The principal objective of the CPS is to identify strategic solutions (investments) that are performance-based to ensure that available funding resources are used to maximize the performance of the State's key transportation corridors. One of the first steps in the development of strategic solutions is to identify areas of elevated levels of need (i.e., Medium or High). Addressing areas of Medium or High need will have the greatest effect on corridor performance and are the focus of the strategic solutions. Segments with Medium or High needs and specific locations of hot spots are considered strategic investment areas for which strategic solutions should be developed. Segments with lower levels of need or without identified hot spots are not considered candidates for strategic investment and are expected to be addressed through other ADOT programming processes. The SR 347/SR 84 strategic investment areas (resulting from the elevated needs) are shown in **Figure 22**.

4.1 Screening Process


This section examines qualifying strategic needs and determines if the needs in those locations require action. In some cases, needs that are identified do not advance to solutions development and are screened out from further consideration because they have been or will be addressed through other measures, including:

- A project is programmed to address this need
- The need is a result of a Pavement or Bridge hot spot that does not show historical investment or rating issues; these hot spots will likely be addressed through other ADOT programming means
- A bridge is not a hot spot but is located within a segment with a Medium or High level of need; this bridge will likely be addressed through current ADOT bridge maintenance and preservation programming processes
- The need is determined to be non-actionable (i.e., cannot be addressed through an ADOT project)
- The conditions/characteristics of the location have changed since the performance data was collected that was used to identify the need

Table 18 notes if each potential strategic need advanced to solution development, and if not, the reason for screening the potential strategic need out of the process. Locations advancing to solutions development are marked with Yes (Y); locations not advancing are marked with No (N) and highlighted. This screening table provides specific information about the needs in each segment that will be considered for strategic investment. The table identifies the level of need – either Medium or High segment needs, or segments without Medium or High level of need that have a hot spot. Each area of need is assigned a location number in the screening table to help document and track locations considered for strategic investment.

Figure 22: Strategic Investment Areas

SR 347/SR 84 Corridor Profile Study Final Report

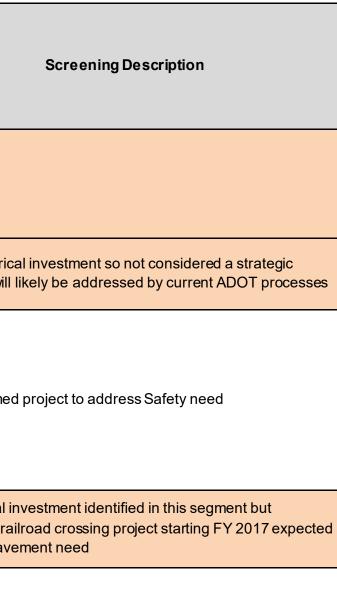

and	L		of S [.] Nee	trate d	gic					
Segment # and MP	Pavement	Bridge	Mobility	Safety	Freight	Location #	Туре	Need Description	Advance (Y/N)	
84/347-1 (MP 155-162)			-	-						
						L1	Pavement	Hot spot NB MP 162-164	N	No high historic investment; will
347-2 (MP 162-171)	Hot Spot		L2 Safety 2 fatal cr pedestri being ur		Safety	MP 162-171 has a SB/WB Directional Safety Index above the statewide average; overall Safety Index and NB/EB Directional Safety Index scores are average 2 fatal crashes and 3 incapacitating injury crashes in segment; 1 crash involved a pedestrian; crash data analysis indicates 40% involve overturning, 60% involve being under the under the influence of drugs or alcohol, and 40% occur in dark- unlighted conditions	Y	No programme		
						L3	Pavement	Hot spot NB MP 173-175	N	High historical in programmed ra to address Pave
347-3 (MP 171-176)	Hot Spot		High	I	High	L4	Mobility	MP 171-176 has a High level of need based on existing peak hour V/C and future daily V/C performance; this segment also exhibits poor performance in the NB/EB Directional PTI and Bicycle Accommodation measures	Ν	Programmed ra to address a po
						L5	Freight	MP 171-176 has a High level of need based on the overall Freight Index, both SB/WB and NB/EB Directional TPTI scores, and fair performance in Directional TTTI scores	Ν	Programmed ra to address a po

Table 18: Strategic Investment Area Screening

Legend:

Strategic investment area screened out from further consideration

railroad crossing project starting FY 2017 expected portion of the Mobility need (up to MP 174)

railroad crossing project starting FY 2017 expected portion of the Mobility need (up to MP 174)

Table 18: Strategic Investment Area Screening (continued)

and	Le		of St Nee	trateg d	gic							
Segment # MP	Pavement	Bridge	Mobility	Safety	Freight	Location #	Туре	Need Description	Advance (Y/N)	Screening Description		
						L6	Mobility	MP 176-184 has a High level of need based on Existing Peak Hour and Future Daily V/C performance	Y	No programmed project to address Mobility need		
347-4 (MP 176-184)			High	Hot Spot	High	L7	Safety	Hot spot MP 182-184 3 fatal crashes and 7 incapacitating injury crashes in segment; crash data analysis indicates 40% involve overturning, 30% involve rear end, 50% occur in dark- unlighted conditions, and 40% involve being under the influence of drugs or alcohol	Y	No programmed project to address Safety hot spot		
						L8	Freight	MP 176-184 has a High level of need based on the overall Freight Index, both SB/WB and NB/EB Directional TPTI scores, and fair performance in Directional TTTI scores	Y	No programmed project to address Freight need		
						L9	Pavement	Hot spot NB MP 185-186	Ν	No high historical investment so not considered a strategic investment; will likely be addressed by current ADOT processes		
						L10	Mobility	MP 184-189 has a High level of need based on Existing Peak Hour and Future Daily V/C performance	Y	No programmed project to address Mobility need		
347-5 (MP 184-189)			High	High	High	High	High	L11	Safety	MP 184-189 has a Safety Index significantly above the statewide average, particularly in the SB/WB direction; secondary performance score is average Hot spot MP 184-189 4 fatal crashes and 17 incapacitating injury crashes in segment; 2 crashes involved trucks; 1 crash involved a motorcycle; crash data analysis indicates 67% involve rear end collisions, 81% involve collision with motor vehicle collisions, and 43% of collisions occur in dark-unlighted conditions	Y	No programmed project to address Safety need
						L12	Freight	MP 184-189 has a High level of need based on the overall Freight Index, NB/EB Directional TPTI scores, and fair performance in Directional TTTI and NB/EB Closure Duration scores	Y	No programmed project to address Freight need		

Legend:

Strategic investment area screened out from further consideration

4.2 Candidate Solutions

For each elevated need within a strategic investment area that is not screened out, a candidate solution is developed to address the identified need. Each candidate solution is assigned to one of the following three P2P investment categories based on the scope of the solution:

- Preservation
- Modernization
- Expansion

Documented performance needs serve as the foundation for developing candidate solutions for corridor preservation, modernization, and expansion. Candidate solutions are not intended to be a substitute or replacement for traditional ADOT project development processes where various ADOT technical groups and districts develop candidate projects for consideration in the performance-based programming in the P2P process. Rather, these candidate solutions are intended to complement ADOT's traditional project development processes through a performance-based process to address needs in one or more of the five performance areas of Pavement, Bridge, Mobility, Safety, and Freight. Candidate solutions developed for the SR 347/SR 84 corridor will be considered along with other candidate projects in the ADOT statewide programming process.

Characteristics of Strategic Solutions

Candidate solutions should include some or all of the following characteristics:

- Do not recreate or replace results from normal programming processes
- May include programs or initiatives, areas for further study, and infrastructure projects
- Address elevated levels of need (High or Medium) and hot spots
- Focus on investments in modernization projects (to optimize current infrastructure)
- Address overlapping needs
- Reduce costly repetitive maintenance
- Extend operational life of system and delay expansion
- Leverage programmed projects that can be expanded to address other strategic elements
- Provide measurable benefit

Candidate Solutions

A set of 7 candidate solutions are proposed to address the identified needs on the SR 347/SR 84 corridor.

Table 19 identifies each strategic location that has been assigned a candidate solution with a number (e.g., CS347.1, CS347.2, etc.). Each candidate solution is comprised of one or more components to address the identified needs. The assigned candidate solution numbers are linked to the location number and provide tracking capability through the rest of the process. The locations of proposed solutions are shown on the map in **Figure 23**.

Candidate solutions developed to address an elevated need in the Pavement or Bridge performance area will include two options: rehabilitation or full replacement. These solutions are initially evaluated through a Life-Cycle Cost Analysis (LCCA) to provide insights into the cost-effectiveness of these options so a recommended approach can be identified. Candidate solutions developed to address an elevated need in the Mobility, Safety, or Freight performance areas are advanced directly to the Performance Effectiveness Evaluation. In some cases, there may be multiple solutions identified to address the same area of need.

Candidate solutions that are recommended to expand or modify the scope of an already programmed project are noted and are not advanced to solution evaluation and prioritization. These solutions are directly recommended for programming.

Candidate Solution #	Segment #	Location #	Beginning Milepost	Ending Milepost	Candidate Solution Name	Option*	Candidate Solution Scope	Investment Category (Preservation [P], Modernization [M], Expansion [E])
CS347.1	347-2	L2	162	171	Ak-Chin Area Safety Improvements	-	-Rehabilitate shoulders in both directions (striping, delineators, RPMs, safety edge, and rumble strips for both shoulders), MP 162-165 and MP 168-171 -Improve delineation (striping, delineators and RPMs), MP 165-168	М
CS347.2	347-3	L4/L5	174	176	Maricopa Area Mobility and Freight Improvements	-	-Widen to the inside to provide a total of 6 lanes (3 in each direction) with a raised median; for NB, widening limits are MP 174.8-176; for SB, widening limits are MP 175.5-176	E
CS347.3	347-4	L6/L7/L8	176	184	Casa Blanca Area Safety Improvements	-	-Rehabilitate shoulders in both directions (striping, delineators, RPMs, safety edge, and rumble strips for both shoulders), MP 176-184 -Install advanced warning signal system with detectors and beacons in both directions at Casa Blanca Road intersection (MP 178.4) and Cement Plant intersection (MP 182.5) and lengthen NB deceleration lane to 300' at Cement Plant intersection	Μ
CS347.4	347-4	L6/L8	176	184	Casa Blanca Area Mobility and Freight Improvements	-	 -Widen to the inside to provide a total of 6 lanes (3 in each direction) with a median concrete barrier -Construct 1,200' NB acceleration lane at Casa Blanca Road intersection (MP 178.4) -Widen NB and SB Gila River Bridges (MP 181.8) -Widen NB and SB Santa Cruz Wash Bridges (MP 178.3) -Widen NB and SB Santa Cruz Wash Bridges (MP 176.2) 	E
CS347.5	347-5	L10/L11/L12	184	189	Wild Horse Pass Area Safety Improvements	-	 -Rehabilitate shoulders in both directions (striping, delineators, RPMs, safety edge, and rumble strips for both shoulders), MP 184-189 -Install advanced warning signal system with detectors and beacons in both directions at Riggs Road intersection (MP 185.3) -Install dual left-turn lanes on each approach at Riggs Road intersection (MP 185.3) -Construct traffic signal at Maricopa Road intersection (MP 187.5) and provide an advanced warning signal system with detectors and beacons (both directions) and widen intersection to provide dual southbound left-turn lanes -Install intersection lighting at Maricopa Road intersection (MP 187.5) 	М
CS347.6	347-5	L10/L12	184	189	Wild Horse Pass Area Mobility and Freight Improvements	-	-Widen to the inside to provide a total of 6 lanes (3 in each direction) with a median concrete barrier -Construct 1,200' SB acceleration lane and lengthen SB deceleration lane to 300' at Maricopa Road intersection (MP 187.5) -Construct 1,200' NB/SB acceleration lanes and lengthen NB/SB deceleration lanes to 300' at Riggs Road intersection (MP 185.3)	E
CS347.7	347-5	L10/L12	189	189	SR 347/I-10 Interchange Mobility and Freight Improvements is are being considere	- d	-Convert SR 347/I-10 traffic interchange from conventional diamond to diverging diamond interchange	М

Table 19: Candidate Solutions

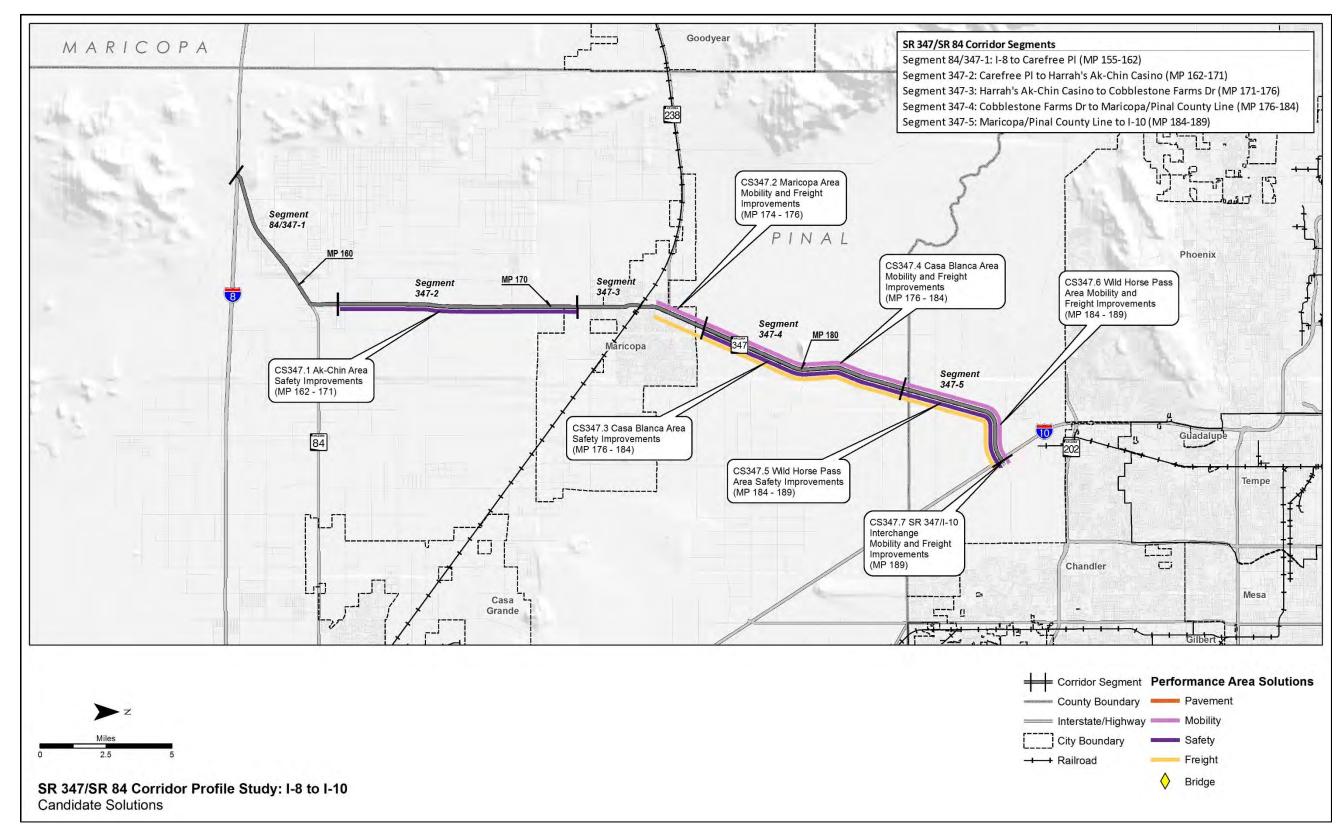


Figure 23: Candidate Solutions

5.0 SOLUTION EVALUATION AND PRIORITIZATION

Candidate solutions are evaluated using the following steps: LCCA (where applicable), Performance Effectiveness Evaluation, Solution Risk Analysis, and Candidate Solution Prioritization. The methodology and approach to this evaluation are shown in Figure 24 and described more fully below.

Life-Cycle Cost Analysis

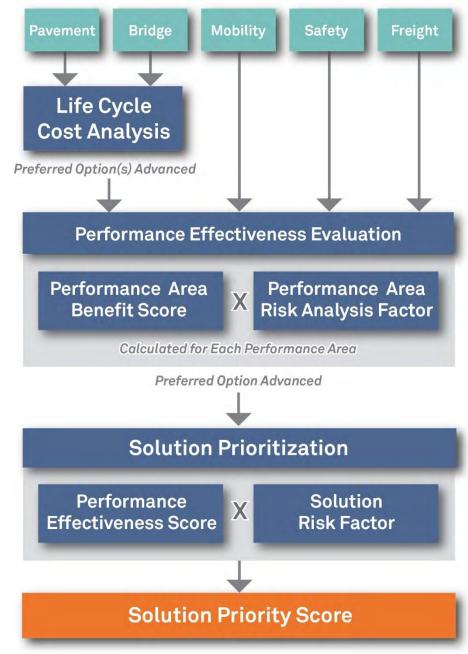
All Pavement and Bridge candidate solutions have two options: rehabilitation/repair or reconstruction. These options are evaluated through an LCCA to determine the best approach for each location where a Pavement or Bridge solution is recommended. The LCCA can eliminate options from further consideration and identify which options should be carried forward for further evaluation.

When multiple independent candidate solutions are developed for Mobility, Safety, or Freight strategic investment areas, these candidate solution options advance directly to the Performance Effectiveness Evaluation without an LCCA.

Performance Effectiveness Evaluation

After completing the LCCA process, all remaining candidate solutions are evaluated based on their performance effectiveness. This process includes determining a Performance Effectiveness Score (PES) based on how much each solution impacts the existing performance and needs scores for each segment. This evaluation also includes a Performance Area Risk Analysis to help differentiate between similar solutions based on factors that are not directly addressed in the performance system.

Solution Risk Analysis


All candidate solutions advanced through the Performance Effectiveness Evaluation are also evaluated through a Solution Risk Analysis process. A solution risk probability and consequence analysis is conducted to develop a solution-level risk weighting factor. This risk analysis is a numeric scoring system to help address the risk of not implementing a solution based on the likelihood and severity of performance failure.

Candidate Solution Prioritization

The PES, weighted risk factor, and segment average need score are combined to create a prioritization score. The candidate solutions are ranked by prioritization score from highest to lowest. The highest prioritization score indicates the candidate solution that is recommended as the highest priority. Solutions that address multiple performance areas tend to score higher in this process.

Figure 24: Candidate Solution Evaluation Process

5.1 Life-Cycle Cost Analysis

LCCA is conducted for any candidate solution that is developed as a result of a need in the Pavement or Bridge performance area. The intent of the LCCA is to determine which options warrant further investigation and eliminate options that would not be considered strategic.

LCCA is an economic analysis that compares cost streams over time and presents the results in a common measure, the present value of all future costs. The cost stream occurs over an analysis period that is long enough to provide a reasonably fair comparison among alternatives that may differ significantly in scale of improvement actions over shorter time periods. For both bridge and pavement LCCA, the costs are focused on agency (ADOT) costs for corrective actions to meet the objective of keeping the bridge or pavement serviceable over a long period of time.

LCCA is performed to provide a more complete holistic perspective on asset performance and agency costs over the life of an investment stream. This approach helps ADOT look beyond initial and short-term costs, which often dominate the considerations in transportation investment decision making and programming.

Bridge LCCA

For the bridge LCCA, three basic strategies are analyzed that differ in timing and scale of improvement actions to maintain the selected bridges, as described below:

- Bridge replacement (large upfront cost but small ongoing costs afterwards)
- Bridge rehabilitation until replacement (moderate upfront costs then small to moderate ongoing costs until replacement)
- On-going repairs until replacement (low upfront and ongoing costs until replacement)

The bridge LCCA model developed for the CPS reviews the characteristics of the candidate bridges including bridge ratings and deterioration rates to develop the three improvement strategies (full replacement, rehabilitation until replacement, and repair until replacement). Each strategy consists of a set of corrective actions that contribute to keeping the bridge serviceable over the analysis period. Cost and effect of these improvement actions on the bridge condition are essential parts of the model. Other considerations in the model include bridge age, elevation, pier height, length-tospan ratio, skew angle, and substandard characteristics such as shoulders and vehicle clearance. The following assumptions are included in the bridge LCCA model:

- The bridge LCCA only addresses the structural condition of the bridge and does not address other issues or costs
- The bridge will require replacement at the end of its 75-year service life regardless of current condition
- The bridge elevation, pier height, skew angle, and length-to-span ratio can affect the replacement and rehabilitation costs
- The current and historical ratings are used to estimate a rate of deterioration for each candidate bridge

- Following bridge replacement, repairs will be needed every 20 years
- and benefit to the bridge rating
- dollars
- needed

Based on the candidate solutions presented in **Table 19**, LCCA was not conducted for any bridges on the SR 347/SR 84 corridor, as noted in Table 20. Additional information regarding the bridge LCCA is included in Appendix E.

Pavement LCCA

The LCCA approach to pavement is very similar to the process used for bridges. For the pavement LCCA, three basic strategies are analyzed that differ in timing and scale of improvement actions to maintain the selected pavement, as described below:

- Pavement replacement (large upfront cost but small ongoing costs afterwards could be replacement with asphalt or concrete pavement)
- Pavement major rehabilitation until replacement (moderate upfront costs then small to moderate ongoing costs until replacement)
- Pavement minor rehabilitation until replacement (low upfront and ongoing costs until replacement)

The pavement LCCA model developed for the CPS reviews the characteristics of the candidate paving locations including the historical rehabilitation frequency to develop potential improvement strategies (full replacement, major rehabilitation until replacement, and minor rehabilitation until replacement, for either concrete or asphalt, as applicable). Each strategy consists of a set of corrective actions that contribute to keeping the pavement serviceable over the analysis period. The following assumptions are included in the pavement LCCA model:

- The pavement LCCA only addresses the condition of the pavement and does not address other issues or costs
- The historical pavement rehabilitation frequencies at each location are used to estimate future rehabilitation frequencies
- Different pavement replacement and rehabilitation strategies have different costs and expected service life

Different bridge repair and rehabilitation strategies have different costs, expected service life,

• The net present value of future costs is discounted at 3% and all dollar amounts are in 2015

• If the LCCA evaluation recommends rehabilitation or repair, the solution is not considered strategic and the rehabilitation or repair will be addressed by normal programming processes • Because this LCCA is conducted at a planning level, and due to the variabilities in costs and improvement strategies, the LCCA net present value results that are within 15% should be considered equally; in such a case, the solution should be carried forward as a strategic replacement project - more detailed scoping will confirm if replacement or rehabilitation is

- The net present value of future costs is discounted at 3% and all dollar amounts are in 2015 dollars
- If the LCCA evaluation recommends rehabilitation or repair, the solution is not considered strategic and the rehabilitation will be addressed by normal programming processes
- Because this LCCA is conducted at a planning level, and due to the variabilities in costs and improvement strategies, the LCCA net present value results that are within 15% should be considered equally; in such a case, the solution should be carried forward as a strategic

replacement project – more detailed scoping will confirm if replacement or rehabilitation is needed

Based on the candidate solutions presented in **Table 19**, LCCA was not conducted for any pavement solutions on the SR 347/SR 84 corridor, as noted in **Table 21**. Additional information regarding the pavement LCCA is contained in **Appendix E**.

Table 20: Bridge Life-Cycle Cost Analysis Results

Candidate Solution	Present Value a	t 3% Discount Ra	ite (\$)	Ratio of Present Va	alue Compared to	Lowest Present Value	Other	Results		
	Replace	Rehab	Repair	Replace	Rehab	Repair	Needs			
	No LCCA conducted for any bridge candidate solution on the SR 347/SR 84 corridor									

Table 21: Pavement Life-Cycle Cost Analysis Results

	Pre	sent Value at 3%	Discount Rate (\$)	Ratio of Present Value Compared to Lowest Present Value					
Candidate Solution	Concrete Reconstruction	Asphalt Reconstruction	Asphalt Medium Rehabilitation	Asphalt Light Rehabilitation	Concrete Reconstruction	Asphalt Reconstruction	MAAIIIM	Asphalt Light Rehabilitation		Results
	No LCCA conducted for any pavement candidate solutions on the SR 347/SR 84 corridor									

5.2 Performance Effectiveness Evaluation

The results of the Performance Effectiveness Evaluation are combined with the results of a Performance Area Risk Analysis to determine a PES as defined in Section 5.0. The objectives of the Performance Effectiveness Evaluation include:

- Measure the benefit to the performance system versus the cost of the solution
- Include risk factors to help differentiate between similar solutions •
- Apply to each performance area that is affected by the candidate solution
- Account for emphasis areas identified for the corridor

The Performance Effectiveness Evaluation includes the following steps:

- Estimate the post-solution performance for each of the five performance areas (Pavement, Bridge, Mobility, Safety, and Freight)
- Use the post-solution performance scores to calculate a post-solution level of need for each of the five performance areas
- Compare the pre-solution level of need to the post-solution level of need to determine the reduction in level of need (potential solution benefit) for each of the five performance areas
- Calculate performance area risk weighting factors for each of the five performance areas
- Use the reduction in level of need (benefit) and risk weighting factors to calculate the PES

Post-Solution Performance Estimation

For each performance area, a slightly different approach is used to estimate the post-solution performance. This process is based on the following assumptions:

- Pavement:
 - The IRI rating would decrease (to 30 for replacement or 45 for rehabilitation)
 - The Cracking rating would decrease (to 0 for replacement or rehabilitation)
- Bridge:
 - The structural ratings would increase (+1 for repair, +2 for rehabilitation, or increase to 8 for replacement)
 - The Sufficiency Rating would increase (+10 for repair, +20 for rehabilitation, or increase to 98 for replacement)
- Mobility:
 - o Additional lanes would increase the capacity and therefore affect the Mobility Index and associated secondary measures
 - Other improvements (e.g., ramp metering, parallel ramps, variable speed limits) would also increase the capacity (to a lesser extent than additional lanes) and therefore would affect the Mobility Index and associated secondary measures
 - o Changes in the Mobility Index (due to increased capacity) would have a direct effect on the TTI secondary measure

- the Closure Extent secondary measure
- Safety:
 - reduction in crashes (for additional information see Appendix F)
- Freight:
 - secondary measure
 - on the TTTI secondary measure
 - the Closure Duration secondary measure

Performance Area Risk Analysis

The Performance Area Risk Analysis is intended to develop a numeric risk weighting factor for each of the five performance areas (Pavement, Bridge, Mobility, Safety, and Freight). This risk analysis addresses other considerations for each performance area that are not directly included in the performance system. A risk weighting factor is calculated for each candidate solution based on the specific characteristics at the solution location. For example, the Pavement Risk Factor is based on factors such as the elevation, daily traffic volumes, and amount of truck traffic. Additional information regarding the Performance Area Risk Factors is included in Appendix G.

Following the calculation of the reduction in level of need (benefit) and the Performance Area Risk Factors, these values are used to calculate the PES. In addition, the reduction in level of need in each emphasis area is also included in the PES.

Net Present Value Factor

The benefit (reduction in need) is measured as a one-time benefit. However, different types of solutions will have varying service lives during which the benefits will be obtained. For example, a preservation solution would likely have a shorter stream of benefits over time when compared to a modernization or expansion solution. To address the varying lengths of benefit streams, each solution is classified as a 10-year, 20-year, 30-year, or 75-year benefit stream, or the net present value (NPV) factor (FNPV). A 3% discount rate is used to calculate FNPV for each classification of solution. The service lives and respective factors are described below:

solutions, a FNPV of 8.8 is used in the PES calculation

• Changes in the Mobility Index (due to increased capacity) and Safety Index (due to crash reductions) would have a direct effect on the PTI secondary measure o Changes in the Safety Index (due to crash reductions) would have a direct effect on

o Crash modification factors were developed that would be applied to estimate the

• Changes in the Mobility Index (due to increased capacity) and Safety Index (due to crash reductions) would have a direct effect on the Freight Index and the TPTI

• Changes in the Mobility Index (due to increased capacity) would have a direct effect

• Changes in the Safety Index (due to crash reductions) would have a direct effect on

• A 10-year service life is generally reflective of preservation solutions such as pavement and bridge preservation; these solutions would likely have a 10-year stream of benefits; for these

- A 20-year service life is generally reflective of modernization solutions that do not include new infrastructure; these solutions would likely have a 20-year stream of benefits; for these solutions, a FNPV of 15.3 is used in the PES calculation
- A 30-year service life is generally reflective of expansion solutions or modernization solutions that include new infrastructure; these solutions would likely have a 30-year stream of benefits; for these solutions, a FNPV of 20.2 is used in the PES calculation
- A 75-year service life is used for bridge replacement solutions; these solutions would likely have a 75-year stream of benefits; for these solutions, a FNPV of 30.6 is used in the PES calculation

Vehicle-Miles Travelled Factor

Another factor in assessing benefits is the number of travelers who would benefit from the implementation of the candidate solution. This factor varies between candidate solutions depending on the length of the solution and the magnitude of daily traffic volumes. Multiplying the solution length by the daily traffic volume results in vehicle-miles travelled (VMT), which provides a measure of the amount of traffic exposure that would receive the benefit of the proposed solution. The VMT is converted to a VMT factor (known as F_{VMT}), which is on a scale between 0 and 5, using the equation below:

 $F_{VMT} = 5 - (5 \times e^{VMT \times -0.0000139})$

Performance Effectiveness Score

The PES is calculated using the following equation:

PES = ((Sum of all Risk Factored Benefit Scores + Sum of all Risk Factored Emphasis Area Scores) / Cost) x FVMT x FNPV

Where:

- Risk Factored Benefit Score = Reduction in Segment-Level Need (benefit) x Performance Area Risk Weighting Factor (calculated for each performance area)
- Risk Factored Emphasis Area Score = Reduction in Corridor-Level Need x Performance Area Risk Factors x Emphasis Area Factor (calculated for each emphasis area)
- Cost = estimated cost of candidate solution in millions of dollars (see Appendix H)
- F_{VMT} = Factor between 0 and 5 to account for VMT at location of candidate solution based on existing (2014) daily volume and length of solution
- F_{NPV} = Factor (ranging from 8.8 to 30.6 as previously described) to address anticipated longevity of service life (and duration of benefits) for each candidate solution

The resulting PES values are shown in **Table 22**. Additional information regarding the calculation of the PES is contained in **Appendix I**.

For candidate solutions with multiple options to address Mobility, Safety, or Freight needs, the PES should be compared to help identify the best performing option. If one option clearly performs better than the other options (e.g., more than twice the PES value and a difference in magnitude of at least 20 points), the other options can be eliminated from further consideration. If multiple options have similar PES values, or there are other factors not accounted for in the performance system that could significantly influence the ultimate selection of an option (e.g., potential environmental concerns, potential adverse economic impacts), those options should all be advanced to the prioritization process. On the SR 347/SR 84 corridor, no candidate solutions have options to address needs.

Candidate				Milepost	Estimated Cost* (in	F	Risk Facto	ored Bene	fit Score		Risk Factored Emphasis Area Scores			Total Factored	Fvmt	F _{NPV}	Performance Effectiveness	
Solution #	Geginent #	option	Candidate Colution Name			Pavement	Bridge	Mobility	Safety	Freight	Mobility	Safety	Freight	Benefit Score	I VMI	I NPV	Score	
CS347.1	347-2	-	Ak-Chin Area Safety Improvements	162-171	\$3.7	0.00	0.00	0.23	3.36	0.27	0.00	0.89	0.18	4.94	2.53	15.3	52.1	
CS347.2	347-3	-	Maricopa Area Mobility and Freight Improvements	174-176	\$6.5	0.23	0.00	4.70	0.08	1.10	0.65	0.10	0.12	6.98	1.72	20.2	37.3	
CS347.3	347-4	-	Casa Blanca Area Safety Improvements	176-184	\$5.1	0.00	0.00	0.13	1.14	0.69	0.00	1.42	0.12	3.50	4.94	15.3	52.0	
CS347.4	347-4	-	Casa Blanca Area Mobility and Freight Improvements	176-184	\$78.6	0.00	0.00	31.20	0.77	0.89	8.07	0.77	0.17	41.87	4.94	20.2	53.2	
CS347.5	347-5	-	Wild Horse Pass Area Safety Improvements	184-189	\$5.0	0.00	0.00	0.82	11.62	1.65	0.00	2.58	0.12	16.80	4.02	15.3	208.7	
CS347.6	347-5	-	Wild Horse Pass Area Mobility and Freight Improvements	184-189	\$42.1	0.44	0.00	30.34	4.45	1.15	4.92	0.96	0.12	42.38	4.68	20.2	95.1	
CS347.7	347-5	-	SR 347/I-10 Interchange Mobility and Freight Improvements	189	\$5.7	0.00	0.00	2.24	0.00	0.12	0.36	0.00	0.02	2.74	0.60	20.2	5.9	

Table 22: Performance Effectiveness Scores

*: See Table 24 for total construction costs

5.3 Solution Risk Analysis

Following the calculation of the PES, an additional step is taken to develop the prioritized list of solutions. A solution risk probability and consequence analysis is conducted to develop a solutionlevel risk weighting factor. This risk analysis is a numeric scoring system to help address the risk of not implementing a solution based on the likelihood and severity of performance failure. Figure 25 shows the risk matrix used to develop the risk weighting factors.

		Severity/Consequence								
		Insignificant	Minor	Significant	Major	Catastrophic				
	Very Rare	Low	Low	Low	Moderate	Major				
icy/	Rare	Low	Low Low		Major	Major				
Frequency/ Likelihood	Seldom	Low	Moderate	Moderate	Major	Severe				
Free Like	Common	Moderate	Moderate	Major	Severe	Severe				
	Frequent	Moderate	Major	Severe	Severe	Severe				

Figure	25:	Risk	Matrix
iguic	L V.	11101	matin

Using the risk matrix in **Figure 25**, numeric values were assigned to each category of frequency and severity. The higher the risk, the higher the numeric factor that was assigned. The risk weight for each area of the matrix was calculated by multiplying the severity factor times the frequency factor. These numeric factors are shown in Figure 26.

Figure 26: Numeric Risk Matrix

				Seve	rity/Consequ	ence	
			Insignificant	Minor	Significant	Major	Catastrophic
		Weight	1.00	1.10	1.20	1.30	1.40
	Very Rare	1.00	1.00	1.10	1.20	1.30	1.40
lcy/	Rare	1.10	1.10	1.21	1.32	1.43	1.54
Frequency/ Likelihood	Seldom	1.20	1.20	1.32	1.44	1.56	1.68
Free	Common	1.30	1.30	1.43	1.56	1.69	1.82
	Frequent	1.40	1.40	1.54	1.68	1.82	1.96

Using the values in Figure 26, risk weighting factors were calculated for each of the following four risk categories: low, moderate, major, and severe. These values are simply the average of the values in Figure 26 that fall within each category. The resulting average risk weighting factors are:

Low	<u>Moderate</u>	<u>Major</u>	<u>Severe</u>
1.14	1.36	1.51	1.78

The risk weighting factors listed above are assigned to the five performance areas as follows:

- Safety = 1.78
 - crashes; therefore, it is assigned the Severe (1.78) risk weighting factor
- Bridge = 1.51
 - weighting factor
- Mobility and Freight = 1.36
 - weighing factor
- Pavement = 1.14
 - therefore, it is assigned the Low (1.14) risk weighting factor

The benefit in each performance area is calculated for each candidate solution as part of the Performance Effectiveness Evaluation. Using this information on benefits and the risk factors listed above, a weighted (based on benefit) solution-level numeric risk factor is calculated for each candidate solution. For example, a solution that has 50% of its benefit in Safety and 50% of its benefit in Mobility has a weighted risk factor of $1.57 (0.50 \times 1.36 + 0.50 \times 1.78 = 1.57)$.

• The Safety performance area quantifies the likelihood of fatal or incapacitating injury

• The Bridge performance area focuses on the structural adequacy of bridges; a bridge failure may result in crashes or traffic being detoured for long periods of time resulting in significant travel time increases; therefore, it is assigned the Major (1.51) risk

• The Mobility and Freight performance areas focus on capacity and congestion; failure in either of these performance areas would result in increased travel times but would not have significant effect on safety (crashes) that would not already be addressed in the Safety performance area; therefore, they are assigned the Moderate (1.36) risk

• The Pavement performance area focuses on the ride quality of the pavement; failure in this performance area would likely be a spot location that would not dramatically affect drivers beyond what is already captured in the Safety performance area;

5.4 Candidate Solution Prioritization

The PES, weighted risk factor, and segment average need score are combined to create a prioritization score as follows:

Prioritization Score = PES x Weighted Risk Factor x Segment Average Need Score Where:

PES = Performance Effectiveness Score as shown in **Table 22**

Weighted Risk Factor = Weighted factor to address risk of not implementing a solution based on the likelihood and severity of the performance failure

Segment Average Need Score = Segment average need score as shown in **Table 17**

Table 23 shows the prioritization scores for the candidate solutions subjected to the solution evaluation and prioritization process. Solutions that address multiple performance areas tend to score higher in this process. A prioritized list of candidate solutions is provided in the subsequent section. See **Appendix J** for additional information on the prioritization process.

Candidate	Commont #	Ontion	Candidate Solution Name	Milepost	Estimated Cost	Performance	Weighted	Segment	Prioritization	Percentage	Percentage by which Solution Reduces Performance Area Segment Needs		rformance	
Solution #	Segment#	Option	Candidate Solution Name	Location	(in millions)	Effectiveness Score	Risk Factor	Average Need Score	Score	Pavement	Bridge	Mobility	Safety	Freight
CS347.1	347-2	-	Ak-Chin Area Safety Improvements	162-171	\$3.7	52.1	1.72	0.85	76	0%	0%	9%	59%	9%
CS347.2	347-3	-	Maricopa Area Mobility and Freight Improvements	174-176	\$6.5	37.3	1.36	1.54	78	10%	0%	18%	50%	6%
CS347.3	347-4	-	Casa Blanca Area Safety Improvements	176-184	\$5.1	52.0	1.67	1.62	140	0%	0%	0%	26%	3%
CS347.4	347-4	-	Casa Blanca Area Mobility and Freight Improvements	176-184	\$78.6	53.2	1.38	1.62	118	0%	0%	55%	17%	4%
CS347.5	347-5	-	Wild Horse Pass Area Safety Improvements	184-189	\$5.0	208.7	1.72	2.23	798	0%	0%	2%	58%	9%
CS347.6	347-5	-	Wild Horse Pass Area Mobility and Freight Improvements	184-189	\$42.1	95.1	1.41	2.23	299	100%	0%	60%	22%	6%
CS347.7	347-5	-	SR 347/I-10 Interchange Mobility and Freight Improvements	189.0	\$5.7	5.9	1.36	2.23	18	0%	0%	25%	0%	1%

Table 23: Prioritization Scores

SUMMARY OF CORRIDOR RECOMMENDATIONS 6.0

6.1 **Prioritized Candidate Solution Recommendations**

Table 24 and Figure 27 show the prioritized candidate solutions recommended for the SR 347/SR 84 corridor in ranked order of priority. The highest prioritization score indicates the candidate solution that is recommended as the highest priority. Implementation of these solutions is anticipated to improve performance of the SR 347/SR 84 corridor. The following observations were noted about the prioritized solutions:

- Most of the anticipated improvements in performance are in the Mobility, Safety, and Freight performance areas
- The highest ranking solutions tend to have overlapping benefits in the Mobility, Safety, and Freight performance areas
- The highest priority solutions address needs in the Wild Horse Pass area (SR 347 MP 184-189) and Casa Blanca area (SR 347 MP 176-184)

6.2 Other Corridor Recommendations

As part of the investigation of strategic investment areas and candidate solutions, other corridor recommendations can also be identified. These recommendations could include modifications to the existing Statewide Construction Program, areas for further study, or other corridor-specific recommendations that are not related to construction or policy. The list below identifies other corridor recommendations for the SR 347/SR 84 corridor:

An RSA is recommended on SR 347 between MP 171.4 and MP 175.4

6.3 Policy and Initiative Recommendations

In addition to location-specific needs, general corridor and system-wide needs have also been identified through the CPS process. While these needs are more overarching and cannot be individually evaluated through this process, it is important to document them. A list of recommended policies and initiatives was developed for consideration when programming future projects not only on SR 347/SR 84, but across the entire state highway system where the conditions are applicable. The following list, which is in no particular order of priority, was derived from the four CPS rounds:

- Install Intelligent Transportation System (ITS) conduit with all new infrastructure projects
- Prepare strategic plans for Closed Circuit Television (CCTV) camera and Road Weather Information System (RWIS) locations statewide
- Leverage power and communication at existing weigh-in-motion (WIM), dynamic message signs (DMS), and call box locations to expand ITS applications across the state
- Consider solar power for lighting and ITS where applicable
- Investigate ice formation prediction technology where applicable •
- Conduct highway safety manual evaluation for all future programmed projects

- Develop infrastructure maintenance and preservation plans (including schedule and funding) for all pavement and bridge infrastructure replacement or expansion projects
- Develop standardized bridge maintenance procedures so districts can do routine maintenance work
- Review historical ratings and level of previous investment during scoping of pavement and bridge projects. In pavement locations that warrant further investigation, conduct subsurface investigations during project scoping to determine if full replacement is warranted
- For pavement rehabilitation projects, enhance the amount/level of geotechnical investigations to address issues specific to the varying conditions along the project
- Expand programmed and future pavement projects as necessary to include shoulders Expand median cable barrier guidelines to account for safety performance
- Install CCTV cameras with all DMS
- than streaming video
- Develop statewide program for pavement replacement • Install additional continuous permanent count stations along strategic corridors to enhance
- traffic count data
- When reconstruction or rehabilitation activities will affect existing bridge vertical clearance, the dimension of the new bridge vertical clearance should be a minimum of 16.25 feet where feasible
- All new or reconstructed roadway/shoulder edges adjacent to an unpaved surface should be constructed with a Safety Edge
- Collision data on tribal lands may be incomplete or inconsistent; additional coordination for data on tribal lands is required to ensure adequate reflection of safety issues
- Expand data collection devices statewide to measure freight delay
- Evaluate and accommodate potential changes in freight and goods movement trends that may result from improvements and expansions to the state roadway network
- At traffic interchanges with existing communication connectivity to the ADOT Traffic Operations Center, consideration should be given to adding thermal detection cameras for vehicle detection with the capability for wrong way vehicle detection
- Improved vehicle detection systems, as recommended by ADOT Systems Technology group, should be deployed at traffic interchanges for improved traffic control

In locations with limited communications, use CCTV cameras to provide still images rather

Candidate Option **Candidate Solution Name Candidate Solution Scope** Rank Solution # Rehabilitate shoulders in both directions (striping, delineators, RPMs, safety edge, and rumble strips for both shoulders), MP 184-189 -Install advanced warning signal system with detectors and beacons in both directions at Riggs Road Wild Horse Pass Area Safety intersection (MP 185.3) 1 CS347.5 Improvements (MP 184-189) Construct traffic signal at Maricopa Road intersection (MP 187.5) and provide an advanced warning signal system with detectors and beacons (both directions) and widen intersection to provide dual southbound leftturn lanes -Install intersection lighting at Maricopa Road intersection (MP 187.5) Widen to the inside to provide a total of 6 lanes (3 in each direction) with a median concrete barrier Wild Horse Pass Area Mobility -Construct 1.200' SB acceleration lane and lengthen SB deceleration lane to 300' at Maricopa Road 2 CS347.6 and Freight Improvements (MP intersection (MP 187.5) -184-189) Construct 1,200' NB/SB acceleration lanes and lengthen NB/SB deceleration lanes to 300' at Riggs Road intersection (MP 185.3) -Rehabilitate shoulders in both directions (striping, delineators, RPMs, safety edge, and rumble strips for both Casa Blanca Area Safety shoulders), MP 176-184 3 CS347.3 Improvements (MP 176-184) Install advanced warning signal system with detectors and beacons in both directions at Cement Plant intersection (MP 182.5) and lengthen NB deceleration lane to 300' Widen to the inside to provide a total of 6 lanes (3 in each direction) with a median concrete barrier -Construct 1,200' NB acceleration lane at Casa Blanca Road intersection (MP 178.4) Casa Blanca Area Mobility and 4 CS347.4 Freight Improvements (MP 176-Widen NB and SB Gila River Bridges (MP 181.8) -184) Widen NB and SB Santa Cruz Wash Bridges (MP 178.3) -Widen NB and SB Santa Cruz Wash Bridges (MP 176.2) Maricopa Area Mobility and Widen to the inside to provide a total of 6 lanes (3 in each direction) with a raised median; for NB, widening 5 CS347.2 Freight Improvements (MP 174 imits are MP 174.8-176; for SB, widening limits are MP 175.5-176 176) Rehabilitate shoulders in both directions (striping, delineators, RPMs, safety edge, and rumble strips for both Ak-Chin Area Safety CS347.1 6 shoulders), MP 162-165 and MP 168-171 Improvements (MP 162-171) Improve delineation (striping, delineators and RPMs), MP 165-168 SR 347/I-10 Interchange 7 CS347.7 Mobility and Freight -Convert SR 347/I-10 traffic interchange from conventional diamond to diverging diamond interchange Improvements (MP 189)

Table 24: Prioritized Recommended Solutions

	Estimated Cost (in millions)	Investment Category (Preservation [P], Modernization [M], Expansion [E])	Prioritization Score
n	\$4.4	Μ	798
	\$39.2	E	299
n	\$4.8	Μ	140
	\$78.6	E	118
	\$6.5	E	78
h	\$3.7	М	76
	\$5.7	Μ	18

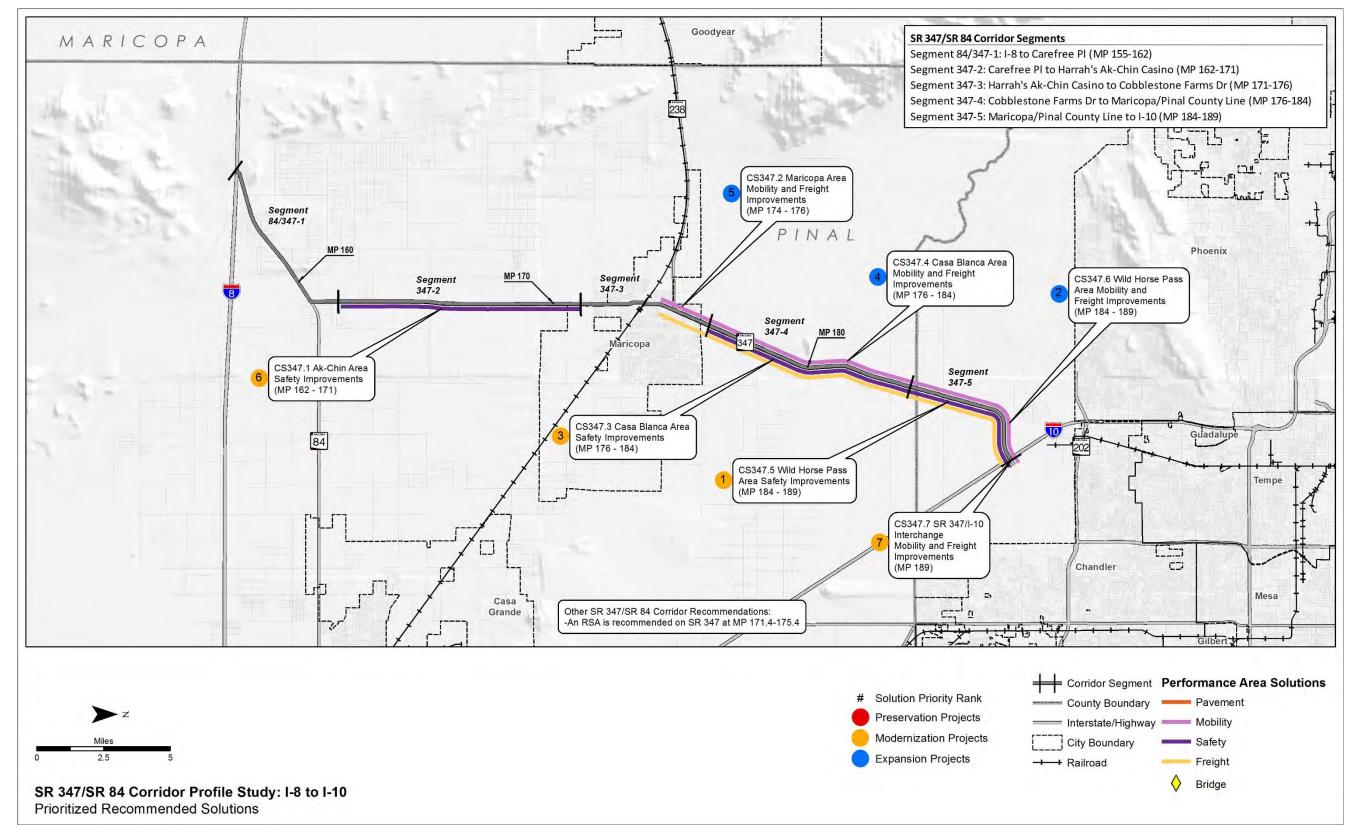


Figure 27: Prioritized Recommended Solutions

6.4 Next Steps

The candidate solutions recommended in this study are not intended to be a substitute or replacement for traditional ADOT project development processes where various ADOT technical groups and districts develop candidate projects for consideration in the performance-based programming in the P2P process. Rather, these candidate solutions are intended to complement ADOT's traditional project development processes through a performance-based process to address needs in one or more of the five performance areas of Pavement, Bridge, Mobility, Safety, and Freight. Candidate solutions developed for the SR 347/SR 84 corridor will be considered along with other candidate projects in the ADOT statewide programming process.

It is important to note that the candidate solutions are intended to represent strategic solutions to address existing performance needs related to the Pavement, Bridge, Mobility, Safety, and Freight performance areas. Therefore, the strategic solutions are not intended to preclude recommendations related to the ultimate vision for the corridor that may have been defined in the context of prior planning studies and/or design concept reports. Recommendations from such studies are still relevant to addressing the ultimate corridor objectives.

Upon completion of all four CPS rounds, the results will be incorporated into a summary document comparing all corridors that is expected to provide a performance-based review of statewide needs and candidate solutions.

Appendix A: Corridor Performance Maps

This appendix contains maps of each primary and secondary measure associated with the five performance areas for the SR 347/SR 84 corridor. The following are the areas and maps included:

Pavement Performance Area:

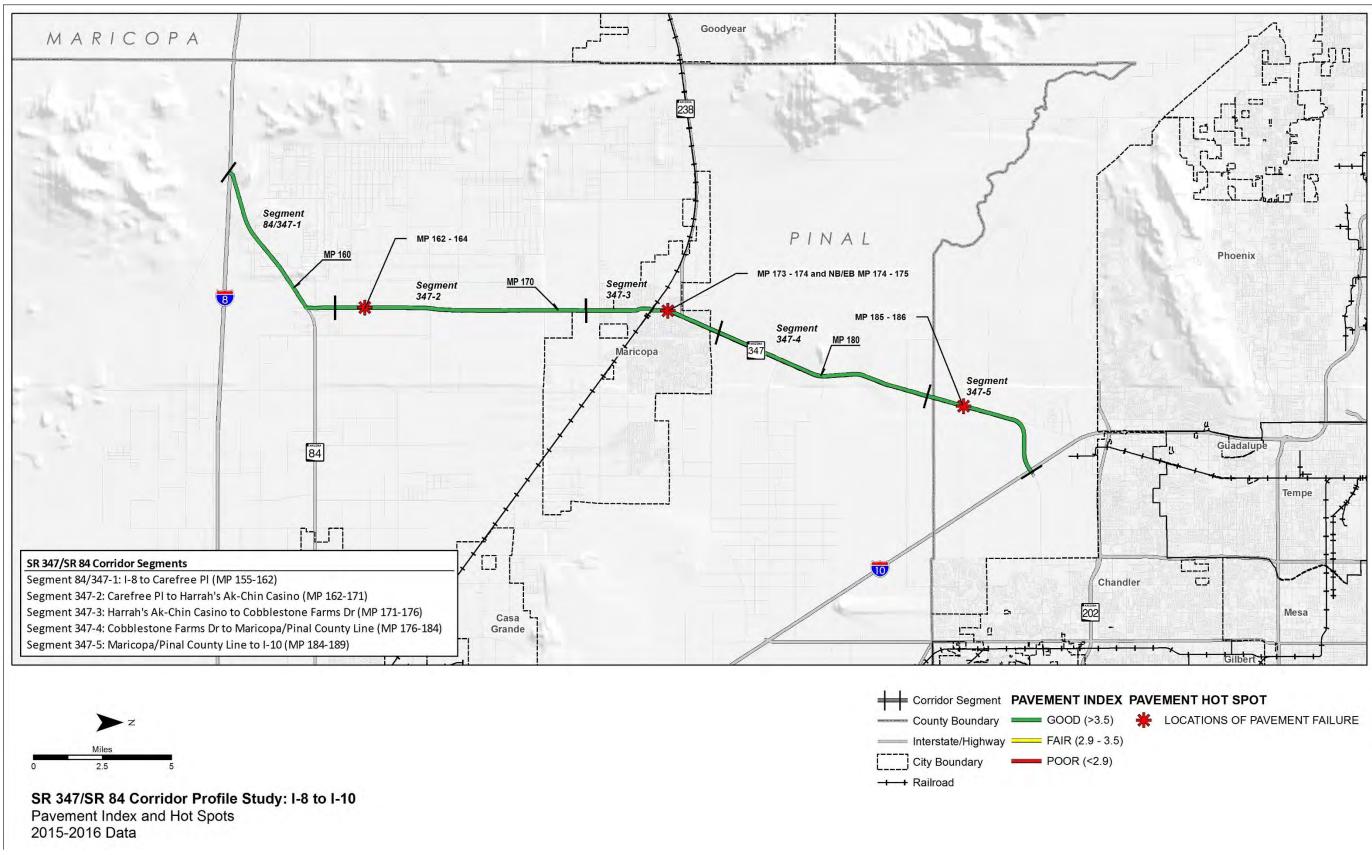
- Pavement Index and Hot Spots
- Pavement Serviceability and Hot Spots (directional)
- Percentage of Pavement Area Failure

Bridge Performance Area:

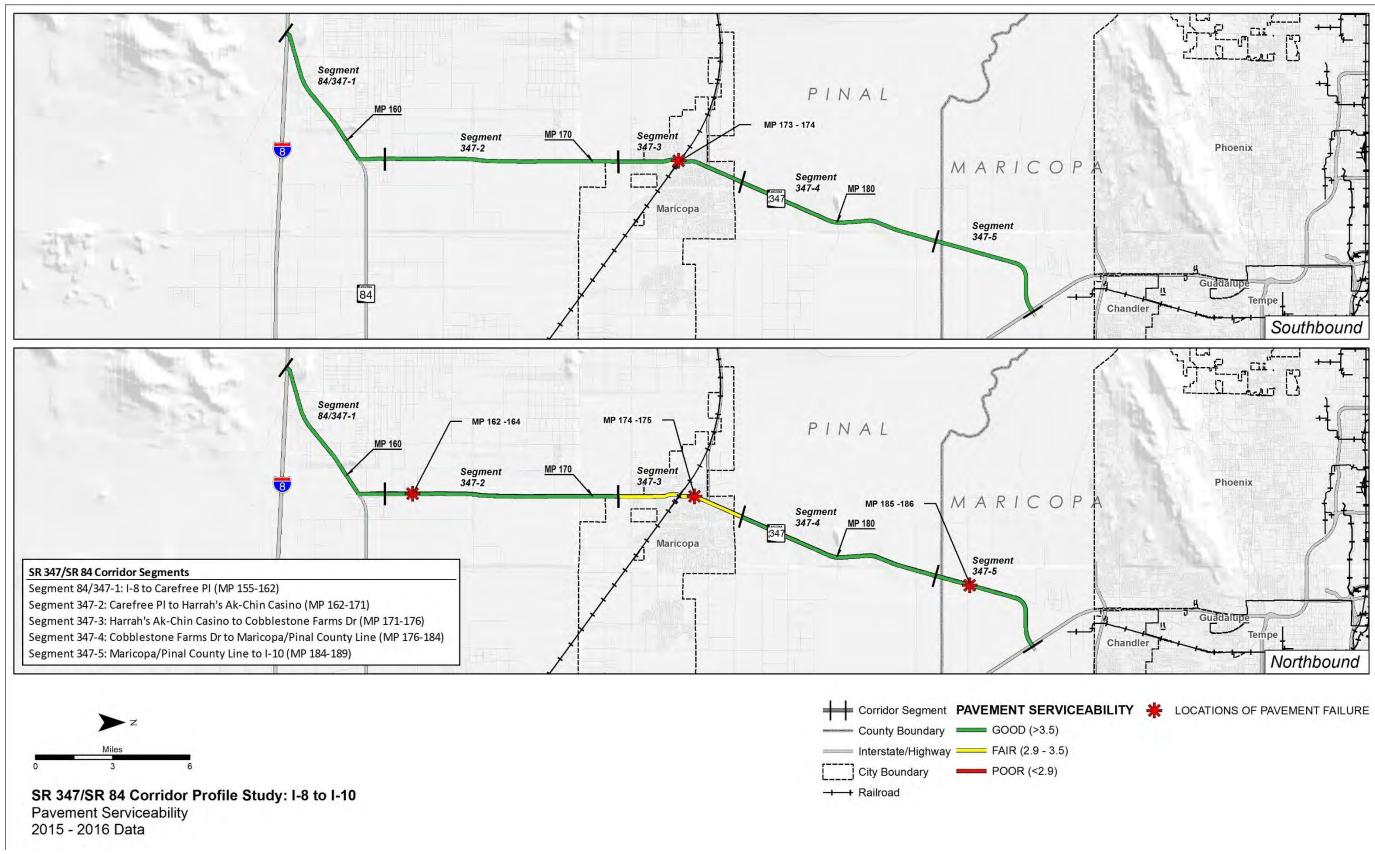
- Bridge Index and Hot Spots
- Bridge Sufficiency
- Percent of Deck Area on Functionally Obsolete Bridges
- Lowest Bridge Rating

Mobility Performance Area:

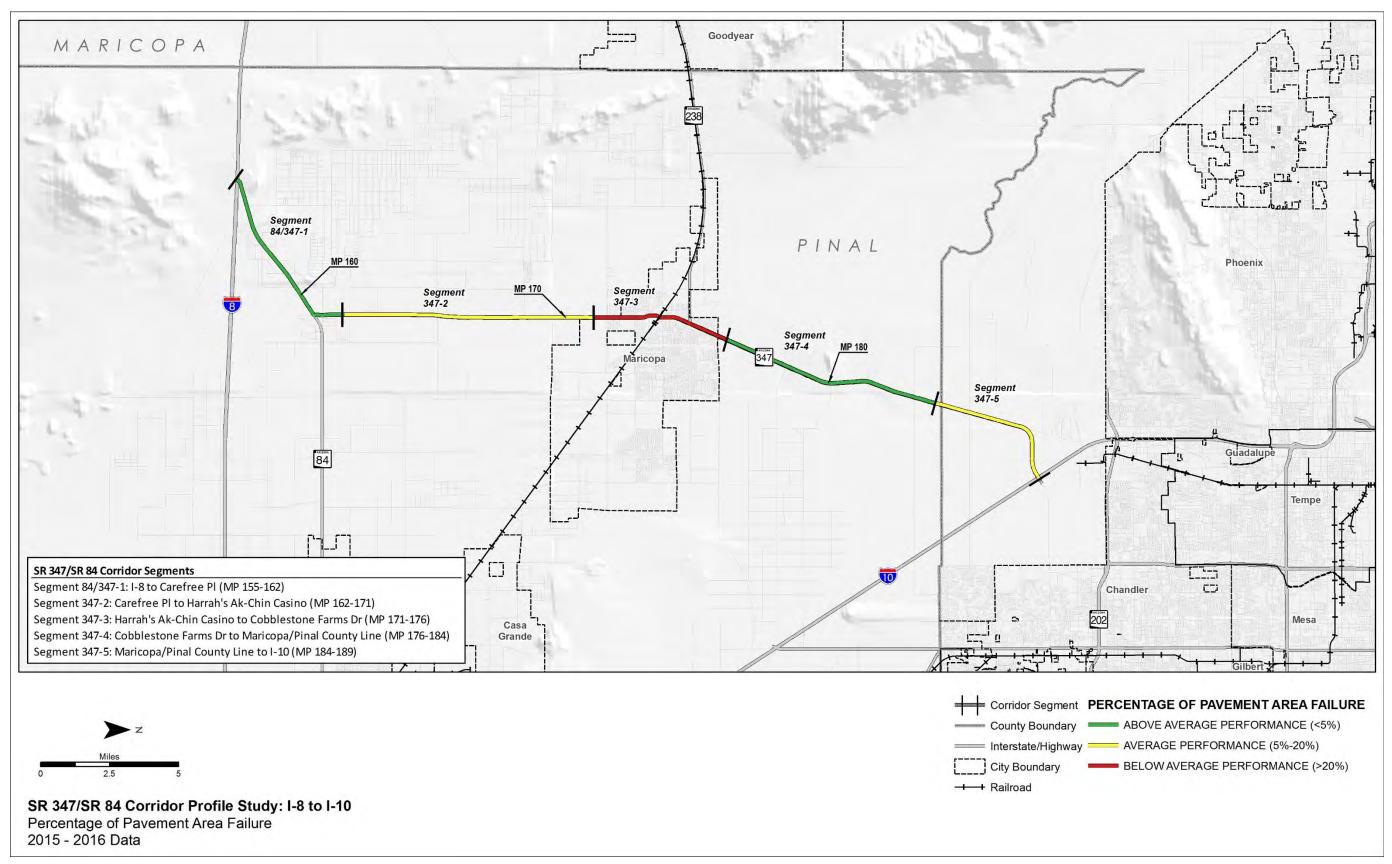
- Mobility Index
- Future Daily V/C Ratio
- Existing Peak Hour V/C Ratio (directional)
- Closure Frequency (directional)
- Travel Time Index (directional)
- Planning Time Index (directional)
- Multimodal Opportunities
- Percentage of Bicycle Accommodation

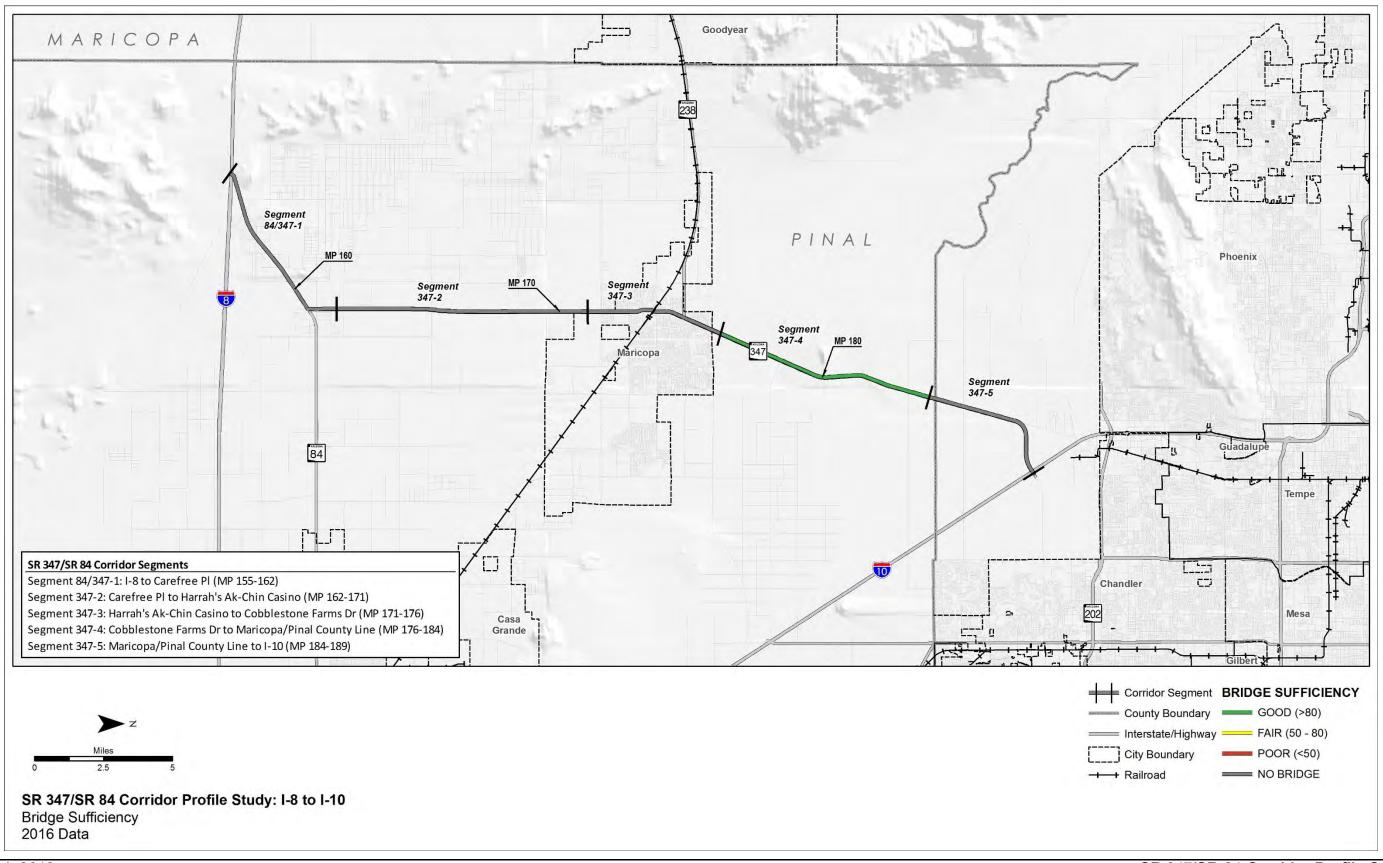

Safety Performance Area:

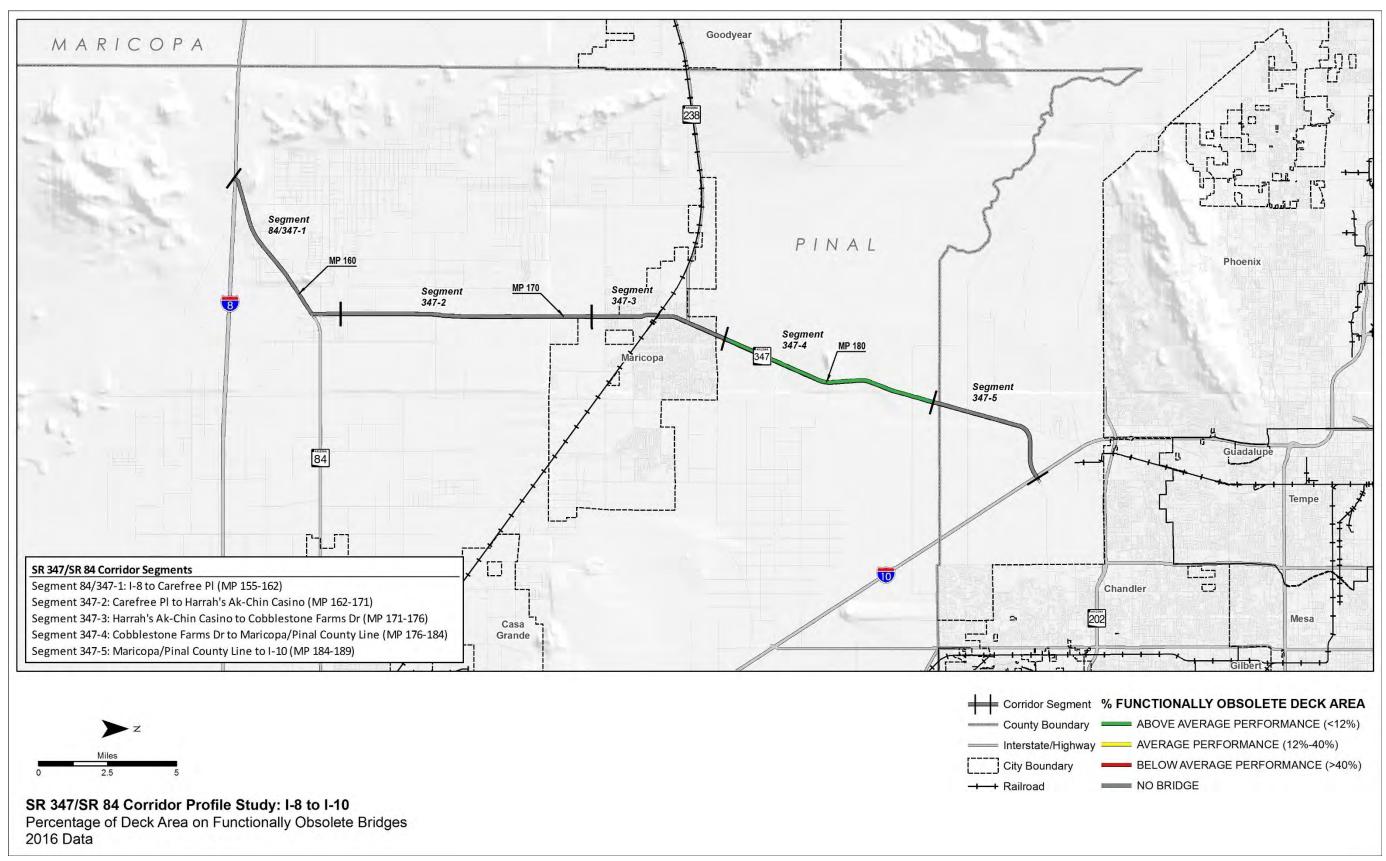
- Safety Index and Hot Spots
- Safety Index and Hot Spots (directional)
- Relative Frequency of Fatal + Incapacitating Injury Crashes Involving SHSP Top 5 Emphasis Areas Behaviors Compared to the Statewide Average for Similar Segments
- Relative Frequency of Fatal + Incapacitating Injury Crashes Involving Trucks Compared to the Statewide Average for Similar Segments (insufficient data not included)
- Relative Frequency of Fatal + Incapacitating Injury Crashes Involving Motorcycles Compared to the Statewide Average for Similar Segments (insufficient data not included)
- Relative Frequency of Fatal + Incapacitating Injury Crashes Involving Non-Motorized Travelers Compared to the Statewide Average for Similar Segments (insufficient data not included)

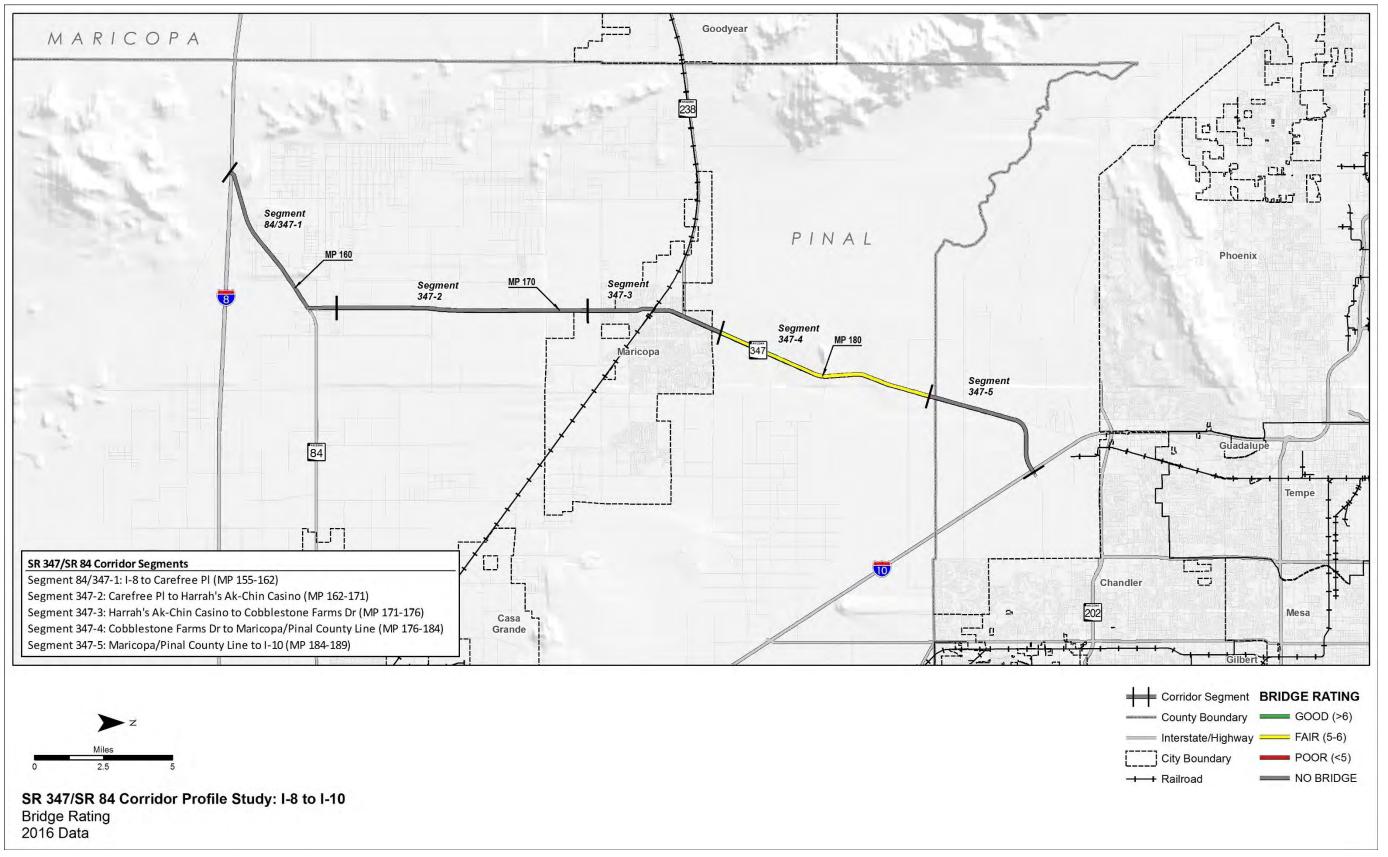

Freight Performance Area:

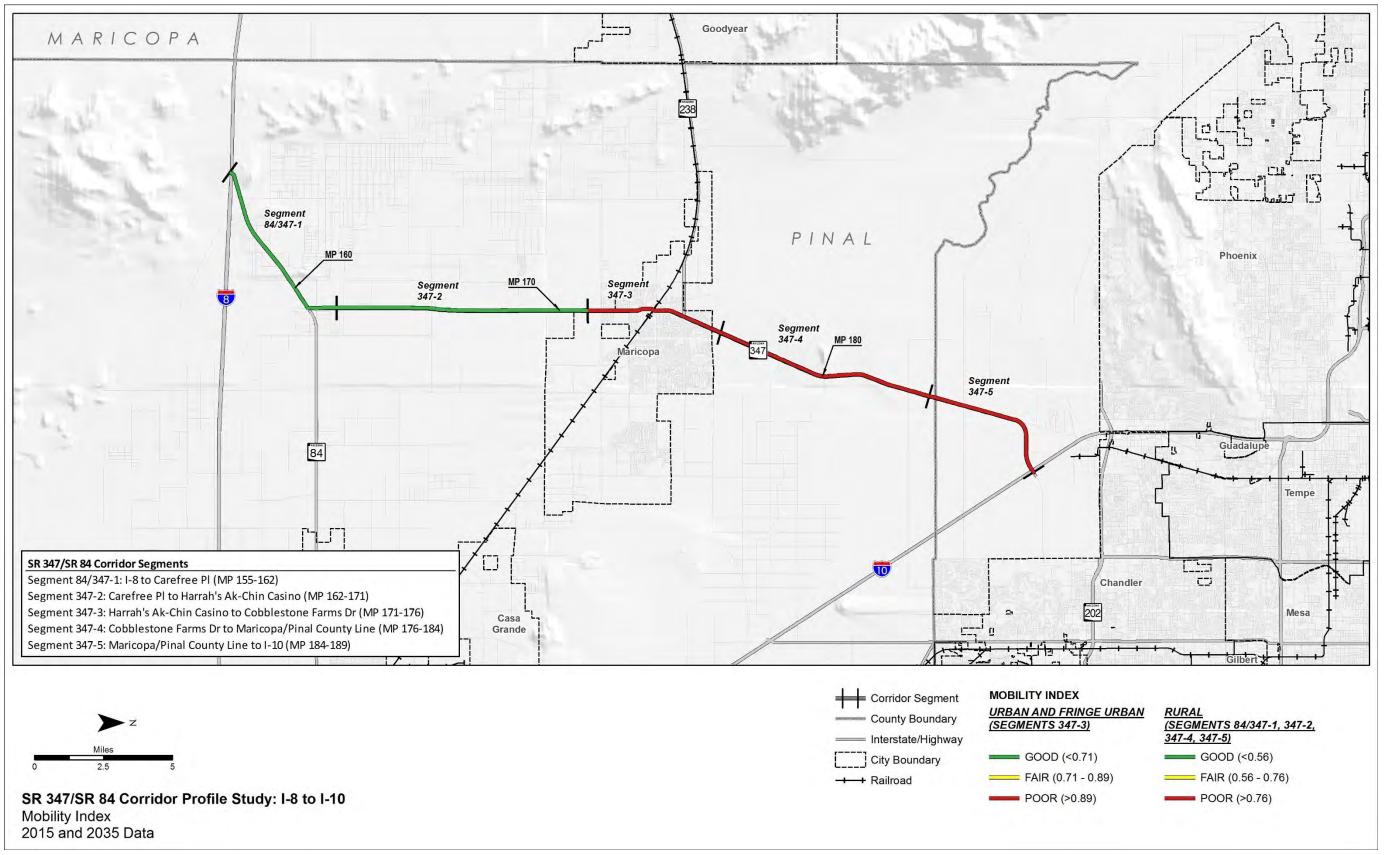
- Freight Index and Hot Spots
- Truck Travel Time Index (directional)
- Truck Planning Time Index (directional)
- Closure Duration (directional)
- Bridge Vertical Clearance

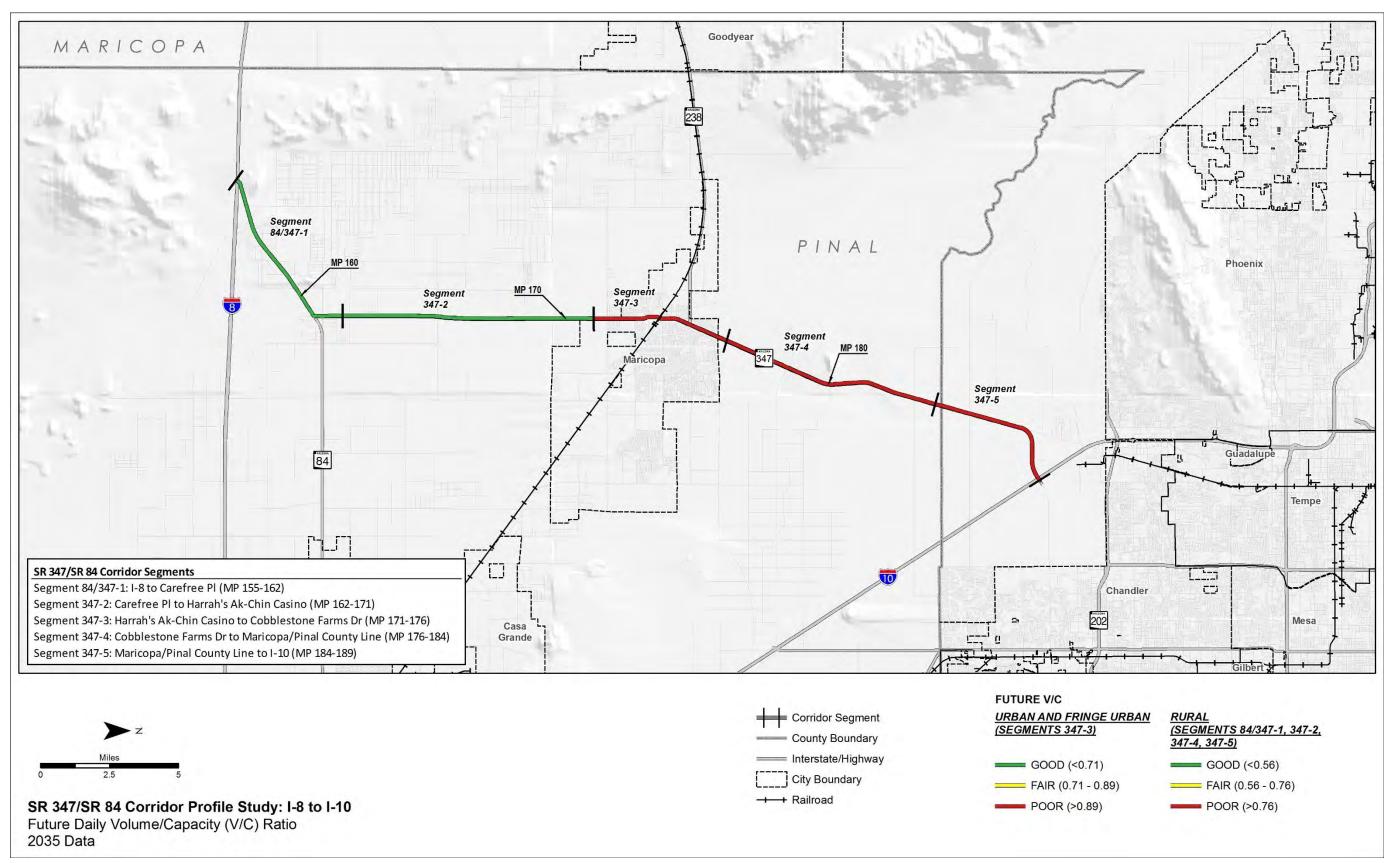


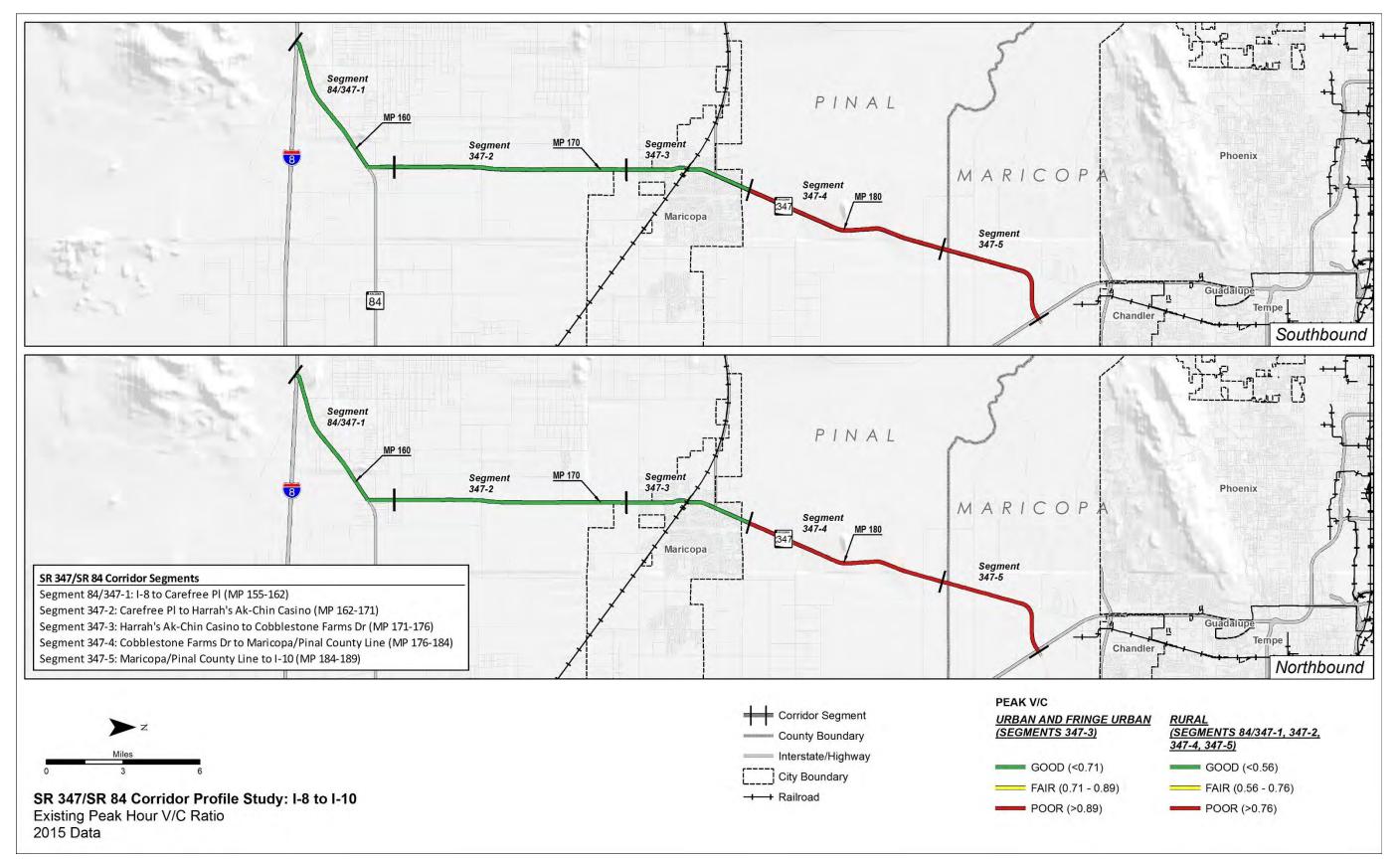


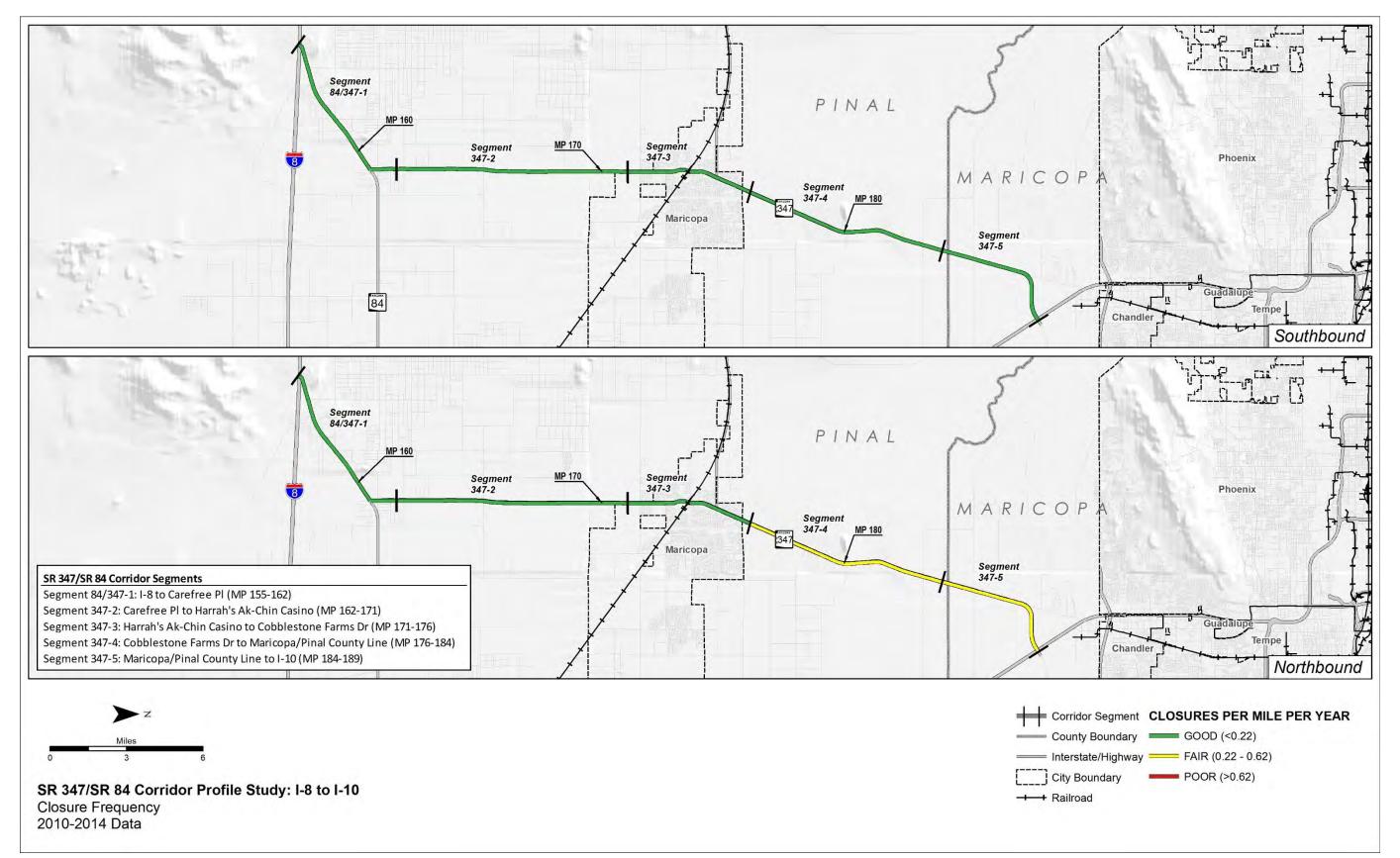


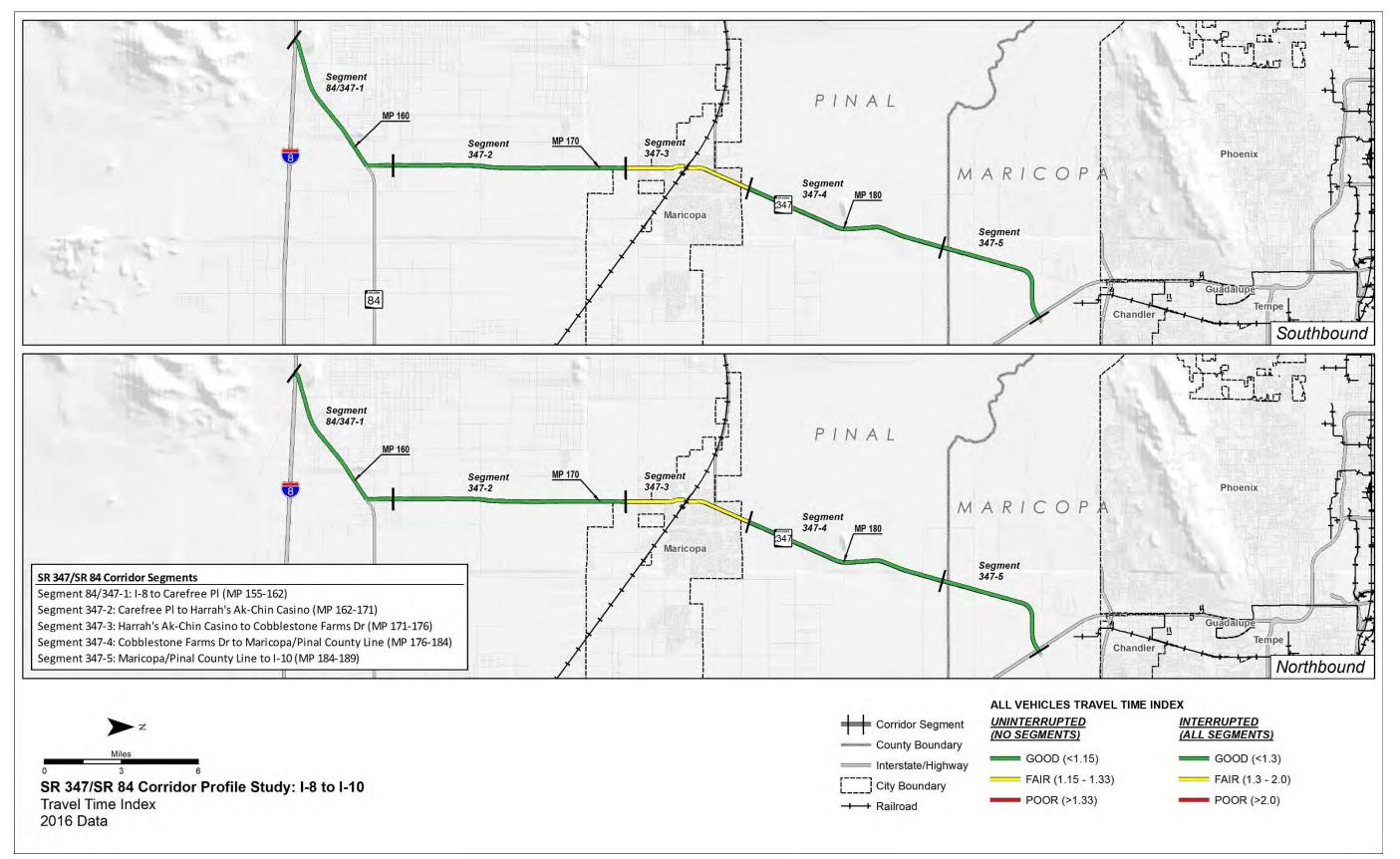


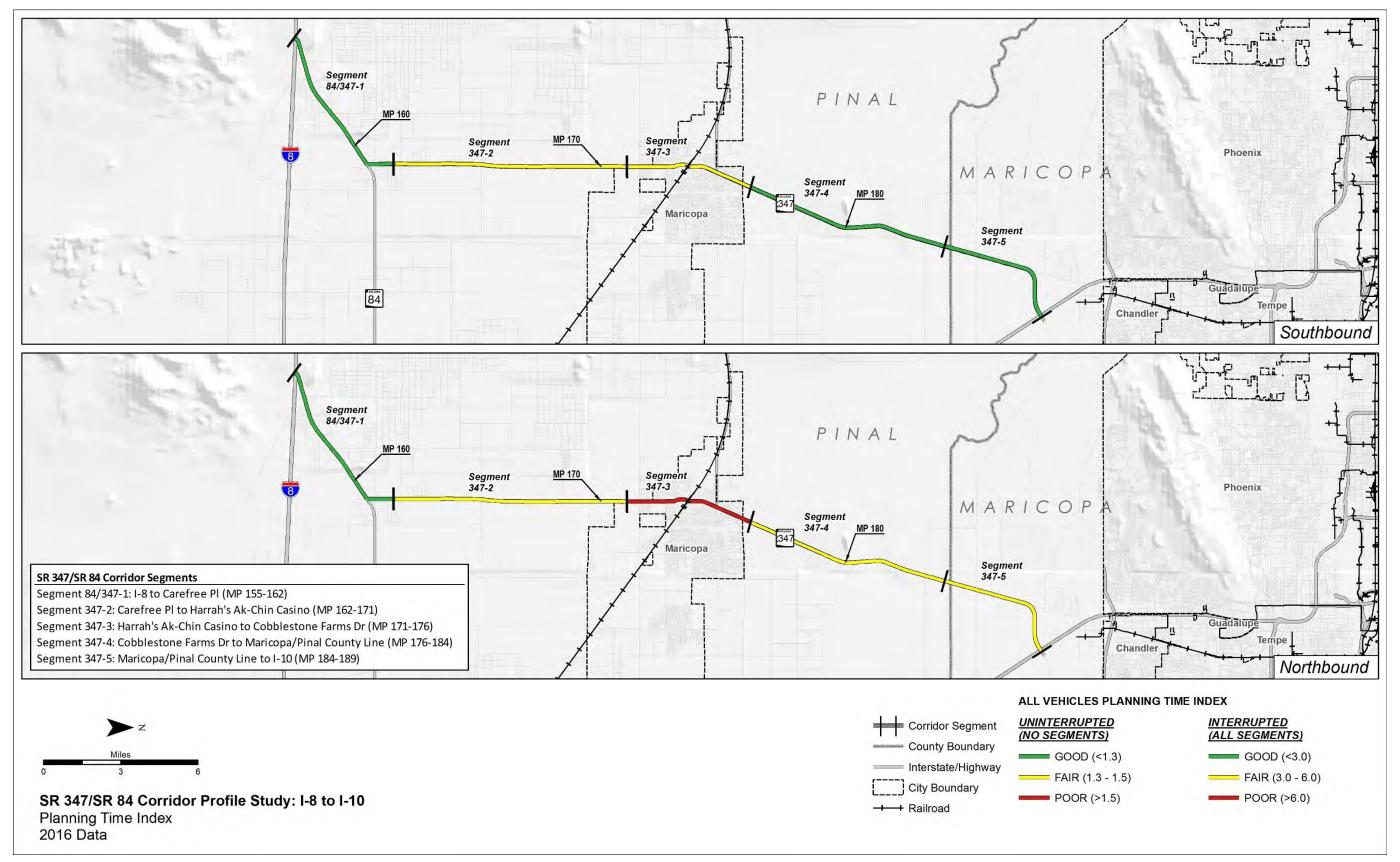


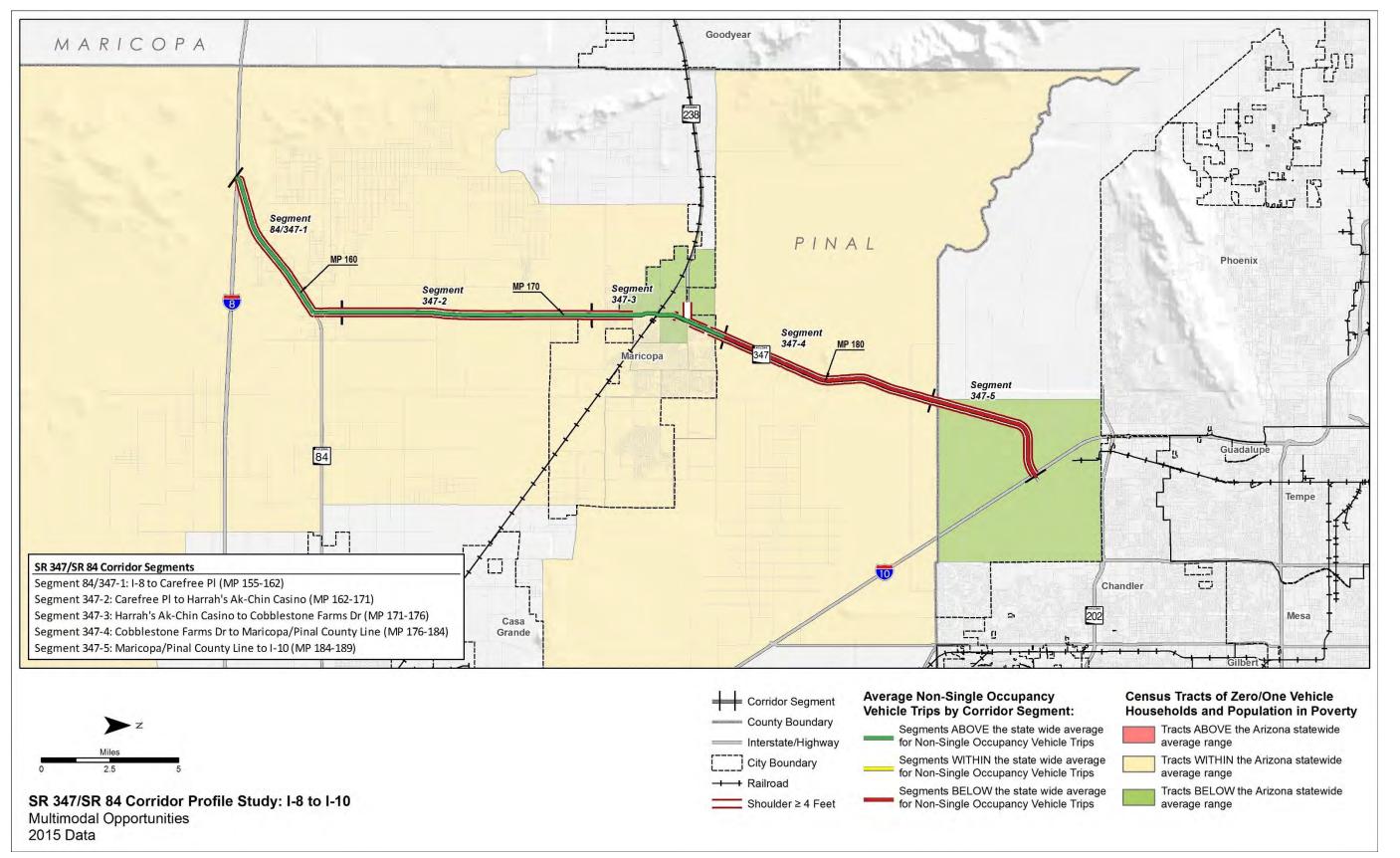


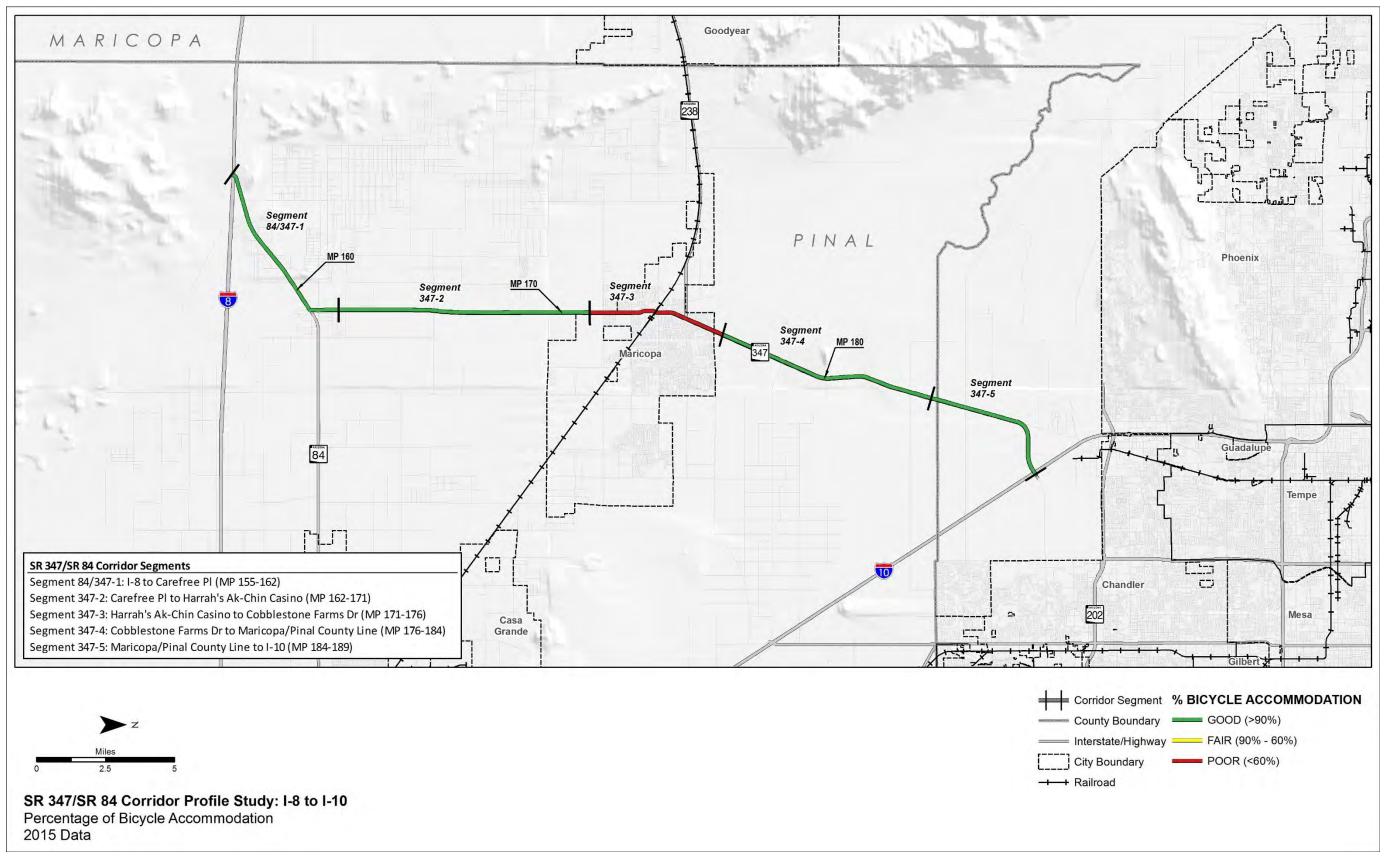


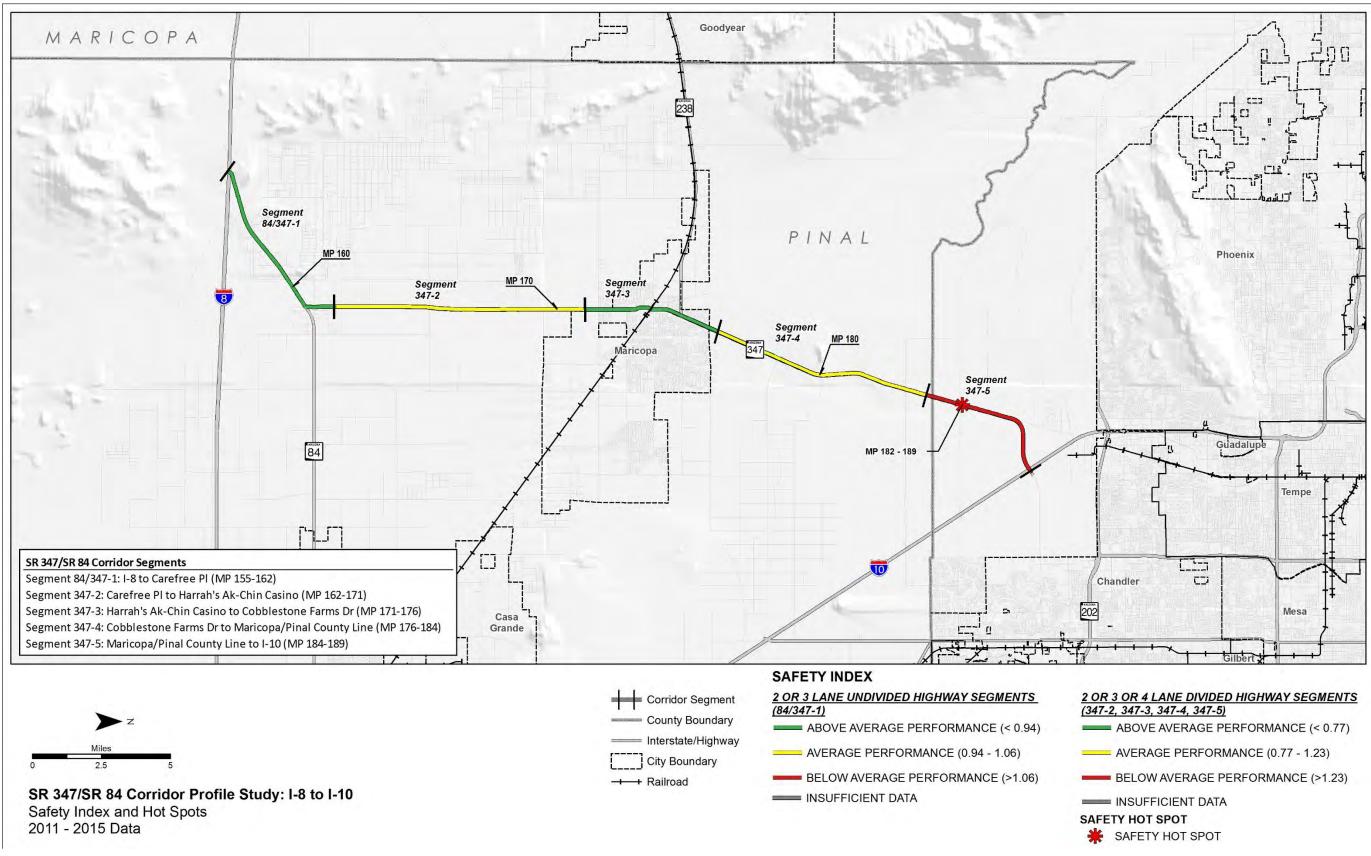


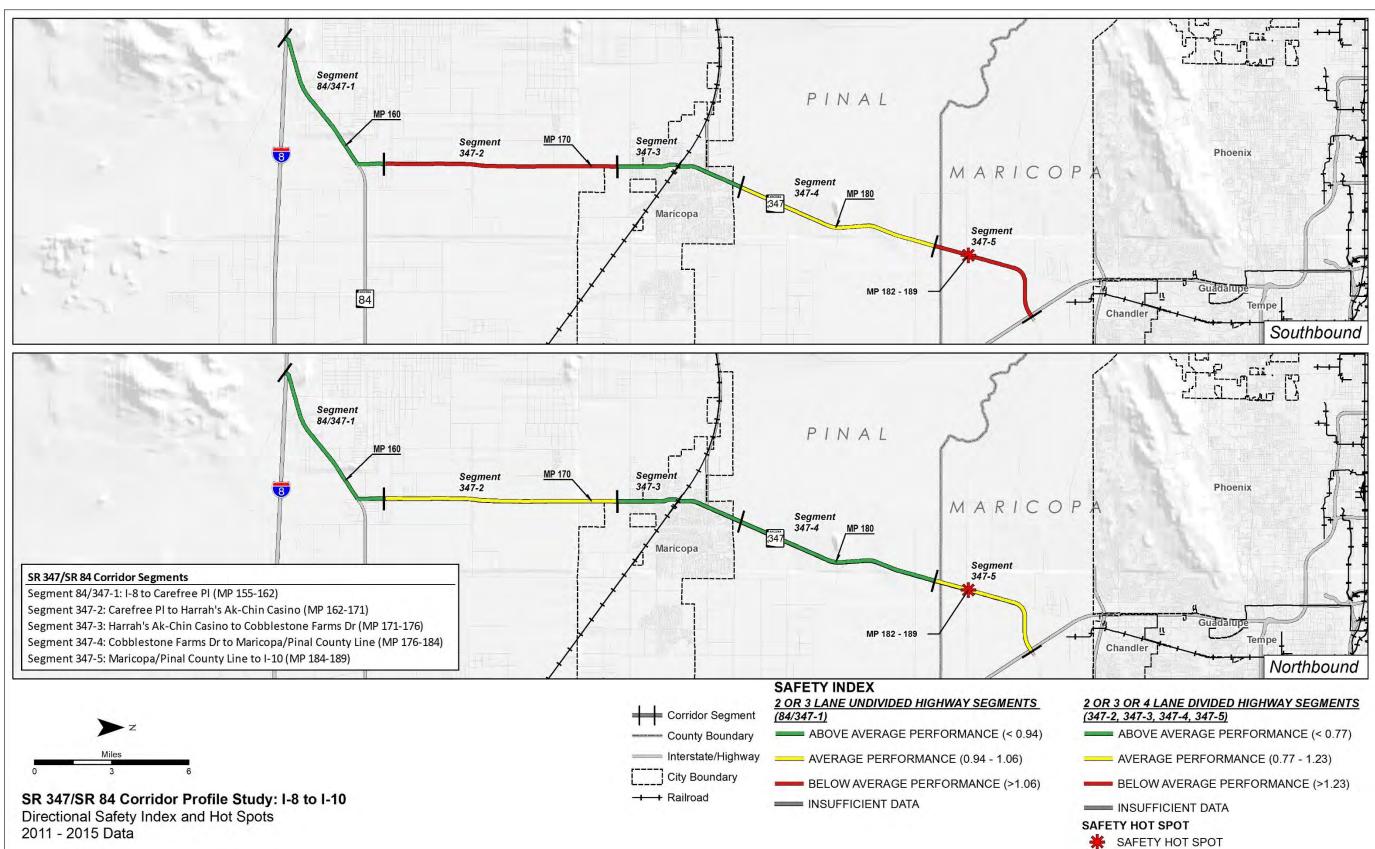


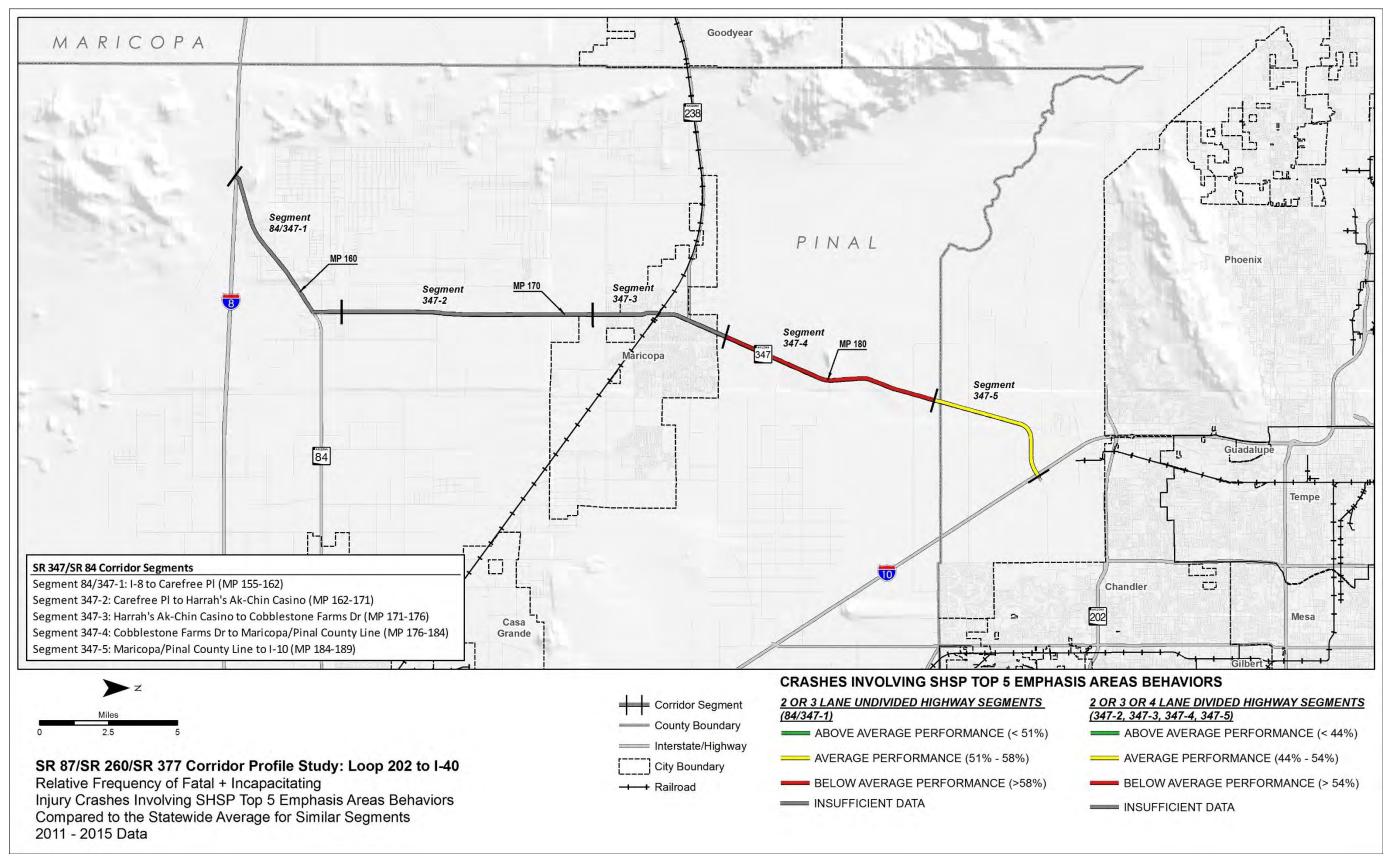


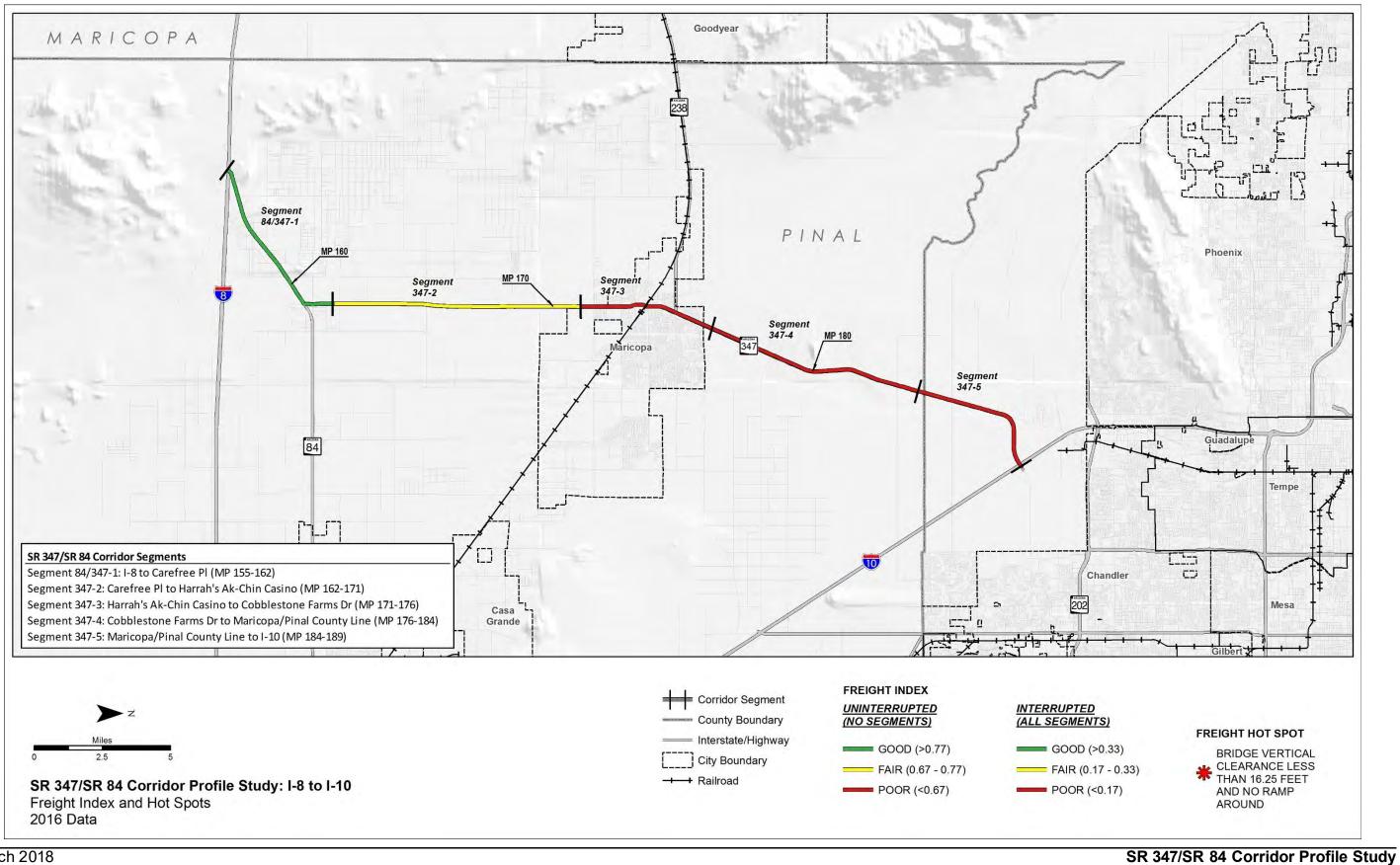




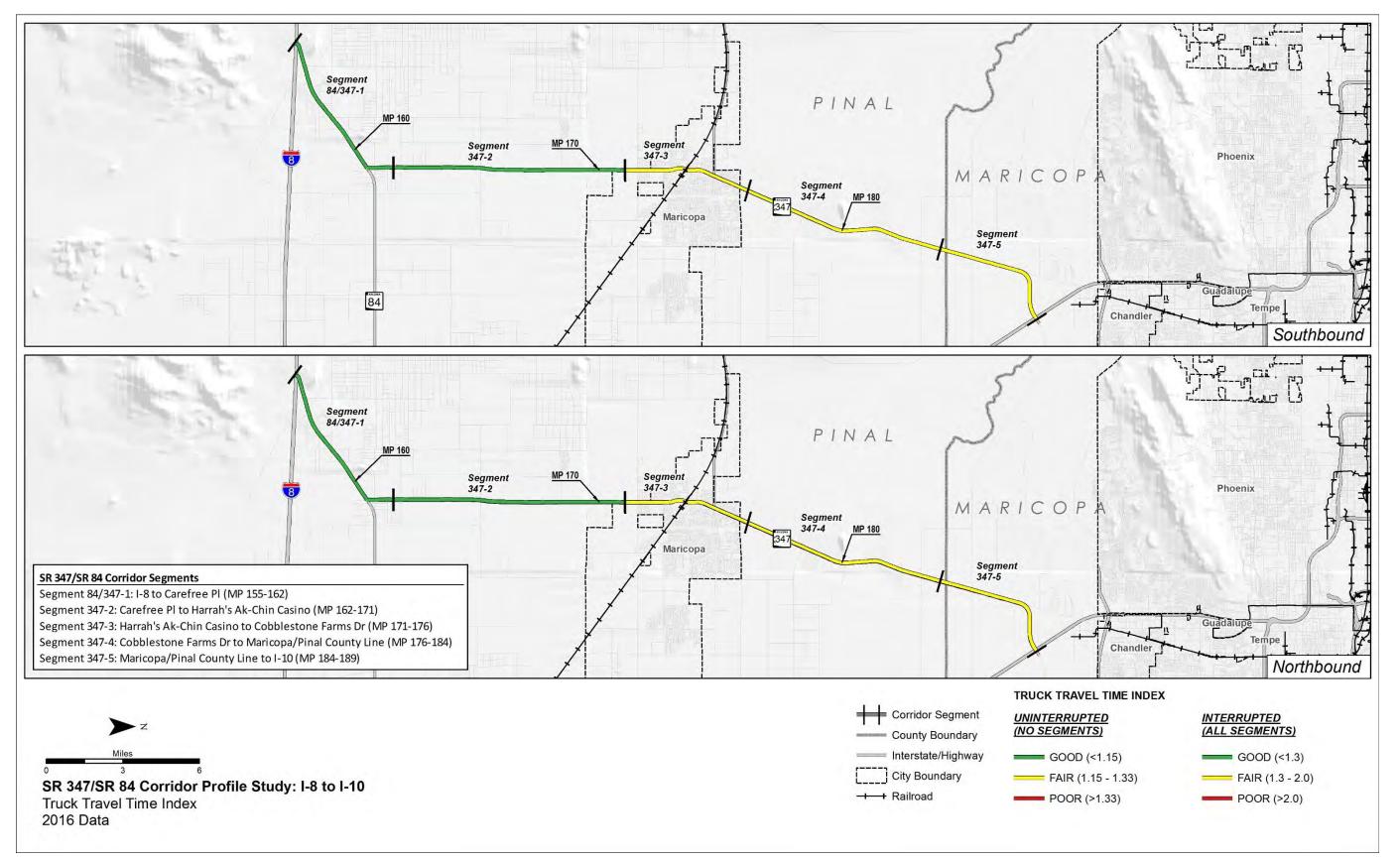


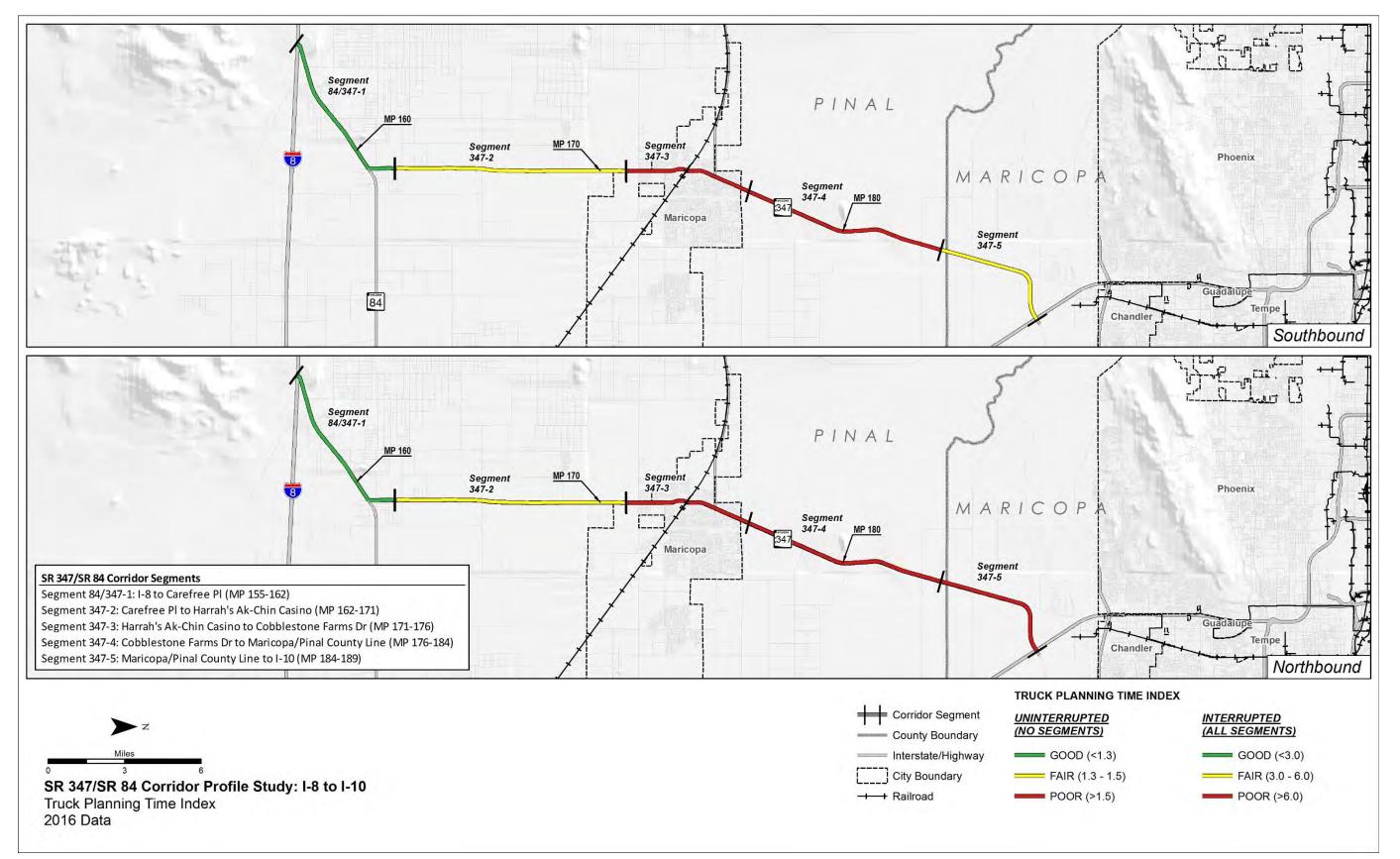


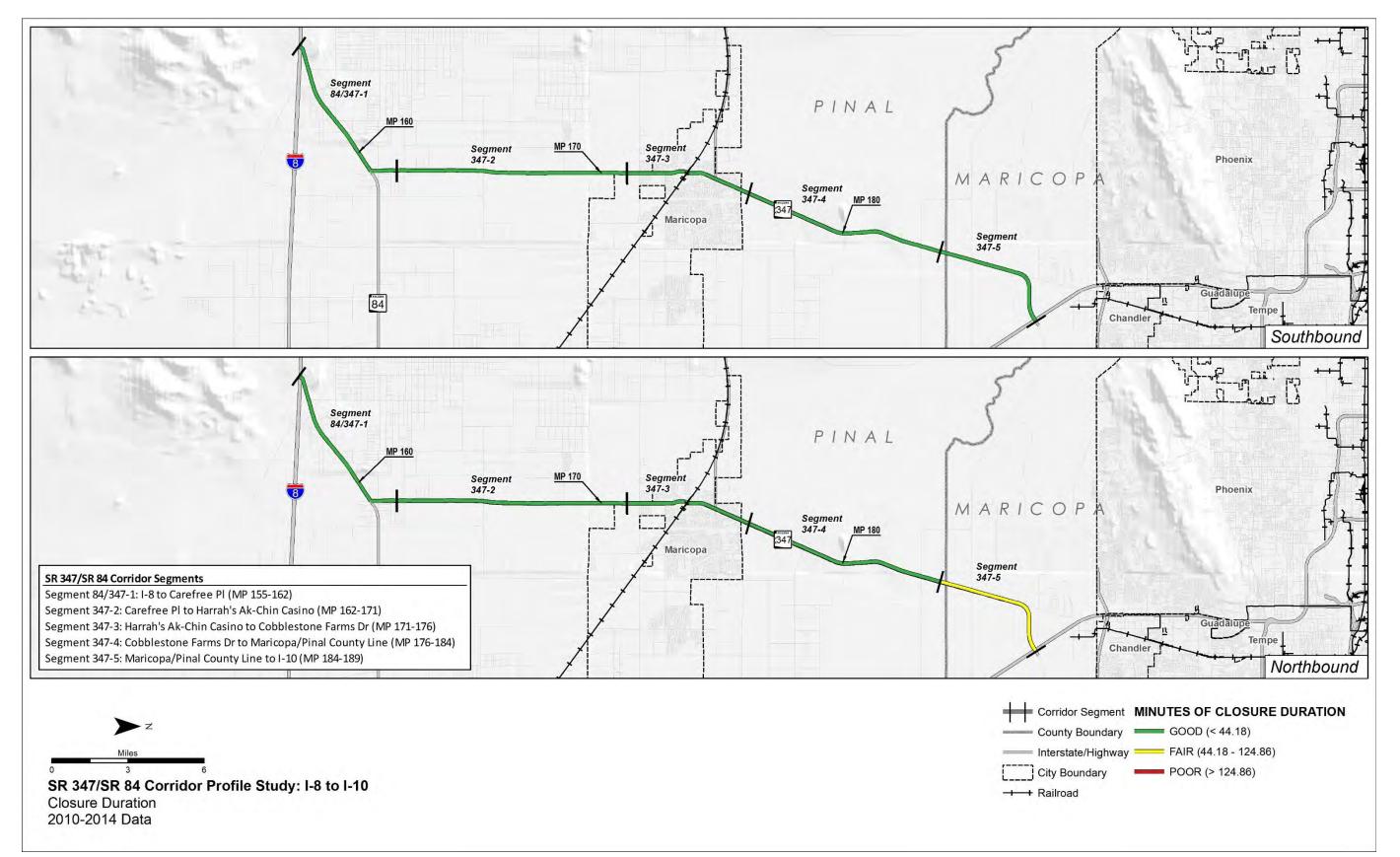


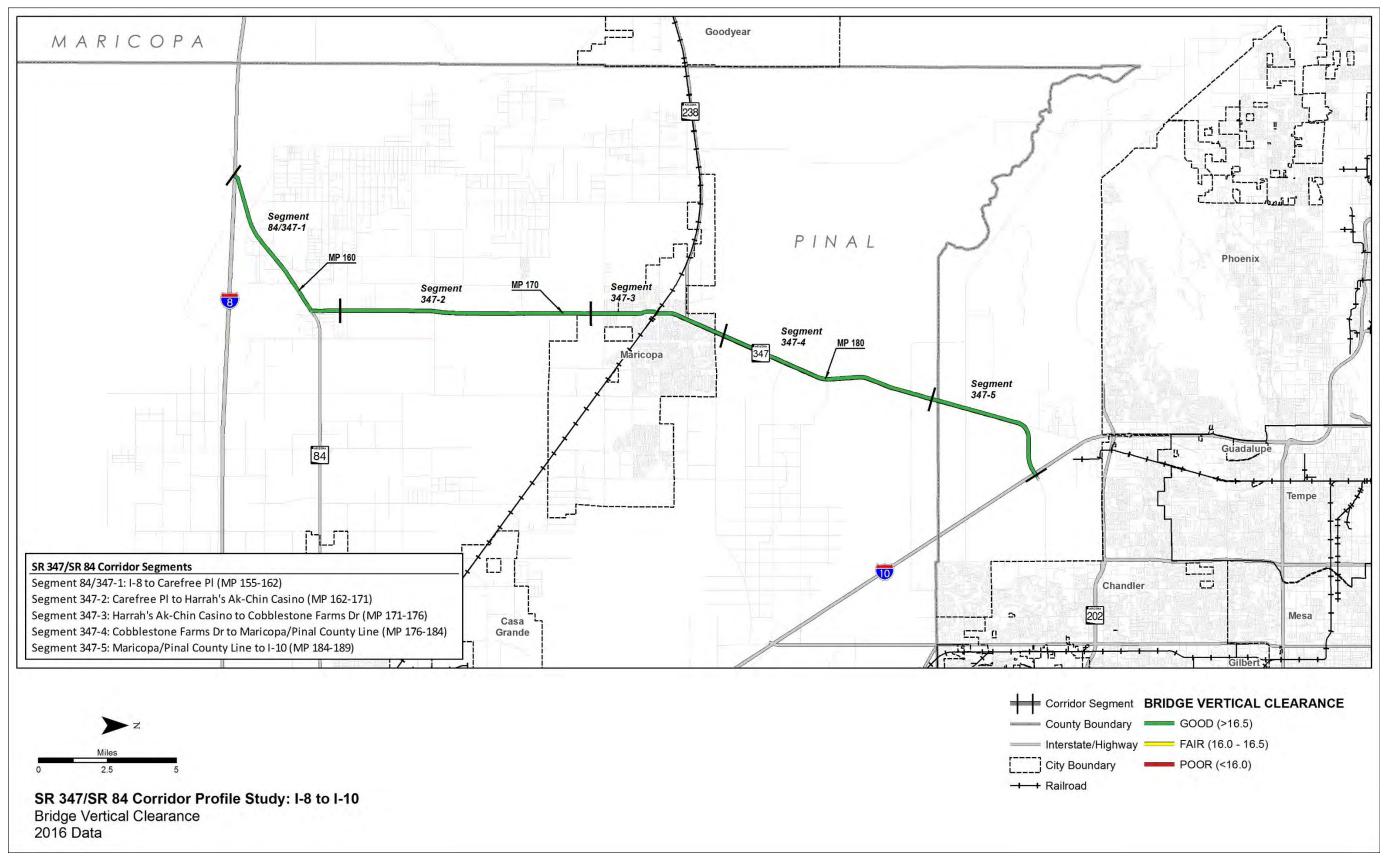


SR 347/SR 84 Corridor Profile Study Final Report






Final Report





Appendix B: Performance Area Detailed Calculation Methodologies

Pavement Performance Area Calculation Methodologies

This section summarizes the approach for developing the primary and secondary performance measures in the Pavement performance area as shown in the following graphic:

This performance area is used to evaluate mainline pavement condition. Pavement condition data for ramps, frontage roads, crossroads, etc. was not included in the evaluation.

Primary Pavement Index

The Pavement Index is calculated based on the use of two pavement condition ratings from the ADOT Pavement Database. The two ratings are the International Roughness Index (IRI) and the Cracking rating. The calculation of the Pavement Index uses a combination of these two ratings.

The IRI is a measurement of the pavement roughness based on field-measured longitudinal roadway profiles. To facilitate the calculation of the index, the IRI rating was converted to a Pavement Serviceability Rating (PSR) using the following equation:

$$PSR = 5 * e^{-0.0038 * IRI}$$

The Cracking Rating is a measurement of the amount of surface cracking based on a field-measured area of 1,000 square feet that serves as a sample for each mile. To facilitate the calculation of the

index, the Cracking Rating was converted to a Pavement Distress Index (PDI) using the following equation:

$$PDI = 5 - (0)$$

Both the PSR and PDI use a 0 to 5 scale with 0 representing the lowest performance and 5 representing the highest performance. The performance thresholds for interstates and non-interstates shown in the tables below were used for the PSR and PDI.

Performance Level for Interstates	IRI (PSR)	Cracking (PDI)
Good	<75 (>3.75)	<7 (>3.75)
Fair	75 - 117 (3.20 - 3.75)	7 - 12 (3.22 - 3.75)
Poor	>117 (<3.20)	>12 (<3.22)

Performance Level for Non-Interstates	IRI (PSR)	Cracking (PDI)
Good	<94 (>3.5)	<9 (>3.5)
Fair	94 - 142 (2.9 - 3.5)	9 - 15 (2.9 - 3.5)
Poor	>142 (<2.9)	>15 (<2.9)

The PSR and PDI are calculated for each 1-mile section of roadway. If PSR or PDI falls into a poor rating (<3.2 for interstates, for example) for a 1-mile section, then the score for that 1-mile section is entirely (100%) based on the lower score (either PSR or PDI). If neither PSR or PDI fall into a poor rating for a 1-mile section, then the score for that 1-mile section is based on a combination of the lower rating (70% weight) and the higher rating (30% weight). The result is a score between 0 and 5 for each direction of travel of each mile of roadway based on a combination of both the PSR and the PDI.

The project corridor has been divided into segments. The Pavement Index for each segment is a weighted average of the directional ratings based on the number of travel lanes. Therefore, the condition of a section with more travel lanes will have a greater influence on the resulting segment Pavement Index than a section with fewer travel lanes.

Secondary Pavement Measures

Three secondary measures are evaluated:

- Directional Pavement Serviceability
- Pavement Failure
- Pavement Hot Spots

 $(0.345 * C^{0.66})$

Directional Pavement Serviceability: Similar to the Pavement Index, the Directional Pavement Serviceability is calculated as a weighted average (based on number of lanes) for each segment. However, this rating only utilizes the PSR and is calculated separately for each direction of travel. The PSR uses a 0 to 5 scale with 0 representing the lowest performance and 5 representing the highest performance.

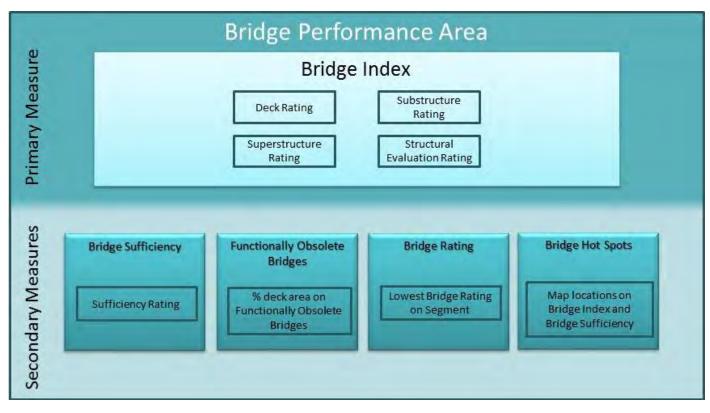
Pavement Failure: The percentage of pavement area rated above the failure thresholds for IRI or Cracking is calculated for each segment. In addition, the Standard score (z-score) is calculated for each segment.

The Standard score (z-score) is the number of standard deviations above or below the mean. Therefore, a Standard score between -0.5 and +0.5 is "average", less than -0.5 is lower (better) than average, and higher than +0.5 is above (worse) than average.

Pavement Hot Spots: The Pavement Index map identifies locations that have an IRI rating or Cracking rating that fall above the failure threshold as identified by ADOT Pavement Group. For interstates, an IRI rating above 105 or a Cracking rating above 15 will be used as the thresholds which are slightly different than the ratings shown previously. For non-interstates, an IRI rating above 142 or a Cracking rating above 15 will be used as the thresholds.

Scoring

Performance	Pavement Index	
Level	Interstates	Non-Interstates
Good	>3.75	>3.5
Fair	3.2 - 3.75	2.9 - 3.5
Poor	<3.2	<2.9


Performance	Directional Pavement Serviceability	
Level	Interstates	Non-Interstates
Good	>3.75	>3.5
Fair	3.2 - 3.75	2.9 - 3.5
Poor	<3.2	<2.9

Performance Level	% Pavement Failure
Good	< 5%
Fair	5% – 20%
Poor	>20%

Bridge Performance Area Calculation Methodologies

This section summarizes the approach for developing the primary and secondary performance measures in the Bridge performance area as shown in the following graphic:

This performance area is used to evaluate mainline bridges. Bridges on ramps (that do not cross the mainline), frontage roads, etc. should not be included in the evaluation. Basically, any bridge that carries mainline traffic or carries traffic over the mainline should be included and bridges that do not carry mainline traffic, run parallel to the mainline (frontage roads), or do not cross the mainline should not be included.

Primary Bridge Index

The Bridge Index is calculated based on the use of four bridge condition ratings from the ADOT Bridge Database, also known as the Arizona Bridge Information and Storage System (ABISS). The four ratings are the Deck Rating, Substructure Rating, Superstructure Rating, and Structural Evaluation Rating. The calculation of the Bridge Index uses the lowest of these four ratings.

Each of the four condition ratings use a 0 to 9 scale with 0 representing the lowest performance and 9 representing the highest performance.

The project corridor has been divided into segments and the bridges are grouped together according to the segment definitions. In order to report the Bridge Index for each corridor segment, the Bridge Index for each segment is a weighted average based on the deck area for each bridge. Therefore,

the condition of a larger bridge will have a greater influence on the resulting segment Bridge Index than a smaller bridge.

Secondary Bridge Measures

Four secondary measures will be evaluated:

- Bridge Sufficiency
- Functionally Obsolete Bridges
- Bridge Rating
- Bridge Hot Spots

Bridge Sufficiency: Similar to the Bridge Index, the Bridge Sufficiency rating is calculated as a weighted average (based on deck area) for each segment. The Bridge Sufficiency rating is a scale of 0 to 100 with 0 representing the lowest performance and 100 representing the highest performance. A rating of 80 or above represents "good" performance, a rating between 50 and 80 represents "fair" performance, and a rating below 50 represents "poor" performance.

Functionally Obsolete Bridges: The percentage of total deck area in a segment that is on functionally obsolete bridges is calculated for each segment. The deck area for each bridge within each segment that has been identified as functionally obsolete is totaled and divided by the total deck area for the segment to calculate the percentage of deck area on functionally obsolete bridges for each segment.

The thresholds for this performance measure are determined based on the Standard score (zscore). The Standard score (z-score) is the number of standard deviations above or below the mean. Therefore, a Standard score between -0.5 and +0.5 is "average", less than -0.5 is lower (better) than average, and higher than +0.5 is above (worse) average.

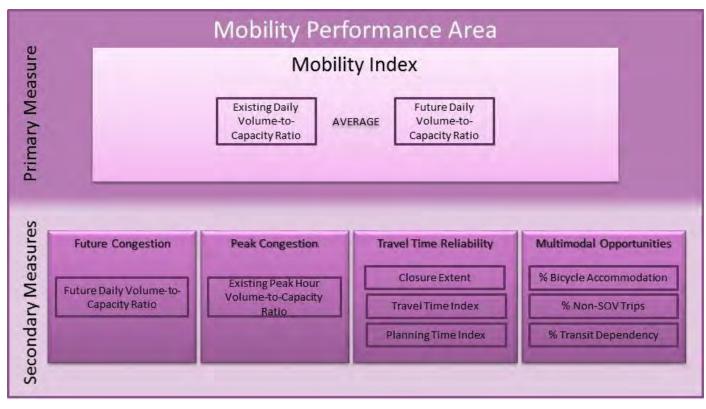
Bridge Rating: The Bridge Rating simply identifies the lowest bridge rating on each segment. This performance measure is not an average and therefore is not weighted based on the deck area. The Bridge Index identifies the lowest rating for each bridge, as described above. Each of the four condition ratings use a 0 to 9 scale with 0 representing the lowest performance and 9 representing the highest performance.

Bridge Hot Spots: The Bridge Index map identifies individual bridge locations that are identified as hot spots. Hot spots are bridges that have a single rating of 4 in any of the four ratings, or multiple ratings of 5 in the deck, substructure or superstructure ratings.

<u>Scoring:</u>

Performance Level	Bridge Index
Good	>6.5
Fair	5.0-6.5
Poor	<5.0

Performance Level	Sufficiency Rating
Good	>80
Fair	50-80
Poor	<50


Performance Level	Bridge Rating
Good	>6
Fair	5-6
Poor	<5

Performance Level	% Functionally Obsolete
Good	< 12%
Fair	12%-40%
Poor	>40%

Mobility Performance Area Calculation Methodologies

This section summarizes the approach for developing the primary and secondary performance measures in the Mobility performance area as shown in the following graphic:

Primary Mobility Index

The primary Mobility Index is an average of the existing daily volume-to-capacity (V/C) ratio and the future daily V/C ratio for each segment of the corridor.

Existing Daily V/C: The existing daily V/C ratio for each segment is calculated by dividing the 2014 Annual Average Daily Traffic (AADT) volume for each segment by the total Level of Service (LOS) E capacity volume for that segment

The capacity is calculated using the HERS Procedures for Estimating Highway Capacity¹. The HERS procedure incorporates HCM 2010 methodologies. The methodology includes capacity estimation procedures for multiple facility types including freeways, rural two-lane highways, multilane highways, and signalized and non-signalized urban sections.

The segment capacity is defined as a function of the number of mainline lanes, shoulder width, interrupted or uninterrupted flow facilities, terrain type, percent of truck traffic, and the designated urban or rural environment.

The AADT for each segment is calculated by applying a weighted average across the length of the segment based on the individual 24-hour volumes and distances associated with each HPMS count station within each segment.

The following example equation is used to determine the weighted average of a segment with two HPMS count locations within the corridor

((HPMS 1 Distance x HPMS 1 Volume) + (HPMS 2 Distance x HPMS 2 Volume))/Total Segment Length

For specific details regarding the HERS methodology used, refer to the *Procedures for Estimating* Highway Capacity, draft Technical Memorandum.

Future Daily V/C: The future daily V/C ratio for each segment is calculated by dividing the 2035 AADT volume for each segment by the 2014 LOS E capacity. The capacity volume used in this calculation is the same as is utilized in the existing daily V/C equation.

The future AADT daily volumes are generated by applying an average annual compound growth rate (ACGR) to each 2014 AADT segment volume. The following equation is used to apply the average annual compound growth rate:

2035 AADT = 2014 AADT x ((1+ACGR)^(2035-2014))

The ACGR for each segment is defined by comparing the total volumes in the 2010 Arizona Travel Demand Model (AZTDM2) to the 2035 AZTDM2 traffic volumes at each existing HPMS count station location throughout the corridor. Each 2010 and 2035 segment volume is defined using the same weighted average equation described in the Existing Daily V/C section above and then summing the directional volumes for each location. The following equation is used to determine the ACGR for each segment:

ACGR = ((2035 Volume/2010 Volume)^(1/(2035-2010))))-1

Secondary Mobility Measures

Four secondary measures are evaluated:

- Future Congestion
- Peak Congestion
- Travel Time Reliability

¹ HERS Support – 2011, Task 6: Procedures for Estimating Highway Capacity, draft Technical Memorandum Cambridge Systematics. Prepared for the Federal Highway Administration. March 2013.

March 2018

- o Closure Extent
- Directional Travel Time Index
- Directional Planning Time Index
- Multimodal Opportunities
 - % Bicycle Accommodation
 - % Non-Single Occupancy Vehicle (SOV) Trips
 - % Transit Dependency

Future Congestion: The future daily V/C ratios for each segment in the corridor that are calculated and used in the Mobility Index as part of the overall average between Existing Daily V/C and Future Daily V/C are applied independently as a secondary measure. The methods to calculate the Future Daily V/C can be referenced in the Mobility Index section.

Peak Congestion: Peak Congestion has been defined as the peak hour V/C ratio in both directions of the corridor. The peak hour V/C ratio is calculated using the HERS method as described previously. The peak hour volume utilizes the directional AADT for each segment, which is calculated by applying a weighted average across the length of the segment based on the individual directional 24-hour volumes and distances associated with each HPMS count station within each segment. The segment capacity is defined based on the characteristics of each segment including number of lanes, terrain type, and environment, similar to the 24-hour volumes using the HERS method.

Travel Time Reliability: Travel time reliability is a secondary measure that includes three indicators. The three indicators are the number of times a piece of a corridor is closed for any specific reason, the directional Travel Time Index (TTI), and the directional Planning Time Index (PTI).

Closure Extent: The number of times a roadway is closed is documented through the HCRS dataset. Closure Extent is defined as the average number of times a particular milepost of the corridor is closed per year per mile in a specific direction of travel. The weighted average of each occurrence takes into account the distance over which a specific occurrence spans.

Thresholds that determine levels of good, fair, and poor are based on the average number of closures per mile per year within each of the identified statewide significant corridors by ADOT. The thresholds shown at the end of this section represent statewide averages across those corridors.

Directional Travel Time and Planning Time Index: In terms of overall mobility, the TTI is the relationship of the mean peak period travel time in a specific section of the corridor to the free-flow travel time in the same location. The PTI is the relationship of the 95th percentile highest travel time to the free-flow travel time (based on the posted speed limit) in a specific section of the corridor. The TTI and PTI can be converted into speed-based indices by recognizing that speed is equal to distance traveled divided by travel time. The inverse relationship between travel time and speed means that the 95th percentile highest travel time corresponds to the 5th percentile lowest speed.

Using HERE data provided by ADOT, four time periods for each data point were collected throughout the day (AM peak, mid-day, PM peak, and off-peak). Using the mean speeds and 5th percentile lowest mean speeds collected over 2014 for these time periods for each data location, four TTI and PTI calculations were made using the following formulas:

TTI = Posted Speed Limit/Mean Peak Hour Speed

PTI = Posted Speed Limit/5th Percentile Lowest Speed

The highest value of the four time periods calculation is defined as the TTI for that data point. The average TTI is calculated within each segment based on the number of data points collected. The value of the average TTI across each entry is used as the TTI for each respective segment within the corridor.

Multimodal Opportunities: Three multimodal opportunity indicators reflect the characteristics of the corridor that promote alternate modes to a single occupancy vehicle (SOV) for trips along the corridor. The three indicators include the percent bicycle accommodation, non-SOV trips, and transit dependency along the corridor.

Percent Bicycle Accommodation: For this secondary performance evaluation, outside shoulder widths are evaluated considering the roadway's context and conditions. This requires use of the roadway data that includes right shoulder widths, shoulder surface types, and speed limits, all of which are available in the following ADOT geographic information system (GIS) data sets:

- Right Shoulder Widths
- Left Shoulder Widths (for undivided roadways)
- Shoulder Surface Type (Both Left/Right)
- Speed Limit

Additionally, each segment's average AADT, estimated earlier in the Mobility performance area methodology, is used for the criteria to determine if the existing shoulder width meets the effective width.

The criteria for screening if a shoulder segment meets the recommended width criteria are as followed:

- (1) If AADT <= 1500 OR Speed Limit <= 25 miles per hour (mph): The segment's general purpose lane can be shared with bicyclists (no effective shoulder width required)
- Effective shoulder width required is 4 feet or greater
- (3) If AADT > 1500 AND Speed Limit >= 50 mph and Pavement Surface is Paved: Effective shoulder width required is 6 feet or greater

(2) If AADT > 1500 AND Speed Limit between (25 - 50 mph) AND Pavement Surface is Paved:

The summation of the length of the shoulder sections that meet the defined effective width criteria, based on criteria above, is divided by the segment's total length to estimate the percent of the segment that accommodates bicycles as illustrated at the end of this section. If shoulder data is not available or appears erroneous, field measurements can substitute for the shoulder data.

<u>Percent Non-SOV Trips</u>: The percentage of non-SOV trips over distances less than 50 miles gives an indication of travel patterns along a section of the corridor that could benefit from additional multimodal options in the future.

Thresholds that determine levels of good, fair, and poor are based on the percent non-SOV trips within each of the identified statewide significant corridors by ADOT. The thresholds shown at the end of this section represent statewide averages across those corridors.

<u>Percent Transit Dependency</u>: 2008-2012 U.S. Census American Community Survey tract and state level geographic data and attributes from the tables B08201 (Number of Vehicles Available by Household Size) and B17001 (Population in Poverty within the Last 12 Months) were downloaded with margins of error included from the Census data retrieval application Data Ferret. Population ranges for each tract were determined by adding and subtracting the margin of error to each estimate in excel. The tract level attribute data was then joined to geographic tract data in GIS. Only tracts within a one-mile buffer of each corridor are considered for this evaluation.

Tracts that have a statistically significantly larger number of either people in poverty or households with only one or no vehicles available than the state average are considered potentially transit dependent.

Example: The state average for zero or one vehicles households (HHs) is between 44.1% and 45.0%. Tracts which have the lower bound of their range above the upper bound of the state range have a greater percentage of zero/one vehicle HHs than the state average. Tracts that have their upper bound beneath the lower bound of the state range have a lesser percentage of zero/one vehicles HHs than the state average. All other tracts that have one of their bounds overlapping with the state average cannot be considered statistically significantly different because there is a chance the value is actually the same.

In addition to transit dependency, the following attributes are added to the Multimodal Opportunities map based on available data.

- Shoulder width throughout the corridor based on 'Shoulder Width' GIS dataset provided by ADOT
- Intercity bus routes
- Multiuse paths within the corridor right-of-way, if applicable

Scoring:

Volume-to-Capacity Ratios		
Urban and Fringe Urban		
Good - LOS A-C	V/C ≤ 0.71	*Note - ADOT Roadway Design Standards indicate
Fair - LOS D	V/C > 0.71 & ≤ 0.89	Urban and Fringe Urban roadways should be
Poor - LOS E or less	V/C > 0.89	designed to level of service C or better
Rural		
Good - LOS A-B	V/C ≤ 0.56	*Note - ADOT Roadway Design Standards indicate
Fair - LOS C	V/C > 0.56 & ≤ 0.76	Rural roadways should be designed to level of
Poor - LOS D or less	V/C > 0.76	service B or better

Performance Level	Closure Extent
Good	<u><</u> 0.22
Fair	> 0.22 & ≤ 0.62
Poor	V/C > 0.62

Performance Level	TTI on Uninterrupted Flow Facilities
Good	< 1.15
Fair	<u>></u> 1.15 & < 1.33
Poor	<u>></u> 1.33

Performance Level	TTI on Interrupted Flow Facilitie	
Good	< 1.30	
Fair	<u>></u> 1.30 & < 1.2.00	
Poor	<u>></u> 2.00	

Performance Level	PTI on Uninterrupted Flow Facilities
Good	< 1.30
Fair	<u>></u> 1.30 & < 1.50
Poor	<u>></u> 1.50

Performance Level	PTI Interrupted Flow Facilitie	
Good	< 3.00	
Fair	<u>></u> 3.00 & < 6.00	
Poor	<u>≥</u> 6.00	

Performance Level	Percent Bicycle Accommodation	
Good	<u>></u> 90%	
Fair	> 60% & ≤ 90%	
Poor	< 60%	

Performance Level	Percent Non-SOV Trips	
Good	<u>></u> 17%	
Fair	> 11% & ≤ 17%	
Poor	< 11%	

Performance Level	Percent Transit Dependency	
Good	Tracts with both zero and one vehicle household population in poverty	
	percentages below the statewide average	
Fair	Tracts with either zero and one vehicle household or population in poverty percentages below the statewide averag	
Poor	Tracts with both zero and one vehicle household and population in poverty percentages above the statewide average	

Safety Performance Area Calculation Methodologies

This section summarizes the approach for developing the primary and secondary performance measures in the Safety performance area as shown in the following graphic:

Primary Safety Index

The Safety Index is a safety performance measure based on the bi-directional (i.e., both directions combined) frequency and rate of fatal and incapacitating injury crashes, the relative cost of those types of crashes, and crash occurrences on similar roadways in Arizona. According to ADOT's 2010 Highway Safety Improvement Program Manual, fatal crashes have an estimated cost that is 14.5 times the estimated cost of incapacitating injury crashes (\$5.8 million compared to \$400,000).

The Combined Safety Score (CSS) is an interim measure that combines fatal and incapacitating injury crashes into a single value. The CSS is calculated using the following generalized formula:

CSS = 14.5 * (Normalized Fatal Crash Rate + Frequency) + (Normalized Incapacitating Injury Crash Rate + Frequency)

Because crashes vary depending on the operating environment of a particular roadway, statewide CSS values were developed for similar operating environments defined by functional classification, urban vs. rural setting, number of travel lanes, and traffic volumes. To determine the Safety Index of a particular segment, the segment CSS is compared to the average statewide CSS for the similar statewide operating environment.

The Safety Index is calculated using the following formula:

Safety Index = Segment CSS / Statewide Similar Operating Environment CSS

The average annual Safety Index for a segment is compared to the statewide similar operating environment annual average, with one standard deviation from the statewide average forming the scale break points.

The more a particular segment's Safety Index value is below the statewide similar operating environment average, the better the safety performance is for that particular segment as a lower value represents fewer crashes.

Scoring:

The scale for rating the Safety Index depends on the operating environments selected, as shown in the table below.

Safety Index (Overall & Directional)	
Lower Limit of Average*	Upper Limit of Average*
0.94	1.06
0.77	1.23
0.80	1.20
0.56	1.44
0.73	1.27
0.68	1.32
0.79	1.21
0.82	1.18
0.80	1.20
	Lower Limit of Average* 0.94 0.77 0.80 0.56 0.73 0.68 0.79 0.82

Lower/upper limit of Average calculated as one standard deviation below/above the Mean

Some corridor segments may have a very low number of total fatal and incapacitating injury crashes. Low crash frequencies (i.e., a small sample size) can translate into performance ratings that can be unstable. In some cases, a change in crash frequency of one crash (one additional crash or one less crash) could result in a change in segment performance of two levels. To avoid reliance on performance ratings where small changes in crash frequency result in large changes in performance, the following two criteria were developed to identify segments with "insufficient data" for assessing performance for the Safety Index. Both of these criteria must be met for a segment to have "insufficient data" to reliably rate the Safety Index performance:

less than five crashes over the five-year analysis period; AND

• If the crash sample size (total fatal plus incapacitating injury crashes) for a given segment is

• If a change in one crash results in a change in segment performance by two levels (i.e., a change from below average to above average performance or a change from above average to below average frequency), the segment has "insufficient data" and Safety Index performance ratings are unreliable.

Secondary Safety Measures

The Safety performance area has four secondary measures related to fatal and incapacitating injury crashes:

- Directional Safety Index
- Strategic Highway Safety Plan (SHSP) Behavior Emphasis Areas
- Crash Unit Types
- Safety Hot Spots

Directional Safety Index: The Direction Safety Index shares the same calculation procedure and thresholds as the Safety Index. However, the measure is based on the directional frequency and rate of fatal and incapacitating injury crashes.

Similar to the Safety Index, the segment CSS is compared to the average statewide CSS for the similar statewide operating environment. The Directional Safety Index follows the lead of the Safety Index in terms of "insufficient data" status. If the Safety Index meets both criteria for "insufficient data", the Directional Safety Index should also be changed to "insufficient data". If the Safety Index does not meet both criteria for "insufficient data", the Directional Safety Index should also not change to say "insufficient data"

SHSP Behavior Emphasis Areas: ADOT's 2014 SHSP identifies several emphasis areas for reducing fatal and incapacitating injury crashes. The top five SHSP emphasis areas relate to the following driver behaviors:

- Speeding and aggressive driving
- Impaired driving
- Lack of restraint usage
- Lack of motorcycle helmet usage
- Distracted driving

To develop a performance measure that reflects these five emphasis areas, the percentage of total fatal and incapacitating injury crashes that involves at least one of the emphasis area driver behaviors on a particular segment is compared to the statewide average percentage of crashes involving at least one of the emphasis area driver behaviors on roads with similar operating environments in a process similar to how the Safety Index is developed.

To increase the crash sample size for this performance measure, the five behavior emphasis areas are combined to identify fatal and incapacitating injury crashes that exhibit one or more of the behavior emphasis areas.

The SHSP behavior emphasis areas performance is calculated using the following formula:

% Crashes Involving SHSP Behavior Emphasis Areas = Segment Crashes Involving SHSP Behavior Emphasis Areas / Total Segment Crashes

The percentage of total crashes involving SHSP behavior emphasis areas for a segment is compared to the statewide percentages on roads with similar operating environments. One standard deviation from the statewide average percentage forms the scale break points.

When assessing the performance of the SHSP behavior emphasis areas, the more the frequency of crashes involving SHSP behavior emphasis areas is below the statewide average implies better levels of segment performance. Thus, lower values are better, similar to the Safety Index.

Scoring:

The scale for rating the SHSP behavior emphasis areas performance depends on the crash history on similar statewide operating environments, as shown in the table below:

	Crashes in SHSP Top 5 Emphasis Areas	
Similar Operating Environment	Lower Limit of Average*	Upper Limit of Average*
2 or 3 Lane Undivided Highway	51.2%	57.5%
2 or 3 or 4 Lane Divided Highway	44.4%	54.4%
4 or 5 Lane Undivided Highway	42.4%	51.1%
6 Lane Highway	35.3%	46.5%
Rural 4 Lane Freeway with Daily Volume < 25,000	42.8%	52.9%
Rural 4 Lane Freeway with Daily Volume > 25,000	40.8%	57.1%
Urban 4 Lane Freeway	49.1%	59.4%
Urban or Rural 6 Lane Freeway	33.5%	57.2%
Urban > 6 Lane Freeway	42.6%	54.8%

* Lower/upper limit of Average calculated as one standard deviation below/above the Mean

The SHSP behavior emphasis areas secondary safety performance measure for the Safety performance area includes proportions of specific types of crashes within the total fatal and incapacitating injury crash frequencies. This more detailed categorization of fatal and incapacitating injury crashes can result in low crash frequencies (i.e., a small sample size) that translate into performance ratings that can be unstable. In some cases, a change in crash frequency of one crash (one additional crash or one less crash) could result in a change in segment performance of two levels. To avoid reliance on performance ratings where small changes in crash frequency result in large changes in performance, the following criteria were developed to identify segments with "insufficient data" for assessing performance for the SHSP behavior emphasis areas secondary

safety performance measure. If any of these criteria are met for a segment, that segment has "insufficient data" to reliably rate the SHSP behavior emphasis areas performance:

- If the crash sample size (total fatal plus incapacitating injury crashes) for a given segment is less than five crashes over the five-year analysis period, the segment has "insufficient data" and performance ratings are unreliable. OR
- If a change in one crash results in a change in segment performance by two levels (i.e., a change from below average to above average performance or a change from above average to below average frequency), the segment has "insufficient data" and performance ratings are unreliable. OR
- If the corridor average segment crash frequency for the SHSP behavior emphasis areas performance measure is less than two crashes over the five-year analysis period, the entire SHSP behavior emphasis areas performance measure has "insufficient data" and performance ratings are unreliable.

Crash Unit Type Emphasis Areas: ADOT's SHSP also identifies emphasis areas that relate to the following "unit-involved" crashes:

- Heavy vehicle (trucks)-involved crashes
- Motorcycle-involved crashes
- Non-motorized traveler (pedestrians and bicyclists)-involved crashes

To develop a performance measure that reflects the aforementioned crash unit type emphasis areas, the percentage of total fatal and incapacitating injury crashes that involves a given crash unit type emphasis area on a particular segment is compared to the statewide average percentage of crashes involving that same crash unit type emphasis area on roads with similar operating environments in a process similar to how the Safety Index is developed.

The SHSP crash unit type emphasis areas performance is calculated using the following formula:

% Crashes Involving Crash Unit Type = Segment Crashes Involving Crash Unit Type / Total Segment Crashes

The percentage of total crashes involving crash unit types for a segment is compared to the statewide percentages on roads with similar operating environments. One standard deviation from the statewide average percentage forms the scale break points.

When assessing the performance of the crash unit types, the more the frequency of crashes involving crash unit types is below the statewide average implies better levels of segment performance. Thus, lower values are better, similar to the Safety Index. The scale for rating the unit-involved crash performance depends on the crash history on similar statewide operating environments, as shown in the following tables.

Scoring:

	Crashes Involving Trucks	
Similar Operating Environment	Lower Limit of Average*	Upper Limit of Average*
2 or 3 Lane Undivided Highway	5.2%	7.1%
2 or 3 or 4 Lane Divided Highway	3.5%	7.3%
4 or 5 Lane Undivided Highway	6.1%	9.6%
6 Lane Highway	0.3%	8.7%
Rural 4 Lane Freeway with Daily Volume < 25,000	13.2%	17.0%
Rural 4 Lane Freeway with Daily Volume > 25,000	7.2%	12.9%
Urban 4 Lane Freeway	6.8%	10.9%
Urban or Rural 6 Lane Freeway	6.2%	11.0%
Urban > 6 Lane Freeway	2.5%	6.0%

* Lower/upper limit of Average calculated as one standard deviation below/above the Mean

	Crashes Involving Motorcycles	
Similar Operating Environment	Lower Limit of Average*	Upper Limit of Average*
2 or 3 Lane Undivided Highway	18.5%	26.5%
2 or 3 or 4 Lane Divided Highway	16.3%	26.3%
4 or 5 Lane Undivided Highway	6.4%	9.4%
6 Lane Highway	0.0%	20.0%
Rural 4 Lane Freeway with Daily Volume < 25,000	5.0%	8.5%
Rural 4 Lane Freeway with Daily Volume > 25,000	7.7%	17.1%
Urban 4 Lane Freeway	9.3%	11.5%
Urban or Rural 6 Lane Freeway	6.7%	12.9%
Urban > 6 Lane Freeway	12.6%	20.5%

* Lower/upper limit of Average calculated as one standard deviation below/above the Mean

	Crashes Involving Non-Motorized Travelers	
Similar Operating Environment	Lower Limit of Average*	Upper Limit of Average*
2 or 3 Lane Undivided Highway	2.2%	4.2%
2 or 3 or 4 Lane Divided Highway	2.4%	4.5%
4 or 5 Lane Undivided Highway	4.7%	7.9%
6 Lane Highway	8.4%	17.4%
Rural 4 Lane Freeway with Daily Volume < 25,000	1.7%	2.5%
Rural 4 Lane Freeway with Daily Volume > 25,000	0.0%	0.0%
Urban 4 Lane Freeway	4.8%	10.3%
Urban or Rural 6 Lane Freeway	0.9%	6.7%
Urban > 6 Lane Freeway	0.5%	1.5%

* Lower/upper limit of Average calculated as one standard deviation below/above the Mean

The crash unit types have the same "insufficient data" criteria as the SHSP behavior emphasis areas.

Safety Hot Spots: A hot spot analysis was conducted that identified abnormally high concentrations of fatal and incapacitating injury crashes along the study corridor by direction of travel. The identification of crash concentrations involves a GIS-based function known as "kernel density analysis". This measure is mapped for graphical display purposes with the Directional Safety Index but is not included in the Safety performance area rating calculations.

Freight Performance Area Calculation Methodologies

This section summarizes the approach for developing the primary and secondary performance measures in the Freight performance area as shown in the following graphic:

Primary Freight Index

The Freight Index is a reliability performance measure based on the planning time index for truck travel. The industry standard definition for the Truck Planning Time Index (TPTI) is the ratio of total travel time needed for 95% on-time arrival to free-flow travel time. The TPTI reflects the extra buffer time needed for on-time delivery while accounting for non-recurring delay. Non-recurring delay refers to unexpected or abnormal delay due to closures or restrictions resulting from circumstances such as crashes, inclement weather, and construction activities.

The TPTI can be converted into a speed-based index by recognizing that speed is equal to distance traveled divided by travel time. The inverse relationship between travel time and speed means that the 95th percentile highest travel time corresponds to the 5th percentile lowest speed. The speedbased TPTI is calculated using the following formula:

TPTI = Free-Flow Truck Speed / Observed 5th Percentile Lowest Truck Speed

Observed 5th percentile lowest truck speeds are available in the 2014 American Digital Cartography, Inc. HERE (formerly NAVTEQ) database to which ADOT has access. The free-flow truck speed is assumed to be 65 miles per hour or the posted speed, whichever is less. This upper limit of 65 mph accounts for governors that trucks often have that restrict truck speeds to no more than 65 mph, even when the speed limit may be higher.

For each corridor segment, the TPTI is calculated for each direction of travel and then averaged to create a bi-directional TPTI. When assessing performance using TPTI, the higher the TPTI value is above 1.0, the more buffer time is needed to ensure on-time delivery.

The Freight Index is calculated using the following formula to invert the overall TPTI:

Freight Index = 1 / Bi-directional TPTI

Inversion of the TPTI allows the Freight Index to have a scale where the higher the value, the better the performance, which is similar to the directionality of the scales of most of the other primary measures. This Freight Index scale is based on inverted versions of TPTI scales created previously by ADOT. The scale for rating the Freight Index differs between uninterrupted and interrupted flow facilities.

Secondary Freight Measures

The Freight performance area includes five secondary measures that provide an in-depth evaluation of the different characteristics of freight performance:

- Recurring Delay (Directional TTTI)
- Non-Recurring Delay (Directional TPTI)
- Closure Duration
- Bridge Vertical Clearance
- Bridge Vertical Clearance Hot Spots

Recurring Delay (Directional TTTI): The performance measure for recurring delay is the Directional Truck Travel Time Index (TTTI). The industry standard definition for TTTI is the ratio of average peak period travel time to free-flow travel time. The TTTI reflects the extra time spent in traffic during peak times due to recurring delay. Recurring delay refers to expected or normal delay due to roadway capacity constraints or traffic control devices.

Similar to the TPTI, the TTTI can be converted into a speed-based index by recognizing that speed is equal to distance traveled divided by travel time. The speed-based TTTI can be calculated using the following formula:

TTTI = Free-Flow Truck Speed / Observed Average Peak Period Truck Speed

Observed average peak period truck speeds are available in the 2014 American Digital Cartography, Inc. HERE (formerly NAVTEQ) database to which ADOT has access. The free-flow truck speed is assumed to be 65 mph or the posted speed, whichever is less.

For each corridor segment, the TTTI is calculated for each direction of travel. With the TTTI, the higher the TTTI value is above 1.0, the more time is spent in traffic during peak times. TTTI values are generally lower than TPTI values. The Directional TTTI scale is based on TTTI scales created previously by ADOT.

Non-Recurring Delay (Directional TPTI): The performance measure for non-recurring delay is the Directional TPTI. Directional TPTI is calculated as described previously as an interim step in the development of the Freight Index.

For each corridor segment, the TPTI is calculated for each direction of travel. With the TPTI, the higher the TPTI value is above 1.0, the more buffer time is needed to ensure on-time delivery.

Closure Duration: This performance measure related to road closures is average roadway closure (i.e., full lane closure) duration time in minutes. There are three main components to full closures that affect reliability – frequency, duration, and extent. In the freight industry, closure duration is the most important component because trucks want to minimize travel time and delay.

Data on the frequency, duration, and extent of full roadway closures on the ADOT State Highway System is available for 2010-2014 in the HCRS database that is managed and updated by ADOT.

The average closure duration in a segment – in terms of the average time a milepost is closed per mile per year on a given segment – is calculated using the following formula:

Closure Duration = Sum of Segment (Closure Clearance Time * Closure Extent) / Segment Length

The segment closure duration time in minutes can then be compared to statewide averages for closure duration in minutes, with one-half standard deviation from the average forming the scale break points. The scale for rating closure duration in minutes is found at the end of this section.

Bridge Vertical Clearance: This performance measure uses the vertical clearance information from the ADOT Bridge Database to identify locations with low vertical clearance. The minimum vertical clearance for all underpass structures (i.e., structures under which mainline traffic passes) is determined for each segment.

Bridge Vertical Clearance Hot Spots: This performance measure related to truck restrictions is the locations, or hot spots, where bridge vertical clearance issues restrict truck travel. Sixteen feet three inches (16.25') is the minimum standard vertical clearance value for state highway bridges over travel lanes.

Locations with lower vertical clearance values than the minimum standard are categorized by the ADOT Intermodal Transportation Department Engineering Permits Section as either locations where ramps exist that allow the restriction to be avoided or locations where ramps do not exist and the restriction cannot be avoided. The locations with vertical clearances below the minimum standard that cannot be ramped around are considered hot spots. This measure is mapped for graphical display purposes with the bridge vertical clearance map but is not included in the Freight performance area rating calculations.

Scoring:

Performance Level	Freight Index	
Performance Lever	Uninterrupted Flow Facilities	Interrupted Flow Facilities
Good	> 0.77	> 0.33
Fair	0.67 – 0.77	0.17-0.33
Poor	< 0.67	< 0.17

Performance Level	TT	Π
Performance Lever	Uninterrupted Flow Facilities	Interrupted Flow Facilities
Good	< 1.15	< 1.30
Fair	1.15 – 1.33	1.30 - 2.00
Poor	> 1.33	> 2.00

De rfermen en Level	TP'	ТІ
Performance Level	Uninterrupted Flow Facilities	Interrupted Flow Facilities
Good	< 1.30	< 3.00
Fair	1.30 – 1.50	3.00 - 6.00
Poor	> 1.50	> 6.00

Performance Level	Closure Duration (minutes)
Good	< 44.18
Fair	44.18 – 124.86
Poor	> 124.86

Performance Level	Bridge Vertical Clearance
Good	> 16.5'
Fair	16.0' – 16.5'
Poor	< 16.0'

Appendix C: Performance Area Data

Pavement Performance Area Data

			Direction 1	(North/Ea	astbound)	Direction 2	(South/W	estbound)		irection 1 n/Eastbound)		rection 2 /Westbound)	Com	posite	
			# of Lanes	IRI	Cracking	# of Lanes	IRI	Cracking	PSR	PDI	PSR	PDI	Dir 1 (N/E)	Dir 2 (S/W)	Pavement Index
Segment 1		Interstate?	No												
Milepost	155	to 156	1	43.11	0.10	1	43.11	0.10	4.24	-	4.24	-	4.24	4.24	
Milepost	156	to 157	1	43.11	0.10	1	43.11	0.10	4.24	-	4.24	-	4.24	4.24	
Milepost	157	to 158	1	44.38	0.10	1	44.38	0.10	4.22	-	4.22	-	4.22	4.22	
Milepost	158	to 159	1	40.43	0.10	1	40.43	0.10	4.29	-	4.29	-	4.29	4.29	
Milepost	159	to 160	1	40.12	0.10	1	40.12	0.10	4.29	-	4.29	-	4.29	4.29	
Milepost	160	to 161	1	47.50	0.10	1	47.50	0.10	4.17	-	4.17	-	4.17	4.17	
Milepost	161	to 162	2.0	84.36	7.00	2.0	58.38	6.00	3.63	3.8	4.01	3.9	3.67	3.91	
		Total	8			8									
		Weighted	d Average						4.09	0.94	4.18	0.97	4.10	4.16	
		Factor							1.00		1.00				
		Indicato	rScore						4.09		4.18				
		Pavemen	it Index												4.13
Segment 2		Interstate?	No				-					-			
Milepost	162	to 163	2	65.12	25.00	2	49.80	6.00	3.90	2.1	4.14	3.9	2.11	3.95	
Milepost	163	to 164	2	58.68	30.00	2	52.81	3.00	4.00	1.7	4.09	4.3	1.74	4.15	
Milepost	164	to 165	2	63.31	8.00	2	52.19	4.00	3.93	3.6	4.10	4.1	3.73	4.11	
Milepost	165	to 166	2	53.45	5.00	2	46.63	7.00	4.08	4.0	4.19	3.8	4.03	3.88	
Milepost	166	to 167	2	59.51	8.00	2	43.14	6.00	3.99	3.6	4.24	3.9	3.74	3.99	
Milepost	167	to 168	2	71.56	6.00	2	41.90	7.00	3.81	3.9	4.26	3.8	3.83	3.91	
Milepost	168	to 169	2	48.32	4.00	2	44.10	8.00	4.16	4.1	4.23	3.6	4.15	3.82	
Milepost	169	to 170	2	39.81	0.00	2	36.22	0.00	4.30	5.0	4.36	5.0	4.51	4.55	
Milepost	170	to 171	2	30.95	0.00	2	30.67	0.00	4.45	5.0	4.45	5.0	4.61	4.61	
		Total	18			18									
		Weighted	d Average						4.07	3.68	4.23	4.15	3.61	4.11	
		Factor							1.00		1.00				
		Indicato	Score						4.07		4.23				
		Pavemen	t Index												3.86
Segment 3	•	Interstate?	No		T	1		T	-			•		-	
Milepost	171	to 172	2	33.01	0.00	2	34.11	0.00	4.41	5.0	4.39	5.0	4.59	4.57	
Milepost	172	to 173	2.0	119.03	0.00	3.0	70.68	0.00	3.18	5.0	3.82	5.0	3.73	4.18	
Milepost	173	to 174	2	160.88	0.00	2.0	160.88	0.00	2.71	5.0	2.71	5.0	2.71	2.71	
Milepost	174	to 175	3.0	149.17	5.00	3	126.41	0.00	2.84	4.0	3.09	5.0	2.84	3.66	
Milepost	175	to 176	2	123.96	15.00	3.0	65.02	5.00	3.12	2.9	3.91	4.0	2.99	3.93	
		Total	11			13									

	% Paveme	ent Failure
nt	Dir 1	Dir 2
	(N/E)	(S/W)
	0	0
	0	0
	0	0
	0	0
	0	0
	0	0
	0	0
		0
		0.0%
	2	0
	2 0	0
		0
	0	0
	0	0
	0	0
	0	0
	0	0
	0	0
		4
		11.1%
	0	0
	0	0
	2	2
	3	0
	0	0
		7

				Direction 1	(North/Ea	astbound)	Direction 2 ((South/W	estbound)		rection 1 n/Eastbound)		rection 2 /Westbound)	Com	posite	
				# of Lanes	IRI	Cracking	# of Lanes	IRI	Cracking	PSR	PDI	PSR	PDI	Dir 1 (N/E)	Dir 2 (S/W)	Pavement Index
		۷	Veighted	l Average						3.21	4.35	3.59	4.77	3.32	3.84	
		F	actor							1.00		1.00				
		l	ndicator	Score						3.21		3.59				
			avemen	t Index												3.60
Segment 4		Inter	state?	No		r			1							
Milepost	176	to	177	2	88.03	8.00	2	55.84	4.00	3.58	3.6	4.04	4.1	3.60	4.07	
Milepost	177	to	178	2	69.34	3.00	2	57.18	5.00	3.84	4.3	4.02	4.0	3.98	4.01	
Milepost	178	to	179	2	85.92	4.00	2	61.04	3.00	3.61	4.1	3.96	4.3	3.77	4.06	
Milepost	179	to	180	2	61.39	5.00	2	55.19	7.00	3.96	4.0	4.05	3.8	3.97	3.84	
Milepost	180	to	181	2	48.55	2.00	2	65.99	6.00	4.16	4.5	3.89	3.9	4.25	3.88	
Milepost	181	to	182	2	77.50	1.00	2	57.80	6.00	3.72	4.7	4.01	3.9	4.00	3.92	
Milepost	182	to	183	2	60.92	5.00	2	73.33	7.00	3.97	4.0	3.78	3.8	3.98	3.76	
Milepost	183	to	184	2	57.40	2.00	2	68.91	5.00	4.02	4.5	3.85	4.0	4.15	3.89	
		Т	otal	16			16									
		۷	Veighted	l Average						3.86	4.20	3.95	3.96	3.96	3.93	
		F	actor							1.00		1.00				
		lı lı	ndicator	Score						3.86		3.95				
		Р	avemen	t Index												3.95
Segment 5	I	Inter	state?	No												
Milepost	184	to	185	2	69.82	2.00	2	55.47	6.00	3.83	4.5	4.05	3.9	4.02	3.93	
Milepost	185	to	186	2	145.44	3.00	2	65.84	3.00	2.88	4.3	3.89	4.3	2.88	4.01	
Milepost	186	to	187	2	62.29	2.00	2	55.43	2.00	3.95	4.5	4.05	4.5	4.10	4.17	
Milepost	187	to	188	2	48.94	3.00	2	56.94	4.00	4.15	4.3	4.03	4.1	4.19	4.06	
Milepost	188	to	189	2	59.08	2.00	2	51.23	2.00	3.99	4.5	4.12	4.5	4.13	4.22	
		Т	otal	10			10									
		V	Veighted	Average						3.76	4.39	4.03	4.24	3.86	4.08	
		F	actor							1.00		1.00				
		l	ndicator	Score						3.76		4.03				
		Р	avemen	t Index												3.97

	% Paveme	ent Failure
t	Dir 1	Dir 2
-	(N/E)	(S/W)
		29.2%
	0	0
	0	0
	0	0
	0	0
	0	0
	0	0
	0	0
	0	0
		0
		0.0%
	0	0
	0	0
	0	0
	0	0
	0	0
		2
		10.0%

Bridge Performance Area Data

				Bridge Sufficiency			Bridge Inde	2X		Functionally Obsolete Bridges		Hot Spots or
Chrysteine News (A200)	Structure #	Milepost	Area (A225)	Sufficiency	Deck	Sub (N59)	Super	Eval (N67)	Lowest	Deck Area on Func	Duides Dating	Bridge Inde
Structure Name (A209)	(N8)	(A232)		Rating	(N58)		(N60)	. ,		Obsolete	Bridge Rating	map
Segment 1		#N1/A	#N1/A	#N1/A	#N1/A	401/0	#N1/A	451/6	#N1/A	401/0		
N/A - No Bridges in Segment		#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A		
Total	A		#N/A							<u> </u>		
Weighted	Average			#N/A					#N/A	#N/A		
Factor Indicator S				1.00					1.00	1.00	41 NI / A	
				#N/A					4NI / A	#N/A	#N/A	
Bridge Ind	ex				_		_		#N/A			
Segment 2		#N1/A	#N1/A	#NI / A	#N1/A	<u>#NI/A</u>	#NI / A	#N1/A	#NI/A	#NI/A		
N/A - No Bridges in Segment		#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A		
Total	Average		#N/A	#NI /A					#NI / A	#NI /A		
Weighted /	Average			#N/A					#N/A	#N/A		<u> </u>
Factor Indicator S	Scoro			1.00 #N/A					1.00	1.00 #N/A	#N/A	
				#IN/A					401/0	#N/A	#N/A	
Bridge Ind	ex				_		_		#N/A			
Segment 3										<u> </u>		
N/A - No Bridges in Segment		#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A		
Total	A		#N/A							<u> </u>		
Weighted	Average			#N/A					#N/A	#N/A		
Factor				1.00					1.00	1.00		
Indicators				#N/A						#N/A	#N/A	
Bridge Ind	ex								#N/A			
Segment 4	00004	404 70	50004		6.00		6.00					
Gila River Bridge NB	00991	181.79	59094	98.80	6.00	7.00	6.00	6.00	6.0	0		
Gila River Br SB	02401	181.79	56636	98.40	6.00	7.00	8.00	7.00	6.0	0		
Santa Cruz Wash NB	02353	178.3	7741	98.80	7.00	8.00	7.00	7.00	7.0	0		
Santa Cruz Wash SB	02490	178.3	7458	98.40	6.00	8.00	7.00	7.00	6.0	0		
Santa Cruz Wash NB	02354	176.19	11470	98.80	7.00	7.00	7.00	7.00	7.0	0		
Santa Cruz Wash SB	02485	176.19	11074	98.40	7.00	8.00	7.00	7.00	7.0	0		
Total			153,473									
Weighted	Average			98.60					6.20	0.00%		
Factor	-			1.00					1.00	1.00		
Indicators				98.60						0.00%	6	
Bridge Ind	ex								6.20			
Segment 5					·			1	1 ·			
N/A - No Bridges in Segment		#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A		
Total			#N/A									
Weighted	Average			#N/A					#N/A	#N/A		
Factor				1.00					1.00	1.00		
Indicator				#N/A						#N/A	#N/A	
Bridge Ind	ex								#N/A			

SR 347/SR 84 Corridor Profile Study Final Report

Mobility Performance Area Data

Segment	Begin MP	End MP	Length (mi)	Facility Type	Flow Type	Terrain	No. of Lanes	Capacity Environment Type	Lane Width (feet)	EB/NB Right Shoulder Width	WB/SB Right Shoulder Width	EB/NB Left Shoulder Width	WB/SB Left Shoulder Width	NB/EB AADT	SB/WB AADT	2015 AADT	K Factor	D Factor	T Factor	Weighted Average Posted Speed Limit	Divided or Undivided	Access Points (per mile)	% No-Passing Zone	Street Parking
1	155.1	162	6.9	Rural	Interrupted	Level	2	Rural Two-Lane, Non- Signalized	12.00	5.59	5.12	N/A	N/A	721	702	1422.62	13.87%	50.97%	11.68%	54	Undivided	1.739	22%	N/A
2	162	171	9	Rural	Interrupted	Level	4	Multilane Highway	12.00	9.86	9.86	9.86	3.86	2822	2805	5626.56	8.28%	50.37%	12.39%	60	Divided	0.889	0%	N/A
3	171	176	5	Fringe Urban	Interrupted	Level	4	Urban/Rural Single or Multilane Signalized	12.00	5.67	3.41	N/A	N/A	12635	12650	25285.5	8.99%	50.36%	6.51%	41	Divided	N/A	0%	N/A
4	176	184	8	Rural	Interrupted	Level	4	Urban/Rural Single or Multilane Signalized	12.00	9.63	10.00	N/A	N/A	19791	20335	40126	9.00%	50.68%	8.70%	61	Divided	N/A	0%	N/A
5	184	189.38	5.38	Rural	Interrupted	Level	4	Urban/Rural Single or Multilane Signalized	12.00	9.14	9.10	N/A	N/A	18533	18273	36805.7	8.59%	50.79%	8.93%	59	Divided	N/A	0%	N/A

Car TTI and PTI/Truck TTTI and TPTI – Northbound/Eastbound

Segment	TMC	timeperiod	week_type	ROAD_NUMBER	road_direction	cars_mean	trucks_mean	cars_P05	trucks_P05	Posted Speed limit	Assumed car free-flow speed	Assumed truck free-flow speed	cars_TT	Trucks_TTI	cars_PTI	Trucks_PTI	Cars_PeakTTI	Trucks_PeakTTI	Cars_PeakPTI	Trucks_PeakPTI
1	115N07250	1 AM Peak	Weekday	AZ-84	Southbound	54.2	51.9	19.9	21.8	54	54	54	1.00	1.04	2.72	2.48	1.00	1.04	2.72	2.63
1	115N07250	2 Mid Day	Weekday	AZ-84	Southbound	55.1	52.3	23.0	20.5	54	54	54	1.00	1.03	2.35	2.63				
1	115N07250	3 PM Peak	Weekday	AZ-84	Southbound	57.1	52.7	32.9	26.0	54	54	54	1.00	1.02	1.64	2.07				
1	115N07250	4 Evening	Weekday	AZ-84	Southbound	54.9	51.1	19.0	27.5	54	54	54	1.00	1.06	2.84	1.96				
1	115P07295	1 AM Peak	Weekday	AZ-347	Northbound	58.6	59.0	34.8	40.4	45	45	45	1.00	1.00	1.29	1.11	1.00	1.00	1.39	1.25
1	115P07295	2 Mid Day	Weekday	AZ-347	Northbound	59.2	58.2	32.3	36.0	45	45	45	1.00	1.00	1.39	1.25				
1	115P07295	3 PM Peak	Weekday	AZ-347	Northbound	60.5	57.8	34.2	36.7	45	45	45	1.00	1.00	1.32	1.23				
1	115P07295	4 Evening	Weekday	AZ-347	Northbound	61.4	58.3	33.9	38.3	45	45	45	1.00	1.00	1.33	1.17				
2	115P07295	1 AM Peak	Weekday	AZ-347	Northbound	58.6	59.0	34.8	40.4	45	45	45	1.00	1.00	1.29	1.11	1.00	1.00	1.39	1.25
2	115P07295	2 Mid Day	Weekday	AZ-347	Northbound	59.2	58.2	32.3	36.0	45	45	45	1.00	1.00	1.39	1.25				
2	115P07295	3 PM Peak	Weekday	AZ-347	Northbound	60.5	57.8	34.2	36.7	45	45	45	1.00	1.00	1.32	1.23				
2	115P07295	4 Evening	Weekday	AZ-347	Northbound	61.4	58.3	33.9	38.3	45	45	45	1.00	1.00	1.33	1.17				
2	115P07296	1 AM Peak	Weekday	AZ-347	Northbound	32.0	38.5	5.6	10.6	45	45	45	1.40	1.17	8.05	4.26	1.43	1.28	8.05	6.21
2	115P07296	2 Mid Day	Weekday	AZ-347	Northbound	31.4	35.1	5.6	7.2	45	45	45	1.43	1.28	8.05	6.21				
2	115P07296	3 PM Peak	Weekday	AZ-347	Northbound	31.7	35.7	6.8	9.9	45	45	45	1.42	1.26	6.58	4.52				
2	115P07296	4 Evening	Weekday	AZ-347	Northbound	35.4	36.8	8.7	11.8	45	45	45	1.27	1.22	5.17	3.81				
3	115P07296	1 AM Peak	Weekday	AZ-347	Northbound	32.0	38.5	5.6	10.6	45	45	45	1.40	1.17	8.05	4.26	1.43	1.28	8.05	6.21
3	115P07296	2 Mid Day	Weekday	AZ-347	Northbound	31.4	35.1	5.6	7.2	45	45	45	1.43	1.28	8.05	6.21				
3	115P07296	3 PM Peak	Weekday	AZ-347	Northbound	31.7	35.7	6.8	9.9	45	45	45	1.42	1.26	6.58	4.52				
3	115P07296	4 Evening	Weekday	AZ-347	Northbound	35.4	36.8	8.7	11.8	45	45	45	1.27	1.22	5.17	3.81				
3	115P07297	1 AM Peak	Weekday	AZ-347	Northbound	25.9	23.6	5.9	6.8	35	35	35	1.35	1.48	5.96	5.12	1.58	1.71	7.04	9.39
3	115P07297	2 Mid Day	Weekday	AZ-347	Northbound	23.2	21.2	6.0	5.0	35	35	35	1.51	1.65	5.86	7.04				
3	115P07297	3 PM Peak	Weekday	AZ-347	Northbound	22.1	20.5	5.0	3.7	35	35	35	1.58	1.71	7.04	9.39				
3	115P07297	4 Evening	Weekday	AZ-347	Northbound	26.1	23.9	5.6	6.8	35	35	35	1.34	1.47	6.26	5.12				
3	115P07298	1 AM Peak	Weekday	AZ-347	Northbound	48.6	41.2	21.9	10.5	60	60	60	1.24	1.46	2.74	5.74	1.29	1.50	3.31	8.40
3	115P07298	2 Mid Day	Weekday	AZ-347	Northbound	49.0	42.7	26.7	10.6	60	60	60	1.22	1.41	2.25	5.68				
3	115P07298	3 PM Peak	Weekday	AZ-347	Northbound	46.6	39.9	18.1	7.1	60	60	60	1.29	1.50	3.31	8.40				
3	115P07298	4 Evening	Weekday	AZ-347	Northbound	51.5	44.6	23.6	15.5	60	60	60	1.17	1.35	2.54	3.86				
4	115P07298	1 AM Peak	Weekday	AZ-347	Northbound	48.6	41.2	21.9	10.5	60	60	60	1.24	1.46	2.74	5.74	1.29	1.50	3.31	8.40
4	115P07298	2 Mid Day	Weekday	AZ-347	Northbound	49.0	42.7	26.7	10.6	60	60	60	1.22	1.41	2.25	5.68				
4	115P07298	3 PM Peak	Weekday	AZ-347	Northbound	46.6	39.9	18.1	7.1	60	60	60	1.29	1.50	3.31	8.40				
4	115P07298	4 Evening	Weekday	AZ-347	Northbound	51.5	44.6	23.6	15.5	60	60	60	1.17	1.35	2.54	3.86				
4	115P07299	1 AM Peak	Weekday	AZ-347	Northbound	52.9	44.7	19.8	10.6	63	63	63	1.19	1.41	3.19	5.96	1.19	1.41	3.19	12.67

SR 347/SR 84 Corridor Profile Study Final Report

Segment	TMC	timeperiod	week_type	ROAD_NUMBER	road_direction	cars_mean	trucks_mean	cars_P05	trucks_P05	Posted Speed limit	Assumed car free-flow speed	Assumed truck free-flow speed	cars_TI	Trucks_TTI	cars_PTI	Trucks_PTI	Cars_PeakTTI	Trucks_PeakTTI	Cars_PeakPTI	Trucks_PeakPTI
4	115P07299	2 Mid Day	Weekday	AZ-347	Northbound	62.4	54.8	46.9	20.5	63	63	63	1.01	1.15	1.34	3.07				
4	115P07299	3 PM Peak	Weekday	AZ-347	Northbound	62.1	51.6	40.0	5.0	63	63	63	1.02	1.22	1.57	12.67				
4	115P07299	4 Evening	Weekday	AZ-347	Northbound	63.9	57.1	49.8	30.5	63	63	63	1.00	1.10	1.27	2.07				
5	115P07299	1 AM Peak	Weekday	AZ-347	Northbound	52.9	44.7	19.8	10.6	63	63	63	1.19	1.41	3.19	5.96	1.19	1.41	3.19	12.67
5	115P07299	2 Mid Day	Weekday	AZ-347	Northbound	62.4	54.8	46.9	20.5	63	63	63	1.01	1.15	1.34	3.07				
5	115P07299	3 PM Peak	Weekday	AZ-347	Northbound	62.1	51.6	40.0	5.0	63	63	63	1.02	1.22	1.57	12.67				
5	115P07299	4 Evening	Weekday	AZ-347	Northbound	63.9	57.1	49.8	30.5	63	63	63	1.00	1.10	1.27	2.07				
5	115P07300	1 AM Peak	Weekday	AZ-347	Northbound	53.1	41.8	27.9	11.2	60	60	60	1.13	1.43	2.15	5.36	1.13	1.43	2.91	5.68
5	115P07300	2 Mid Day	Weekday	AZ-347	Northbound	54.2	44.6	28.4	11.4	60	60	60	1.11	1.35	2.11	5.26				
5	115P07300	3 PM Peak	Weekday	AZ-347	Northbound	53.8	45.3	21.3	12.4	60	60	60	1.11	1.32	2.81	4.83				
5	115P07300	4 Evening	Weekday	AZ-347	Northbound	53.7	44.5	20.6	10.6	60	60	60	1.12	1.35	2.91	5.68				

Car TTI and PTI/Truck TTTI and TPTI – Southbound/Westbound

Segment	TMC	timeperiod	week_type	ROAD_NUMBE R	road_direction	cars_mean	trucks_mean	cars_P05	trucks_P05	Posted Speed limit	Assumed car free-flow speed	Assumed truck free-flow speed	cars_TTI	Trucks_TTI	cars_PTI	Trucks_PTI	Cars_PeakTTI	Trucks_PeakTTI	Cars_PeakPTI	Trucks_PeakPTI
1	115P07251	1 AM Peak	Weekday	AZ-84	Northbound	53.8	50.5	21.7	20.5	54	54	54	1.00	1.07	2.48	2.63	1.07	1.13	3.62	3.00
1	115P07251	2 Mid Day	Weekday	AZ-84	Northbound	54.6	51.9	27.0	26.3	54	54	54	1.00	1.04	2.00	2.05				
1	115P07251	3 PM Peak	Weekday	AZ-84	Northbound	52.6	51.6	24.9	24.2	54	54	54	1.03	1.05	2.17	2.23				
1	115P07251	4 Evening	Weekday	AZ-84	Northbound	50.7	47.9	14.9	18.0	54	54	54	1.07	1.13	3.62	3.00				
1	115N07294	1 AM Peak	Weekday	AZ-347	Southbound	59.8	59.2	35.6	40.1	64	64	64	1.07	1.08	1.80	1.60	1.08	1.14	2.10	1.99
1	115N07294	2 Mid Day	Weekday	AZ-347	Southbound	59.3	56.6	35.4	32.1	64	64	64	1.08	1.13	1.81	1.99				
1	115N07294	3 PM Peak	Weekday	AZ-347	Southbound	60.0	56.0	34.2	34.8	64	64	64	1.07	1.14	1.87	1.84				
1	115N07294	4 Evening	Weekday	AZ-347	Southbound	59.3	57.9	30.4	36.7	64	64	64	1.08	1.11	2.10	1.75				
2	115N07295	1 AM Peak	Weekday	AZ-347	Southbound	38.9	41.3	16.8	15.7	55	55	55	1.41	1.33	3.28	3.49	1.44	1.37	4.02	4.02
2	115N07295	2 Mid Day	Weekday	AZ-347	Southbound	39.6	41.5	16.8	16.8	55	55	55	1.39	1.32	3.28	3.28				
2	115N07295	3 PM Peak	Weekday	AZ-347	Southbound	39.1	40.1	13.7	13.7	55	55	55	1.41	1.37	4.02	4.02				
2	115N07295	4 Evening	Weekday	AZ-347	Southbound	38.3	40.2	14.9	13.7	55	55	55	1.44	1.37	3.69	4.02				
2	115N07294	1 AM Peak	Weekday	AZ-347	Southbound	59.8	59.2	35.6	40.1	64	64	64	1.07	1.08	1.80	1.60	1.08	1.14	2.10	1.99
2	115N07294	2 Mid Day	Weekday	AZ-347	Southbound	59.3	56.6	35.4	32.1	64	64	64	1.08	1.13	1.81	1.99				
2	115N07294	3 PM Peak	Weekday	AZ-347	Southbound	60.0	56.0	34.2	34.8	64	64	64	1.07	1.14	1.87	1.84				
2	115N07294	4 Evening	Weekday	AZ-347	Southbound	59.3	57.9	30.4	36.7	64	64	64	1.08	1.11	2.10	1.75				
3	115N07296	1 AM Peak	Weekday	AZ-347	Southbound	26.8	24.9	7.5	6.8	35	35	35	1.31	1.41	4.69	5.12	1.47	1.74	6.25	14.08
3	115N07296	2 Mid Day	Weekday	AZ-347	Southbound	24.3	22.2	7.5	5.0	35	35	35	1.44	1.58	4.69	7.04				
3	115N07296	3 PM Peak	Weekday	AZ-347	Southbound	23.7	20.1	6.8	2.5	35	35	35	1.47	1.74	5.12	14.08				
3	115N07296	4 Evening	Weekday	AZ-347	Southbound	26.4	24.4	5.6	5.0	35	35	35	1.32	1.43	6.25	7.04				
3	115N07297	1 AM Peak	Weekday	AZ-347	Southbound	48.9	44.9	25.5	9.1	60	60	60	1.23	1.34	2.36	6.58	1.37	1.63	3.25	12.07
3	115N07297	2 Mid Day	Weekday	AZ-347	Southbound	46.6	40.1	19.3	5.6	60	60	60	1.29	1.50	3.12	10.73				
3	115N07297	3 PM Peak	Weekday	AZ-347	Southbound	43.6	36.8	18.5	5.0	60	60	60	1.37	1.63	3.25	12.07				
3	115N07297	4 Evening	Weekday	AZ-347	Southbound	49.1	44.7	19.2	8.7	60	60	60	1.22	1.34	3.13	6.89				
3	115N07295	1 AM Peak	Weekday	AZ-347	Southbound	38.9	41.3	16.8	15.7	55	55	55	1.41	1.33	3.28	3.49	1.44	1.37	4.02	4.02
3	115N07295	2 Mid Day	Weekday	AZ-347	Southbound	39.6	41.5	16.8	16.8	55	55	55	1.39	1.32	3.28	3.28				
3	115N07295	3 PM Peak	Weekday	AZ-347	Southbound	39.1	40.1	13.7	13.7	55	55	55	1.41	1.37	4.02	4.02				
3	115N07295	4 Evening	Weekday	AZ-347	Southbound	38.3	40.2	14.9	13.7	55	55	55	1.44	1.37	3.69	4.02				
4	115N07298	1 AM Peak	Weekday	AZ-347	Southbound	62.8	57.3	50.8	31.7	58	58	58	1.00	1.01	1.14	1.83	1.00	1.05	1.23	2.17
4	115N07298	2 Mid Day	Weekday	AZ-347	Southbound	63.4	56.9	50.3	30.1	58	58	58	1.00	1.02	1.15	1.92				
4	115N07298	3 PM Peak	Weekday	AZ-347	Southbound	61.8	55.3	47.0	26.7	58	58	58	1.00	1.05	1.23	2.17				
4	115N07298	4 Evening	Weekday	AZ-347	Southbound	63.5	58.0	49.6	37.1	58	58	58	1.00	1.00	1.17	1.56				
4	115N07297	1 AM Peak	Weekday	AZ-347	Southbound	48.9	44.9	25.5	9.1	60	60	60	1.23	1.34	2.36	6.58	1.37	1.63	3.25	12.07
4	115N07297	2 Mid Day	Weekday	AZ-347	Southbound	46.6	40.1	19.3	5.6	60	60	60	1.29	1.50	3.12	10.73				

SR 347/SR 84 Corridor Profile Study Final Report

Segment	TMC	timeperiod	week_type	ROAD_NUMBE R	road_direction	cars_mean	trucks_mean	cars_P05	trucks_P05	Posted Speed limit	Assumed car free-flow speed	Assumed truck free-flow speed	cars_TTI	Trucks_TTI	cars_PTI	Trucks_PTI	Cars_PeakTTI	Trucks_PeakTTI	Cars_PeakPTI	Trucks_PeakPTI
4	115N07297	3 PM Peak	Weekday	AZ-347	Southbound	43.6	36.8	18.5	5.0	60	60	60	1.37	1.63	3.25	12.07				
4	115N07297	4 Evening	Weekday	AZ-347	Southbound	49.1	44.7	19.2	8.7	60	60	60	1.22	1.34	3.13	6.89				
5	115N07299	1 AM Peak	Weekday	AZ-347	Southbound	56.1	49.9	35.1	14.9	60	60	60	1.07	1.20	1.71	4.02	1.31	1.53	4.41	8.04
5	115N07299	2 Mid Day	Weekday	AZ-347	Southbound	56.9	49.1	33.5	13.7	60	60	60	1.06	1.22	1.79	4.39				
5	115N07299	3 PM Peak	Weekday	AZ-347	Southbound	45.9	39.1	13.6	7.5	60	60	60	1.31	1.53	4.41	8.04				
5	115N07299	4 Evening	Weekday	AZ-347	Southbound	56.4	50.0	21.7	14.9	60	60	60	1.06	1.20	2.76	4.02				
5	115N07298	1 AM Peak	Weekday	AZ-347	Southbound	62.8	57.3	50.8	31.7	59	59	59	1.00	1.03	1.16	1.86	1.00	1.07	1.26	2.21
5	115N07298	2 Mid Day	Weekday	AZ-347	Southbound	63.4	56.9	50.3	30.1	59	59	59	1.00	1.04	1.17	1.96				
5	115N07298	3 PM Peak	Weekday	AZ-347	Southbound	61.8	55.3	47.0	26.7	59	59	59	1.00	1.07	1.26	2.21				
5	115N07298	4 Evening	Weekday	AZ-347	Southbound	63.5	58.0	49.6	37.1	59	59	59	1.00	1.02	1.19	1.59				

<u>Closure Data</u>

				Total miles	of closures	Avg Occurrences/Mile/Year		
Segment	Length (miles)	# of closures	# F&I	EB/NB	SB/WB	EB/NB	SB/WB	
347/84-1	7	1	1	1.0	0.0	0.03	0.00	
347-2	9	10	4	4.0	6.0	0.09	0.13	
347-3	5	7	3	4.0	3.0	0.16	0.12	
347-4	8	14	7	9.5	6.0	0.24	0.15	
347-5	5	18	10	15.2	3.0	0.61	0.12	

						ITIS Categor	y Description					
	Clos	sures	Incidents/Accidents		Incidents/Crashes		Obstruct	ion Hazards	W	inds	Winter Storm Codes	
Segment	EB/NB	SB/WB	EB/NB	SB/WB	EB/NB	SB/WB	EB/NB	SB/WB	EB/NB	SB/WB	EB/NB	SB/WB
347/84-1	0	0	1	0	0	0	0	0	0	0	0	0
347-2	0	0	4	6	0	0	0	0	0	0	0	0
347-3	0	0	4	3	0	0	0	0	0	0	0	0
347-4	0	0	8	5	0	0	0	1	0	0	0	0
347-5	0	0	14	3	0	0	0	0	0	0	1	0

<u>HPMS Data</u>

SEGMENT	MP_FROM	MP_TO	WEIGHTED AVERAGE NB/EB AADT	WEIGHTED AVERAGE SB/WB AADT	WEIGHTED AVERAGE AADT	NB/EB AADT	SB/WB AADT	2015 AADT	K Factor	D-Factor	T-Factor
347/84-1	155	162	678	679	1358	721	702	1423	14	51	12
347-2	162	171	2474	2551	5025	2822	2805	5627	8	50	12
347-3	171	176	12368	12926	25294	12635	12650	25286	9	50	7
347-4	176	184	18117	18215	36332	19791	20335	40126	9	51	9
347-5	184	189	17737	17661	35398	18533	18273	36806	9	51	9

					Pos Dir	NegDir	Corrected Pos Dir	Corrected Neg Dir	2015			D-Factor	
SEGMENT	Loc ID	BMP	EMP	Length	AADT	AADT	AADT	AADT	AADT	K Factor	D-Factor	Adjusted	T-Factor
347/84-1	100899	155.13	160.88	5.75	545	521	545	521	1066	15	67	51	11
347784-1	101614	160.89	162.00	1.11	1630	1640	1630	1640	3270	8	62	50	15
	101614	162.00	165.34	3.34	1630	1640	1630	1640	3270	8	62	50	15
347-2	101615	165.34	168.51	3.17	1734	1674	1734	1674	3408	8	51	51	15
	101616	168.51	171.00	2.49	2903	6253	5806	5806	11612	9	55	50	6
	101617	171.50	171.99	0.49	6384	6400	6384	6400	12785	10	56	50	5
	102292	171.99	172.51	0.52	0	0	6900	6900	13800	9	59	50	6
	102293	172.51	173.16	0.65	8151	7962	8151	7962	16113	9	59	51	7
247.2	102294	173.16	173.46	0.30	11940	10869	11940	10869	22809	9	57	52	6
347-3	101618	173.46	174.00	0.54	13310	14183	15000	15000	30000	9	55	50	5
	101620	174.00	174.56	0.56	11340	16328	17000	17000	34000	8	61	50	5
	101621	174.56	175.65	1.09	18469	18761	18469	18761	37230	9	71	50	9
	101616	171.00	171.50	0.50	2903	6253	5806	5806	11612	9	55	50	6
	101622	175.65	176.00	0.35	19791	20335	19791	20335	40126	9	70	51	9
347-4	101622	176.00	184.00	8.00	19791	20335	19791	20335	40126	9	70	51	9
	101623	185.28	187.51	2.23	18706	7897	19958	19958	39916	8	57	50	9
347-5	101624	187.51	189.38	1.87	15972	14852	15972	14852	30824	9	69	52	9
	101622	184.00	185.28	1.28	19791	20335	19791	20335	40126	9	70	51	9

Bicycle Accommodation Data

Segment	BMP	EMP	Divided or Non	NB/EB Right Shoulder Width	SB/WB Right Shoulder Width	NB/EB Left Shoulder Width	SB/WB Left Shoulder Width	NB/EB Effective Length of Shoulder	SB/WB Effective Length of Shoulder	% Bicycle Accommodation
347/84-1	155.1	162	Undivided	5.6	5.1	N/A	N/A	6.9	6.9	100%
347-2	162	171	Divided	9.9	9.9	3.9	3.9	9.0	9.0	100%
347-3	171	176	Divided	5.7	3.4	1.0	2.1	2.9	1.4	43%
347-4	176	184	Divided	9.6	10.0	4.0	4.0	7.6	8.0	98%
347-5	184	189.38	Divided	9.1	9.1	3.9	5.7	5.3	5.2	98%

<u>AZTDM Data</u>

SEGMENT	Growth Rate	% Non- SOV
347/84-1	5.16%	19.9%
347-2	2.90%	20.2%
347-3	3.02%	19.1%
347-4	1.95%	9.4%
347-5	1.96%	9.3%

HERS Capacity Calculation Data

Segment	Capacity Environment Type	Facility Type	Terrain	Lane Width (Rounded, feet)	NB/EB Rt. Shoulder	SB/WB Rt. Shoulder	F _{Iw} or f _u s	NB/EB F _{Ic}	SB/WBFIc	Total Ramp Density	РНЕ	ET	f _{HV}	fw	fa	g/C	fg	f _{NP}	Nm	fp	NB/EB FFS	SB/WB FFS	NB/EB Peak-Hour Capacity	SB/WB Peak-Hour Capacity	Major Direction Peak- Hour Capacity	Daily Capacity
347/84-1	4	Rural	Level	12.00	5.59	5.12	0.0	N/A	N/A	N/A	0.88	1.9	0.905	N/A	0.43	N/A	1	0.70	N/A	N/A	63.57	63.57	N/A	N/A	1173.13	22,345
347-2	2	Rural	Level	12.00	9.86	9.86	0.0	0	0.4	N/A	0.88	1.5	0.942	0	0.22	N/A	N/A	N/A	N/A	N/A	59.78	59.38	3639	3625	N/A	69,309
347-3	3	Fringe Urban	Level	12.00	5.67	3.41	1.0	N/A	N/A	N/A	0.92	2	0.939	N/A	N/A	0.55	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1805.36	34,388
347-4	3	Rural	Level	12.00	9.63	10.00	1.0	N/A	N/A	N/A	0.92	2	0.920	N/A	N/A	0.55	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1768.91	33,693
347-5	3	Rural	Level	12.00	9.14	9.10	1.0	N/A	N/A	N/A	0.92	2	0.918	N/A	N/A	0.55	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1765.19	33,623

Safety Performance Area Data

Segment	Segment Similar Operating Environment Type	Segment Length (miles)	NB/EB Fatal Crashes 2011-2015	SB/WB Fatal Crashes 2011-2015	NB/EB Incapacitating Injury Crashes	SB/WB Incapacitating Injury Crashes	Fatal + Incapacitating Injury Crashes Involving SHSP Top 5 Emphasis Areas Behaviors
84/347-1	2 or 3 Lane Undivided Highway	6.87	0	0	0	3	2
347-2	2 or 3 or 4 Lane Divided Highway	9	1	1	0	3	3
347-3	2 or 3 or 4 Lane Divided Highway	5	0	0	1	1	1
347-4	2 or 3 or 4 Lane Divided Highway	8	1	2	2	5	8
347-5	2 or 3 or 4 Lane Divided Highway	5.38	1	3	5	12	10

Segment	Segment Similar Operating Environment Type	Fatal + Incapacitating Injury Crashes Involving Trucks	Fatal + Incapacitating Injury Crashes Involving Motorcycles	Fatal + Incapacitating Injury Crashes Involving Non- Motorized Travelers	Weighted 5-Year (2011- 2015) Average NB/EB AADT	Weighted 5-Year (2011-2015) Average SB/WB AADT	Weighted 5- Year (2010- 2014) Average Total AADT
84/347-1	2 or 3 Lane Undivided Highway	0	0	0	678	679	1358
347-2	2 or 3 or 4 Lane Divided Highway	0	0	1	2474	2551	5025
347-3	2 or 3 or 4 Lane Divided Highway	0	0	0	12368	12926	25294
347-4	2 or 3 or 4 Lane Divided Highway	0	0	0	18117	18215	36332
347-5	2 or 3 or 4 Lane Divided Highway	2	1	1	17737	17661	35398

<u>HPMS Data</u>

	WEIGHTED AVERAGES for Safety						2015		2014			2013			2012		2011			
SEGMENT	MP_FROM	MP_TO	WEIGHTED AVERAGE NB/EB AADT	WEIGHTED AVERAGE SB/WB AADT	WEIGHTED AVERAGE AADT	NB/EB AADT	SB/WB AADT	2015 AADT	NB/EB AADT	SB/WB AADT	2014 AADT	NB/EB AADT	SB/WB AADT	2013 AADT	NB/EB AADT	SB/WB AADT	2012 AADT	NB/EB AADT	SB/WB AADT	2011 AADT
347/84-1	155	162	678	679	1358	721	702	1423	688	667	1357	598	614	1212	636	643	1279	748	771	1520
347-2	162	171	2474	2551	5025	2822	2805	5627	2894	2901	5796	3015	3390	6404	1539	1559	3099	2099	2099	4198
347-3	171	176	12368	12926	25294	12635	12650	25286	13349	13565	26914	13699	14455	28154	13172	13200	26372	8984	10762	19746
347-4	176	184	18117	18215	36332	19791	20335	40126	16481	20806	37287	18839	14372	33211	16609	16609	33218	18866	18952	37816
347-5	184	189	17737	17661	35398	18533	18273	36806	17073	17566	34639	17705	16834	34539	17580	17719	35300	17796	17913	35708

Freight Performance Area Data

				Total minut	es of closures	Avg Mins/Mile/Year		
Segment	Length (miles)	# of closures	# F&I	EB/NB	SB/WB	EB/NB	SB/WB	
1	7	1	1	222.0	0.0	6.34	0.00	
2	9	10	4	600.0	1092.0	13.33	24.27	
3	5	7	3	729.0	235.0	29.16	9.40	
4	8	14	7	1623.5	810.0	40.59	20.25	
5	5	18	10	2670.0	274.0	106.80	10.96	

						ITIS Categor	y Description					
	Closures		Incidents/Accidents		Incident	Incidents/Crashes		Obstruction Hazards		inds	Winter Storm Codes	
Segment	EB/NB	SB/WB	EB/NB	SB/WB	EB/NB	SB/WB	EB/NB	SB/WB	EB/NB	SB/WB	EB/NB	SB/WB
1	0	0	1	0	0	0	0	0	0	0	0	0
2	0	0	4	6	0	0	0	0	0	0	0	0
3	0	0	4	3	0	0	0	0	0	0	0	0
4	0	0	8	5	0	0	0	1	0	0	0	0
5	0	0	14	3	0	0	0	0	0	0	1	0

See the **Mobility Performance Area Data** section for other Freight Performance Area related data.

Appendix D: Needs Analysis Contributing Factors and Scores

Pavement Needs Assessment Methodology (Steps 1-3)

This section documents the approach for conducting the first three steps of a 5-step needs assessment process for the Pavement Performance Area. After completion of Step 3 for all performance areas (Pavement, Bridge, Mobility, Safety, and Freight), Step 4 will review each corridor segment to quantify a total level of need that combines all performance areas. Corridor needs are then identified in Step 5 of the process. The 5-step process is listed below:

- Step 1: Initial Needs
- Step 2: Final Needs •
- Step 3: Contributing Factors
- Step 4: Segment Review
- Step 5: Corridor Needs

Step 1: Initial Needs

The input required to populate the Step 1 template includes transferring the existing performance score for each segment to the appropriate "Performance Score" columns. This includes the primary and secondary measures for Pavement. As each performance score is input into the template, the Initial Need will populate based on the weighted scoring system for each measure.

The Level of Need for each performance measure has levels of "None" (score = 0), "Low" (score = 1), "Medium" (score = 2), and "High" (score = 3). The assignment of these levels to individual performance measures for segments is determined by the table entitled "Needs Assessment Scales" within the Step 1 template.

To develop an aggregate Initial Need for each segment, the primary and secondary measures are combined by summing the weighted scored, with the primary measure having a weight of 1.0 while each secondary measure has a weight of 0.2 (0.1 each direction if directional). The Initial Need for each segment (combining the primary and secondary measures) has levels of "None" (score < 0.01), "Low" (score > 0.01 and < 1.5), "Medium" (score > 1.5 and < 2.5), and "High" (score > 2.5).

The steps include:

Step 1.1

Enter the appropriate segment information into the columns titled "Segment", "Segment Length", "Segment Mileposts" and "Facility Type".

Step 1.2

Populate the Step 1 template with the existing (baseline) performance scores for all primary and secondary performance measures from Existing Performance Analysis into the appropriate "Performance Score" columns. Copy the performance score for each segment to the appropriate "Performance Score" column. Paste only the "values" and do not overwrite the formatting.

Step 1.3

Indicate if Pavement is an Emphasis Area by selecting "Yes" or "No" in the row immediately below the segment information.

Step 1.4

Confirm that the Step 1 template is generating the appropriate "Level of Need" for each primary and secondary measure by reviewing the relationship of baseline performance score to level of need.

Step 2: Final Needs

The Initial Need will be carried over to Step 2. The steps required to complete Step 2 are as follows:

Step 2.1

Confirm that the template has properly populated the segment information and the initial needs from the Step 1 template to the "Initial Need" column of the Step 2 template.

Step 2.2

Note in the "Hot Spots" column any pavement failure hot spots identified as part of the baseline corridor performance. For each entry, include the milepost limits of the hot spot. Hot spots are identified in the Pavement Index spreadsheet by the red cells in the columns titled "% Pavement Failure". These locations are based on the following criteria:

Interstates: IRI > 105 or Cracking > 15

Non-Interstates: IRI > 142 or Cracking > 15

Every segment that has a % Pavement Failure greater than 0% will have at least one hot spot. Hot spot locations should be described as extending over consecutive miles. For example, if there is a pavement failure location that extends 5 consecutive miles, it should be identified as one hot spot, not 5 separate hot spots.

Step 2.3

Identify recently completed or under construction paving projects in the "Previous Projects" column. Include only projects that were completed after the pavement condition data period (check dates in pavement condition data provided by ADOT) that would supersede the results of the performance system.

Step 2.5

Update the "Final Need" column using the following criteria:

• If "None" but have a hot spot (or hot spots), the Final Need = Low, and note the reason for the change in the "Comments" column (column H).

• If a recent project has superseded the performance rating data, change the Final Need to "None" and note the reason for the change in the "Comments" column.

Example Scales for Level of Need

Performance Thresholds	Initial Need	Description
3.75	None	(>3.57)
	Low	Middle 1/3rd of Fair Perf. (3.38 - 3.57)
3.2	Medium	Lower 1/3rd of Fair and top 1/3rd of Poor Performance (3.02-3.38)
	High	Lower 2/3rd of Poor Performance (<3.02)

Need Scale for Interstates

Measure	None>=	Low >=	> Mec	High <=	
Pavement Index (corridor non-emphasis area)	3.57	3.38	3.38	3.02	3.02
Pavement Index (corridor emphasis area)	3.93	3.57	3.57	3.20	3.20
Pavement Index (segments)	3.57	3.38	3.38	3.02	3.02
Directional PSR	3.57	3.38	3.38	3.02	3.02
%Pavement Failure	10%	15%	15%	25%	25%

Need Scale for Highways (Non-Interstates)

Measure	None>=	Low >=	> Mec	High <=	
Pavement Index (corridor non-emphasis area)	3.30	3.10	3.10	2.70	2.70
Pavement Index (corridor emphasis area)	3.70	3.30	3.30	2.90	2.90
Pavement Index (segments)	3.30	3.10	3.10	2.70	2.70
Directional PSR	3.30	3.10	3.10	2.70	2.70
%Pavement Failure	10%	15%	15%	25%	25%

Step 2.6

Note any programmed projects that could have the potential to mitigate pavement needs in in the "Comments" column. Programmed projects are provided as information and do not impact the need rating. The program information can be found in ADOT's 5-year construction program. If there are other comments relevant to the needs analysis (such as information from previous reports), they can be entered in the "Comments" column. However, only include information

related to needs that have been identified through this process. Do not add or create needs from other sources.

Step 3: Contributing Factors

The Final Need ratings from Step 2 will populate into the Step 3 tab. The steps to complete Step 3 include:

Step 3.1

Input the level of historical investment for each segment. This will be determined from the numeric score from the Pavement History Table based on the following thresholds:

- Low = < 4.60
- Medium = 4.60 6.60
- High = > 6.60

If the PeCoS data shows a high level of maintenance investment, increase the historical investment rating by one level.

Step 3.2

Note the milepost ranges of pavement failure hot spots into the column titled "Contributing Factors and Comments."

Step 3.3

Note any other information that may be contributing to the deficiency, or supplemental information, in the "Contributing Factors and Comments" column. This could come from discussions with ADOT District staff, ADOT Materials/Pavement Group, previous reports, or the historical investment data.

Step 3.4

Include any programmed projects from ADOT's 5-year construction program in the "Contributing Factors and Comments" column.

Bridge Needs Assessment Methodology (Steps 1-3)

This section documents the approach for conducting the first three steps of a 5-step needs assessment process for the Bridge Performance Area. After completion of Step 3 for all performance areas (Pavement, Bridge, Mobility, Safety, and Freight), Step 4 will review each corridor segment to quantify a total level of need that combines all performance areas. Corridor needs are then identified in Step 5 of the process. The 5-step process is listed below:

- Step 1: Initial Needs
- Step 2: Final Needs •
- Step 3: Contributing Factors
- Step 4: Segment Review
- Step 5: Corridor Needs

Step 1: Initial Needs

The input required to populate the Step 1 template includes transferring the existing performance score for each segment to the appropriate "Performance Score" columns. This includes the primary and secondary measures for Bridge. As each performance score is input into the template, the Initial Need will populate based on the weighted scoring system for each measure.

The Level of Need for each performance measure has levels of "None" (score = 0), "Low" (score = 1), "Medium" (score = 2), and "High" (score = 3). The assignment of these levels to individual performance measures for segments is determined by the table entitled "Needs Assessment Scales" within the Step 1 template.

To develop an aggregated Initial Need for each segment, the primary and secondary measures are combined by summing the weighted scored, with the primary measure having a weight of 1.0 while each secondary measure has a weight of 0.2 (0.1 each direction if directional). The Initial level of need for each segment (combining the primary and secondary measures) has levels of "None" (score < 0.01), "Low" (score > 0.01 and < 1.5), "Medium" (score > 1.5 and < 2.5), and "High" (score > 2.5).

The steps include:

Step 1.1

Enter the appropriate segment information into the columns titled "Segment", "Segment Length", "Segment Mileposts" and "Number of Bridges."

Step 1.2

Populate the Step 1 template with the existing (baseline) performance scores for all primary and secondary performance measures from Existing Performance Analysis into the appropriate "Performance Score" columns. Copy the performance score for each segment to the appropriate "Performance Score" column. Paste only the "values" and do not overwrite the formatting.

Step 1.3

Indicate if Bridge is an Emphasis Area by selecting "Yes" or "No" in the row immediately below the segment information.

Step 1.4

Confirm that the Step 1 template is generating the appropriate "Level of Need" for each primary and secondary measure by reviewing the relationship of baseline performance score to level of need.

Step 2: Final Needs

The Initial Need will be carried over to Step 2. The steps required to complete Step 2 are as follows:

Step 2.1

Confirm that the template has properly populated the initial needs from the Step 1 template to the "Initial Need" column of the Step 2 template.

Step 2.2

Note in the column titled "Hot Spots" any bridge hot spots identified as part of the baseline corridor performance. For each entry, note the specific location. Hot spots are identified as having any bridge rating of 4 or less, or multiple ratings of 5 in the deck, substructure, or superstructure ratings.

Step 2.3

Identify recently completed or under construction bridge projects in the "Previous Projects" column. Include only projects that were completed after the bridge condition data period (check dates in bridge condition data provided by ADOT) that would supersede the results of the performance system.

Step 2.4

Update the Final Need on each segment based on the following criteria:

- If the Initial Need is "None" and there is at least one hot spot located on the segment, change the Final Need to "Low".
- If a recent project has superseded the performance rating data, the performance data should be adjusted to increase the specific ratings and the resulting need should be reduced to account for the project.
- Note the reason for any change in the "Comments" column.

Step 2.5

Historical bridge rating data was tabulated and graphed to find any bridges that had fluctuations in the ratings. Note in the "Historical Review" column any bridge that was identified as having a potential historical rating concern based on the following criteria:

- Ratings increase or decrease (bar chart) more than 2 times
- Sufficiency rating drops more than 20 points

This is for information only and does not affect the level of need.

Step 2.6

Note the number of functionally obsolete bridges in each segment in the column titled "# Functionally Obsolete Bridges". This is for information only and does not affect the level of need.

Step 2.7

Identify each bridge "of concern" in the "Comments" column. Note any programmed projects that could have the potential to mitigate bridge needs. Programmed projects are provided as information and do not impact the need rating. The program information can be found in ADOT's 5-year construction program. If there are other comments relevant to the needs analysis (such as information from previous reports), they can be entered in the "Comments" column. However, only include information related to needs that have been identified through this process. Do not add or create needs from other sources.

Example Scales for Level of Need

Bridge Index Performance Thresholds	Lev	el of Need	Description
	Good		
	Good	None	All of Good Performance and upper 1/3 rd of
6.5	Good		Fair Performance
0.5	Fair		
	Fair	Low	Middle 1/3 rd of Fair Performance
5.0	Fair	Medium	Lower 1/3 rd of Fair and top 1/3 rd of Poor
5.0	Poor	weaturn	Performance
	Poor	High	Lower 2/3 rd of Poor Performance
	Poor	nigh	Lower 2/5 to roor renormance

Need Scale

Measure	None>=	Low >=	> Med	lium<	High <=
Bridge Index (corridor non-emphasis area)	6.0	5.5	5.5	4.5	4.5
Bridge Index (corridor emphasis area)	7.0	6.0	6.0	5.0	5.0
Bridge Index (segments)	6.0	5.5	5.5	4.5	4.5
Bridge Sufficiency	70	60	60	40	40
Bridge Rating	6.0	5.0	4.0	4.0	3.0
%Functionally Obsolete Bridges	21.0%	31.0%	31.0%	49.0%	49.0%

Step 3: Contributing Factors

The Final Need ratings from Step 2 will populate into the Step 3 tab. The steps to compete Step 3 include:

Step 3.1

Input the bridge name, structure number, and milepost information for each bridge "of concern" resulting from Step 2.

Step 3.2

For bridges that have a current rating of 5 or less, enter the specific rating, or state "No current ratings less than 6".

Step 3.3

For bridges that were identified for a historical review (step 2.5), state "Could have a repetitive investment issue". If a bridge was not identified for a historical review, state "This structure was not identified in historical review".

Step 3.4

Input any programmed projects from ADOT's 5-year construction program. Note any other information that may be contributing to the deficiency, or supplemental information. This could come from discussions with ADOT District staff, ADOT Bridge Group, or previous reports.

Mobility Needs Assessment Methodology (Steps 1-3)

This section documents the approach for conducting the first three steps of a 5-step needs assessment process for the Mobility Performance Area. After completion of Step 3 for all performance areas (Pavement, Bridge, Mobility, Safety, and Freight), Step 4 will review each corridor segment to quantify a total level of need that combines all performance areas. Corridor needs are then identified in Step 5 of the process. The 5-step process is listed below:

- Step 1: Initial Needs
- Step 2: Refined Needs •
- Step 3: Contributing Factors
- Step 4: Segment Review
- Step 5: Corridor Needs

Step 1: Initial Needs

The input required to populate the Step 1 template includes transferring the existing performance score for each segment to the appropriate "Performance Score" columns from Existing Performance Analysis. This includes the primary and secondary measures for Mobility. As each performance score is input into the template, the Initial Need will populate based on the weighted scoring system for each measure.

The Level of Need for each performance measure has levels of "None" (score = 0), "Low" (score = 1), "Medium" (score = 2), and "High" (score = 3). The assignment of these levels to individual performance measures for segments is determined by the table entitled "Needs Assessment Scales" in the Step 1 tab.

To develop an aggregated Initial Need for each segment, the primary and secondary measures are combined by summing the weighted scores, with the primary measure having a weight of 1.0 while each secondary measure has a weight of 0.2 (0.1 each direction if directional). The Initial Need for each segment (combining the primary and secondary measures) has levels of "None" (score < 0.01), "Low" (score > 0.01 and < 1.5), "Medium" (score > 1.5 and < 2.5), and "High" (score > 2.5).

The steps include:

Step 1.1

Input the accurate number of segments for your corridor in the column titled 'Segment' and the appropriate segment milepost limits and segment lengths in adjacent columns.

Step 1.2

Select the appropriate 'Environment Type' and 'Facility Operation Type' from the drop down menus as defined in Existing Performance Analysis.

Step 1.3

Select 'Yes' or 'No' form the drop down list to not if the Mobility Performance Area is an Emphasis Area for your corridor.

Step 1.4

Populate the Step 1 template with the existing (baseline) performance scores for all primary and secondary performance measures from Existing Performance Analysis. Copy the performance score for each segment to the appropriate "Performance Score" column.

Step 1.5

Confirm that the Step 1 template is generating the appropriate "Level of Need" for each primary and secondary measure by reviewing the relationship of baseline performance score to level of need.

Step 2: Final Needs

The Initial Need will be carried over to Step 2 The steps required to complete Step 2 are as follows:

Step 2.1

Confirm that the template has properly populated the initial deficiencies from the Step 1 template to the Step 2 template.

Step 2.2

Identify recently completed or under construction projects that would be considered relevant to mobility performance. Include only projects that were constructed after 2015 for which the 2015 HPMS data used for traffic volumes would not include. Any completed or under construction roadway project after 2015 that has the potential to mitigate a mobility issue on a corridor segment should be listed in the template. Such projects should include the construction of new travel lanes or speed limit changes on the main corridor only. Do not include projects involving frontage roads or crossings as they would not impact the corridor level performance.

Step 2.3

Update the Final Need using the following criteria:

- If a recent project has superseded the performance rating data and it is certain the project addressed the deficiency, change the need rating to "None".
- If a recent project has superseded the performance rating data but it is uncertain that a as a comment.

project addressed the need, maintain the current deficiency rating and note the uncertainty

Step 2.4

Note any programmed or planned projects that have the potential to mitigate any mobility needy on the segment. Programmed and Planned projects are provided as information and do not impact the deficiency rating. Future projects will be reviewed in the development of solution sets for identified needs and deficiencies. The source of future projects can be found in ADOT's 5-year construction program or other planning documents. Other comments relevant to the needs analysis can be entered.

Example Scales for Level of Need

Performance Thresholds	Initial Need		Description
0.71		None	(<0.77)
		Low	Middle 1/3rd of Fair Perf. (0.77 - 0.83)
0.89		Medium	Lower 1/3rd of Fair and top 1/3rd of Poor Performance (0.83-0.95)
		High	Lower 2/3rd of Poor Performance (>0.95)

Needs Scale

Measure		None<=	Low >=	> Mec	dium<	High <=					
Mobility Index (Corridor	Emphasis Area)	Weighted calcul	Weighted calculation for the segment totals in corridor (urban vs. rural)								
Mobility Index (Corridor Area)	Non-Emphasis	Weighted calcul	Weighted calculation for the segment totals in corridor (urban vs. rural)								
Mobility Index	Urban	0.77	0.83	0.83	0.95	0.95					
(Segment)	Rural	0.63	0.69	0.69	0.83	0.83					
Future Daily V/C	Urban	0.77	0.83	0.83	0.95	0.95					
	Rural	0.63	0.69	0.69	0.83	0.83					
Existing Peak hour V/C	Urban	0.77	0.83	0.83	0.95	0.95					
Existing Peak nour V/C	Rural	0.63	0.69	0.69	0.83	0.83					
Closure Extent		0.35	0.49	0.49	0.75	0.75					
DirectionalTTI	Uninterrupted	1.21	1.27	1.27	1.39	1.39					
Directional I II	Interrupted	1.53	1.77	1.77	2.23	2.23					
Directional PTI	Uninterrupted	1.37	1.43	1.43	1.57	1.57					
Directional PT	Interrupted	4.00	5.00	5.00	7.00	7.00					
Bicycle Accommodation	1	80%	70%	70%	50%	50%					

Step 3: Contributing Factors

The Final Need ratings from Step 2 will populate into the Step 3 tab. The steps to compete Step 3 include:

Step 3.1

Input data from Mobility Index worksheet and corridor observations in appropriate columns for Roadway Variables.

Step 3.2

Input traffic variable data in appropriate columns as indicated, Buffer Index scores will auto populate.

Step 3.3

Input relevant mobility related infrastructure located within each segment as appropriate

Step 3.4

Input the Closure Extents that have occurred along the study corridor. Road closure information can be detailed out by the reason for the closure as documented in Highway Condition Reporting System (HCRS) data analyzed as part of the baseline corridor performance. Closure reasons include incident/accidents, winter storms, obstruction hazards, and undefined closures. Statewide average percentages for the various closure reasons have been calculated for 2010-2015 on ADOT's designated strategic corridors. Compare these statewide average percentages to the corridor percentages for the various closure reasons to identify higher than average percentages of one or more closure reasons on any given segment. Input the closures as follows and use red text to indicate that the segment percentage exceeds statewide averages:

- Total Number of Closures
- % Incidents/Accidents
- % Obstructions/Hazards
- % Weather Related

Step 3.5

List the non-actionable conditions that are present within each segment by milepost if possible. Non-Actionable conditions are conditions that exist within the environment of each segment that cannot be improved through an engineered solution. For example, the border patrol check point in Segment 3 of I-19 is a non-actionable condition.

Step 3.6

Considering all information input, identify and list the contributing factors to the Final Need score.

Safety Needs Assessment Methodology (Steps 1-3)

This section documents the approach for conducting the first three steps of a 5-step needs assessment process for the Safety Performance Area. After completion of Step 3 for all performance areas (Pavement, Bridge, Mobility, Safety, and Freight), Step 4 will review each corridor segment to quantify a total level of need that combines all performance areas. Corridor needs are then identified in Step 5 of the process. The 5-step process is listed below:

- Step 1: Initial Needs
- Step 2: Final Needs •
- Step 3: Contributing Factors
- Step 4: Segment Review
- Step 5: Corridor Needs

Step 1: Initial Needs

The input required to populate the Step 1 template includes transferring the corridor characteristics and existing performance score for each segment to the appropriate "Performance Score" columns. This includes the primary and secondary measures for safety. As each performance score is input into the template, the Level of Need will populate based on the weighted scoring system for each measure.

The Level of Need for each performance measure has levels of "None" (score = 0), "Low" (score = 1), "Medium" (score = 2), and "High" (score = 3). The assignment of these levels to individual performance measures for segments is determined by the table entitled "Needs Scale" within the Step 1 template.

To develop an aggregated Initial Need for each segment, the primary and secondary measures are combined by summing the weighted scored, with the primary measure having a weight of 1.0 while each secondary measure has a weight of 0.2 (0.1 each direction if directional). The Initial Need for each segment (combining the primary and secondary measures) has levels of "None" (score < 0.01), "Low" (score > 0.01 and < 1.5), "Medium" (score > 1.5 and < 2.5), and "High" (score > 2.5).

The steps include:

Step 1.1

Populate the Step 1 template with the corridor characteristics information. This includes segment operating environments and segment length. Also specify if the safety performance area is an emphasis area as determined in Goals and Objectives. The "Level of Need" is dependent on the input of the operating environment and "Emphasis Area" as the thresholds dynamically update accordingly.

Input the existing (baseline) performance scores for all primary and secondary performance measures from Existing Performance Analysis. Copy the performance score (paste values only)

for each segment to the appropriate "Performance Score" column and conditional formatting should color each cell green, yellow, or red based on the corresponding performance thresholds.

Step 1.2

The thresholds for the corridor safety index are based on the segments' operating environments. To ensure that the correct corridor safety index threshold is applied, input the unique segment operating environments that exist with the corridor. Once the input is complete, the average of the Good/Fair and Fair/Poor thresholds for each of the operating environments is calculated and the "Level of Need" thresholds will be derived and applied to the main Step 1 Table.

Step 1.3

Confirm that the following criteria for "Insufficient Data" have been applied and that the resulting Level of Need has been shown as "N/A" where applicable.

- Crash frequency for a segment is less than 5 crashes over the 5-year crash analysis period.
- The change in +/- 1 crash results in the change of need level of 2 levels (i.e., changes from Good to Poor or changes from Poor to Good).
- injury crash frequency divided by the number of corridor segments) is less than 2 per segment over the 5-year crash analysis period.

Step 1.4

Confirm that the Step 1 template is generating the appropriate "Level of Need" for each primary and secondary measure by reviewing the relationship of baseline performance score to level of need.

Step 2: Final Needs

The Initial Need will be carried over to Step 2. The steps required to complete Step 2 are as follows:

Step 2.1

Confirm that the template has properly populated the initial needs from the Step 1 template to the Step 2 template.

Step 2.2

Using the crash concentration (hot spot) map developed as part of the baseline corridor performance, note the direction of travel and approximate milepost limits of each hot spot.

The average segment crash frequency for the overall corridor (total fatal plus incapacitating

Step 2.3

Identify recently completed or under construction projects that would be considered relevant to safety performance. Include only projects that were not taken into account during the crash data analysis period (2011 - 2015). Any completed or under construction roadway project after 2015 that has the potential to mitigate a safety issue on a corridor segment should be listed in the template. Sources of recent or current project activity can include ADOT MPD staff, ADOT public notices, and ADOT District staff.

Step 2.4

Update the Final Need based on the following criteria:

• If there is a crash hot spot concentration on a "None" segment, upgrade the need rating to "Low."

Step 2.5

Note any programmed projects that could have the potential to mitigate any safety need on the segment. Programmed projects are provided as information and do not impact the need rating. Programmed projects will be reviewed in the development of solution sets for identified needs. The source of the programming information can be found in ADOT's 5-year construction program. Any other relevant issues identified in previous reports should also be reported.

Needs Scale Measure		None <=	Low <=	< Mo	dium >	High>=	Good/Enir		
Corridor Safety Index (Em	nhasis Aroa)		-	Weighted a verage based on operating environment type			Good/Fair Threshold	Fair/Poor Threshold	
Corridor Safety Index (Em	•			erage based on operating			-		
	2 or 3 Lane Undivided Highway	0.98	1.02	1.02	1.10	1.10	0.94	1.06	
	2 or 3 or 4 Lane Divided Highway	0.98	1.02	1.02	1.10	1.38	0.94	1.00	
F	4 or 5 Lane Undivided Highway	0.93	1.07	1.07	1.38	1.33	0.8	1.2	
Cofety Index and	6 Lane Highway	0.85	1.14	1.00	1.33	1.55	0.56	1.2	
Safety Index and		0.91	1.14	1.14			0.73	1.44	
Directional Safety	Rural 4 Lane Freeway with Daily Volume < 25,000 Rural 4 Lane Freeway with Daily Volume > 25,000	0.89	1.09	1.09	1.45 1.53	<u>1.45</u> 1.53	0.73	1.27	
Index (Segment)			1.1	1.1					
	Urban 4 Lane Freeway	0.93			1.35	1.35	0.79	1.21	
	Urban or Rural 6 Lane Freeway	0.94	1.06	1.06	1.3	1.3	0.82	1.18	
	Urban > 6 Lane Freeway	0.93	1.06	1.06	1.33	1.33	0.8	1.2	
_	2 or 3 Lane Undivided Highway	53%	55%	55%	59%	59%	51%	57%	
	2 or 3 or 4 Lane Divided Highway	47%	50%	50%	57%	57%	44%	54%	
% of Fatal + Incap.	4 or 5 Lane Undivided Highway	45%	48%	48%	54%	54%	42%	51%	
Injury Crashes	6 Lane Highway	39%	43%	43%	50%	50%	35%	46%	
Involving SHSP Top 5	Rural 4 Lane Freeway with Daily Volume < 25,000	46%	49%	49%	56%	56%	43%	53%	
Emphasis Areas	Rural 4 Lane Freeway with Daily Volume > 25,000	46%	51%	51%	62%	62%	41%	57%	
Behaviors	Urban 4 Lane Freeway	52%	55%	55%	62%	62%	49%	59%	
	Urban or Rural 6 Lane Freeway	42%	50%	50%	65%	65%	34%	57%	
	Urban > 6 Lane Freeway	47%	51%	51%	59%	59%	43%	55%	
	2 or 3 Lane Undivided Highway	6%	7%	7%	8%	8%	5%	7%	
	2 or 3 or 4 Lane Divided Highway	5%	6%	6%	8%	8%	4%	7%	
	4 or 5 Lane Undivided Highway	7%	8%	8%	11%	11%	6%	10%	
% of Fatal + Incap.	6 La ne Highway	3%	6%	6%	12%	12%	0%	9%	
Injury Crashes	Rural 4 Lane Freeway with Daily Volume < 25,000	14%	15%	15%	18%	18%	13%	17%	
Involving Trucks	Rural 4 Lane Freeway with Daily Volume > 25,000	9%	11%	11%	15%	15%	7%	13%	
	Urban 4 Lane Freeway	8%	9%	9%	12%	12%	7%	11%	
	Urban or Rural 6 Lane Freeway	8%	10%	10%	13%	13%	6%	11%	
	Urban > 6 Lane Freeway	4%	5%	5%	7%	7%	3%	6%	
	2 or 3 Lane Undivided Highway	22%	25%	25%	30%	30%	19%	27%	
	2 or 3 or 4 Lane Divided Highway	19%	22%	22%	29%	29%	16%	26%	
% of Fatal +	4 or 5 Lane Undivided Highway	7%	8%	8%	10%	10%	6%	9%	
Incapacitating Injury	6 La ne Highway	7%	14%	14%	27%	27%	0%	20%	
Crashes Involving	Rural 4 Lane Freeway with Daily Volume < 25,000	6%	7%	7%	9%	9%	5%	8%	
Motorcycles —	Rural 4 Lane Freeway with Daily Volume > 25,000	11%	14%	14%	20%	20%	8%	17%	
	Urban 4 Lane Freeway	10%	11%	11%	13%	13%	9%	12%	
	Urban or Rural 6 Lane Freeway	9%	11%	11%	15%	15%	7%	13%	
	Urban > 6 Lane Freeway	15%	17%	17%	22%	22%	13%	20%	
	2 or 3 Lane Undivided Highway	3%	4%	4%	5%	5%	2%	4%	
	2 or 3 or 4 Lane Divided Highway	3%	4%	4%	5%	5%	2%	4%	
% of Fatal _	4 or 5 Lane Undivided Highway	6%	7%	7%	9%	9%	5%	8%	
Incapacitating Injury Crashes Involving	6 Lane Highway	11%	14%	14%	20%	20%	8%	17%	
	Rural 4 Lane Freeway with Daily Volume < 25,000	2%	2%	2%	3%	3%	1.7%	2.5%	
Non-Motorized	Rural 4 Lane Freeway with Daily Volume > 25,000	0%	0%	0%	0%	0%	0%	0%	
Travelers	Urban 4 Lane Freeway	7%	9%	9%	12%	12%	5%	10%	
Γ	Urban or Rural 6 Lane Freeway	3%	5%	5%	9%	9%	1%	7%	
	Urban > 6 Lane Freeway	1%	1%	1%	2%	2%	0.5%	1.5%	

Step 3: Contributing Factors

The Final Need ratings from Step 2 will populate into the Step 3 tab.

Table 3 - Step 3 Template

A separate Crash Summary Sheet file contains summaries for 8 crash attributes for the entire corridor, for each corridor segment, and for statewide roadways with similar operating environments (the database of crashes on roadways with similar operating environments was developed in Existing Performance Analysis (the baseline corridor performance)). The crash attribute summaries are consistent with the annual ADOT Publication, Crash Facts. The 8 crash attribute summaries consist of the following:

- First Harmful Event (FHET)
- Crash Type (CT) •
- Violation or Behavior (VB)
- Lighting Condition (LC)
- Roadway Surface Type (RST)
- First Unit Event (FUE)
- Driver Physical Condition (Impairment) •
- Safety Device Usage (Safety Device)

Non-colored tabs in this spreadsheet auto-populate with filtered crash attributes. Each tab is described below:

- Step 3 Summary This tab contains the filtered summary of crashes that exceed statewide thresholds for crashes on roadways with similar operating environments. Data in this tab are copied into the Step 3 template.
- **Statewide** This tab contains a summary of statewide crashes from roadways with similar operating environments filtered by the 8 crash type summaries listed above. The crash type summaries calculate statewide crash thresholds (% total for fatal plus incapacitating crashes). The crash thresholds were developed to provide a statewide expected proportion of crash attributes against which the corridor segments' crash attributes can be compared. The crash thresholds were developed using the Probability of Specific Crash Types Exceeding a Threshold Proportion as shown in the Highway Safety Manual, Volume 1 (2010). The thresholds are automatically calculated within the spreadsheet. The threshold proportion was calculated as follows:

$$p *_{i} = \frac{\sum N_{Observed,i}}{\sum N_{Observed,i(total)}}$$

Where:

 $p *_i$

= Threshold proportion

 $\sum N_{Observed,i}$

 $\sum N_{Observed.i(total)}$

A minimum crash sample size of 5 crashes over the 5-year crash analysis period is of exceeding the crash threshold was not calculated to simplify the process.

- Corridor A summary of corridor-wide crashes filtered by the 8 crash attribute summaries listed above.
- Segment FHET A segment-by-segment summary of crashes filtered by first harmful event attributes.
- Segment CT A segment-by-segment summary of crashes filtered by crash type attributes.
- Segment VB A segment-by-segment summary of crashes filtered by violation or behavior attributes.
- Segment LC A segment-by-segment summary of crashes filtered by lighting condition attributes.
- **Segment RST** A segment-by-segment summary of crashes filtered by roadway surface attributes.
- Segment FUE A segment-by-segment summary of crashes filtered by first unit event attributes.
- Segment Impairment A segment-by-segment summary of crashes filtered by driver physical condition attributes related to impairment.
- Segment Safety Device A segment-by-segment summary of crashes filtered by safety device usage attributes.

The steps to compete Step 3 include:

Step 3.1

Using the Crash Summary Sheet.xlsx, go to the "Step 3 Summary" tab. Input the operating environments for each segment in the table.

Step 3.2

Filter data from the ADOT database for the "CORRIDOR DATA" tab by inserting the following data in the appropriate columns that are highlighted in gray for the "INPUT CORRIDOR DATA" tab:

- Incident ID
- Incident Crossing Feature (MP)
- location of the crash)
- some reason it isn't, it will need to be manually assigned)

- = Sum of observed target crash frequency within the population
 - = Sum of total observed crash frequency within the population
- required for a threshold exceedance to be displayed in the Step 3 template. The probability

Segment Number (Non-native ADOT data – must be manually assigned based on the

• Operating Environment (Non-native ADOT data – should already be assigned but if for

- Incident Injury Severity
- Incident First Harmful Description
- Incident Collision Manner ٠
- Incident Lighting Condition Description
- Unit Body Style
- Surface Condition
- First Unit Event Sequence
- Person Safety Equipment
- Personal Violation or Behavior
- Impairment

Note that columns highlighted in yellow perform a calculated input to aggregate specific crash descriptions. For example, crashes can contain various attributes for animal-involved crashes. The crash attributes that involve an animal were combined into a common attribute, such as "ANIMAL". This will allow the summaries to be consistent with the ADOT Crash Facts.

The data in the Impairment category contains blank descriptions if it was found that there was "No Apparent Influence" or if it was "Unknown". Using the crash data fields "PersonPhysicalDescription" 0 - 99, fill in the blank columns to reflect if the physical description is described as "No Apparent Influence" or "Unknown". Note that the native physical description data from the ADOT database may need to be combined to a single column.

Step 3.3

Confirm that the crash database is being properly filtered by comparing crash frequencies from the summary tables with the frequencies developed in Existing Performance Analysis. For example, the lookup function will fail if the filter is for "NO IMPROPER ACTION" if the database has the attribute of "NO IMPROPER ACTION".

Step 3.4

Copy and paste the Step 3 Summary into the Safety Needs Assessment spreadsheet in the Step 3 tab. Paste values only and remove the summaries with "0%s" for a clean display. Where duplicate values exist, go to the "Calcs" tab in the Crash Summary Sheet file to determine which categories have the same %. If there are more crash types with the same % than there is space in the table, select the crash type with the highest difference between the segment % and the statewide average %

Step 3.5

The Step 3 table in the Safety Needs Assessment spreadsheet should be similar to the Step 3 template. In the Segment Crash Summaries row, the top three crash attributes are displayed. Change the font color of the crash attributes that exceed the statewide crash threshold to red for emphasis. The attributes with a red font in the "Calcs" tab have exceeded statewide crash thresholds. Note that corridor-wide values are not compared to statewide values as corridorwide values are typically a blend of multiple similar operating environments while the statewide values apply to one specific similar operating environment.

Step 3.6

Provide a summary of any observable patterns found within the crash Hot Spots, if any exist in the segments.

Step 3.7

Input any historic projects (going no further back than 2000) that can be related to improving safety. Projects more than five years old may have exceeded their respective design life and could be contributing factors to safety performance needs.

Step 3.8

Input key points from District interviews or any important information from past discussions with District staff that is consistent with needs and crash patterns identified as part of the performance and needs assessment as this may be useful in identifying contributing causes. This information may be obtained from District Maintenance personnel by requesting the mile post locations that may be considered safety issues.

Step 3.9

For segments with one or more of the following characteristics, review crashes of all severity levels (not just fatal and incapacitating injury crashes). Identify likely contributing factors and compare that to the above statewide average comparison findings already calculated for fatal and incapacitating injury crashes. Refine the contributing factors list accordingly.

- Segments with Medium or High need
- Segments with a crash hot spot concentration (but only review crashes at the concentration areas)
- or High need.

Step 3.10

Considering all information in Steps 1-3, list the contributing factors using engineering judgment and the information on contributing factors available in Section 6.2 of the 2010 Highway Safety Manual. Additional sources for determining contributing factors may include aerial, "streetview", and/or ADOT photologs. Other documents such as Design Concept Reports (DCR) or Road Safety Assessments can provide insight into the study corridor's contributing factors.

Add comments as needed on additional information related to contributing factors that may have been provided by input from ADOT staff.

• Segments with no apparent predominant contributing factors based on the comparison of fatal and incapacitating crashes to statewide averages if the segment has a Medium

Freight Needs Assessment Methodology (Steps 1-3)

This section documents the approach for conducting the first three steps of a 5-step needs assessment process for the Freight Performance Area. After completion of Step 3 for all performance areas (Pavement, Bridge, Mobility, Safety, and Freight), Step 4 will review each corridor segment to quantify a total level of need that combines all performance areas. Corridor needs are then identified in Step 5 of the process. The 5-step process is listed below:

- Step 1: Initial Needs
- Step 2: Final Needs •
- Step 3: Contributing Factors
- Step 4: Segment Review
- Step 5: Corridor Needs

Step 1: Initial Needs

The input required to populate the Step 1 template includes transferring the existing performance score and color for each segment to the appropriate "Performance Score" columns. This includes the primary and secondary measures for Freight. As each performance score is input into the template, the Initial Need will populate based on the weighted scoring system for each measure.

The Level of Need for each performance measure has levels of "None" (score = 0), "Low" (score = 1), "Medium" (score = 2), and "High" (score = 3). The assignment of these levels to individual performance measures for segments is determined by the table entitled "Needs Assessment Scale" within the Step 1 template.

To develop an aggregated Initial Need for each segment, the primary and secondary measures are combined by summing the weighted score, with the primary measure having a weight of 1.0 while each secondary measure has a weight of 0.2 (0.1 each direction if directional). The Initial Need for each segment (combining the primary and secondary measures) has levels of "None" (score < 0.01), "Low" (score > 0.01 and < 1.5), "Medium" (score > 1.5 and < 2.5), and "High" (score > 2.5).

The steps include:

Step 1.1

Populate the Step 1 template with the existing (baseline) performance scores for all primary and secondary performance measures from Existing Performance Analysis. Copy the performance score for each segment to the appropriate "Performance Score" column. Select the Facility Operations for each segment from the drop-down list and input whether or not the performance area is an emphasis area. The corridor needs assessment scales will be updated automatically.

Step 1.2

Confirm that the Step 1 template is generating the appropriate "Level of Need" for each primary and secondary measure by reviewing the relationship of baseline performance score to level of need.

Step 2: Final Needs

The Initial Need will be carried over to Step 2. The steps required to complete Step 2 are as follows:

Step 2.1

Confirm that the template has properly populated the initial need from the Step 1 template to the Step 2 template.

Step 2.2

Note any truck height restriction hot spots (clearance < 16.25) identified as part of the baseline corridor performance. For each entry, note the milepost of the height restriction and if the height restriction can be detoured by ramping around the obstruction. If it is not possible for a truck to ramp around the height restriction, note the existing height as well.

Step 2.3

Identify recently completed or under construction projects that would be considered relevant to freight performance. Include only projects that were not taken into account during the freight data analysis period. Any completed or under construction roadway project after the date of the data that has the potential to mitigate a freight issue on a corridor segment should be listed in the template. Such projects can include the construction of climbing lanes or Dynamic Message Signs (DMS) installation. Sources of recent or current project activity can be ADOT MPD staff. ADOT public notices, and ADOT District staff.

Step 2.4

Update the Final Need using the following criteria:

- If there is one or more truck height restriction hot spots where a truck cannot ramp around on a 'None' segment, increase (i.e., worsen) the need rating to 'Low'.
- If a recent project has superseded the performance rating data and it is certain the project addressed the need, change the need rating to "None".
- If a recent project has superseded the performance rating data but it is uncertain that a comment.

project addressed the need, maintain the current need rating and note the uncertainty as a

Step 2.5

Note any programmed projects that could have the potential to mitigate any freight need on the segment. Programmed projects are provided as information and do not impact the need rating. Programmed projects will be reviewed in the development of solution sets for identified needs. The source of the programming information can be found in ADOT's 5-year construction program. If there are other comments relevant to the needs analysis, they can be entered in the right-most column.

Performance Score Thresholds	Performance Level	Initial Performance Level of Need	Description (Non-emphasis Area)
	Good		All levels of Good and the top third of
	Good	None	Fair (>0.74)
0.77	Good		
0.74	Fair		
0.70	Fair	Low	Middle third of Fair (0.70-0.74)
0.67	Fair	Medium	Lower third of Fair and top third of Poor
0.64	Poor	weaturn	(0.64-0.70)
	Poor	High	Lower two-thirds of Poor (<0.64)
	Poor	ingi	

Example Scales for Level of Need - Freight Index

Needs Scale

Measure	None>=	>1	.ow<	> Me	edium<	High <=					
Corridor Freight Index (Emphasis Area)		Dependent on we	eighted average of in	terrupted vs. unint	errupted segments	U					
Corridor Freight Index (Non-Emphasis Area)		-	eighted average of in								
Freight Index (Segment)											
Measure	None>=	>	> Low < > Medium <		edium<	High <=					
Interrupted	0.28	0.28	0.22	0.22	0.12	0.12					
Uninterrupted	0.74	0.74	0.70	0.70	0.64	0.64					
Measure	None <=	<	.ow >	< Me	High >=						
Directional TTI											
Interrupted	1.53	1.53	1.77	1.77	2.23	2.23					
Uninterrupted	1.21	1.21	1.27	1.27	1.39	1.39					
Directional PTI											
Interrupted	4.00	4.00	5.00	5.00	7.00	7.00					
Uninterrupted	1.37	1.367	1.43	1.43	1.57	1.57					
Closure Duration						•					
All Facility Operations	71.07	71.07	97.97	97.97	151.75	151.75					
Measure	None>=	>1	.ow<	> Me	High <=						
Bridge Clearance (feet)											
All Bridges	16.33	16.33	16.17	16.17	15.83	15.83					

Step 3: Contributing Factors

The Final Need ratings from Step 2 will populate into the Step 3 tab.

The steps to compete Step 3 include:

Step 3.1

Input all roadway variable data that describe each segment into the appropriate columns. Note that this data can be copied from the Mobility Needs Assessment spreadsheet for Needs Assessment.

Step 3.2

Input all traffic variables for each segment into the appropriate columns. The Buffer Index will auto populate based on the TPTI and TTTI input in the Step 1 tab. Note that this data can be copied from the Mobility Needs Assessment spreadsheet for Needs Assessment.

Step 3.3

Input any freight-related infrastructure that currently exists on the corridor for each segment. The relevant infrastructure can include DMS locations, weigh stations, Ports of Entry (POE), rest areas, parking areas, and climbing lanes. Include the mileposts of the listed infrastructure. This data can be extracted from the most recent Highway Log and the 2015 Climbing and Passing Lane Prioritization Study.

Step 3.4

Input the Closure Extents that have occurred along the study corridor. Road closure information can be detailed out by the reason for the closure as documented in Highway Condition Reporting System (HCRS) data analyzed as part of the baseline corridor performance. Closure reasons include incident/accidents, winter storms, obstruction hazards, and undefined closures. Statewide average percentages for the various closure reasons have been calculated for the analysis period on ADOT's designated strategic corridors. Compare these statewide average percentages to the corridor percentages for the various closure reasons to identify higher than average percentages of one or more closure reasons on any given segment. Note that this data can be copied from the Mobility Needs Assessment spreadsheet for Needs Assessment. Input the closures as follows and use red text to indicate that the segment percentage exceeds statewide averages:

- Total Number of Closures
- % Closures (No Reason)
- % Incidents/Accidents
- % Obstructions/Hazards
- % Weather Related

Step 3.5

List the non-actionable conditions that are present within each segment by milepost if possible. Non-Actionable conditions are conditions that exist within the environment of each segment that

Step 3.6

Input any programmed and planned projects or issues that have been identified from previous documents or studies that are relevant to the Final Need. Sources for this data include the current Highway Log, the 2015 Climbing and Passing Lane Prioritization Study, and ADOT's 5-year construction program.

Step 3.7

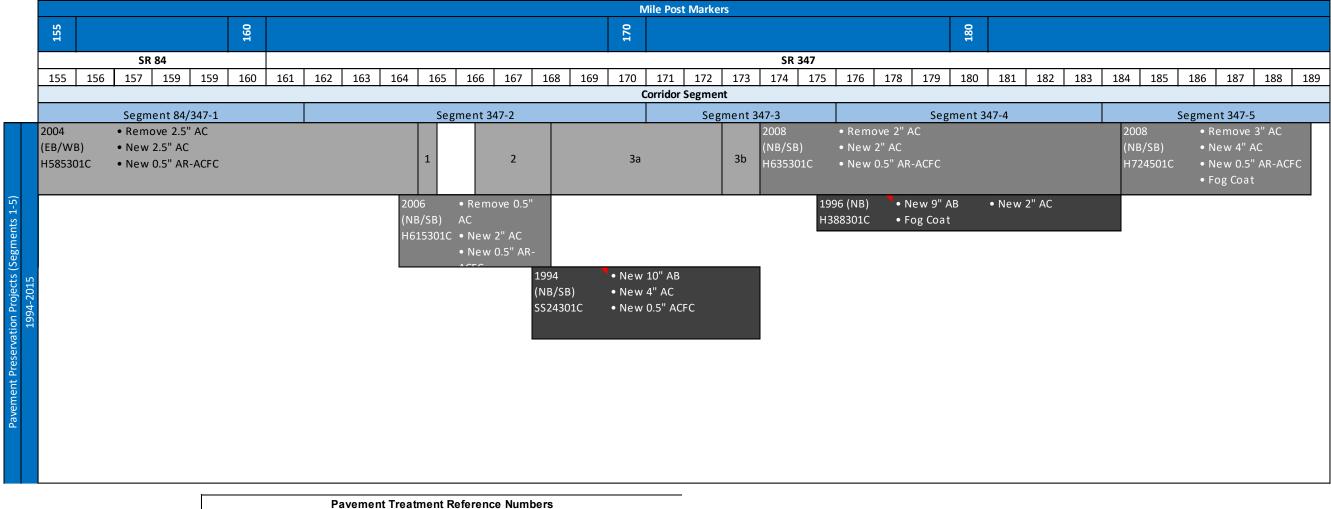
Considering all information in Steps 1-3, identify the contributing factors to the Final Need column. Potential contributing factors to freight performance needs include roadway vertical grade, number of lanes, traffic volume-to-capacity ratios, presence/lack of a climbing lanes, and road closures. Also identify higher than average percentages of one or more closure reasons on any given segment.

Pavement Performance Needs Analysis

	Segment	Segment		Pav	ement Index		Indexa	nd Dire	ctional		D	irectional PSR			%	Area Failure		% Pav	ement F	ailure	
Segment	Length	Mileposts	Facility Type	Performance Score	Performance		el PSR Need Scales		Performa	nce Score	Performance	Level of Need		Performance	Performance	Level	Ne	ed Scale	25	Initial	
#	(miles)	(MP)	Type		Objective		None	Low	High	NB	SB	Objective	NB	SB	Score	Objective	ot Need	None	Low	High	Need
84/347-1	7	155-162	Highway	4.13	Fair or Better	None	3.3	3.1	2.7	4.09	4.18	Fair or Better	None	None	0.00%	Fair or Better	None	10%	15%	25%	None
347-2	9	162-171	Highway	3.86	Fair or Better	None	3.3	3.1	2.7	4.07	4.23	Fair or Better	None	None	11.11%	Fair or Better	Low	10%	15%	25%	Low
347-3	5	171-176	Highway	3.60	Fair or Better	None	3.3	3.1	2.7	3.21	3.59	Fair or Better	Low	None	29.17%	Fair or Better	High	10%	15%	25%	Low
347-4	8	176-184	Highway	3.95	Fair or Better	None	3.3	3.1	2.7	3.86	3.95	Fair or Better	None	None	0.00%	Fair or Better	None	10%	15%	25%	None
347-5	5	184-189	Highway	3.97	Fair or Better	None	3.3	3.1	2.7	3.76	4.03	Fair or Better	None	None	10.00%	Fair or Better	None	10%	15%	25%	None
Emphasis Area?	No	Weighted	Average	3.91	Fair or Better	None								-							

				1	Need Adjustments			
Segment #	Segment Length (miles)	Segment Mileposts (MP)	Initial Need	Hot Spots	Previous Projects (which supersede condition data)	Final Need	Comments (may include programn	
84/347-1	7	155-162	None	None	None	None		
347-2	9	162-171	Low	NB MP 162-164	None	Low		
347-3	5	171-176	Low	NB MP 173-175	None	Low		
347-4	8	176-184	None	None	None	None		
347-5	5	184-189	None	NB MP 185-186	None	Low	Level of need raised to "Low" due to	

Segment #	Segment Length (miles)	Segment Mileposts (MP)	Final Need	Bid History Investment	PeCos History Investment	Resulting Historical Investment	Contributing Factors and Comments
84/347-1	7	155-162	None	Low	Low	Low	
347-2	9	162-171	Low	Medium	Low	Medium	Hot spot NB MP 162-164
347-3	5	171-176	Low	High	Low	High	Hot spot NB MP 173-175
347-4	8	176-184	None	High	Low	High	
347-5	5	184-189	Low	Low	N/A	Low	Hot spot NB MP 185-186



nmed projects or issues from previous reports)
to presence of hot spot.

Pavement History

SR 84/SR 347 Pavement History

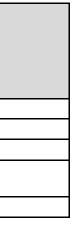
Pavement Treatment Reference Numbers
. 2011 (NB/SB) H827101C: Remove 0.5", 0.5" ACFC
2. 2000 (NB/SB) H559101C: Remove 3", 3" AC
a. 2012 (NB/SB) H810801C: Remove 3", 2.5" AC, 0.5" AR-ACFC
b. 2012 (NB/SB) H810801C: Remove 3", 3" AC

		Legend	
	New Paving or Reconstruction		PCCP Pavement Border
	Mill and Overlay (Adding Structural Thickness)		AC Pavement Border
	Mill and Replace (No Change Structural Thickness)		
	Fog Coat or Thin Overlay Treatments		

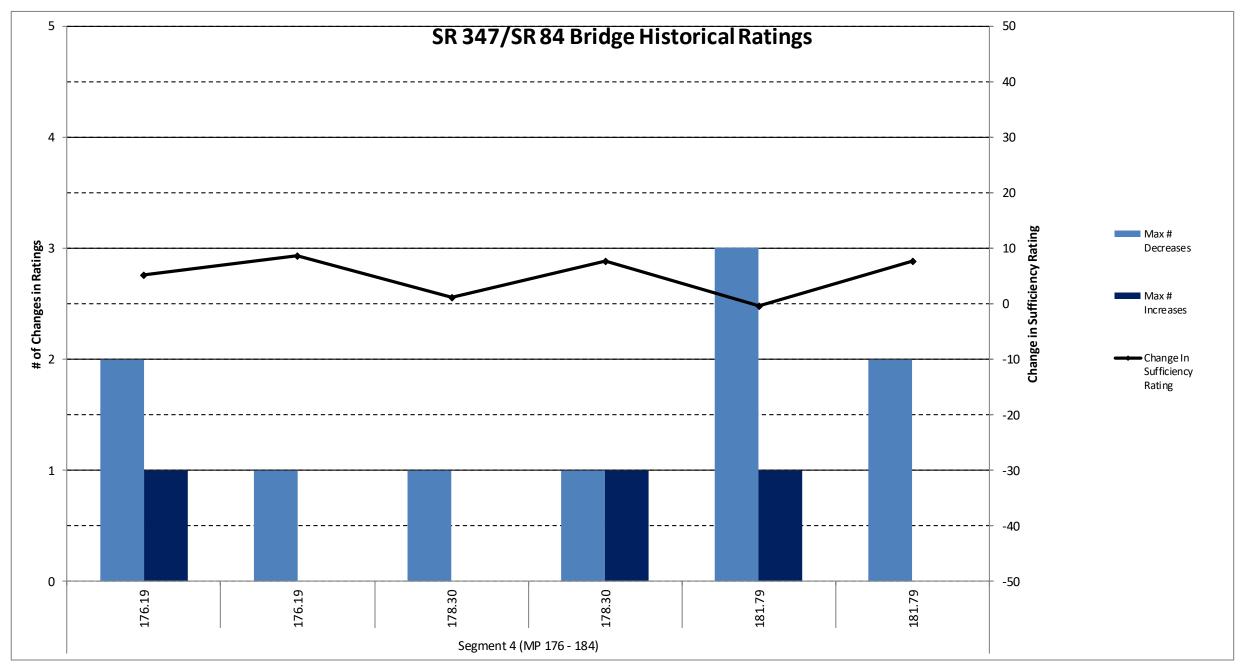
			Segment Number											
		1		2		3		4		5				
Value	Level	Uni-Dir	Bi-Dir	Uni-Dir	Bi-Dir	Uni-Dir	Bi-Dir	Uni-Dir	Bi-Dir	Uni-Dir	Bi-Dir			
1	L1													
1														
1														
1														
3	L2		100%		89%		60%							
3														
3														
3														
3														
3														
4	L3				44%		40%		100%		83%			
4														
4														
4														
6	L4				33%	10%	60%	100%		8%				
6														
6														
6														
6														
6														
Sub-	Total	0.0	3.0	0.0	6.4	0.6	7.0	6.0	4.0	0.5	3.3			
То	tal	3.(6.4		7.3		7.0)	3.6	6			

Pavement Bid History Investment (Standard Calculation Level Totals)

			Segment Number									
Value	Level	1	2	3	4	5						
1	L1	0.0	0.0	0.0	0.0	0.0						
3	L2	3.0	2.7	1.8	0.0	0.0						
4	L3	0.0	1.8	1.6	4.0	3.3						
6	L4	0.0	2.0	3.9	3.0	0.3						
Total		3.0	6.4	7.3	7.0	3.6						


Bridge Performance Needs Analysis

Sogmont#	Segment	Segment Mileposts	Number of Bridges		Bridge Index		Low	est Bridge Rating	5	Suff	ficiency Rating			Area on Functio solete Bridges	onally	Initial
Segment#	Length (miles)	(MP)	in Segment	Performance Score	Performance Objective	Level of Need	Performance Score	Performance Objective	Level of Need	Performance Score	Performance Objective	Level of Need	Performance Score	Performance Objective	Level of Need	Need
84/347-1	7	155-162	0	No Bridges	Fair or Better	None	No Bridges	Fair or Better	None	No Bridges	Fair or Better	None	No Bridges	Fair or Better	None	None
347-2	9	162-171	0	No Bridges	Fair or Better	None	No Bridges	Fair or Better	None	No Bridges	Fair or Better	None	No Bridges	Fair or Better	None	None
347-3	5	171-176	0	No Bridges	Fair or Better	None	No Bridges	Fair or Better	None	No Bridges	Fair or Better	None	No Bridges	Fair or Better	None	None
347-4	8	176-184	6	6.20	Fair or Better	None	6	Fair or Better	None	98.6	Fair or Better	None	0.0%	Fair or Better	None	None
347-5	5	184-189	0	No Bridges	Fair or Better	None	No Bridges	Fair or Better	None	No Bridges	Fair or Better	None	No Bridges	Fair or Better	None	None
Emphasis Area?	No	Weight	ed Avg	6.20	Fair or Better	None										


		Number		Need A	djustments			#	
Segment Length (miles)	Segment Mileposts (MP)	of Bridges in Segment	Initial Need	Hot Spots (Rating of 4 or multiple 5's)	Previous Projects (which supersede condition data)	Final Need	Historical Review	π Functionally Obsolete Bridges	Comments
7	155-162	0	None	None	None	None		0	
9	162-171	0	None	None	None	None		0	
5	171-176	0	None	None	None	None		0	
8	176-184	6	None	None	None	None	Gila River Bridge NB (3 decreases in the deck rating)	0	
5	184-189	0	None	None	None	None		0	

		Number	#			Contributin	g Factors	
Segment Length (Miles)	Segment Mileposts (MP)	of Bridges in Segment	Functionally Obsolete Bridges	Final Need	Bridge	Current Ratings	Historical Review	Comments
7	155-162	0	0	None				
9	162-171	0	0	None		No bridges with current ratings les	s than 6 and no historical issues	
5	171-176	0	0	None		No bridges with current ratings les	s than 6 and no historical issues	
8	176-184	6	0	None	No bridges with			
5	184-189	0	0	None		s than 6 and no historical issues		

Bridge Ratings History

O_identifies the bridge indicated is of concern from a historical ratings perspective

Maximum # of Decreases: Maximum number of times that the Deck Rating, Substructure Rating, or Superstructure Rating decreased from 1997 to 2014. (Higher number could indicate a more dramatic decline in the performance of the bridge)

Maximum # of Increases: Maximum number of times that the Deck Rating, Substructure Rating, or Superstructure Rating increased from 1997 to 2014. (Higher number could indicate a higher level of investment)

Change in Sufficiency Rating: Cumulative change in Sufficiency Rating from 1997 to 2014. (Bigger negative number could indicate a more dramatic decline in the performance of the bridge)

Mobility Performance Needs Analysis

					Mo	obility Index		Fu	uture Daily V/C			E	xisting Peak Ho	our V/C			Closure Ex	tent (occurrence	es/year/mi	ile)
Segmen t#	Segment Milepost	t Length	Environme nt Type	Facility Operation	Performanc		Level of	Performanc	Performanc	Levelof		rmance ore	Performanc	Level	ofNeed		rmance ore	Performanœ	Levelo	ofNeed
	S	(miles)	пстуре	operation	e Score	e Objective	Need	e Score	e Objective	Need	NB/EB	SB/WB	e Objective	NB/EB	SB/WB	NB/E B	SB/WB	Objective	NB/EB	SB/WB
84/347- 1	155-162	7	Rural	Interrupte d	0.12	Fair or Better	None	0.17	Fair or Better	None	0.09	0.08	Fair or Better	None	None	0.03	0.00	Fair or Better	None	None
347-2	162-171	9	Rural	Interrupte d	0.11	Fair or Better	None	0.14	Fair or Better	None	0.06	0.06	Fair or Better	None	None	0.09	0.13	Fair or Better	None	None
347-3	171-176	5	Urban	Interrupte d	1.03	Fair or Better	High	1.33	Fair or Better	High	0.63	0.63	Fair or Better	None	None	0.16	0.12	Fair or Better	None	None
347-4	176-184	8	Rural	Interrupte d	1.47	Fair or Better	High	1.75	Fair or Better	High	1.01	1.03	Fair or Better	High	High	0.24	0.15	Fair or Better	None	None
347-5	184-189	5	Rural	Interrupte d	1.35	Fair or Better	High	1.61	Fair or Better	High	0.90	0.89	Fair or Better	High	High	0.61	0.12	Fair or Better	Mediu m	None
,	Emphasis rea	Yes	Weighted	Average	0.75	Good	Mediu m													

						Dir	ectional TTI (all	vehicles)				Directional PTI	(all vehicles)		Bicycle	Accommodatior	ı	
Segment #	Segment Mileposts	Segment Length	Environment Type	Facility Operation		rmance ore	Performanœ	Levelo	fNeed		mance ore	Performance	Levelo	fNeed	Performanœ	Performanœ	Level	Initial Need
		(miles)			NB/EB	SB/WB	Objective	NB/EB	SB/WB	NB/EB	SB/WB	Objective	NB/EB	SB/WB	Score	Objective	of Need	
84/347- 1	155-162	7	Rural	Interrupted	1.00	1.07	Fair or Better	None	None	2.05	2.86	Fair or Better	None	None	100%	Fair or Better	None	None
347-2	162-171	9	Rural	Interrupted	1.22	1.26	Fair or Better	None	None	4.72	3.06	Fair or Better	Low	None	100%	Fair or Better	None	Low
347-3	171-176	5	Urban	Interrupted	1.43	1.43	Fair or Better	None	None	6.13	4.51	Fair or Better	Medium	Low	43%	Fair or Better	High	High
347-4	176-184	8	Rural	Interrupted	1.24	1.19	Fair or Better	None	None	3.25	2.24	Fair or Better	None	None	98%	Fair or Better	None	High
347-5	184-189	5	Rural	Interrupted	1.16	1.15	Fair or Better	None	None	3.05	2.83	Fair or Better	None	None	98%	Fair or Better	None	High

Segment Mileposts	Segment Length	Initial Need	Need Adjustments	Final Need	Planned and Programmed Future
(MP)	(miles)	milariveeu	Recently Completed Projects	Fillal Neeu	Projects
155-162	7	None	None	None	
162-171	9	Low	None	Low	
171-176	5	High	None	High	Grade separated railroad crossing with bike lanes and sidewalks (2017)
176-184	8	High	None	High	
184-189	5	High	None	High	

Mobility Performance Needs Analysis (continued)

							Roadway \	/ariables					Traf	fic Variab	les		
Segment #	Segment Mileposts (MP)	Segment Length (miles)	Final Need	Functional Classification	Environmental Type (Urban/Rural)	Terrain	# of Lanes/ Direction	Speed Limit	Aux Lanes	Divided/ Non-Divided	% No Passing	Existing LOS	Future 2035 LOS	% Trucks	NB Buffer Index (PTI- TTI)	SB Buffer Index (PTI- TTI)	Relevant Mobility Related Existing Infrastructure
84/347- 1	155-162	7	None	State Highway	Rural	Level	2	40-65	No	Non-Divided	20%	A/B	A/B	13%	1.05	1.79	Grade-separated traffic interchange (I-8 & SR 84)
347-2	162-171	9	Low	State Highway	Rural	Level	4	45-65	No	Divided	0%	A/B	A/B	12%	3.50	1.81	
347-3	171-176	5	High	State Highway	Fringe Urban	Level	4	35-45	No	Divided	0%	E/F	E/F	6%	4.70	3.08	At-grade railroad crossing MP 173.4; permanent traffic counter at MP 171.4
347-4	176-184	8	High	State Highway	Rural	Level	4	55-65	No	Divided	0%	D-F	D-F	9%	2.01	1.05	
347-5	184-189	5	High	State Highway	Rural	Level	4	45-65	No	Divided	0%	D-F	D-F	9%	1.89	1.68	Grade-separated traffic interchange (I-10 & SR 347)

							Closure Exte	ent				Programmed and Planned	
Segment #	Segment Mileposts (MP)	Segment Length (miles)	Final Need	Total Number of Closures	# Incidents/ Accidents	% Incidents/ Accidents	# Obstructions/ Hazards	% Obstructions/ Hazards	# Weather Related	% Weather Related	Non-Actionable Conditions	Projects or Issues from Previous Documents Relevant to Final Need	Contributing Factors
84/347- 1	155-162	7	None	1	1	100%	0	0%	0	0%			Percentage of closures due to incidents/accidents above the statewide average (100% to 96%)
347-2	162-171	9	Low	10	10	100%	0	0%	0	0%			Percentage of closures due to incidents/accidents above the statewide average (100% to 96%)
347-3	171-176	5	High	7	7	100%	0	0%	0	0%		Grade separated railroad crossing with bike lanes and sidewalks (2017)	Percentage of closures due to incidents/accidents above the statewide average (100% to 96%)
347-4	176-184	8	High	14	13	93%	1	7%	0	0%			Percentage of closures due to obstructions/hazards above the statewide average (7% to 3%)
347-5	184-189	5	High	18	17	94%	0	0%	1	6%			Percentage of closures due to weather above the statewide average (6% to 1%)

Safety Performance Needs Analysis

		Segment	Segment		Safety Index			Direc	tional Safety Inc	lex			ncapacitating Inju HSP Top 5 Empha Behaviors	
Segment	Operating Environment	Length (miles)	Mileposts (MP)	Performance Score	Performance Objective	Level of Need	NB/EB Performance Score	SB/WB Performance Score	Performance Objective	NB/EB Level of Need	SB/WB Level of Need	Performance Score	Performance Objective	Level of Need
84/347- 1	2 or 3 Lane Undivided Highway	7	155-162	0.34	Average or Better	None	0.00	0.68	Average or Better	None	None	Insufficient Data	Average or Better	N/A
347-2	2 or 3 or 4 Lane Divided Highway	9	162-171	1.21	Average or Better	Medium	1.11	1.31	Average or Better	Medium	Medium	Insufficient Data	Average or Better	N/A
347-3	2 or 3 or 4 Lane Divided Highway	5	171-176	0.06	Average or Better	None	0.06	0.06	Average or Better	None	None	Insufficient Data	Average or Better	N/A
347-4	2 or 3 or 4 Lane Divided Highway	8	176-184	0.87	Average or Better	None	0.57	1.17	Average or Better	None	Medium	80%	Average or Better	High
347-5	2 or 3 or 4 Lane Divided Highway	5	184-189	1.93	Average or Better	High	1.00	2.86	Average or Better	Low	High	48%	Average or Better	Low
	Safety Emphasis Area?	Yes	Weighted Average	0.89	Above Average	Low								

Segment	Operating Environment	Segment Length	Segment Mileposts		Incapacitating In Involving Trucks			Incapacitating In volving Motorcyc			ncapacitating Inj Non-Motorized T	•	Initial Need
		(miles)	(MP)	Performance Score	Performance Objective	Level of Need	Performance Score	Performance Objective	Level of Need	Performance Score	Performance Objective	Level of Need	
84/347- 1	2 or 3 Lane Undivided Highway	7	155-162	Insufficient Data	Average or Better	N/A	Insufficient Data	Average or Better	N/A	Insufficient Data	Average or Better	N/A	None
347-2	2 or 3 or 4 Lane Divided Highway	9	162-171	Insufficient Data	Average or Better	N/A	Insufficient Data	Average or Better	N/A	Insufficient Data	Average or Better	N/A	Medium
347-3	2 or 3 or 4 Lane Divided Highway	5	171-176	Insufficient Data	Average or Better	N/A	Insufficient Data	Average or Better	N/A	Insufficient Data	Average or Better	N/A	None
347-4	2 or 3 or 4 Lane Divided Highway	8	176-184	Insufficient Data	Average or Better	N/A	Insufficient Data	Average or Better	N/A	Insufficient Data	Average or Better	N/A	Low
347-5	2 or 3 or 4 Lane Divided Highway	5	184-189	Insufficient Data	Average or Better	N/A	Insufficient Data	Average or Better	N/A	Insufficient Data	Average or Better	N/A	High

Safety Performance Needs Analysis (continued)

Segment	Segment Length (miles)	Segment Mileposts (MP)	Initial Need	Hot Spots	Relevant Recently Completed or Under Construction Projects (which supersede performance data)*	Final Need	Comments (may i programmed projects v need or other releva previous
84/347-1	7	155-162	None	None	None	None	
347-2	9	162-171	Medium	None	None	Medium	
347-3	5	171-176	None	None	Grade separated railroad crossing with bike lanes and sidewalks (2017); Construct sidewalk and ADA ramps, MP 172.0-172.5, (2015); Construct sidewalk enhancements, SR 347 at SR 238, (2014); Sidewalk enhancement, MP 174.6, (2015)	None	
347-4	8	176-184	Low	MP 182-184	None	Low	
347-5	5	184-189	High	MP 184-189	None	High	

y include tentatively is with potential to address evant issues identified in ous reports)

Safety Performance Needs Analysis (continued)

	Segment Number	84/347-1	347-2	347-3	347-4	347-5	
	Segment Length (miles)	7	9	5	8	5	
	Segment Milepost (MP)	155-162	162-171	171-176	176-184	184-189	Corridor-Wide Crash Characteristics
	Final Need	None	Medium	None	Low	High	
	Segment Crash Overview	 0 Crashes were fatal 3 Crashes had incapacitating injuries 0 Crashes involve trucks 0 Crashes involve Motorcycles 	 Crashes were fatal Crashes had incapacitating injuries Crashes involve trucks Crashes involve Motorcycles 	 0 Crashes were fatal 2 Crashes had incapacitating injuries 0 Crashes involve trucks 0 Crashes involve Motorcycles 	 Crashes were fatal Crashes had incapacitating injuries Crashes involve trucks Crashes involve Motorcycles 	 4 Crashes were fatal 17 Crashes had incapacitating injuries 2 Crashes involve trucks 1 Crashes involve Motorcycles 	 9 Crashes were fatal 32 Crashes had incapacitating injuries 2 Crashes involve trucks 1 Crashes involve Motorcycles
	First Harmful Event Type	N/A - Sample size too small	40% Involve Collision with Motor Vehicle40% Involve Overturning20% Involve Collision with Pedestrian	N/A - Sample size too small	60% Involve Collision with Motor Vehicle 40% Involve Overturning	 81% Involve Collision with Motor Vehicle 5% Involve Collision with Non-Fixed Object 5% Involve Collision with Animal 	68% Involve Collision with Motor Vehicle17% Involve Overturning5% Involve Collision with Pedestrian
ishes)	Collision Type	N/A - Sample size too small	40% Involve Single Vehicle20% Involve Left Turn20% Involve Head On	N/A - Sample size too small	40% Involve Single Vehicle30% Involve Rear End20% Involve Angle	67% Involve Rear End10% Involve Left Turn10% Involve Sideswipe (same)	41% Involve Rear End24% Involve Single Vehicle12% Involve Left Turn
Injury Cra	Violation or Behavior	N/A - Sample size too small	40% Involve Speed too Fast for Conditions20% Involve Drove in Opposing Lane20% Involve Failure to Yield Right-of-Way	N/A - Sample size too small	30% Involve Speed too Fast for Conditions30% Involve Failure to Keep in Proper Lane10% Involve Unsafe Lane Change	 29% Involve Speed too Fast for Conditions 19% Involve Failure to Keep in Proper Lane 19% Involve Inattention/Distraction 	27% Involve Speed too Fast for Conditions17% Involve Failure to Keep in Proper Lane12% Involve Inattention/Distraction
nd Serious	Lighting Conditions	N/A - Sample size too small	40% Occur in Dark-Unlighted Conditions20% Occur in Dark-Unknown Conditions20% Occur in Dawn Conditions	N/A - Sample size too small	50%Occur in Dark-Unlighted Conditions50%Occur in Daylight Conditions	43%Occur in Dark-Unlighted Conditions43%Occur in Daylight Conditions5%Occur in Dawn Conditions	 46% Occur in Dark-Unlighted Conditions 41% Occur in Daylight Conditions 5% Occur in Dawn Conditions
s (Fatal an	Surface Conditions	N/A - Sample size too small	80% Involve Dry Conditions 20% Involve Unknown Conditions	N/A - Sample size too small	90% Involve Dry Conditions 10% Involve Wet Conditions	100% Involve Dry Conditions	95% Involve Dry Conditions2% Involve Wet Conditions2% Involve Unknown Conditions
nt Crash Summarie	First Unit Event	N/A - Sample size too small	 60% Involve a first unit event of Motor Vehicle in Transport 40% Involve a first unit event of Ran Off the Road (Left) 	N/A - Sample size too small	 60% Involve a first unit event of Motor Vehicle in Transport 20% Involve a first unit event of Ran Off the Road (Left) 10% Involve a first unit event of Equipment Failure 	Transport	 73% Involve a first unit event of Motor Vehicle in Transport 15% Involve a first unit event of Ran Off the Road (Left) 5% Involve a first unit event of Ran Off the Road (Right)
Segmei	Driver Physical Condition	N/A - Sample size too small	60% Under the Influence of Drugs or Alcohol 20% No Apparent Influence 20% Unknown	N/A - Sample size too small	40% Under the Influence of Drugs or Alcohol 20% No Apparent Influence 20% Unknown	76% No Apparent Influence 14% Under the Influence of Drugs or Alcohol 10% Unknown	54% No Apparent Influence 29% Under the Influence of Drugs or Alcohol 12% Unknown
	Safety Device Usage	N/A - Sample size too small	40% None Used20% Air Bag Deployed/Shoulder-Lap Belt20% Unknown	N/A - Sample size too small	40%None Used40%Shoulder And Lap Belt Used10%Lap Belt Used	62% Shoulder And Lap Belt Used 29% None Used 5% Not Applicable	49% Shoulder And Lap Belt Used34% None Used5% Air Bag Deployed/Shoulder-Lap Belt
I	Hot Spot Crash Summaries					MP 184-189	
Pi	eviously Completed Safety- Related Projects			Sidewalk and ADA ramps constructed, MP 172.0- 172.5, (2015); Sidewalk enhancements constructed, SR 347 at SR 238, (2014); Sidewalk enhancements constructed, MP 174.6, (2015)		Left-turn lane striping modified at Riggs Road (2017)	
Di	strict Interviews/Discussions	Consistent with District perspective that serious crashes are relatively infrequent in this segment	No comments	Expected to see more crashes here - perhaps the congestion in the City of Maricopa keeps speeds lower, which reduces injury severity in crashes	Expected to see more crashes here - confirm that it is because most crashes do not have severe injuries or fatalities, and not that there is missing crash data	to see on the east-west portion of SR 347	
	Contributing Factors	N/A - Sample size too small	-Poor nighttime visibility or lighting -Lack of median barrier -Speed too fast for conditions -Failure to yield right-of-way -Driver inattention/distraction -Lack of crossing opportunity for pedestrians -Misjudgment of speed of oncoming traffic -Not wearing seatbelt -Driving under the influence	N/A - Sample size too small	-Poor nighttime visibility or lighting -Lack of median barrier -Speed too fast for conditions -Failure to yield right-of-way -Disregard of traffic signal -Driver inattention/distraction -Misjudgment of speed of oncoming traffic -Unexpected stops -Lack of traffic signal coordination -Not wearing seatbelt -Driving under the influence -Slippery pavement	-Poor nighttime visibility or lighting -Lack of median barrier -Failure to yield right-of-way -Disregard of traffic signal -Driver inattention/distraction -Misjudgment of speed of oncoming traffic -Unexpected stops -Lack of traffic signal coordination -Not wearing seatbelt	-Poor nighttime visibility or lighting -Lack of median barrier -Failure to yield right-of-way -Disregard of traffic signal -Driver inattention/distraction -Misjudgment of speed of oncoming traffic -Unexpected stops -Lack of traffic signal coordination -Not wearing seatbelt -Driving under the influence

Freight Performance Needs Analysis

	Facility	Segment	Segment		Freight Index			Dir	ectional TTI (truck	s only)			Dir	ectional PTI (truc	cks only)	
Segment#	Operations	Mileposts (MP)	Length (miles)	Performance	Performance	Levelof	Perfo	rmance Score	Performance	Level of I	Veed	Perfo	rmance Score	Performance	Levelo	fNeed
			. ,	Score	Objective	Need	NB/EB	SB/WB	Objective	NB/EB	SB/WB	NB/EB	SB/WB	Objective	NB/EB	SB/WB
84/347-1	Interrupted	155-162	7	0.45	Fair or Better	None	1.02	1.14	Fair or Better	None	None	1.94	2.50	Fair or Better	None	None
347-2	Interrupted	162-171	9	0.30	Fair or Better	None	1.14	1.26	Fair or Better	None	None	3.73	3.01	Fair or Better	None	None
347-3	Interrupted	171-176	5	0.11	Fair or Better	High	1.50	1.58	Fair or Better	None	Low	8.00	10.06	Fair or Better	High	High
347-4	Interrupted	176-184	8	0.11	Fair or Better	High	1.46	1.34	Fair or Better	None	None	10.53	7.12	Fair or Better	High	High
347-5	Interrupted	184-189	5	0.14	Fair or Better	Medium	1.42	1.30	Fair or Better	None	None	9.18	5.13	Fair or Better	High	Medium
Emphasis Area?	Yes	Weighte	d Average	0.23	Good	Low										

	Closur	e Duration (minutes,	Bridge						
	Performance Score	Performance	Level of	Need	Dorformonco Scoro	Performance	Level of	Initial Need	
NB/EB	SB/WB	Objective	NB/EB	SB/WB	Performance score	Objective	Need		
6.34	0.00	Fair or Better	None	None	No UP	Fair or Better	None	None	
13.33	24.27	Fair or Better	None	None	No UP	Fair or Better	None	None	
29.16	9.40	Fair or Better	None	None	No UP	Fair or Better	None	High	
40.59	20.25	Fair or Better	None	None	No UP	Fair or Better	None	High	
106.80	10.96	Fair or Better	Medium	None	No UP	Fair or Better	None	High	
	NB/EB 6.34 13.33 29.16 40.59	Performance Score NB/EB SB/WB 6.34 0.00 13.33 24.27 29.16 9.40 40.59 20.25	Performance ScorePerformance ObjectiveNB/EBSB/WBObjective6.340.00Fair or Better13.3324.27Fair or Better29.169.40Fair or Better40.5920.25Fair or Better	NB/EBSB/WBObjectiveNB/EB6.340.00Fair or BetterNone13.3324.27Fair or BetterNone29.169.40Fair or BetterNone40.5920.25Fair or BetterNone	Performance ScorePerformance ObjectiveLevel of NeedNB/EBSB/WBObjectiveNB/EBSB/WB6.340.00Fair or BetterNoneNone13.3324.27Fair or BetterNoneNone29.169.40Fair or BetterNoneNone40.5920.25Fair or BetterNoneNone	Performance ScorePerformance ObjectiveLevel of NeedPerformance ScoreNB/EBSB/WBObjectiveNB/EBSB/WBPerformance Score6.340.00Fair or BetterNoneNoneNo UP13.3324.27Fair or BetterNoneNoneNo UP29.169.40Fair or BetterNoneNoneNo UP40.5920.25Fair or BetterNoneNoneNo UP	Performance ScorePerformance ObjectiveLevel of NeedPerformance ScorePerformance ObjectiveNB/EBSB/WBObjectiveNB/EBSB/WBPerformance ScorePerformance Cobjective6.340.00Fair or BetterNoneNoneNo UPFair or Better13.3324.27Fair or BetterNoneNoneNo UPFair or Better29.169.40Fair or BetterNoneNoneNo UPFair or Better40.5920.25Fair or BetterNoneNoneNo UPFair or Better	Performance ScorePerformance ObjectiveLevel of NeedPerformance ScorePerformance ObjectiveLevel of NeedNB/EBSB/WBObjectiveNB/EBSB/WBPerformance ScorePerformance ObjectiveNeed6.340.00Fair or BetterNoneNoneNo UPFair or BetterNone13.3324.27Fair or BetterNoneNoneNo UPFair or BetterNone29.169.40Fair or BetterNoneNoneNo UPFair or BetterNone40.5920.25Fair or BetterNoneNoneNo UPFair or BetterNone	

Segment #	Segment Length (miles)	Segment Mileposts (MP)	Initial Need	Vertical Clearance Hot Spots (Vertical Clearance < 16.25' and No Ramps)	Relevant Recently Completed or Under Construction Projects (which supersede performance data)*	Final Need	Comments (ma address ne
84/347-1	7	155-162	None	None	None	None	
347-2	9	162-171	None	None	None	None	
347-3	5	171-176	High	None	Grade separated railroad crossing with bike lanes and sidewalks (2017)	High	
347-4	8	176-184	High	None	None	High	
347-5	5	184-189	High	None	None	High	

(may include tentatively programmed projects with potential to needs or other relevant issues identified in previous reports)

Freight Performance Needs Analysis (continued)

						Road	way Variables						٦	Fraffic Va	riables		
Segment #	Segment Mileposts (MP)	Segment Length (miles)	Final Need	Functional Classification	Environmental Type (Urban/Rural)	Terrain	# of Lanes/ Direction	Speed Limit	Aux Lanes	Divided/ Non- Divided	% No Passing	Existing LOS	Future 2035 LOS	% Trucks		SB/WB Buffer Index (TPTI-TTTI)	Relevant Freight Related Existing Infrastructure
84/347-1	155-162	7	None	State Highway	Rural	Level	2	40-65	No	Non- Divided	20%	A/B	A/B	13%	0.92	1.36	Grade-separated traffic interchange (I- 8 & SR 84)
347-2	162-171	9	None	State Highway	Rural	Level	4	45-65	No	Divided	0%	A/B	A/B	12%	2.59	1.75	
347-3	171-176	5	High	State Highway	Fringe Urban	Level	4	35-45	No	Divided	0%	E/F	E/F	6%	6.50	8.48	At-grade railroad crossing MP 173.4; permanent traffic counter at MP 171.4
347-4	176-184	8	High	State Highway	Rural	Level	4	55-65	No	Divided	0%	D-F	D-F	9%	9.08	5.78	
347-5	184-189	5	High	State Highway	Rural	Level	4	45-65	No	Divided	0%	D-F	D-F	9%	7.75	3.82	Grade-separated traffic interchange (I- 10 & SR 347)

							Closure Exten	t				Programmed	
Segment #	Segment Mileposts (MP)	Segment Length (miles)	Final Need	Total Number of Closures	# Incidents/ Accidents	% Incidents/ Accidents	# Obstructions/ Hazards	% Obstructions/ Hazards	# Weather Related	% Weather Related	Non- Actionable Conditions	and Planned Projects or Issues from Previous Documents Relevant to Final Need	
84/347-1	155-162	7	None	1	1	100%	0	0%	0	0%			Percentage statewide a
347-2	162-171	9	None	10	10	100%	0	0%	0	0%			Percentage statewide a
347-3	171-176	5	High	7	7	100%	0	0%	0	0%			Percentage statewide a
347-4	176-184	8	High	14	13	93%	1	7%	0	0%			Percentage statewide a
347-5	184-189	5	High	18	17	94%	0	0%	1	6%			Percentage average (69

Contributing Factors

ge of closures due to incidents/accidents above the eaverage (100% to 96%)

ge of closures due to incidents/accidents above the e average (100% to 96%)

ge of closures due to incidents/accidents above the eaverage (100% to 96%)

ge of closures due to obstructions/hazards above the eaverage (7% to 3%)

ge of closures due to weather above the statewide 6% to 1%)

Needs Summary Table

	Segment Number and Mileposts (MP)											
Performance Area	84/347-1	347-2	347-3	347-4	347-5							
	MP 155-162	MP 162-171	MP 171-176	MP 176-184	MP 184-189							
Pavement	None*	Low	Low	None	Low							
Bridge	None	None	None	None	None							
Mobility⁺	None	Low	High	High	High							
Safety⁺	None	Medium	None	Low	High							
Freight+	None	None	High	High	High							
Average Need	0.00	0.85	1.54	1.62	2.23							

⁺ Identified as Emphasis Areas for SR 347/SR 84 Corridor

* A segment need rating of 'None' does not indicate a lack of needed improvements; rather, it indicates that the segment performance score exceeds the established performance thresholds and strategic solutions for that segment will not be developed as part of this study

Level of Need	Average Need Range
None*	< 0.1
Low	0.1 - 1.0
Medium	1.0 - 2.0
High	> 2.0

Appendix E: Life-Cycle Cost Analysis

No LCCA conducted for any Pavement or Bridge candidate solutions on the SR 347/SR 84 corridor

Appendix F: Crash Modification Factors and Factored Unit Construction Costs

SOLUTION	CONSTRUCTION UNIT COST	UNIT	FACTOR^	FACTORED CONSTRUCTION UNIT COST	DESCRIPTION	CMF FOR CORRIDOR PROFILE STUDIES
REHABILITATION						
Rehabilitate Pavement (AC)	\$276,500	Mile	2.20	\$610,000	Mill and replace 1"-3" AC pavement; accounts for 38' width; for one direction of travel on two-lane roadway; includes pavement, striping, delineators, RPMs, rumble strips	0.70
Rehabilitate Bridge	\$65	SF	2.20	\$140	Based on deck area; bridge only - no other costs included	0.95
GEOMETRIC IMPROVEMENT						
Re-profile Roadway	\$974,500	Mile	2.20	\$2,140,000	Includes excavation of approximately 3", pavement replacement (AC), striping, delineators, RPMs, rumble strips, for one direction of travel on two-lane roadway (38' width)	0.70
Realign Roadway	\$2,960,000	Mile	2.20	\$6,510,000	All costs per direction except bridges; applicable to areas with small or moderate fills and cuts, minimal retaining walls	0.50
Improve Skid Resistance	\$675,000	Mile	2.20	\$1,490,000	Average cost of pavement replacement and variable depth paving to increase super-elevation; for one direction of travel on two-lane roadway; includes pavement, striping, delineators, RPMs, rumble strips	0.66
INFRASTRUCTURE						
IMPROVEMENT	-			•		
Reconstruct to Urban Section	\$1,000,000	Mile	2.20	\$2,200,000	Includes widening by 16' total (AC = 12'+2'+2') to provide median, curb & gutter along both side of roadway, single curb for median, striping (doesn't include widening for additional travel lane).	0.88
Construct Auxiliary Lanes (AC)	\$914,000	Mile	2.20	\$2,011,000	For addition of aux lane (AC) in one direction of travel; includes all costs except bridges; for generally at-grade facility with minimal walls and no major drainage improvements	0.78
Construct Climbing Lane (High)	\$3,000,000	Mile	2.20	\$6,600,000	In one direction; all costs except bridges; applicable to areas with large fills and cuts, retaining walls, rock blasting, steep slopes on both sides of road	0.75

CMF NOTES

Combination of rehabilitate pavement (0.92), striping, delineators, RPMs (0.77 for combination), and rumble strips (0.89) = 0.70

Assumed - should have a minor effect on crashes at the bridge

Assumed - this is similar to rehab pavement. This solution is intended to address vertical clearance at bridge, not profile issue; factor the cost as a ratio of needed depth to 3".

Based on Caltrans and NCDOT

Combination of average of 5 values from clearinghouse (0.77) and calculated value from HSM (0.87) for skid resistance; striping, delineators, RPMs (0.77 for combination), and rumble strips (0.89) = 0.66

From HSM

Average of 4 values from clearinghouse

From HSM

SOLUTION	CONSTRUCTION UNIT COST	UNIT	FACTOR^	FACTORED CONSTRUCTION UNIT COST	DESCRIPTION	CMF FOR CORRIDOR PROFILE STUDIES	CMF NOTES
Construct Climbing Lane (Medium)	\$2,250,000	Mile	2.20	\$4,950,000	In one direction; all costs except bridges; applicable to areas with medium or large fills and cuts, retaining 0.75 From HSM walls, rock blasting, steep slopes on one side of road		From HSM
Construct Climbing Lane (Low)	\$1,500,000	Mile	2.20	\$3,300,000	In one direction; all costs except bridges; applicable to areas with small or moderate fills and cuts, minimal retaining walls		From HSM
Construct Reversible Lane (Low)	\$2,400,000	Lane- Mile	2.20	\$5,280,000	All costs except bridges; applicable to areas with small or moderate fills and cuts, minimal retaining walls	0.73 for uphill and 0.88 for downhill	Based on proposed conditions on I-17 with 2 reversible lanes and a concrete barrier
Construct Reversible Lane (High)	\$4,800,000	Lane- Mile	2.20	\$10,560,000	All costs except bridges; applicable to areas with large fills and cuts, retaining walls, rock blasting, mountainous terrain	0.73 for uphill and 0.88 for downhill	Based on proposed conditions on I-17 with 2 reversible lanes and a concrete barrier
Construct Passing Lane	\$1,500,000	Mile	2.20	\$3,300,000	In one direction; all costs except bridges; applicable to areas with small or moderate fills and cuts, minimal retaining walls	0.63	Average of 3 values from clearinghouse
Construct Entry/Exit Ramp	\$730,000	Each	2.20	\$1,610,000	Cost per ramp; includes pavement, striping, signing, RPMs, lighting, typical earthwork & drainage; does not include any major structures or improvements on crossroad	1.09	Average of 16 values on clearinghouse; for adding a ramp not reconstructing. CMF applied to crashes 0.25 miles upstream/downstream from the gore.
Relocate Entry/Exit Ramp	\$765,000	Each	2.20	\$1,680,000	Cost per ramp; includes pavement, striping, signing, RPMs, lighting, typical earthwork, drainage and demolition of existing ramp; does not include any major structures or improvements on crossroad	1.00	Assumed to not add any crashes since the ramp is simply moving and not being added. CMF applied to crashes 0.25 miles upstream/downstream from the gore.
Construct Turn Lanes	\$42,500	Each	2.20	\$93,500	Includes 14' roadway widening (AC) for one additional turn lane (250' long) on one leg of an intersection; includes AC pavement, curb & gutter, sidewalk, ramps, striping, and minor signal modifications	urn lane (250' long) on one leg of an intersection; ncludes AC pavement, curb & gutter, sidewalk, ramps, 0.81	
Modify Entry/Exit Ramp	\$445,000	Each	2.20	\$979,000	RPMs, lighting, minor earthwork, & drainage; For 0.21 ramps) and equation Converting existing ramp to parallel type configuration		Average of 4 values from clearinghouse (for exit ramps) and equation from HSM (for entrance ramp). CMF applied to crashes within 1/8 mile upstream/downstream from the gore.
Widen & Modify Entry/Exit Ramp	\$619,000	Each	2.20	\$1,361,800	Cost per ramp; includes pavement, striping, signing, RPMs, lighting, minor earthwork, & drainage; For converting 1-lane ramp to 2-lane ramp and converting to parallel-type ramp	0.21	Will be same as "Modify Ramp"

SOLUTION	CONSTRUCTION UNIT COST	UNIT	FACTOR^	FACTORED CONSTRUCTION UNIT COST	DESCRIPTION	CMF FOR CORRIDOR PROFILE STUDIES	CMF NOTES	
Replace Pavement (AC) (with overexcavation)	\$1,446,500	Mile	2.20	\$3,180,000	Accounts for 38' width; for one direction of travel on two- lane roadway; includes pavement, overexcavation, striping, delineators, RPMs, rumble strips	0.70	Same as rehab	
Replace Pavement (PCCP) (with overexcavation)	\$1,736,500	Mile	2.20	\$3,820,000	Accounts for 38' width; for one direction of travel on two- lane roadway; includes pavement, overexcavation, striping, delineators, RPMs, rumble strips	0.70	Same as rehab	
Replace Bridge (Short)	\$125	SF	2.20	\$280	Based on deck area; bridge only - no other costs included; cost developed generally applies to bridges crossing small washes	0.95	Assumed - should have a minor effect on crashes at the bridge	
Replace Bridge (Medium)	\$160	SF	2.20	\$350	Based on deck area; bridge only - no other costs included; cost developed generally applies to bridges crossing over the mainline freeway, crossroads, or large washes	0.95	Assumed - should have a minor effect on crashes at the bridge	
Replace Bridge (Long)	\$180	SF	2.20	\$400	Based on deck area; bridge only - no other costs included; cost developed generally applies to bridges 0.95 crossing large rivers or canyons		Assumed - should have a minor effect on crashes at the bridge	
Widen Bridge	\$175	SF	2.20	\$390	Based on deck area; bridge only - no other costs included	0.90	Assumed - should have a minor effect on crashes at the bridge	
Install Pedestrian Bridge	\$135	SF	2.20	\$300	Includes cost to construct bridge based on linear feet of the bridge. This cost includes and assumes ramps and sidewalks leading to the structure.	0.1 (pedestrian only)	Assumed direct access on both sides of structure	
Implement Automated Bridge De- icing	\$115	SF	2.20	\$250	Includes cost to replace bridge deck and install system	0.72 (snow/ice)	Average of 3 values on clearinghouse for snow/ice	
Install Wildlife Crossing Under Roadway	\$650,000	Each	2.20	\$1,430,000	Includes cost of structure for wildlife crossing under roadway and 1 mile of fencing in each direction that is centered on the wildlife crossing	0.25 (wildlife)Assumed; CMF applies to wildlife-related cras within 0.5 miles both upstream and downstrea the wildlife crossing in both directions		
Install Wildlife Crossing Over Roadway	\$1,140,000	Each	2.20	\$2,508,000	0.25 vithin 0.5 miles both upstream ar (wildlife)		Assumed; CMF applies to wildlife-related crashes within 0.5 miles both upstream and downstream of the wildlife crossing in both directions	
Construct Drainage Structure - Minor	\$280,000	Each	2.20	\$616,000	Includes 3-36" pipes and roadway reconstruction (approx. 1,000 ft) to install pipes	0.70	Same as rehab; CMF applied to crashes 1/8 mile upstream/downstream of the structure	
Construct Drainage Structure - Intermediate	\$540,000	Each	2.20	\$1,188,000	Includes 5 barrel 8'x6' RCBC and roadway reconstruction (approx. 1,000 ft) to install RCBC	0.70	Same as rehab; CMF applied to crashes 1/8 mile upstream/downstream of the structure	

SOLUTION	CONSTRUCTION UNIT COST	UNIT	FACTOR^	FACTORED CONSTRUCTION UNIT COST	DESCRIPTION	CMF FOR CORRIDOR PROFILE STUDIES	CMF NOTES
Construct Drainage Structure - Major	\$8,000	LF	2.20	\$17,600	Includes bridge that is 40' wide and reconstruction of approx. 500' on each approach	0.70	Same as rehab; CMF applied to crashes 1/8 mile upstream/downstream of the structure
Install Acceleration Lane	\$127,500	Each	2.20	\$280,500	For addition of an acceleration lane (AC) on one leg of an intersection that is 1,000' long plus a taper; includes all costs except bridges; for generally at-grade facility with minimal walls and no major drainage improvements	0.85	Average of 6 values from the FHWA Desktop Reference for Crash Reduction Factors
OPERATIONAL IMPROVEMENT							
Implement Variable Speed Limits (Wireless, Overhead)	\$718,900	Mile	2.20	\$1,580,000	In one direction; includes 1 sign assembly per mile (foundation and structure), wireless communication, detectors	0.92	From 1 value from clearinghouse
Implement Variable Speed Limits (Wireless, Ground-mount)	\$169,700	Mile	2.20	\$373,300	In one direction; includes 2 signs per mile (foundations and posts), wireless communication, detectors	0.92	From 1 value from clearinghouse
Implement Variable Speed Limits (Wireless, Solar, Overhead)	\$502,300	Mile	2.20	\$1,110,000	In one direction; includes 1 sign assembly per mile (foundation and structure), wireless communication, detectors, solar power	0.92	From 1 value from clearinghouse
Implement Variable Speed Limits (Wireless, Solar, Ground-mount)	\$88,400	Mile	2.20	\$194,500	In one direction; includes 2 signs per mile (foundations and posts), wireless communication, detectors, solar power	0.92	From 1 value from clearinghouse
Implement Ramp Metering (Low)	\$25,000	Each	2.20	\$55,000	For each entry ramp location; urban area with existing ITS backbone infrastructure; includes signals, poles, timer, pull boxes, etc.	0.64	From 1 value from clearinghouse; CMF applied to crashes 0.25 miles after gore
Implement Ramp Metering (High)	\$150,000	Mile	2.20	\$330,000	Area without existing ITS backbone infrastructure; in addition to ramp meters, also includes conduit, fiber optic lines, and power	0.64	From 1 value from clearinghouse
Implement Signal Coordination	\$70,000	Mile	2.20	\$154,000	Includes conduit, conductors, and controllers for 2 intersections that span 1 mile	0.90	Assumed

SOLUTION	CONSTRUCTION UNIT COST	UNIT	FACTOR^	FACTORED CONSTRUCTION UNIT COST	DESCRIPTION	CMF FOR CORRIDOR PROFILE STUDIES	CMF NOTES	
Implement Left-Turn Phasing	\$7,500	Each	2.20	\$16,500	Includes four new signal heads (two in each direction) and associated conductors for one intersection	each direction) ersection 0.88 (protected) 0.98 (permitted/protected or protected/permitted) 0.98 (permitted/protected or protected/permitted) 0.98 (permitted/protected or protected/permitted) 0.99 (permitted/protected or protected/permitted approach. CMFs of diffe approaches should be multiplied together. C applied to crashes within intersection		
ROADSIDE DESIGN								
Install Guardrail	\$130,000	Mile	2.20	\$286,000	One side of road	0.62 (ROR)	0.62 is average of 2 values from clearinghouse	
Install Cable Barrier	\$80,000	Mile	2.20	\$176,000	In median	0.81	0.81 is average of 5 values from clearinghouse	
Widen Shoulder (AC)	\$256,000	Mile	2.20	\$563,000	Assumes 10' of existing shoulder (combined left and right), includes widening shoulder by a total of 4'; new pavement for 4' width and mill and replace existing 10' width; includes pavement, minor earthwork, striping edge lines, RPMs, high-visibility delineators, safety edge, and rumble strips	0.68 (1-4') 0.64 (>= 4')	0.86 is average of 5 values from clearing house for widening shoulder 1-4'. 0.76 is calculated from HSM for widening shoulder >= 4'. (Cost needs to be updated if dimension of existing and widened shoulder differ from Description.)	
Rehabilitate Shoulder (AC)	\$113,000	Mile	2.20	\$249,000	One direction of travel (14' total shoulder width-4' left and 10' right); includes paving (mill and replace), striping, high-visibility delineators, RPMs, safety edge, and rumble strips for both shoulders	0.72	0.98 is average of 34 values on clearinghouse for shoulder rehab/replace; include striping, delineators, RPMs (0.77 combined CMF), and rumble strips (0.89). (Cost needs to be updated if dimension of existing shoulder differs from Description.)	
Replace Shoulder (AC)	\$364,000	Mile	2.20	\$801,000	One direction of travel (14' total shoulder width-4' left and 10' right); includes paving (full reconstruction), striping, high-visibility delineators, RPMs, safety edge, and rumble strips for both shoulders	0.72	0.98 is average of 34 values on clearinghouse for shoulder rehab/replace; include striping, delineators, RPMs (0.77 combined CMF), and rumble strips (0.89). (Cost needs to be updated if dimension of existing shoulder differs from Description.)	
Install Rumble Strip	\$5,500	Mile	2.20	\$12,000	Both edges - one direction of travel; includes only rumble strip; no shoulder rehab or paving or striping	0.89	Average of 75 values on clearinghouse and consistent with HSM	
Install Centerline Rumble Strip	\$2,800	Mile	2.20	\$6,000	Includes rumble strip only; no pavement rehab or striping	0.85	From HSM	

SOLUTION	CONSTRUCTION UNIT COST	UNIT	FACTOR^	FACTORED CONSTRUCTION UNIT COST	DESCRIPTION	CMF FOR CORRIDOR PROFILE STUDIES	CMF NOTES
Install Wildlife Fencing	\$340,000	Mile	2.20	\$748,000	Fencing only plus jump outs for 1 mile (both directions)	0.50 (wildlife)	Assumed
Remove Tree/Vegetation	\$200,000	Mile	2.20	\$440,000	Intended for removing trees that shade the roadway to allow sunlight to help melt snow and ice (see Increase Clear Zone CMF for general tree/vegetation removal in clear zone)	0.72 (snow/ice)	Average of 3 values on clearinghouse for snow/ice
Increase Clear Zone	\$59,000	Mile	2.20	\$130,000	In one direction; includes widening the clear zone by 10' to a depth of 3'	0.71	Median of 14 values from FHWA Desktop Reference for Crash Reduction Values
Install Access Barrier Fence	\$15	LF	2.20	\$33	8' fencing along residential section of roadway	0.10 (pedestrian only)	Equal to pedestrian overpass
Install Rock-Fall Mitigation - Wire Mesh	\$1,320,000	Mile	2.20	\$2,904,000	Includes wire mesh and rock stabilization (one direction)	0.75 (debris)	Assumed
Install Rock-Fall Mitigation - Containment Fence & Barrier	\$2,112,000	Mile	2.20	\$4,646,000	Includes containment fencing, concrete barrier, and rock stabilization (one direction)	0.75 (debris)	Assumed
Install Raised Concrete Barrier in Median	\$650,000	Mile	2.20	\$1,430,000	Includes concrete barrier with associated striping and reflective markings; excludes lighting in barrier (one direction)	0.90 (Cross-median and head on crashes eliminated completely)	All cross median and head-on fatal or incapacitating injury crashes are eliminated completely; all remaining crashes have 0.90 applied
Formalize Pullout (Small)	\$7,500	Each	2.20	\$17,000	Includes paving and signage (signs, posts, and foundations) - approximately 4,200 sf	0.97	Assumed - similar to Install Other General Warning Signs; CMF applied to crashes within 0.25 miles after sign
Formalize Pullout (Medium)	\$27,500	Each	2.20	\$61,000	Includes paving and signage (signs, posts, and foundations) - approximately 22,500 sf	0.97	Assumed - similar to Install Other General Warning Signs; CMF applied to crashes within 0.25 miles after sign
Formalize Pullout (Large)	\$80,500	Each	2.20	\$177,100	Includes paving and signage (signs, posts, and foundations) - approximately 70,000 sf	0.97	Assumed - similar to Install Other General Warning Signs; CMF applied to crashes within 0.25 miles after sign
INTERSECTION IMPROVEMENTS	;						
Construct Traffic Signal	\$150,000	Each	2.20	\$330,000	4-legged intersection; includes poles, foundations, conduit, controller, heads, luminaires, mast arms, etc.	0.95	From HSM; CMF applied to crashes within intersection only
Improve Signal Visibility	\$35,000	Each	2.20	\$77,000	4-legged intersection; signal head size upgrade, installation of new back-plates, and installation of additional signal heads on new poles.	0.85	Average of 7 values from clearinghouse; CMF applied to crashes within intersection only

SOLUTION	CONSTRUCTION UNIT COST	UNIT	FACTOR^	FACTORED CONSTRUCTION UNIT COST	DESCRIPTION	CMF FOR CORRIDOR PROFILE STUDIES	CMF NOTES
Install Raised Median	\$360,000	Mile	2.20	\$792,000	Includes removal of 14' wide pavement and construction of curb & gutter; does not include cost to widen roadway to accommodate the median; if the roadway needs to be widened, include cost from New General Purpose Lane	0.83	Average from HSM
Install Transverse Rumble Strip/Pavement Markings	\$3,000	Each	2.20	\$7,000	Includes pedestrian markings and rumble strips only across a 30' wide travelway; no pavement rehab or other striping		Average of 17 values from clearinghouse; CMF applied to crashes within 0.5 miles after the rumble strips and markings
Construct Single-Lane Roundabout	\$1,500,000	Each	2.20	\$3,300,000	Removal of signal at 4-legged intersection; realignment of each leg for approx. 800 feet including paving, curbs, 0.22 sidewalk, striping, lighting, signing		From HSM; CMF applied to crashes within intersection only
Construct Double-Lane Roundabout	\$1,800,000	Each	2.20	\$3,960,000	Removal of signal at 4-legged intersection; realignment of each leg for approx. 800 feet including paving, curbs, sidewalk, striping, lighting, signing	0.40	From HSM; CMF applied to crashes within intersection only
ROADWAY DELINEATION							
Install High-Visibility Edge Line Striping	\$10,800	Mile	2.20	\$23,800	2 edge lines and lane line - one direction of travel		Average of 3 values from clearinghouse. Assumes package of striping, delineators, and RPMs. (If implemented separately, CMF will be higher.)
Install High-Visibility Delineators	\$6,500	Mile	2.20	\$14,300	Both edges - one direction of travel	0.77	Average of 3 values from clearinghouse. Assumes package of striping, delineators, and RPMs. (If implemented separately, CMF will be higher.)
Install Raised Pavement Markers	\$2,000	Mile	2.20	\$4,400	Both edges - one direction of travel		Average of 3 values from clearinghouse. Assumes package of striping, delineators, and RPMs. (If implemented separately, CMF will be higher.)
Install In-Lane Route Markings	\$6,000	Each	2.20	\$13,200	Installation of a series of three in-lane route markings in one lane	0.95	Assumed; CMF applied to crashes within 1.0 mile before the gore

SOLUTION			DESCRIPTION	CMF FOR CORRIDOR PROFILE STUDIES	CMF NOTES		
IMPROVED VISIBILITY				1			
Cut Side Slopes	\$80	LF	2.20	\$200	For small grading to correct sight distance issues; not major grading	0.85	Intent of this solution is to improve sight distance. Most CMF's are associated with vehicles traveling on slope. Recommended CMF is based on FDOT and NCDOT but is more conservative.
Install Lighting (connect to existing power)	\$270,000	Mile	2.20	\$594,000	One side of road only; offset lighting, not high-mast; does not include power supply; includes poles, luminaire, pull boxes, conduit, conductor0.75 (nig		Average of 3 values on clearinghouse & consistent with HSM
Install Lighting (solar powered LED)	\$10,000	Pole	2.20	\$22,000	Offset lighting, not high-mast; solar power LED; includes poles, luminaire, solar panel	0.75 (night)	Average of 3 values on clearinghouse & consistent with HSM
DRIVER			·				
INFORMATION/WARNING	1		T	1			
Install Dynamic Message Sign (DMS)	\$250,000	Each	2.20	\$550,000	Includes sign, overhead structure, and foundations; wireless communication; does not include power supply	1.00	Not expected to reduce crashes
Install Dynamic Weather Warning Beacons	\$40,000	Each	2.20	\$88,000	Assumes solar operation and wireless communication or connection to existing power and communication; ground mounted; includes posts, foundations, solar panel, and dynamic sign	0.80 (weather related)	Average of 3 values from FHWA Desktop Reference for Crash Reduction Factors; CMF applies to crashes within 0.25 miles after a sign
Install Dynamic Spæd Feedback Signs	\$25,000	Each	2.20	\$55,000	Assumes solar operation and no communication; ground mounted; includes regulatory sign, posts, foundations, solar panel, and dynamic sign	0.94	Average of 2 clearinghouse values; CMF applies to crashes within 0.50 miles after a sign
Install Chevrons	\$18,400	Mile	2.20	\$40,500	On one side of road - includes signs, posts, and foundations	0.79	Average of 11 clearinghouse values
Install Curve Warning Signs	\$2,500	Each	2.20	\$5,500	Includes 2 signs, posts, and foundations	0.83	Average of 4 clearinghouse values; CMF applies to crashes within 0.25 miles after a sign
Install Traffic Control Device Warning Signs (e.g., stop sign ahead, signal ahead, etc.)	\$2,500	Each	2.20	\$5,500	Includes 2 signs, posts, and foundations	0.85	FHWA Desktop Reference for Crash Reduction Factors; CMF applies to crashes within 0.25 miles after a sign
Install Other General Warning Signs (e.g., intersection ahead, wildlife in area, slow vehicles, etc.)	\$2,500	Each	2.20	\$5,500	Includes 2 signs, posts, and foundations	0.97	Assumed; CMF applies to crashes within 0.25 miles after a sign

SOLUTION	CONSTRUCTION UNIT COST	UNIT	FACTOR^	FACTORED CONSTRUCTION UNIT COST	DESCRIPTION	CMF FOR CORRIDOR PROFILE STUDIES	CMF NOTES
Install Wildlife Warning System	\$162,000	Each	2.20	\$356,400	Includes wildlife detection system at a designated wildlife crossing, flashing warning signs (assumes solar power), advance signing, CCTV (solar and wireless), game fencing for approximately 0.25 miles in each direction - centered on the wildlife crossing, and regular fencing for 1.0 mile in each direction - centered on the wildlife crossing.	0.50 (wildlife)	Assumed; CMF applies to wildlife-related crashes within 0.5 miles both upstream and downstream of the wildlife crossing in both directions
Install Warning Sign with Beacons	\$15,000	Each	2.20	\$33,000	In both directions; includes warning sign, post, and foundation, and flashing beacons (assumes solar power) at one location	0.75	FHWA Desktop Reference for Crash Reduction Factors for Installing Flashing Beacons as Advance Warning; CMF applies to crashes within 0.25 miles after a sign
Install Larger Stop Sign with Beacons	\$10,000	Each	2.20	\$22,000	In one direction; includes large stop sign, post, and foundation, and flashing beacons (assumes solar power) at one location	0.85/0.81	Use 0.85 for adding beacons to an existing sign; 0.81 for installing a larger sign with flashing beacons; CMF applies to intersection related crashes
DATA COLLECTION							
Install Roadside Weather Information System (RWIS)	\$60,000	Each	2.20	\$132,000	Assumes wireless communication and solar power, or connection to existing power and communications	1.00	Not expected to reduce crashes
Install Closed Circuit Television (CCTV) Camera	\$25,000	Each	2.20	\$55,000	Assumes connection to existing ITS backbone or wireless communication; does not include fiber-optic backbone infrastructure; includes pole, camera, etc.	1.00	Not expected to reduce crashes
Install Vehicle Detection Stations	\$15,000	Each	2.20	\$33,000	Assumes wireless communication and solar power, or connection to existing power and communications	1.00	Not expected to reduce crashes
Install Flood Sensors (Activation)	\$15,000	Each	2.20	\$33,000	Sensors with activation cabinet to alert through texting (agency)	1.00	Not expected to reduce crashes
Install Flood Sensors (Gates)	\$100,000	Each	2.20	\$220,000	Sensors with activation cabinet to alert through texting (agency) and beacons (public) plus gates	1.00	Not expected to reduce crashes
WIDEN CORRIDOR							
Construct New General Purpose Lane (PCCP)	\$1,740,000	Mile	2.20	\$3,830,000	For addition of 1 GP lane (PCCP) in one direction; includes all costs except bridges; for generally at-grade facility with minimal walls and no major drainage improvements	0.90	North Carolina DOT uses 0.90 and Florida DOT uses 0.87

CONSTRUCTION UNIT COST	UNIT	FACTOR^	FACTORED CONSTRUCTION UNIT COST	DESCRIPTION	CMF FOR CORRIDOR PROFILE STUDIES
\$1,200,000	Mile	2.20	\$2,640,000	For addition of 1 GP lane (AC) in one direction; includes all costs except bridges; for generally at-grade facility with minimal walls and no major drainage improvements	0.90
\$1,576,000	Mile	2.20	\$3,467,200	For expanding a 2-lane undivided highway to a 5-lane highway (4 through lanes with TWLTL), includes standard shoulder widths but no curb, gutter, or sidewalks	0.60
\$1,053,000	Mile	2.20	\$2,316,600	For adding a center turn lane (i.e., TWLTL); assumes symmetrical widening on both sides of the road; includes standard shoulder widths but no curb, gutter, or sidewalk	0.75
\$3,000,000	Mile	2.20	\$6,600,000	In both directions; one direction uses existing 2-lane road; other direction assumes addition of 2 new lanes (AC) with standard shoulders; includes all costs except bridges	0.67
\$6,000,000	Mile	2.20	\$13,200,000	In both directions; assumes addition of 2 new lanes (AC) with standard shoulders in each direction; includes all costs except bridges	0.67
\$10,000,000	Each	2.20	\$22,000,000	Assumes bridge width of 4 lanes (AC) with standard shoulders; includes abutments and bridge approaches; assumes vertical clearance of 23'4" + 6'8" superstructure	0.72 (All train-related crashes eliminated)
\$15,000,000	Each	2.20	\$33,000,000	Assumes underpass width of 4 lanes (AC) with standard shoulders; includes railroad bridge with abutments and underpass approaches; assumes vertical clearance of 16'6" + 6'6" superstructure	0.72 (All train-related crashes eliminated)
\$900,000	Mile	2.20	\$1,980,000	For addition of 1 HOV lane (AC) in one direction with associated signage and markings; includes all costs except bridges; for generally at-grade facility with minimal walls and no major drainage improvements	0.95
	UNIT COST \$1,200,000 \$1,576,000 \$1,053,000 \$3,000,000 \$6,000,000 \$10,000,000 \$15,000,000	UNIT COST UNIT \$1,200,000 Mile \$1,200,000 Mile \$1,576,000 Mile \$1,053,000 Mile \$3,000,000 Mile \$6,000,000 Mile \$10,000,000 Each \$15,000,000 Each	UNIT COST UNIT PACTOR** \$1,200,000 Mile 2.20 \$1,576,000 Mile 2.20 \$1,576,000 Mile 2.20 \$1,053,000 Mile 2.20 \$3,000,000 Mile 2.20 \$6,000,000 Mile 2.20 \$10,000,000 Mile 2.20 \$10,000,000 Each 2.20 \$15,000,000 Each 2.20	UNIT COST UNIT PACTOR* CONSTRUCTION UNIT COST \$1,200,000 Mile 2.20 \$2,640,000 \$1,576,000 Mile 2.20 \$3,467,200 \$1,053,000 Mile 2.20 \$2,316,600 \$3,000,000 Mile 2.20 \$2,316,600 \$3,000,000 Mile 2.20 \$6,600,000 \$6,000,000 Mile 2.20 \$13,200,000 \$10,000,000 Each 2.20 \$22,000,000 \$15,000,000 Each 2.20 \$33,000,000	CONSTRUCTION UNITUNITFACTOR*CONSTRUCTION UNIT COSTDESCRIPTION\$1,200,000Mile2.20\$2,640,000For addition of 1 CP Iane (AC) in one direction; includes all costs except bridges; for generally at-grade facility with minimal walls and no major drainage improvements\$1,576,000Mile2.20\$3,467,200For expanding a 2-lane undivided highway to a 5-lane highway (4 through lanes with TWLTL), includes standard shoulder withis but no curb, gutter, or sidewalks\$1,576,000Mile2.20\$3,467,200For expanding a center turn lane (i.e., TWLTL); assumes symmetrical widening on both sides of the road; includes standard shoulder widths but no curb, gutter, or sidewalks\$1,053,000Mile2.20\$2,316,600In both directions; one direction uses existing 2-lane or sidewalk\$3,000,000Mile2.20\$6,600,000In both directions; one direction uses existing 2-lane or sidewalk\$6,000,000Mile2.20\$13,200,000In both directions; assumes addition of 2 new lanes (AC) with standard shoulders; includes all costs except bridges\$10,000,000Each2.20\$22,000,000Assumes bridge width of 4 lanes (AC) with standard shoulders; includes rand or d1 lanes (AC) with standard shoulders; assumes vertical clearance of 186° superstructure\$10,000,000Each2.20\$33,000,000Assumes underpass width of 4 lanes (AC) with standard shoulders; assumes vertical clearance of 186° + 66° superstructure\$900,000Mile2.20\$1,980,000For addition of 1 HOV lane (AC) in one direction with associated signage and mar

 CMF NOTES
North Carolina DOT uses 0.90 and Florida DOT uses 0.88
Assumed to be slightly lower than converting from a 4-lane to a 5-lane highway
From FHWA Desktop Reference for Crash Reduction Factors, CMF Clearinghouse, and SR 87 CPS comparison
Assumed
Assumed
Removes all train-related crashes at at-grade crossing; all other crashes CMF = 0.72
Removes all train-related crashes at at-grade crossing; all other crashes CMF = 0.72
Similar to general purpose lane

SOLUTION	CONSTRUCTION UNIT COST	UNIT	FACTOR^	FACTORED CONSTRUCTION UNIT COST	DESCRIPTION	CMF FOR CORRIDOR PROFILE STUDIES	CMF NOTES
ALTERNATE ROUTE							
Construct Frontage Roads	\$2,400,000	Mile	2.20	\$5,280,000	For 2-lane AC frontage road; includes all costs except bridges; for generally at-grade facility with minimal walls	0.90	Assumed - similar to new general purpose lane
Construct 2-Lane Undivided Highway	\$3,000,000	Mile	2.20	\$6,600,000	In both directions; assumes addition of 2 new lanes (AC) with standard shoulders in each direction; includes all costs except bridges	0.90	Assuming new alignment for a bypass
OTHER IMPROVEMENTS			<u>.</u>				
Install Curb and Gutter	\$211,200	Mile	2.20	\$465,000	In both directions; curb and gutter	0.89	From CMF Clearinghouse
Install Sidewalks, Curb, and Gutter	\$475,200	Mile	2.20	\$1,045,000	In both directions; 5' sidewalks, curb, and gutter	0.89 installing sidewalk 0.24 (pedestrian crashes only)	From CMF Clearinghouse Average of 6 values from FHWA Desktop Reference
Install Sidewalks	\$264,000	Mile	2.20	\$581,000	In both directions; 5' sidewalks	0.24 (pedestrian crashes only)	Average of 6 values from FHWA Desktop Reference
Install Advanced Warning Signal System	\$108,000	each	2.20	\$238,000	Overhead static sign with flashing beacons, detectors, and radar system. Signs for each mainline approach of the intersection (2)	0.61	FHWA Desktop Reference for CRF
Install Indirect Left Turn Intersection	\$1,140,000	each	2.20	\$2,500,000	Raised concrete median improvements; intersection improvements; turn lanes	0.80	CMF Clearinghouse
Convert Standard Diamond Interchange to Diverging Diamond Interchange	\$2,272,700	each	2.20	\$5,000,000	Convert traditional diamond interchange into diverging diamond interchange; assumes re-use of existing bridges	0.67	CMF Clearinghouse
Install Adaptive Signal Control and Signal Coordination	\$363,500	mile	2.20	\$800,000	Controller upgrades, advanced detection, software configuration, cameras; includes conduit, conductors, and controllers for 4 intersections that span a total of approximately 2 miles for coordination	0.81 (adaptive control) 0.90 (signal coordination)	CMF Clearinghouse
Left-in Only Center Raised Median Improvements	\$84,100	each	2.20	\$185,000	Left-in only center raised median improvements	0.87	CMF Clearinghouse

^ Factor accounts for traffic control, erosion control, construction surveying and quality control, mobilization, construction engineering, contingencies, indirect cost allocation, and miscellaneous work

Appendix G: Performance Area Risk Factors

Pavement Performance Area

- Elevation
- Mainline Daily Traffic Volume •
- Mainline Daily Truck Volume

Elevation

Variance above 4000' divided by 1000; (Elev-4000)/1000

Score Condition

- < 4000' 0
- 0-5 4000'- 9000'
- 5 > 9000'

Mainline Daily Traffic Volume

Exponential equation; score = 5-(5*e^(ADT*-0.000039))

- Score Condition
- 0 < 6,000
- 0-5 6,000 - 160,000
- 5 >160,000

Mainline Daily Truck Volume

Exponential equation; score = $5-(5*e^{(ADT*-0.00025)})$

- Score Condition
- 0 <900
- 0-5 900-25,000
- 5 >25,000

Bridge Performance Area

- Mainline Daily Traffic Volume
- Elevation
- Carries Mainline Traffic

Mainline Daily Traffic Volume

Exponential equation; score = 5-(5*e^(ADT*-0.00039)) Score Condition 0 <6,000 0-5 6,000-160,000 5 >160,000 **Elevation** Variance above 4000' divided by 1000; (Elev-4000)/1000 Condition Score 0 < 4000' 0-5 4000'- 9000' 5 > 9000' Carries Mainline Traffic Score Condition 0 Does not carry mainline traffic 5 Carries mainline traffic Detour Length Divides detour length by 10 and multiplies by 2.5 Condition Score 0 0 miles 0-5 0-20 miles 5 > 20 miles Scour Critical Rating Variance below 8 Condition Score 0 Rating > 8 0-5 Rating 8 - 3 Rating < 3 5 Vertical Clearance Variance below 16' x 2.5; (16 –Clearance) x 2.5 Condition Score 0 >16' 0-5 16'-14' 5 <14'

- Detour Length
- Scour Critical Rating •
- Vertical Clearance •

- Mainline VMT
- Buffer Index (PTI-TTI) ٠
- Detour Length
- Outside Shoulder Width

Mainline VMT

Score	Condition
0	<16,000
0-5	16,000-400,000

5 >400,000

Buffer Index

Buffer	Index	х	10

Score	Condition
0	Buffer Index = 0.00
0-5	Buffer Index 0.00-0.50
5	Buffer Index > 0.50

Detour Length

Score	Condition
0	Detour < 10 miles
5	Detour > 10 miles

Outside Shoulder Width

Score	Condition
0	10' or above or >1 lane in each direction
~ -	

- 0-5 10'-5' and 1 lane in each direction
- 5 5' or less and 1 lane in each direction

Safety Performance Area

- Mainline Daily Traffic Volume
- Interrupted Flow •
- Elevation
- Outside Shoulder Width •
- Vertical Grade

Mainline Daily Traffic Volume

Exponential equation; score = $5-(5*e^{(ADT*-0.000039)})$			
Condition			
<6,000			
6,000-160,000			
>160,000			

Interrupted Flow

Score	Condition	Detour Length
0	Not interrupted flow	Score Co
5	Interrupted Flow	0 De

Elevation

Variance	above 4000' divided by 1000; (Elev-4000)/1000
Score	Condition
0	< 4000'
0-5	4000'- 9000'
5	> 9000'

Outside Shoulder Width

Variance	below 10'	
Score	Condition	
0	10' or above	
0-5	10' - 5'	
5	5' or less	

Grade

Variance above 3% x 1.5 Condition Score < 3% 0 0-5 3% - 6.33%

>6.33% 5

Freight Performance Area

- Detour Length

Mainline Daily Truck Volume

Exponentia	l equ
Score	Co
0	<90
0-5	900
5	>2

Score	Co
0	De
5	De

Truck Buffer Index

Truck Buffer	Inde
Score	Con
0	Buf
0-5	Buf
5	Buf

Outside Shoulder Width

Variance be	elow
Score	С
0	10
0-5	10
5	5'

• Mainline Daily Truck Volume • Truck Buffer Index (TPTI-TTTI) • Outside Shoulder Width

uation; score = $5 - (5 e^{(ADT^* - 0.00025)})$ ondition 900 0-25,000 25,000

ondition etour < 10 miles etour > 10 miles ex x 10

ndition ffer Index = 0.00ffer Index 0.00-0.50 Buffer Index > 0.50

10', if only 1 lane in each direction Condition 0' or above or >1 lane in each direction 0'-5' and 1 lane in each direction 5' or less and 1 lane in each direction

Solution Number	Mainline Traffic Vol (vpd) (2-way)	Solution Length (miles)	Bridge Detour Length (miles) (N19)	Elevation (ft)	Scour Critical Rating (0-9)	Carries Mainline Traffic (Y/N)	Bridge Vert. Clear (ft)	Mainline Truck Vol (vpd) (2-way)	Detour Length > 10 miles (Y/N)	Truck Buffer Index	Non- Truck Buffer Index	Grade (%)	Interrupted Flow (Y/N)	Outside/ Right Shoulder Width (ft)	1-lane each direction
CS347.1	5,627	9.00		1,200				697	Y	2.17	2.65	0.1	N	9.9	N
CS347.2	25,286	1.20		1,150				1,645	Y	7.49	3.89	0.5	Y	8.0	N
CS347.3	40,126	8.00		1,150				3,491	Y	7.43	1.53	0.5	Y	9.6	N
CS347.4	40,126	8.00		1,150				3,491	Y	7.43	1.53	0.5	Y	9.6	N
CS347.5	36,806	3.19		1,150				3,286	Y	5.79	1.78	0.5	Y	9.1	N
CS347.6	36,806	5.38		1,150				3,286	Y	5.79	1.78	0.5	Y	9.1	N
CS347.7	36,806	0.25		1,150				3,286	N	5.79	1.78	0.5	Y	9.1	Ν

						Risk Score (0 to 10)							
Solution Number	Bridge	Pavement	Mobility	Safety	Freight	Bridge	Pavement	Mobility	Safety	Freight			
CS347.1	N	N	Y	Y	Y	0.00	0.00	6.26	0.43	5.40			
CS347.2	N	Y	Y	Y	Y	0.00	3.21	4.86	4.05	5.85			
CS347.3	N	N	Y	Y	Y	0.00	0.00	5.56	3.74	6.46			
CS347.4	N	Y	Y	Y	Y	0.00	4.57	5.56	3.74	6.46			
CS347.5	N	N	Y	Y	Y	0.00	0.00	5.20	3.88	6.13			
CS347.6	Ν	Y	Y	Y	Y	0.00	4.40	5.53	3.88	6.13			
CS347.7	N	N	Y	Y	Y	0.00	0.00	0.99	3.88	3.63			

Appendix H: Candidate Solution Cost Estimates

Candidate		Candidate						Factored	Preliminary	Design	Right-of-	Construction		
Solution #	Location #	Solution Name	Scope	BMP	EMP	Unit	Quantity	Construction Unit Cost	Engineering Cost	Cost	Way Cost	Cost	Total Cost	Notes
			Rehabilitate shoulders, NB	162	165	mi	3.0	\$249,000	\$22,000	\$75,000	\$0	\$747,000	\$844,000	Existing shoulder width, both directions: 10 ft. right and 4 ft. left
			Rehabilitate shoulders, NB	168	171	mi	3.0	\$249,000	\$22,000	\$75,000	\$0	\$747,000	\$844,000	Existing shoulder width, both directions: 10 ft. right and 4 ft. left
			Rehabilitate shoulders, SB	162	165	mi	3.0	\$249,000	\$22,000	\$75,000	\$0	\$747,000	\$844,000	Existing shoulder width, both directions: 10 ft. right and 4 ft. left
			Rehabilitate shoulders, SB	168	171	mi	3.0	\$249,000	\$22,000	\$75,000	\$0	\$747,000	\$844,000	Existing shoulder width, both directions: 10 ft. right and 4 ft. left
			Increase delineation, NB	165	168	mi	3.0	\$42,500	\$4,000	\$13,000	\$0	\$127,500	\$144,500	
			Install high-visibility edge line striping	-	-	mi	-	\$23,800	-	-	-	-	-	
CS347.1	L2	Ak-Chin Area Safety	Install high-visibility delineators	-	-	mi	-	\$14,300	-	-	-	-	-	
		Improvements	Install raised pavement markers	-	-	mi	-	\$4,400	-	-	-	-	-	
			Increase delineation, SB	165	168	mi	3.0	\$42,500	\$4,000	\$13,000	\$0	\$127,500	\$144,500	
			Install high-visibility edge line striping	-	-	mi	-	\$23,800	-	-	-	-	-	
			Install high-visibility delineators	-	-	mi	-	\$14,300	-	-	-	-	-	
			Install raised pavement markers	-	-	mi	-	\$4,400	-	-	-	-	-	
					1			Solution Total	\$96,000	\$326,000	\$0	\$3,243,000	\$3,665,000	
			Provide additional through lane (AC), NB	174.8	176.0	mi	1.2	\$2,640,000	\$95,000	\$317,000	\$0	\$3,168,000	\$3,580,000	
		Maricopa Area Mobility	Install raised median	174.8	175.5	mi	0.7	\$792,000	\$17,000	\$55,000	\$0	\$554,400	\$626,400	NB from MP 174.8 to Cobblestone Farms Dr/Lakeview Dr (where there is existing curbed raised median SB but not NB)
CS347.2	L4/L5	and Freight Improvements	Provide additional through lane (AC), SB	175.5	176.0	mi	0.5	\$2,640,000	\$40,000	\$132,000	\$0	\$1,320,000	\$1,492,000	
			Install raised concrete barrier in median	175.5	176.0	mi	0.5	\$1,430,000	\$21,000	\$72,000	\$0	\$715,000	\$808,000	From Cobblestone Farms Dr/Lakeview Dr north to MP 176 (no cross-median barrier existing - only earth median)
					•		•	Solution Total	\$173,000	\$576,000	\$0	\$5,757,000	\$6,506,000	

		Candidate						Factored	Preliminary		Right-of-	-		
Candidate Solution #	Location #	Solution Name	Scope	BMP	EMP	Unit	Quantity	Construction Unit Cost	Engineering Cost	Design Cost	Way Cost	Construction Cost	Total Cost	Notes
			Rehabilitate shoulders, NB	176	184	mi	8.0	\$249,000	\$60,000	\$199,000	\$0	\$1,992,000	\$2,251,000	Existing shoulder width, both directions: 10 ft. right and 4 ft. left
			Rehabilitate shoulders, SB	176	184	mi	8.0	\$249,000	\$60,000	\$199,000	\$0	\$1,992,000	\$2,251,000	Existing shoulder width, both directions: 10 ft. right and 4 ft. left
		Casa Blanca	Install advanced warning signal system with detectors and beacons at Casa Blanca intersection	17	8.4	each	1	\$238,000	\$7,000	\$24,000	\$0	\$238,000	\$269,000	
CS347.3	L6/L7/L8	Area Safety Improvements	Install advanced warning signal system with detectors and beacons at Cement Plant intersection	18	2.5	each	1	\$238,000	\$7,000	\$24,000	\$0	\$238,000	\$269,000	
			Lengthen NB deceleration lane to 300 ft., Cement Plant intersection	18	2.5	each	1	\$38,000	\$1,000	\$4,000	\$0	\$38,000	\$43,000	Modified Install Acceleration Lane cost to account for no sidewalk being installed and only 135 ft of additional lane instead of 1000 ft. Existing deceleration lane is 165 ft.
								Solution Total	\$135,000	\$450,000	\$0	\$4,498,000	\$5,083,000	
			Provide additional through lane (AC), NB	176.0	184.0	mi	8.0	\$2,640,000	\$634,000	\$2,112,000	\$0	\$21,120,000	\$23,866,000	
			Provide additional through lane (AC), SB	176.0	184.0	mi	8.0	\$2,640,000	\$634,000	\$2,112,000	\$0	\$21,120,000	\$23,866,000	
			Widen Gila River Bridge NB	18	1.8	sf	15024	\$390	\$176,000	\$586,000	\$0	\$5,859,360	\$6,621,360	Length 1252 ft; assuming widening by 12 ft.
			Widen Gila River Bridge SB	18	1.8	sf	15036	\$390	\$176,000	\$586,000	\$0	\$5,864,040	\$6,626,040	Length 1253 ft; assuming widening by 12 ft.
			Widen Santa Cruz Wash NB	17	8.3	sf	1968	\$390	\$23,000	\$77,000	\$0	\$767,520	\$867,520	Length 164 ft; assuming widening by 12 ft.
		Casa Blanca	Widen Santa Cruz Wash SB	17	8.3	sf	1980	\$390	\$23,000	\$77,000	\$0	\$772,200	\$872,200	Length 165 ft; assuming widening by 12 ft.
CS347.4	L6/L8	Area Mobility and Freight	Widen Santa Cruz Wash NB	17	6.2	sf	2916	\$390	\$34,000	\$114,000	\$0	\$1,137,240	\$1,285,240	Length 243 ft; assuming widening by 12 ft.
		Improvements	Widen Santa Cruz Wash SB	17	6.2	sf	2940	\$390	\$34,000	\$115,000	\$0	\$1,146,600	\$1,295,600	Length 245 ft; assuming widening by 12 ft.
			Install raised concrete barrier in median	176.0	184.0	mi	8.0	\$1,430,000	\$343,000	\$1,144,000	\$0	\$11,440,000	\$12,927,000	
			Construct 1200 ft. NB acceleration lane, Casa Blanca Road intersection	17	8.4	each	1	\$336,600	\$10,000	\$34,000	\$0	\$336,600	\$380,600	Modified Install Acceleration Lane cost to account for no sidewalk being installed and 1200 ft of additional lane instead of 1000 ft.
								Solution Total	\$2,087,000	\$6,957,000	\$0	\$69,564,000	\$78,608,000	

Candidate Solution #	Location #	Candidate Solution Name	Scope	BMP	EMP	Unit	Quantity	Factored Construction Unit Cost	Preliminary Engineering Cost	Design Cost	Right-of- Way Cost	Construction Cost	Total Cost	Notes
			Construct traffic signal, Maricopa Road intersection	18	7.5	each	1	\$660,000	\$20,000	\$66,000	\$0	\$660,000	\$746,000	Cost taken from WHP Circulation Study.
			Install advanced warning signal system with detectors and beacons at Maricopa Road intersection	187.5		each	1	\$238,000	\$7,000	\$24,000	\$0	\$238,000	\$269,000	
			Construct turn lane (SB) at Maricopa Road intersection	18	7.5	mi	0.04	\$2,316,600	\$3,000	\$9,000	\$0	\$87,750	\$99,750	Using 'Install Center Turn Lane' cost (includes widening of roadway/intersection but no curb, gutter, or sidewalk; assuming 200'
			Install lighting, Maricopa Road intersection	187.4	187.6	mi	0.5	\$594,000	\$9,000	\$30,000	\$0	\$297,000	\$336,000	Quantity doubled to light both sides of roadway.
CS347.5	L10/L11/L12	_12 Wild Horse Pass Area Safety Improvements	Install advanced warning signal system with detectors and beacons at Riggs Road intersection	18	5.3	each	1	\$238,000	\$7,000	\$24,000	\$0	\$238,000	\$269,000	
			Install dual left-turn lanes at Riggs Road, all approaches	18	5.3	mi	0.2	\$2,316,600	\$11,000	\$35,000	\$0	\$351,000	\$397,000	Using 'Install Center Turn Lane' cost (includes widening of roadway/intersection but no curb, gutter, or sidewalk; assuming 200' for each approach
			Rehabilitate shoulders, NB	184.0	189.4	mi	5.4	\$233,200	\$38,000	\$126,000	\$0	\$1,256,948	\$1,420,948	Modified to reflect existing shoulder width, both directions: 9 ft. and 4 ft.
			Rehabilitate shoulders, SB	184.0	189.4	mi	5.4	\$233,200	\$38,000	\$125,000	\$0	\$1,254,616	\$1,417,616	Modified to reflect existing shoulder width, both directions: 9 ft. and 4 ft.
				•		•		Solution Total	\$133,000	\$439,000	\$0	\$4,383,000	\$4,955,000	

Candidate Solution #	Location #	Candidate Solution Name	Scope	BMP	EMP	Unit	Quantity	Factored Construction Unit Cost	Preliminary Engineering Cost	Design Cost	Right-of- Way Cost	Construction Cost	Total Cost	Notes
			Provide additional through lane (AC), NB	184.0	189.4	mi	5.4	\$2,640,000	\$426,000	\$1,420,000	\$0	\$14,203,200	\$16,049,200	
			Provide additional through Iane (AC), SB	184.0	189.4	mi	5.4	\$2,640,000	\$426,000	\$1,420,000	\$0	\$14,203,200	\$16,049,200	
			Install raised concrete barrier in median	184.0	189.4	mi	5.4	\$1,430,000	\$231,000	\$769,000	\$0	\$7,693,400	\$8,693,400	
		Wild Horse Pass Area	Construct 1200 ft. SB acceleration lane at Maricopa Road intersection	18	7.5	each	1	\$336,600	\$10,000	\$34,000	\$0	\$336,600	\$380,600	Modified Install Acceleration Lane cost to account for no sidewalk being installed and 1200 ft of additional lane instead of 1000 ft.
CS347.6	L10/12	Mobility and Freight Improvements	Lengthen SB deceleration lane to 300 ft. at Maricopa Road intersection	18	7.5	each	1	\$39,270	\$1,000	\$4,000	\$0	\$39,270	\$44,270	Modified Install Acceleration Lane cost to account for no sidewalk being installed and only 140 ft of additional lane instead of 1000 ft. Existing deceleration lane is 160 ft.
			Construct 1200 ft. NB and SB acceleration lanes at Riggs Road Intersection	18	5.3	each	2	\$336,600	\$20,000	\$67,000	\$0	\$673,200	\$760,200	Modified Install Acceleration Lane cost to account for no sidewalk being installed and 1200 ft of additional lane instead of 1000 ft.
			Lengthen NB and SB deceleration lanes to 300 ft. at Riggs Road intersection	18	5.3	each	2	\$67,320	\$4,000	\$13,000	\$0	\$134,640	\$151,640	Modified Install Acceleration Lane cost to account for no sidewalk being installed and only 125 ft and 115 ft of additional lane instead of 1000 ft. Existing deceleration lane is 175 ft. NB and 185 ft. SB.
								Solution Total	\$1,118,000	\$3,727,000	\$0	\$37,283,510	\$42,129,000	
CS347.7	L10/L12	SR 347/I-10 Interchange Mobility and Freight	Construct diverging diamond interchange at SR 347/I-10 interchange	18	39	each	1	\$5,000,000	\$150,000	\$500,000	\$0	\$5,000,000	\$5,650,000	Cost taken from WHP Circulation Study.
		Improvements						Solution Total	\$150,000	\$500,000	\$0	\$5,000,000	\$5,650,000	

Appendix I: Performance Effectiveness Scores

Need Reduction

		Caluataria u	C6247.4	CC247-2	C6247.2	C5247.4	C5247 F	C6247 C	C 5247 7
		Solution # Description		CS347.2 Maricopa Area Mobility	CS347.3 Casa Blanca Area Safety	CS347.4 Casa Blanca Area	CS347.5 Wild Horse Pass Area	CS347.6 Wild Horse Pass Area	CS347.7 SR 347/I-10 Interchange
		Description	Improvements	and Freight	Improvements	Mobility and Freight	Safety Improvements	Mobility and Freight	Mobility and Freight
				Improvements		Improvements	····, . · · · ·	Improvements	Improvements
LEGEND:		Project Beg MP	162	174.8	176	176	184	184	189
- user en	tered value	Project End MP	171	176	184	184	189	189	189.25
	ed value for								
referenc		Project Length (miles)	9	1.2	8	8	3.19	5.38	0.25
	ed value for e in other								
spreadsh		Segment Beg MP	162	171	176	176	184	184	184
- for inpu		Segment beg Wir	102	1/1	170	170	104	104	104
Performa									
Effective	ness Score	Segment End MP	171	176	184	184	189.38	189.38	189.38
- assume	d values (do								
not mod	ify)	Segment Length (miles)	9	5	8	8	5.38	5.38	5.38
		Segment #		347-3	347-4	347-4	347-5	347-5	347-5
N/E	Direction 1	Current # of Lanes (both directions)	4	4	4	4	4	4	4
s/w	Direction 2	Project Type (one-way or two-way)		two-way	two-way	two-way	two-way	two-way	two-way
		Additional Lanes (one-way) Pro-Rated # of Lanes		1 4.48	0 4.00	1 6.00	0 4.00	1 6.00	0 4.00
			4.00	4.40	4.00	0.00	4.00	0.00	4.00
		Description Orig Segment Directional Safety Index (direction 1)	1.107	0.061	0.568	0.568	1.003	1.003	1.003
		Orig Segment Directional Safety Index (direction 1) Orig Segment Directional Fatal Crashes (direction 1)	1.107	0.061	1	0.568	1.005	1.005	1.005
		Orig Segment Directional Incap Crashes (direction 1)	0	1	2	2	5	5	5
		Original Fatal Crashes in project limits (direction 1)	1	0	1	1	1	1	0
		Original Incap Crashes in project limits (direction 1)	0	1	2	2	5	5	0
		CMF 1 (direction 1)(lowest CMF)							0.67
		CMF 2 (direction 1)	Total CMF calculated in	Total CMF calculated in	Total CMF calculated in	Total CMF calculated in	Total CMF calculated in	Total CMF calculated in	1
		CMF 3 (direction 1)	separate worksheet	separate worksheet	separate worksheet	separate worksheet	separate worksheet	separate worksheet	1
		CMF 4 (direction 1)							1
		CMF 5 (direction 1) Total CMF (direction 1)		-	-	-	-	-	0.670
		Fatal Crash reduction (direction 1)	0.180	0.000	0.500	0.145	0.463	0.145	0.000
		Incap Crash reduction (direction 1)	0.000	1.000	0.740	0.290	2.130	0.725	0.000
		Post-Project Segment Directional Fatal Crashes (direction 1)	0.820	0.000	0.500	0.855	0.537	0.855	1.000
	Ē	Post-Project Segment Directional Incap Crashes (direction 1)	0.000	0.000	1.260	1.710	2.870	4.275	5.000
	SAI	Post-Project Segment Directional Safety Index (direction 1)	0.908	0.000	0.293	0.485	0.548	0.857	1.003
	NAL	Post-Project Segment Directional Safety Index (direction 1)	0.908	0.000	0.293	0.485	0.548	0.857	1.003
≥	DIRECTIONAL SAFETY	Orig Segment Directional Safety Index (direction 2)	1.308	0.060	1.168	1.168	2.856	2.856	2.856
SAFETY	REC	Orig Segment Directional Fatal Crashes (direction 2) Orig Segment Directional Incap Crashes (direction 2)	1	0	2	2	3 12	3 12	3 12
S	ā	Original Fatal Crashes in project limits (direction 2)	5	0	2	2	3	3	0
		Original Incap Crashes in project limits (direction 2)	3	0	5	5	12	12	0
		CMF 1 (direction 2)(lowest CMF)							0.67
		CMF 2 (direction 2)	Total CMF calculated in	Total CMF calculated in	Total CMF calculated in	Total CMF calculated in	Total CMF calculated in	Total CMF calculated in	1
		CMF 3 (direction 2)	separate worksheet	separate worksheet	separate worksheet	separate worksheet	separate worksheet	separate worksheet	1
		CMF 4 (direction 2)	copinate nonkoneet	topa are nononeet			espanate montomeet		1
		CMF 5 (direction 2)							1
		Total CMF (direction 2) Fatal Crash reduction (direction 2)	- 0.230	- 0.000	- 0.480	- 0.290	- 1.240	- 0.483	0.670 0.000
		Incap Crash reduction (direction 2)	0.230	0.000	1.646	2.435	4.302	0.483	0.000
		Post-Project Segment Directional Fatal Crashes (direction 2)	0.770	0.000	1.520	1.710	1.760	2.517	3.000
		Post-Project Segment Directional Incap Crashes (direction 2)	2.460	1.000	3.354	2.565	7.698	10.260	12.000
		Post-Project Segment Directional Safety Index (direction 2)	1.018	0.060	0.872	0.940	1.710	2.406	2.856
		Post-Project Segment Directional Safety Index (direction 2)	1.018	0.060	0.872	0.940	1.710	2.406	2.856
	SAFE TY INDE X	Current Safety Index	1.208	0.061	0.868	0.868	1.930	1.930	1.930
	S L N		0.963	0.030	0.583	0.713	1.129	1.632	1.930
	Needs	Original Segment Safety Need	2.333	0.040	1.184	1.184	5.172	5.172	5.172
		Post-Project Segment Safety Need	0.951	0.020	0.880	0.977	2.175	4.024	No Change
									2 247/SP 84 Co

SR 347/SR 84 Corridor Profile Study Final Report

		Solution #	CS347.1	CS347.2	C\$347.3	CS347.4	CS347.5	CS347.6	CS347.7
		Description	Ak-Chin Area Safety	Maricopa Area Mobility	Casa Blanca Area Safety	Casa Blanca Area	Wild Horse Pass Area	Wild Horse Pass Area	SR 347/I-10 Interchan
		Description	Improvements	and Freight	Improvements	Mobility and Freight	Safety Improvements	Mobility and Freight	Mobility and Freigh
			improvements	Improvements	improvements	Improvements	Sarety improvements	Improvements	Improvements
GEND:		Project Beg MP	162	174.8	176	176	184	184	189
	ered value	Project Beg Mir	102	174.8	170	170	189	184	189.25
	d value for		1/1	170	104	104	105	105	105.25
ference		Project Length (miles)	9	1.2	8	8	3.19	5.38	0.25
	d value for		-		-	-			
ntry/use	in other								
readshe	et	Segment Beg MP	162	171	176	176	184	184	184
or input	into								
erformar	nce								
fectiven	ess Score	Segment End MP	171	176	184	184	189.38	189.38	189.38
issumed	values (do								
t modif	y)	Segment Length (miles)	9	5	8	8	5.38	5.38	5.38
		Segment #	347-2	347-3	347-4	347-4	347-5	347-5	347-5
	Direction 1	Current # of Lanes (both directions)	4	4	4	4	4	4	4
Ν	Direction 2	Project Type (one-way or two-way)	two-way	two-way	two-way	two-way	two-way	two-way	two-way
		Additional Lanes (one-way)	0	1	0	1	0	1	0
		Pro-Rated # of Lanes	4.00	4.48	4.00	6.00	4.00	6.00	4.00
		Description							
	≥	Original Segment Mobility Index	0.11	1.03	1.47	1.47	1.35	1.35	1.35
	MOBILITY INDEX	Post-Project # of Lanes (both directions)	4.00	4.34	4.00	6.00	4.00	6.00	4.00
	INE	Post-Project Segment Mobility Index	0.11	0.95	1.47	0.93	1.35	0.82	1.13
		Post-Project Segment Mobility Index	0.11	0.95	1.47	0.93	1.35	0.82	1.13
	v/c	Original Segment Future V/C	0.14	1.33	1.75	1.75	1.61	1.61	1.61
	FUT	Post-Project Segment Future V/C	0.14	1.23	1.75	1.11	1.61	0.98	1.35
	FL	Post-Project Segment Future V/C	0.14	1.23	1.75	1.11	1.61	0.98	1.35
	0	Original Segment Peak Hour V/C (direction 1)	0.06	0.63	1.01	1.01	0.90	0.90	0.90
	PEAK HOUR V/C	Original Segment Peak Hour V/C (direction 2)	0.06	0.63	1.03	1.03	0.89	0.89	0.89
	UR	Adjusted total # of Lanes for use in directional peak hr	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	우	Post-Project Segement Peak Hr V/C (direction 1)	0.06	0.58	1.01	0.64	0.90	0.55	0.75
	EAK	Post-Project Segement Peak Hr V/C (direction 2)	0.06	0.58	1.03	0.69	0.89	0.54	0.74
	E	Post-Project Segment Peak Hr V/C (direction 1)	0.06	0.58	1.01	0.64	0.90	0.55	0.75
		Post-Project Segment Peak Hr V/C (direction 2)	0.06	0.58	1.03	0.69	0.89	0.54	0.74
		Safety Reduction Factor	0.798	0.497	0.671	0.821	0.585	0.846	1.000
		Safety Reduction Mobility Reduction Factor	0.202	0.503 0.922	0.329 1.000	0.179 0.633	0.415 1.000	0.154 0.607	0.000 0.837
		Mobility Reduction	0.000	0.922	0.000	0.367	0.000	0.393	0.163
		Mobility effect on TTI	0.30	0.30	0.30	0.30	0.30	0.30	0.30
		Mobility effect on PTI	0.20	0.20	0.20	0.20	0.20	0.20	0.20
		Safety effect on TTI	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	F	Safety effect on PTI	0.30	0.30	0.30	0.30	0.30	0.30	0.30
>	AND PTI	Original Directional Segment TTI (direction 1)	1.217	1.435	1.239	1.239	1.160	1.160	1.160
E I	AN	Original Directional Segment PTI (direction 1)	4.719	6.131	3.247	3.247	3.047	3.047	3.047
мовігіту	E	Original Directional Segment TTI (direction 2)	1.258	1.428	1.187	1.187	1.154	1.154	1.154
Σ		Original Directional Segment PTI (direction 2)	3.063	4.509	2.242	2.242	2.832	2.832	2.832
		Reduction Factor for Segment TTI	0.000	0.023	0.000	0.110	0.000	0.118	0.049
		Reduction Factor for Segment PTI	0.061	0.167	0.099	0.127	0.124	0.125	0.033
		Post-Project Directional Segment TTI (direction 1)	1.217	1.402	1.239	1.103	1.160	1.023	1.103
		Post-Project Directional Segment PTI (direction 1)	4.433	5.110	2.927	2.834	2.668	2.667	2.948
		Post-Project Directional Segment TTTI (direction 2)	1.258	1.395	1.187	1.056	1.154	1.018	1.097
		Post-Project Directional Segment TPTI (direction 2)	2.877	3.758	2.021	1.957	2.480	2.479	2.740
		Orig Segment Directional Closure Extent (direction 1)	0.089	0.160	0.238	0.238	0.608	0.608	0.608
	F	Orig Segment Directional Closure Extent (direction 2)	0.133	0.120	0.150	0.150	0.120	0.120	0.120
	TEN	Segment Closures with fatalities/injuries	10	7	13	13	17	17	17
	EX	Total Segment Closures	10	7	14	14	18	18	18
	CLOSURE EXTENT	% Closures with Fatality/Injury	1.00	1.00	0.93	0.93	0.94	0.94	0.94
	OSI	Closure Reduction	0.202	0.503	0.305	0.166	0.392	0.146	0.000
	Ъ	Closure Reduction Factor	0.798	0.497	0.695	0.834	0.608	0.854	1.000
		Post-Project Segment Directional Closure Extent (direction 1)	0.071	0.079	0.165	0.198	0.370	0.519	0.608
		Post-Project Segment Directional Closure Extent (direction 2)	0.106	0.060	0.104	0.125	0.073	0.103	0.120
	ш –	Orig Segment Bicycle Accomodation %	100.0%	43.0%	98.0%	98.0%	98.0%	98.0%	98.0%
	S CL	Orig Segment Outside Shoulder width	9.9	4.5	9.8	9.8	9.1	9.1	9.1
	BICYCLE ACCOM	Post-Project Segment Outside Shoulder width	9.9	4.5	9.8	9.8	9.1	9.1	9.1
		Post-Project Segment Bicycle Accomodation (%)	100.0%	43.0%	98.0%	98.0%	98.0%	98.0%	98.0%
		Post-Project Segment Bicycle Accomodation (%)	100.0%	43.0%	98.0%	98.0%	98.0%	98.0%	98.0%
	Needs	Original Segment Mobility Need	0.392	5.350	10.214	10.214	9.074	9.074	9.074
		Post-Project Segment Mobility Need	0.355	4.383	10.190	4.602	8.917	3.585	6.733

		Solution #	C\$347.1	C\$347.2	CS347.3	CS347.4	CS347.5	CS347.6	C\$347.7
		Description		Maricopa Area Mobility	Casa Blanca Area Safety	Casa Blanca Area	Wild Horse Pass Area	Wild Horse Pass Area	SR 347/I-10 Interchang
		Description							
			Improvements	and Freight	Improvements	Mobility and Freight	Safety Improvements	Mobility and Freight	Mobility and Freight
			462	Improvements	476	Improvements	404	Improvements	Improvements
EGEND:		Project Beg MP	162	174.8	176	176	184	184	189
user enter		Project End MP	171	176	184	184	189	189	189.25
calculated									
eference o		Project Length (miles)	9	1.2	8	8	3.19	5.38	0.25
	l value for								
ntry/use ir									
oreadshee	et	Segment Beg MP	162	171	176	176	184	184	184
for input i	nto								
erformanc	ce								
fectivene	ess Score	Segment End MP	171	176	184	184	189.38	189.38	189.38
assumed v	values (do								
ot modify)		Segment Length (miles)	9	5	8	8	5.38	5.38	5.38
,,	,	Segment #	347-2	347-3	347-4	347-4	347-5	347-5	347-5
/E D	Direction 1	Current # of Lanes (both directions)	4	4	4	4	4	4	4
	Direction 2	Project Type (one-way or two-way)	two-way	two-way	two-way	two-way	two-way	two-way	two-way
vv D				1	0	1	0	two-way	-
		Additional Lanes (one-way)		_	-	_		_	0
		Pro-Rated # of Lanes	4.00	4.48	4.00	6.00	4.00	6.00	4.00
		Description							
		Mobility effect on TTTI	0.15	0.15	0.15	0.15	0.15	0.15	0.15
		Mobility effect on TPTI	0.10	0.10	0.10	0.10	0.10	0.10	0.10
		Safety effect on TTTI	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		Safety effect on TPTI	0.15	0.15	0.15	0.15	0.15	0.15	0.15
		Original Directional Segment TTTI (direction 1)	1.142	1.498	1.456	1.456	1.422	1.422	1.422
	E	Original Directional Segment TPTI (direction 1)	3.728	7.997	10.533	10.533	9.176	9.176	9.176
	Ĕ	Original Directional Segment TTTI (direction 2)	1.258	1.582	1.339	1.339	1.300	1.300	1.300
	ITTI AND TPTI	Original Directional Segment TPTI (direction 2)	3.008	10.057	7.118	7.118	5.125	5.125	5.125
	Ē	Reduction Factor for Segment TTTI (both directions)	0.000	0.012	0.000	0.055	0.000	0.059	0.024
	F		0.030	0.083	0.000	0.064	0.062	0.062	0.024
		Reduction Factor for Segment TPTI (both directions)							
		Post-Project Directional Segment TTTI (direction 1)	1.142	1.481	1.456	1.375	1.422	1.338	1.387
		Post-Project Directional Segment TPTI (direction 1)	3.615	7.331	10.014	9.864	8.604	8.603	9.026
		Post-Project Directional Segment TTTI (direction 2)	1.258	1.563	1.339	1.265	1.300	1.224	1.269
_		Post-Project Directional Segment TPTI (direction 2)	2.917	9.219	6.767	6.665	4.806	4.805	5.042
	×	Original Segment TPTI (direction 1)	3.728	7.997	10.533	10.533	9.176	9.176	9.176
	INDEX	Original Segment TPTI (direction 2)	3.008	10.057	7.118	7.118	5.125	5.125	5.125
노	L H	Original Segment Freight Index	0.297	0.111	0.113	0.113	0.140	0.140	0.140
В		Post-Project Segment TPTI (direction 1)	3.615	7.331	10.014	9.864	8.604	8.603	9.026
FREIG	FREIG	Post-Project Segment TPTI (direction 2)	2.917	9.219	6.767	6.665	4.806	4.805	5.042
ш.	ш	Post-Project Segment Freight Index	0.306	0.121	0.119	0.121	0.149	0.149	0.142
		Orig Segment Directional Closure Duration (dir 1)	13.333	29.160	40.587	40.587	106.800	106.800	106.800
	z	Orig Segment Directional Closure Duration (dir 2)	24.267	9.400	20.250	20.250	10.960	10.960	10.960
	DURATION	Segment Closures with fatalities	10	7	13	13	17	17	17
	RA'	Total Segment Closures	10	7	14	14	18	18	18
	DQ	% Closures with Fatality	1.00	1.00	0.93	0.93	0.94	0.94	0.94
		Closure Reduction	0.202	0.503	0.305	0.166	0.392	0.146	0.000
	CLOSURE								
	CLO	Closure Reduction Factor	0.798	0.497	0.695	0.834	0.608	0.854	1.000
	3	Post-Project Segment Directional Closure Duration (direction 1)	10.634	14.481	28.199	33.847	64.941	91.238	106.800
		Post-Project Segment Directional Closure Duration (direction 2)	19.354	4.668	14.069	16.887	6.664	9.363	10.960
		Original Segment Vertical Clearance	No UP	No UP	No UP	No UP	No UP	No UP	No UP
	ل ت «	Original vertical clearance for specific bridge	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	VERT CLR	Post-Project vertical clearance for specific bridge	No Change	No Change	No Change	No Change	No Change	No Change	No Change
		Post-Project Segment Vertical Clearance	No Change	No Change	No Change	No Change	No Change	No Change	No Change
		Post-Project Segment Vertical Clearance	No Change	No Change	No Change	No Change	No Change	No Change	No Change
	Nerde	Original Segment Freight Need	0.594	3.400	3.345	3.345	3.061	3.061	3.061
	Needs	Post-Project Segment Freight Need	0.543	3.212	3.238	3.207	2.791	2.873	2.421

SR 347/SR 84 Corridor Profile Study Final Report

		Solution #	CS347.1	C\$347.2	C\$347.3	CS347.4	CS347.5	CS347.6	CS347.7
		Description	Ak-Chin Area Safety	Maricopa Area Mobility	Casa Blanca Area Safety	Casa Blanca Area	Wild Horse Pass Area	Wild Horse Pass Area	SR 347/I-10 Interchan
		Description	Improvements	and Freight	Improvements	Mobility and Freight	Safety Improvements	Mobility and Freight	Mobility and Freigh
			improvements	Improvements	improvements	Improvements	Safety improvements	Improvements	Improvements
GEND:		Project Beg MP	162	174.8	176	176	184	184	189
	tered value	Project End MP	102	174.8	176	176	189	189	189.25
	ted value for	Project End MP	1/1	1/0	104	104	109	109	169.25
		Draight Longth (miles)	9	1.2	8	8	3.19	5.38	0.25
	ce only ted value for	Project Length (miles)	9	1.2	ð	8	3.19	5.38	0.25
	se in other								
readsh		Segment Beg MP	162	171	176	176	184	184	184
	ut into	Segment beg MP	102	1/1	1/0	1/0	104	104	104
rform									
	eness Score	Segment End MP	171	176	184	184	189.38	189.38	189.38
		Segment Lite Wr	1/1	170	104	104	105.50	105.50	105.50
	ed values (do		0	_	0	0	5.00	5.00	5.00
: mod	lity)	Segment Length (miles)	9	5	8	8	5.38	5.38	5.38
_		Segment #	347-2	347-3	347-4	347-4	347-5	347-5	347-5
	Direction 1	Current # of Lanes (both directions)	4	4	4	4	4	4	4
/	Direction 2	Project Type (one-way or two-way)	two-way	two-way	two-way	two-way	two-way	two-way	two-way
		Additional Lanes (one-way)	0	1	0	1	0	1	0
		Pro-Rated # of Lanes	4.00	4.48	4.00	6.00	4.00	6.00	4.00
		Description							
		Original Segment Bridge Index	No Change	No Change	No Change	No Change	No Change	No Change	No Change
		Original lowest rating for specific bridge	No Change	No Change	No Change	No Change	No Change	No Change	No Change
	BRIDGE INDEX	Post-Project lowest rating for specific bridge	No Change	No Change	No Change	No Change	No Change	No Change	No Change
		Post-Project lowest rating for specific bridge	No Change	No Change	No Change	No Change	No Change	No Change	No Change
	— —	Post-Project Segment Bridge Index	No Change	No Change	No Change	No Change	No Change	No Change	No Change
		Post-Project Segment Bridge Index	No Change	No Change	No Change	No Change	No Change	No Change	No Change
		Original Segment Sufficiency Rating	No Change	No Change	No Change	No Change	No Change	No Change	No Change
BRIDGE		Original Sufficiency Rating for specific bridge	No Change	No Change	No Change	No Change	No Change	No Change	No Change
	SUFF RATING	Post-Project Sufficiency Rating for specific bridge	No Change	No Change	No Change	No Change	No Change	No Change	No Change
	SUFF	Post-Project Sufficiency Rating for specific bridge	No Change	No Change	No Change	No Change	No Change	No Change	No Change
	~~ 2	Post-Project Segment Sufficiency Rating	No Change	No Change	No Change	No Change	No Change	No Change	No Change
8		Post-Project Segment Sufficiency Rating	No Change	No Change	No Change	No Change	No Change	No Change	No Change
		Original Segment Bridge Rating	No Change	· · ·	· · · · · ·	· · · · ·	· ·	· · · · ·	· · · · ·
	BR RTNG			No Change No Change	No Change	No Change	No Change	No Change	No Change
	BT	Post-Project Segment Bridge Rating	No Change		No Change	No Change	No Change	No Change	No Change
		Post-Project Segment Bridge Rating	No Change	No Change	No Change	No Change	No Change	No Change	No Change
	% FUN OB	Original Segment % Functionally Obsolete	No Change	No Change	No Change	No Change	No Change	No Change	No Change
	н 20	Post-Project Segment % Functionally Obsolete	No Change	No Change	No Change	No Change	No Change	No Change	No Change
	-	Post-Project Segment % Functionally Obsolete	No Change	No Change	No Change	No Change	No Change	No Change	No Change
	Needs	Original Segment Bridge Need	No Change	No Change	No Change	No Change	No Change	No Change	No Change
		Post-Project Segment Bridge Need	No Change	No Change	No Change	No Change	No Change	No Change	No Change
		Original Segment Pavement Index	No Change	3.602	No Change	3.946	No Change	3.971	No Change
		Original Segment IRI in project limits	No Change	94.49	No Change	65.27	No Change	67.05	No Change
	5	Original Segment Cracking in project limits	No Change	10	No Change	4.56	No Change	2.9	No Change
	μ E Ξ	Post-Project IRI in project limits	No Change	30 or 45	No Change	30 or 45	No Change	30 or 45	No Change
	PAVEMENT INDEX	Post-Project IRI in project limits	No Change	30 or 45	No Change	30 or 45	No Change	30 or 45	No Change
	PA	Post-Project Cracking in project limits	No Change	0	No Change	0	No Change	0	No Change
		Post-Project Cracking in project limits	No Change	0	No Change	0	No Change	0	No Change
		Post-Project Segment Pavement Index	No Change	3.780	No Change	4.508	No Change	4.508	No Change
		Post-Project Segment Pavement Index	No Change	3.780	No Change	4.508	No Change	4.508	No Change
PAVEMENT		Original Segment Directional PSR (direction 1)	No Change	3.215	No Change	3.857	No Change	3.761	No Change
Ē		Original Segment Directional PSR (direction 2)	No Change	3.590	No Change	3.953	No Change	4.027	No Change
	NC	Original Segment IRI in project limits	No Change	94.49	No Change	65.27	No Change	67.05	No Change
2	DIRECTION	Post-Project directional IRI in project limits	No Change	30 or 45	No Change	30 or 45	No Change	30 or 45	No Change
	REC P	Post-Project Segment Directional PSR (direction 1)	No Change	3.411	No Change	4.297	No Change	4.297	No Change
		Post-Project Segment Directional PSR (direction 2)	No Change	3.650	No Change	4.297	No Change	4.297	No Change
		Post-Project Segment Directional PSR (direction 1)	No Change	3.411	No Change	4.297	No Change	4.297	No Change
		Post-Project Segment Directional PSR (direction 2)	No Change	3.650	No Change	4.297	No Change	4.297	No Change
		Original Segment % Failure	No Change	29.2%	No Change	0.0%	No Change	10.0%	No Change
	FAIL	Post-Project Segment % Failure	No Change	29.2%	No Change	0.0%	No Change	0.0%	No Change
	. 5	Post-Project Segment % Failure	No Change	29.2%	No Change	0.0%	No Change	0.0%	No Change
	Needs	Original Segment Pavement Need	No Change	0.676	No Change	0	No Change	0.1	No Change
		Post-Project Segment Pavement Need	No Change	0.606	No Change	0	No Change	0.0	No Change

SR 347/SR 84 Corridor Profile Study Final Report

CMF Application

														=user inpu	1
CS347.1	(MP 162-1	7 <u>1)</u>					-	.	A 11 1						
-		01154	01450	01450	01154	D /	Effective		Segment Limits		olution Limits		on Crashes		eduction
BMP	EMP	CMF1	CMF2	CMF3	CMF4	Dir	CMF	Fatal	Incap	Fatal	Incap	Fatal	Incap	Fatal	Incap
162	165	0.76	1 1	1 1	1	NB/EB	0.760					0.000	0.000	0.000	0.000
162 165	165 168	0.76 0.77	1	1	1 1	SB/WB NB/EB	0.760 0.770					0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000
165	168	0.77	1	1	1	SB/WB	0.770			1			0.000	0.000	0.000
165	100	0.77	1	1	1	NB/EB	0.770			1		0.770 0.820	0.000	0.230	0.000
168	171	0.82	1	1	1	SB/WB	0.820			'	3	0.020	2.460	0.000	0.540
100	17.1	0.02		•		NB/EB	0.020	1	0	1	0	0.820	0.000	0.000	0.040
						SB/WB		1	3	1	3	0.770	2.460	0.230	0.540
CS347.2	(MP 174-1	76)													
ВМР	EMP	CMF1	CMF2	CMF3	CMF4	Dir	Effective CMF	Crashes in Fatal	Segment Limits Incap	Crashes in S Fatal	olution Limits Incap	Post-Soluti Fatal	on Crashes Incap	otal Crasl Fatal	n Reducti Incap
174.8	175.5	0.83	0.9	1	1	NB/EB	0.789	i atai	шсар	i atai	шсар	0.000	0.000	0.000	0.000
174.8	175.5	0.83	1	1	1	SB/WB	0.830					0.000	0.000	0.000	0.000
175.5	176.0	0.9	0.9	1	1	NB/EB	0.855				1			0.000	1.000
175.5	176.0	0.9	0.9		1	SB/WB	0.855					0.000	0.000	0.000	0.000
170.0	170.0	0.0	0.0	•	•	NB/EB	0.000	0	1		1	0.000	0.000	0.000	1.000
						SB/WB		0	1			0.000	1.000	0.000	0.000
CS347.3	(MP 176-1	84)													
							Effective		Segment Limits		olution Limits		on Crashes		eduction
BMP	EMP	CMF1	CMF2	CMF3	CMF4	Dir	CMF	Fatal	Incap	Fatal	Incap	Fatal	Incap	Fatal	Incap
176	184	0.76	1	1	1	NB/EB	0.760				1	0.000	0.760	0.000	0.240
176	184	0.76	1	1	1	SB/WB	0.760			2	3	1.520	2.280	0.480	0.720
	8.4	0.61	0.76	1	1	NB/EB	0.537					0.000	0.000	0.000	0.000
	8.4	0.61	0.76	1	1	SB/WB	0.537				2	0.000	1.074	0.000	0.926
	2.5	0.61	0.76	0.85	1	NB/EB	0.500			1	1	0.500	0.500	0.500	0.500
18	2.5	0.61	0.76	0.85	1	SB/WB	0.500	4	0	1	0	0.000	0.000	0.000	0.000
						NB/EB SB/WB		1 2	2 5		2	0.500 1.520	1.260 3.354	0.500 0.480	0.740
									Э	2	5	1.520	3.354	0.400	1.646
CS347.4	(MP 176-1	84)						-	5	2	5	1.920	3.334	0.460	1.646
		-	OMES	OME2	CME4		Effective	Crashes in	Segment Limits	Crashes in S	olution Limits	Post-Soluti	on Crashes	Crash R	eduction
вмр	EMP	CMF1	CMF2	CMF3	CMF4	Dir	CMF				olution Limits Incap	Post-Soluti Fatal	ion Crashes Incap	Crash R Fatal	eduction Incap
BMP 176	EMP 184	CMF1 0.90	0.9	1	1	Dir NB/EB	CMF 0.855	Crashes in	Segment Limits	Crashes in S Fatal 1	olution Limits Incap 2	Post-Soluti Fatal 0.855	ion Crashes Incap	Crash R Fatal 0.145	eduction Incap 0.290
BMP 176 176	EMP 184 184	CMF1 0.90 0.90	0.9 0.9	1 1	1 1	Dir NB/EB SB/WB	CMF 0.855 0.855	Crashes in	Segment Limits	Crashes in S	olution Limits Incap	Post-Soluti Fatal 0.855 1.710	ion Crashes Incap 1.710 2.565	Crash R Fatal 0.145 0.290	eduction Incap 0.290 2.435
BMP 176 176 177	EMP 184 184 8.4	CMF1 0.90 0.90 0.85	0.9 0.9 0.9	1 1 0.9	1 1 1	Dir NB/EB SB/WB NB/EB	CMF 0.855 0.855 0.767	Crashes in	Segment Limits	Crashes in S Fatal 1	olution Limits Incap 2	Post-Soluti Fatal 0.855 1.710 0.000	ion Crashes Incap 1.710 2.565 0.000	Crash R Fatal 0.145 0.290 0.000	eduction Incap 0.290 2.435 0.000
BMP 176 176 177	EMP 184 184	CMF1 0.90 0.90	0.9 0.9	1 1	1 1	Dir NB/EB SB/WB NB/EB SB/WB	CMF 0.855 0.855	Crashes in Fatal	Segment Limits Incap	Crashes in S Fatal 1 2	olution Limits Incap 2 5	Post-Soluti Fatal 0.855 1.710 0.000 0.000	ion Crashes Incap 1.710 2.565 0.000 0.000	Crash R Fatal 0.145 0.290 0.000 0.000	eduction Incap 0.290 2.435 0.000 0.000
BMP 176 176 177	EMP 184 184 8.4	CMF1 0.90 0.90 0.85	0.9 0.9 0.9	1 1 0.9	1 1 1	Dir NB/EB SB/WB NB/EB	CMF 0.855 0.855 0.767	Crashes in	Segment Limits	Crashes in S Fatal 1	olution Limits Incap 2	Post-Soluti Fatal 0.855 1.710 0.000	ion Crashes Incap 1.710 2.565 0.000	Crash R Fatal 0.145 0.290 0.000	eduction Incap 0.290 2.435 0.000
BMP 176 176 177 177	EMP 184 184 8.4 8.4	CMF1 0.90 0.90 0.85 0.85	0.9 0.9 0.9	1 1 0.9	1 1 1	Dir NB/EB SB/WB NB/EB SB/WB NB/EB	CMF 0.855 0.855 0.767	Crashes in Fatal	Segment Limits Incap	Crashes in S Fatal 1 2 1	olution Limits Incap 2 5	Post-Soluti Fatal 0.855 1.710 0.000 0.000 0.855	ion Crashes Incap 1.710 2.565 0.000 0.000 1.710	Crash R Fatal 0.145 0.290 0.000 0.000 0.145	eduction Incap 0.290 2.435 0.000 0.000 0.290
BMP 176 176 177 177 177	EMP 184 184 8.4 8.4 (MP 184-1	CMF1 0.90 0.90 0.85 0.85	0.9 0.9 0.9 0.9	1 1 0.9 0.9	1 1 1	Dir NB/EB SB/WB NB/EB SB/WB SB/WB	CMF 0.855 0.855 0.767 0.767	Crashes in Fatal	Segment Limits Incap 2 5 hes in Segment L	Crashes in S Fatal 1 2 1 2 imits Cras	olution Limits Incap 2 5 2 5 shes in Solution L	Post-Soluti Fatal 0.855 1.710 0.000 0.000 0.855 1.710 Limits Post	ion Crashes Incap 1.710 2.565 0.000 0.000 1.710 2.565 t-Solution Cr	Crash R Fatal 0.145 0.290 0.000 0.145 0.290 0.145 0.290	eduction Incap 0.290 2.435 0.000 0.000 0.290 2.435 ash Redu
BMP 176 176 177 177 5 5 5 6 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7	EMP 184 184 8.4 8.4 (MP 184-1 EMP	CMF1 0.90 0.90 0.85 0.85	0.9 0.9 0.9 0.9 CMF2	1 0.9 0.9 CMF3	1 1 1	Dir NB/EB SB/WB NB/EB SB/WB NB/EB	CMF 0.855 0.855 0.767 0.767	Crashes in Fatal	Segment Limits Incap 2 5	Crashes in S Fatal 1 2 1 2 2	olution Limits Incap 2 5 2 5	Post-Soluti Fatal 0.855 1.710 0.000 0.000 0.855 1.710 Limits Post Incap	ion Crashes Incap 1.710 2.565 0.000 0.000 1.710 2.565 t-Solution Cr Fatal	Crash R Fatal 0.145 0.290 0.000 0.000 0.145 0.290 ashes Cra Incap	eduction Incap 0.290 2.435 0.000 0.290 2.435 2.435 ash Redu Fatal
BMP 176 176 177 177 177 5 5 6 6 8 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	EMP 184 184 8.4 8.4 (MP 184-1 EMP 189	CMF1 0.90 0.85 0.85 89) CMF1 0.76	0.9 0.9 0.9 0.9 CMF2	1 1 0.9 0.9 CMF3	1 1 1 CMF4	Dir NB/EB SB/WB NB/EB SB/WB SB/WB	CMF 0.855 0.855 0.767 0.767 Dir NB/EB	Crashes in Fatal	Segment Limits Incap 2 5 hes in Segment L	Crashes in S Fatal 1 2 1 2 imits Cras	olution Limits Incap 2 5 2 5 shes in Solution L	Post-Soluti Fatal 0.855 1.710 0.000 0.000 0.855 1.710 .imits Post Incap	ion Crashes Incap 1.710 2.565 0.000 0.000 1.710 2.565 t-Solution Cr. Fatal 0.000	Crash R Fatal 0.145 0.290 0.000 0.145 0.290 0.145 0.290 ashes Cra Incap 0.760	eduction Incap 0.290 2.435 0.000 0.290 2.435 ash Redu Fatal 0.000
BMP 176 176 177 177 177 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EMP 184 184 8.4 8.4 (MP 184-1 EMP 189 189	CMF1 0.90 0.85 0.85 89) CMF1 0.76 0.76	0.9 0.9 0.9 0.9 CMF2 1	1 0.9 0.9 CMF3 1 1	1 1 1 1 5 CMF4 1 1	Dir NB/EB SB/WB NB/EB SB/WB SB/WB CMF5 1	CMF 0.855 0.855 0.767 0.767 Dir Dir NB/EB SB/WB	Crashes in Fatal	Segment Limits Incap 2 5 hes in Segment L	Crashes in S Fatal 1 2 1 2 imits Cras	olution Limits Incap 2 5 2 5 shes in Solution L	Post-Soluti Fatal 0.855 1.710 0.000 0.000 0.855 1.710 imits Post Incap 1 4	ion Crashes Incap 1.710 2.565 0.000 0.000 1.710 2.565 t-Solution Cr. Fatal 0.000 0.760	Crash R Fatal 0.145 0.290 0.000 0.145 0.290 0.145 0.290 ashes Cra Incap 0.760 3.040	eduction Incap 0.290 2.435 0.000 0.290 2.435 ash Redu Fatal 0.000 0.240
BMP 176 176 177 177 177 177 177 177 177 177	EMP 184 184 8.4 (MP 184-1 EMP 189 189 7.5	CMF1 0.90 0.85 0.85 89) CMF1 0.76 0.76 0.61	0.9 0.9 0.9 0.9 0.9 0.9 0.9	1 1 0.9 0.9 CMF3 1 1 0.75	1 1 1 1 CMF4 1 1 0.81	Dir NB/EB SB/WB NB/EB SB/WB SB/WB CMF5 1 1 0.95	CMF 0.855 0.855 0.767 0.767 0.767 Dir NB/EB SB/WB NB/EB	Crashes in Fatal 1 2 Effective CMF 0.760 0.760 0.760 0.500	Segment Limits Incap 2 5 hes in Segment L	Crashes in S Fatal 1 2 1 2 imits Cras	olution Limits Incap 2 5 2 5 shes in Solution L Fatal	Post-Soluti Fatal 0.855 1.710 0.000 0.000 0.855 1.710 .imits Post Incap	ion Crashes Incap 1.710 2.565 0.000 0.000 1.710 2.565 t-Solution Crr. Fatal 0.000 0.760 0.000	Crash R Fatal 0.145 0.290 0.000 0.145 0.290 ashes Cra Incap 0.760 3.040 0.500	eduction Incap 0.290 2.435 0.000 0.290 2.435 ash Redu Fatal 0.000 0.240 0.000
BMP 176 176 177 177 CS347.5 BMP 184 184 184 184 184	EMP 184 184 8.4 8.4 (MP 184-1 EMP 189 189 7.5 7.5	CMF1 0.90 0.85 0.85 0.85 0.85 0.85 CMF1 0.76 0.76 0.61 0.61	0.9 0.9 0.9 0.9 0.9 CMF2 1 1 0.76 0.76	1 1 0.9 0.9 CMF3 1 1 0.75 0.75	1 1 1 1 CMF4 1 1 0.81 0.81	Dir NB/EB SB/WB NB/EB SB/WB SB/WB CMF5 1 1 0.95 0.95	CMF 0.855 0.855 0.767 0.767 0.767 Dir NB/EB SB/WB NB/EB SB/WB	Crashes in Fatal 1 2 Effective CMF 0.760 0.760 0.500 0.500	Segment Limits Incap 2 5 hes in Segment L	Crashes in S Fatal 1 2 1 2 imits Cras	olution Limits Incap 2 5 2 5 shes in Solution L	Post-Soluti Fatal 0.855 1.710 0.000 0.000 0.855 1.710 imits Post Incap 1 4	ion Crashes Incap 1.710 2.565 0.000 0.000 1.710 2.565 t-Solution Cr. Fatal 0.000 0.760 0.000 1.000	Crash R Fatal 0.145 0.290 0.000 0.145 0.290 ashes Cra Incap 0.760 3.040 0.500 0.000	eduction 0.290 2.435 0.000 0.290 2.435 ash Redu Fatal 0.000 0.240 0.240 0.200 1.000
BMP 176 176 177 177 CS347.5 BMP 184 184 184 184 185 3.6 (inters	EMP 184 184 8.4 (MP 184-1 EMP 189 189 7.5 7.5 section on	CMF1 0.90 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.8	0.9 0.9 0.9 0.9 0.9 0.9 0.9	1 1 0.9 0.9 CMF3 1 1 0.75	1 1 1 1 CMF4 1 1 0.81	Dir NB/EB SB/WB NB/EB SB/WB SB/WB CMF5 1 1 0.95	CMF 0.855 0.855 0.767 0.767 Dir NB/EB SB/WB NB/EB SB/WB NB/EB	Crashes in Fatal 1 2 Effective CMF 0.760 0.760 0.760 0.500	Segment Limits Incap 2 5 hes in Segment L	Crashes in S Fatal 1 2 1 2 imits Cras	olution Limits Incap 2 5 2 5 shes in Solution L Fatal	Post-Soluti Fatal 0.855 1.710 0.000 0.000 0.855 1.710 imits Post Incap 1 4	ion Crashes Incap 2.565 0.000 0.000 1.710 2.565 t-Solution Cr. Fatal 0.000 0.760 0.000 1.000 0.000 1.000	Crash R Fatal 0.145 0.290 0.000 0.145 0.290 ashes Cra Incap 0.760 3.040 0.500	eduction Incap 0.290 2.435 0.000 0.290 2.435 ash Redu Fatal 0.000 0.240 0.000 1.000 0.000
BMP 176 176 177 177 CS347.5 BMP 184 184 184 184 185 3 (inters 5.3 (inters	EMP 184 184 8.4 (MP 184-1 EMP 189 189 7.5 section on section on	CMF1 0.90 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.8	0.9 0.9 0.9 0.9 0.9 CMF2 1 1 0.76 0.76 1 1	1 1 0.9 0.9 CMF3 1 1 0.75 1 1 1	1 1 1 1 1 0.8 F4 0.81 0.81 1	Dir NB/EB SB/WB NB/EB SB/WB SB/WB CMF5 1 1 0.95 0.95 1	CMF 0.855 0.855 0.767 0.767 Dir Dir NB/EB SB/WB NB/EB SB/WB NB/EB SB/WB	Crashes in Fatal 1 2 Effective CMF 0.760 0.760 0.500 0.500 0.900	Segment Limits Incap 2 5 hes in Segment L	Crashes in S Fatal 1 2 1 2 imits Cras	olution Limits Incap 2 5 2 5 shes in Solution L Fatal 1 2	Post-Soluti Fatal 0.855 1.710 0.000 0.000 0.855 1.710 .imits Post Incap 1 4 1	ion Crashes Incap 1.710 2.565 0.000 0.000 1.710 2.565 t-Solution Cr Fatal 0.000 0.760 0.000 1.000 0.000 1.000 0.000	Crash R Fatal 0.145 0.290 0.000 0.145 0.290 0.145 0.290 ashes Cra Incap 0.760 3.040 0.500 0.000 0.000 0.000	eduction Incap 0.290 2.435 0.000 0.290 2.435 ash Redu Fatal 0.000 0.240 0.000 0.240 0.000 0.000 0.000 0.000
BMP 176 176 177 177 CS347.5 BMP 184 184 184 184 185 .3 (inters 5.3 (inters 5.3 (inters	EMP 184 184 8.4 (MP 184-1 EMP 189 189 7.5 7.5 section on	CMF1 0.90 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.8	0.9 0.9 0.9 0.9 0.9 0.9 1 1 0.76 0.76 1	1 1 0.9 0.9 CMF3 1 1 0.75 0.75 1	1 1 1 1 1 0. B 1 0.81 1 1	Dir NB/EB SB/WB NB/EB SB/WB SB/WB CMF5 1 1 0.95 0.95 0.95 1 1	CMF 0.855 0.855 0.767 0.767 Dir NB/EB SB/WB NB/EB SB/WB NB/EB	Crashes in Fatal 1 2 Effective CMF 0.760 0.760 0.500 0.500 0.500 0.500	Segment Limits Incap 2 5 hes in Segment L	Crashes in S Fatal 1 2 1 2 imits Cras	olution Limits Incap 2 5 2 5 shes in Solution L Fatal	Post-Soluti Fatal 0.855 1.710 0.000 0.000 0.855 1.710 Limits Post Incap 1 4 1	ion Crashes Incap 2.565 0.000 0.000 1.710 2.565 t-Solution Cr. Fatal 0.000 0.760 0.000 1.000 0.000 1.000	Crash R Fatal 0.145 0.290 0.000 0.145 0.290 0.145 0.290 ashes Cra Incap 0.760 3.040 0.500 0.000 0.000 0.000 0.900 1.610	eduction Incap 0.290 2.435 0.000 0.290 2.435 ash Redu Fatal 0.000 0.240 0.000 1.000 0.000
BMP 176 176 177 177 CS347.5 BMP 184 184 184 184 184 185 .3 (inters 5.3 (inters tersection	EMP 184 184 8.4 (MP 184-1 EMP 189 189 7.5 section on section on and appr	CMF1 0.90 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.8	0.9 0.9 0.9 0.9 0.9 0.9 0.9 1 1 0.76 1 1 0.76	1 1 0.9 0.9 CMF3 1 1 0.75 0.75 1 1 1 1	1 1 1 1 1 0.81 0.81 1 1 1	Dir NB/EB SB/WB NB/EB SB/WB SB/WB CMF5 1 1 0.95 0.95 1 1 1 1 1	CMF 0.855 0.855 0.767 0.767 Dir NB/EB SB/WB NB/EB SB/WB NB/EB SB/WB NB/EB SB/WB NB/EB SB/WB	Crashes in Fatal	Segment Limits Incap 2 5 hes in Segment L Fatal	Crashes in S Fatal 1 2 1 2 .imits Cras Incap	olution Limits Incap 2 5 2 5 shes in Solution L Fatal 1 2 1 1 2 1	Post-Soluti Fatal 0.855 1.710 0.000 0.000 0.885 1.710	ion Crashes Incap 1.ncap 2.565 0.000 0.000 1.710 2.565 t-Solution Cr. Fatal 0.000 0.760 0.000 1.000 0.000 0.000 0.000 0.537 0.000	Crash R Fatal 0.145 0.290 0.000 0.000 0.145 0.290 0.145 0.290 0.760 3.040 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.600 0.000 0.000 0.600 0.600 0.600 0.600 0.290 0.0000 0.00000 0.0000 0.0000 0.00000 0.00000 0.00000 00	eduction 1.0290 2.435 0.000 0.290 2.435 ash Redu Fatal 0.000 0.240 0.240 0.240 0.240 0.240 0.240 0.200 0.290 0.290 2.435
BMP 176 176 177 177 CCS347.5 BMP 184 184 184 184 184 185 .3 (inters 5.3 (inters 5.3 (inters	EMP 184 184 8.4 (MP 184-1 EMP 189 189 7.5 section on section on and appr	CMF1 0.90 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.8	0.9 0.9 0.9 0.9 0.9 0.9 0.9 1 1 0.76 1 1 0.76	1 1 0.9 0.9 CMF3 1 1 0.75 0.75 1 1 1 1	1 1 1 1 1 0.81 0.81 1 1 1	Dir NB/EB SB/WB NB/EB SB/WB SB/WB CMF5 1 1 0.95 0.95 1 1 1 1 1	CMF 0.855 0.855 0.767 0.767 Dir Dir NB/EB SB/WB NB/EB SB/WB NB/EB SB/WB NB/EB SB/WB SB/WB	Crashes in Fatal	Segment Limits Incap 2 5 hes in Segment L Fatal	Crashes in S Fatal 1 2 1 2 .imits Cras Incap	olution Limits Incap 2 5 2 5 shes in Solution L Fatal 1 2 1	Post-Soluti Fatal 0.855 1.710 0.000 0.000 0.855 1.710 .imits Post Incap 1 4 1 1 3 7	ion Crashes Incap 1.710 2.565 0.000 0.000 1.710 2.565 t-Solution Cr. Fatal 0.000 0.760 0.000 1.000 0.000 1.000 0.000 0.000 0.000 0.000	Crash R Fatal 0.145 0.290 0.000 0.000 0.145 0.290 0.145 0.290 0.760 3.040 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.610 3.758	eduction <u>lncap</u> 0.290 2.435 0.000 0.290 2.435 ash Redu Fatal 0.000 0.240 0.240 0.000 0.240 0.000 0.240 0.000 0.240 0.000 0.240 0.000 0.240 0.000 0.240 0.290 0.290 2.435 ash Redu Fatal 0.000 0.240 0.290 0.290 2.435 ash Redu Fatal 0.000 0.240 0.240 0.290 0.290 2.435 ash Redu Fatal 0.000 0.200 0.240 0.290 0.240 0.290 0.240 0.290 0.240 0.290 0.240 0.290 0.240 0.000 0.290 0.240 0.240 0.240 0.000 0.290 0.240 0.240 0.240 0.000 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.000 0.240 0.000 0.240 0.000 0.240 0.0000 0.0000 0.000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.0000000 0.00000000
BMP 176 176 177 177 CS347.5 BMP 184 184 184 184 184 185 3 (inters 5.3 (inters 5.3 (intersection tersection	EMP 184 184 8.4 (MP 184-1 EMP 189 189 7.5 section on section on and appr	CMF1 0.90 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.8	0.9 0.9 0.9 0.9 0.9 0.9 0.9 1 1 0.76 1 1 0.76	1 1 0.9 0.9 CMF3 1 1 0.75 0.75 1 1 1 1	1 1 1 1 1 0.81 0.81 1 1 1	Dir NB/EB SB/WB NB/EB SB/WB SB/WB CMF5 1 1 0.95 0.95 1 1 1 1 1	CMF 0.855 0.855 0.767 0.767 Dir NB/EB SB/WB NB/EB SB/WB NB/EB SB/WB NB/EB SB/WB NB/EB SB/WB	Crashes in Fatal 1 2 Effective CMF 0.760 0.760 0.500 0.500 0.900 0.537 0.537	Segment Limits Incap 2 5 hes in Segment L Fatal 1 3	Crashes in S Fatal	olution Limits Incap 2 5 2 5 shes in Solution L Fatal 1 2 1 1 3	Post-Soluti Fatal 0.855 1.710 0.000 0.000 0.855 1.710 	ion Crashes Incap 1.710 2.565 0.000 0.000 1.710 2.565 t-Solution Cr Fatal 0.000 0.760 0.000 0.760 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.710 0.000	Crash R Fatal 0.145 0.290 0.000 0.145 0.290 0.145 0.290 ashes Cra Incap 0.760 3.040 0.500 0.000 0.000 0.000 0.000 0.900 1.610 3.758 2.870 7.698	eduction Incap 0.290 2.435 0.000 0.290 2.435 ash Redu Fatal 0.000 0.240 0.000 0.240 0.000 0.240 0.000 0.240 0.000 0.240 0.000 0.463 0.000 0.463 1.240
BMP 176 176 177 177 CCS347.5 BMP 184 184 184 184 185 184 185 185 185 185 185 185 185 185	EMP 184 184 8.4 (MP 184-1 EMP 189 189 7.5 section on a and appr 1 and appr (MP 184-1	CMF1 0.90 0.85 0.85 0.85 0.85 CMF1 0.76 0.76 0.61 0.61 0.9 0.9 0.61 0.61 0.61 0.61	0.9 0.9 0.9 0.9 0.9 0.9 0.9 1 1 0.76 0.76 0.76	1 1 0.9 0.9 CMF3 1 1 0.75 0.75 1 1 1 1 1	1 1 1 1 1 0.81 0.81 1 1 1 1 1	Dir NB/EB SB/WB NB/EB SB/WB SB/WB CMF5 1 1 0.95 0.95 1 1 1 1 1 1 1	CMF 0.855 0.855 0.767 0.767 Dir NB/EB SB/WB NB/EB SB/WB NB/EB SB/WB NB/EB SB/WB NB/EB SB/WB NB/EB SB/WB NB/EB SB/WB	Crashes in Fatal 1 2 Effective CMF 0.760 0.500 0.500 0.500 0.900 0.537 0.537 0.537 0.537	Segment Limits Incap 2 5 hes in Segment L Fatal 1 3 Segment Limits	Crashes in S Fatal	olution Limits Incap 2 5 2 5 shes in Solution L Fatal 1 2 1 1 3 3 0lution Limits	Post-Soluti Fatal 0.855 1.710 0.000 0.000 0.855 1.710 	ion Crashes Incap 1.710 2.565 0.000 0.000 1.710 2.565 t-Solution Cr Fatal 0.000 0.760 0.000 0.760 0.000 0.000 0.000 0.000 0.000 0.000 0.537 0.000 0.537 1.760 I.760 I.770 I.760 I.770 I.	Crash R Fatal 0.145 0.290 0.000 0.145 0.290 0.145 0.290 0.145 0.290 0.145 0.290 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.000 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.000 0.000 0.000 0.290 0.000 0.7698 Crash R	eduction Incap 0.290 2.435 0.000 0.290 2.435 ash Redu Fatal 0.000 0.240 0.000 0.240 0.000 0.240 0.000 0.240 0.000 0.240 0.000 0.240 0.000 0.240 0.000 0.240 0.240 0.000 0.240 0.240 0.290 0.240 0.000 0.240 0.000 0.240 0.000 0.240 0.000 0.240 0.000 0.240 0.000 0.240 0.000 0.240 0.000 0.240 0.000 0.240 0.000 0.240 0.000 0.240 0.000 0.000 0.240 0.000 0.000 0.240 0.000 0.000 0.000 0.240 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.463 1.240 0.453 0.453 0.453 0.453 0.453 0.453 0.453 0.453 0.453 0.453 0.453 0.453 0.453 0.453 0.453 0.453 0.453 0.453 0.455 0.455 0.455 0.455 0.455 0.455 0.455 0.455 0.455 0.455 0.455 0.455 0.455 0.455 0.455 0.455 0.455 0.455 0.455 0.4
BMP 176 176 177 177 CS347.5 BMP 184 184 184 184 184 185 3.3 (inters 5.3 (inters 5	EMP 184 184 8.4 (MP 184-1 EMP 189 189 7.5 7.5 section on section on and appr 1 and appr (MP 184-1 EMP	CMF1 0.90 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.61 0.61 0.61 0.9 0.9 0.61 0.61 0.9 0.9 0.91 0.61 0.85 0.76 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.85 0.76 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.85	0.9 0.9 0.9 0.9 0.9 0.9 1 1 0.76 0.76 1 1 0.76 0.76 0.76 0.76	1 1 0.9 0.9 CMF3 1 1 0.75 0.75 1 1 1 1 CMF3	1 1 1 1 1 0.81 0.81 1 1 1 1 1 1 2 CMF4	Dir NB/EB SB/WB NB/EB SB/WB SB/WB CMF5 1 1 0.95 0.95 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CMF 0.855 0.855 0.767 0.767 0.767 NB/EB SB/WB NB/EB SB/WB NB/EB SB/WB NB/EB SB/WB NB/EB SB/WB NB/EB SB/WB NB/EB SB/WB NB/EB SB/WB SB/WB NB/EB SB/WB	Crashes in Fatal 1 2 Effective CMF 0.760 0.760 0.500 0.500 0.900 0.537 0.537	Segment Limits Incap 2 5 hes in Segment L Fatal 1 3	Crashes in S Fatal 1 2 1 2 .imits Cras Incap 5 12 5 12 Crashes in S Fatal	olution Limits Incap 2 5 2 5 shes in Solution L Fatal 1 2 1 1 3 0lution Limits Incap	Post-Soluti Fatal 0.855 1.710 0.000 0.000 0.855 1.710 .imits Post Incap 1 4 1 1 3 7 5 12 Post-Soluti Fatal	ion Crashes Incap 1.ncap 1.ncap 1.ncap 2.565 0.000 0.000 1.710 2.565 1.710 2.565 0.000 0.000 0.760 0.0000 0.0000 0.0000 0.0000 0.0	Crash R Fatal 0.145 0.290 0.000 0.000 0.145 0.290 0.145 0.290 0.760 3.040 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.500 0.000 0.000 0.500 0.000 0.000 0.500 0.000 0.000 0.500 0.000 0.000 0.500 0.000 0.000 0.760 0.500 0.000 0.000 0.760 0.500 0.000 0.000 0.760 0.500 0.000 0.000 0.760 0.500 0.000 0.000 0.000 0.760 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.145 0.290 0.760 0.000 0.000 0.000 0.000 0.760 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.760 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	eduction 1.0290 2.435 0.000 0.290 2.435 ash Redu Fatal 0.000 0.240 0.240 0.240 0.000 0.240 0.000 0.240 0.000 0.240 0.000 0.240 0.000 0.240 0.000 0.240 0.240 0.000 0.240 0.290 2.435 ash Redu Fatal 0.000 0.240 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.2435 0.000 0.290 0.2435 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.463 1.240 eduction I.240 0.463 1.240 eduction I.240
BMP 176 176 177 177 CS347.5 BMP 184 184 184 184 185 3.3 (inters 5.3 (inters 5.3 (inters 5.3 (inters cssa47.6 BMP 184 184 185 185 185 185 185 185 185 185	EMP 184 184 8.4 (MP 184-1 EMP 189 189 7.5 7.5 section on section on and appr 189 (MP 184-1 EMP 189 189 189 189 189 189 189 189	CMF1 0.90 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.61 0.76 0.61 0.61 0.9 0.61 0.9 0.61 0.9 0.61 0.9 0.61 0.9 0.91 0.90 0.85 0.90 0.85 0.61 0.61 0.61 0.61 0.61 0.61 0.99 0.61 0.61 0.61 0.99 0.61 0.61 0.99 0.61 0.61 0.99 0.61 0.99 0.61 0.99 0.61 0.99 0.61 0.99 0.61 0.99 0.61 0.99 0.61 0.99 0.61 0.99 0.99 0.61 0.99 0.99 0.61 0.99	0.9 0.9 0.9 0.9 0.9 0.9 0.9 1 1 0.76 0.76 1 1 0.76 0.76 0.76 0.76	1 1 0.9 0.9 CMF3 1 1 0.75 0.75 1 1 1 1 CMF3 1 1 1 1	1 1 1 1 1 0.81 0.81 1 1 1 1 1 1 1 1 1 1 1	Dir NB/EB SB/WB NB/EB SB/WB SB/WB CMF5 1 1 0.95 0.95 1 1 1 1 1 1 1 1 1 1 NB/EB	CMF 0.855 0.767 0.767 0.767 Dir NB/EB SB/WB NB/EB SB/WB NB/EB SB/WB NB/EB SB/WB NB/EB SB/WB NB/EB SB/WB SB/WB NB/EB SB/WB	Crashes in Fatal 1 2 Effective CMF 0.760 0.500 0.500 0.500 0.900 0.537 0.537 0.537 0.537	Segment Limits Incap 2 5 hes in Segment L Fatal 1 3 Segment Limits	Crashes in S Fatal 1 2 1 2 imits Cras Incap 5 12 Crashes in S Fatal	olution Limits Incap 2 5 2 5 shes in Solution L Fatal 1 2 1 1 3 0 ution Limits Incap 5	Post-Soluti Fatal 0.855 1.710 0.000 0.000 0.855 1.710 Limits Post Incap 1 4 1 1 3 7 5 12 Post-Soluti Fatal 0.855	ion Crashes Incap 1.ncap 2.565 0.000 0.000 1.710 2.565 incap 1.710 2.565 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.537 1.760 incap 4.275	Crash R Fatal 0.145 0.290 0.000 0.145 0.290 0.145 0.290 ashes Cra Incap 0.760 3.040 0.500 0.000 0.000 0.900 1.610 3.758 2.870 7.698 Crash R Fatal 0.145	eduction Incap 0.290 2.435 0.000 0.290 2.435 ash Redu Fatal 0.000 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.290 0.290 2.435 0.000 0.290 0.290 2.435 0.000 0.290 0.290 2.435 0.000 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.2435 0.000 0.240 0.000 0.000 0.000 0.240 0.000 0.000 0.000 0.000 0.240 0.000 0.0463 1.240 0.0463 0.0463 0.0463 0.020 0.0463 0.020 0.0453 0.025 0.0453 0.0255 0.0453 0.0255 0.0453 0.0255 0.0453 0.0255 0.0453 0.0255 0.0453 0.0255 0.0453 0.0255 0.0453 0.0255 0.0453 0.0255 0.0453 0.0255 0.0453 0.0255 0.04555 0.0455 0.0455 0.0455 0.0455 0.0455 0
BMP 176 176 177 177 CCS347.5 BMP 184 184 184 185 184 185 185 184 185 184 184 184 184 184 184 184 184	EMP 184 184 8.4 (MP 184-1 EMP 189 189 189 7.5 5 ection on a and appr and appr (MP 184-1 EMP 189 189 189 189 189 189 189 189	CMF1 0.90 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.76 0.85 0.76 0.76 0.76 0.76 0.61 0.99 0.61 0.99 0.61 0.90	0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.76 1 1 0.76 0.76 1 1 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76	1 1 0.9 0.9 CMF3 1 1 0.75 0.75 1 1 1 1 CMF3 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 0.81 0.81 1 1 1 1 1 1 1 0.81 1 1 1 1 1 1	Dir NB/EB SB/WB NB/EB SB/WB SB/WB CMF5 1 1 1 0.95 0.95 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CMF 0.855 0.767 0.767 0.767 0.767 Dir NB/EB SB/WB NB/EB SB/WB NB/EB SB/WB NB/EB SB/WB NB/EB SB/WB NB/EB SB/WB CMF 0.855 0.855 0.855	Crashes in Fatal 1 2 Effective CMF 0.760 0.500 0.500 0.500 0.900 0.537 0.537 0.537 0.537	Segment Limits Incap 2 5 hes in Segment L Fatal 1 3 Segment Limits	Crashes in S Fatal 1 2 1 2 .imits Cras Incap 5 12 5 12 Crashes in S Fatal	olution Limits Incap 2 5 2 5 shes in Solution L Fatal 1 2 1 1 3 0lution Limits Incap	Post-Soluti Fatal 0.855 1.710 0.000 0.000 0.855 1.710 Limits Post Incap 1 4 1 3 7 5 12 Post-Soluti Fatal 0.855 1.710	ion Crashes Incap Incap Incap Incap Incap Incap Incap Incap Incap Incap Incap Incap Incap Incap Incap Incap Incap	Crash R Fatal 0.145 0.290 0.000 0.145 0.290 0.145 0.290 ashes Cra Incap 0.760 3.040 0.500 0.000 0.000 0.000 0.000 0.000 0.900 1.610 3.758 2.870 7.698 Crash R Fatal 0.145 0.290	eduction Incap 0.290 2.435 0.000 0.290 2.435 ash Redu Fatal 0.000 0.240 0.000 0.240 0.000 0.240 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.240 0.000 0.240 0.290 2.435 1.240 eduction Incap 0.725 1.740
BMP 176 176 177 CS347.5 BMP 184 184 184 185 184 185 185 184 184 184 184 184 184 184 184	EMP 184 184 8.4 (MP 184-1 EMP 189 189 7.5 section on and appr and appr (MP 184-1 EMP 189 189 189 189 189 189 189 189	CMF1 0.90 0.85 0.76 0.76 0.76 0.76 0.61 0.99 0.61 0.90 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.90 0.90 0.90 0.90 0.85 0	0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.76 1 1 0.76 0.76 1 1 0.76 0.76 0.76 0.76 0.76 0.76 0.90 0.90 0.90	1 1 0.9 0.9 CMF3 1 1 1 0.75 0.75 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 0.81 0.81 0.81 1 1 1 1 1 1 1 1 1 1	Dir NB/EB SB/WB NB/EB SB/WB SB/WB CMF5 1 1 1 0.95 0.95 0.95 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CMF 0.855 0.767 0.767 0.767 Dir NB/EB SB/WB NB/EB SB/WB NB/EB SB/WB NB/EB SB/WB NB/EB SB/WB CMF 0.855 0.805 0.808	Crashes in Fatal 1 2 Effective CMF 0.760 0.500 0.500 0.500 0.900 0.537 0.537 0.537 0.537	Segment Limits Incap 2 5 hes in Segment L Fatal 1 3 Segment Limits	Crashes in S Fatal 1 2 1 2 imits Cras Incap 5 12 5 12 Crashes in S Fatal 1 2	olution Limits Incap 2 5 2 5 shes in Solution L Fatal 1 2 1 1 3 0 ution Limits Incap 5	Post-Soluti Fatal 0.855 1.710 0.000 0.000 0.855 1.710 Limits Post Incap 1 4 1 4 1 3 7 5 12 Post-Soluti Fatal 0.855 1.710 0.000	ion Crashes Incap 1.710 2.565 0.000 0.000 1.710 2.565 1.710 2.565 1.710 0.000 0.760 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0	Crash R Fatal 0.145 0.290 0.000 0.145 0.290 0.145 0.290 0.145 0.290 0.760 3.040 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.500 0.000 0.500 0.000 0.500 0.000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000	eduction Incap 0.290 2.435 0.000 0.290 2.435 ash Redu Fatal 0.000 0.240 0.000 0.240 0.000 0.240 0.000 0.000 0.463 0.000 0.463 1.240 eduction Incap 0.725 1.740 0.000
BMP 176 176 177 177 CCS347.5 BMP 184 184 184 185 5.3 (interst tersection tersection CCS347.6 BMP 184 184 184 184 184 184 184 184	EMP 184 184 8.4 (MP 184-1 EMP 189 189 7.5 section on a and appr and appr (MP 184-1 EMP 189 189 189 7.5 7.5 89 189 189 189 189 189 189 189	CMF1 0.90 0.85 0.85 0.85 0.85 0.85 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.61 0.9 0.9 0.9 0.9 0.61 0.61 0.61 0.91 0.90 0.85 0.76 0.76 0.76 0.61 0.85 0.90 0.85	0.9 0.9 0.9 0.9 0.9 0.9 0.9 1 1 0.76 0.76 1 1 0.76 0.76 0.76 0.76 0.76 0.76 0.90 0.90 0.90 0.90	1 1 0.9 0.9 CMF3 1 1 1 CMF3 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 0.81 0.81 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Dir NB/EB SB/WB NB/EB SB/WB SB/WB CMF5 1 1 1 0.95 0.95 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CMF 0.855 0.767 0.767 0.767 NB/EB SB/WB NB/EB SB/WB NB/EB SB/WB NB/EB SB/WB NB/EB SB/WB NB/EB SB/WB CB SB/WB NB/EB SB/WB CB	Crashes in Fatal 1 2 Effective CMF 0.760 0.500 0.500 0.500 0.900 0.537 0.537 0.537 0.537	Segment Limits Incap 2 5 hes in Segment L Fatal 1 3 Segment Limits	Crashes in S Fatal 1 2 1 2 imits Cras Incap 5 12 Crashes in S Fatal	olution Limits Incap 2 5 2 5 shes in Solution L Fatal 1 2 1 1 3 0 ution Limits Incap 5	Post-Soluti Fatal 0.855 1.710 0.000 0.000 0.855 1.710 	ion Crashes Incap 1.710 2.565 0.000 0.000 1.710 2.565 1.710 2.565 1.710 0.000 0.760 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.537 1.760 1.760 1.760 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0	Crash R Fatal 0.145 0.290 0.000 0.145 0.290 0.145 0.290 0.145 0.290 0.145 0.290 0.000 0.768 Crash R Fatal 0.145 0.290 0.000 0.000 0.145 0.290 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.0000000 0.00000000	eduction Incap 0.290 2.435 0.000 0.290 2.435 ash Redu Fatal 0.000 0.240 0.000 0.240 0.000 0.240 0.000 0.240 0.000 0.463 1.240 eduction Incap 0.725 1.740 0.000 0.000 0.000 0.000 0.463 0.000 0.400 0.000 0.463 0.000 0.463 0.000 0.463 0.000 0.463 0.000 0.463 0.000 0.463 0.000 0.463 0.000 0.463 0.000 0.463 0.000 0.463 0.000 0.463 0.000 0.463 0.000 0.463 0.000 0.463 0.000 0.463 0.000 0.463 0.000 0.463 0.000 0.463 0.000 0.000 0.463 0.000 0.000 0.463 0.000 0.000 0.463 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.00000000
BMP 176 176 177 177 CS347.5 BMP 184 184 184 184 185.3 (interstersection tersection CS347.6 BMP 184 184 184 184 184 184 184 184	EMP 184 184 8.4 (MP 184-1 EMP 189 189 7.5 section on and appr and appr (MP 184-1 EMP 189 189 7.5 5.3	CMF1 0.90 0.85 0.85 0.85 0.85 0.85 0.76 0.76 0.76 0.61 0.61 0.99 0.61 0.61 0.91 0.90 0.90 0.85 0.85 0.85 0.85	0.9 0.9 0.9 0.9 0.9 1 1 0.76 0.76 1 1 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.90 0.90 0.90 0.90 0.90	1 1 0.9 0.9	1 1 1 1 1 0.81 0.81 1 1 1 1 1 1 1 1 1 1 1 1 1	Dir NB/EB SB/WB SB/WB SB/WB SB/WB CMF5 1 1 0.95 0.95 1 1 1 0.95 0.95 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CMF 0.855 0.767 0.767 0.767 Dir NB/EB SB/WB SB/WB SB/B SB/WB SB/B S	Crashes in Fatal 1 2 Effective CMF 0.760 0.500 0.500 0.500 0.900 0.537 0.537 0.537 0.537	Segment Limits Incap 2 5 hes in Segment L Fatal 1 3 Segment Limits	Crashes in S Fatal 1 2 1 2 imits Cras Incap 5 12 5 12 Crashes in S Fatal 1 2	olution Limits Incap 2 5 2 5 shes in Solution L Fatal 1 2 1 1 3 0 ution Limits Incap 5	Post-Soluti Fatal 0.855 1.710 0.000 0.000 0.855 1.710 .imits Post Incap 1 4 1 1 3 7 5 12 Post-Soluti Fatal 0.855 1.710 0.000 0.855 1.710 0.000 0.855 1.710 0.000 0.855 0.710 0.000 0.855 0.710 0.000 0.855 0.710 0.000 0.855 0.710 0.000 0.855 0.710 0.000 0.855 0.710 0.000 0.855 0.710 0.000 0.855 0.710 0.000 0.855 0.710 0.855 0.710 0.000 0.855 0.710 0.808 0.000 0.808 0.000 0.808 0.000	ion Crashes Incap 1.ncap 1.ncap 1.ncap 1.r10 2.565 0.000 0.000 1.r10 2.565 0.000 0.000 0.760 0.0000 0.0000 0.0000 0.0000 0.0	Crash R Fatal 0.145 0.290 0.000 0.145 0.290 0.000 0.145 0.290 ashes Crash Incap 0.760 3.040 0.500 0.000 0.900 1.610 3.758 2.870 7.698 Crash R Fatal 0.145 0.290 0.145	eduction Incap 0.290 2.435 0.000 0.290 2.435 ash Redu Fatal 0.000 0.240 0.240 0.240 0.000 0.240 0.000 0.240 0.000 0.240 0.000 0.240 0.000 0.240 0.000 0.240 0.000 0.240 0.000 0.000 0.000 0.463 1.240 eduction Incap 0.725 1.740 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.2435 0.000 0.2435 0.000 0.240 0.2435 0.000 0.2435 0.000 0.240 0.000 0.240 0.000
BMP 176 176 177 177 CS347.5 BMP 184 184 184 185 5.3 (inters tersection CS347.6 BMP 184 184 184 184 184 184 184 184	EMP 184 184 8.4 (MP 184-1 EMP 189 189 7.5 section on a and appr and appr (MP 184-1 EMP 189 189 189 7.5 7.5 89 189 189 189 189 189 189 189	CMF1 0.90 0.85 0.85 0.85 0.85 0.85 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.61 0.9 0.9 0.9 0.9 0.61 0.61 0.61 0.91 0.90 0.85 0.76 0.76 0.76 0.61 0.85 0.90 0.85	0.9 0.9 0.9 0.9 0.9 0.9 0.9 1 1 0.76 0.76 1 1 0.76 0.76 0.76 0.76 0.76 0.76 0.90 0.90 0.90 0.90	1 1 0.9 0.9 CMF3 1 1 1 CMF3 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 0.81 0.81 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Dir NB/EB SB/WB NB/EB SB/WB SB/WB CMF5 1 1 1 0.95 0.95 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CMF 0.855 0.767 0.767 0.767 NB/EB SB/WB NB/EB SB/WB NB/EB SB/WB NB/EB SB/WB NB/EB SB/WB NB/EB SB/WB CB SB/WB NB/EB SB/WB CB	Crashes in Fatal 1 2 Effective CMF 0.760 0.500 0.500 0.500 0.900 0.537 0.537 0.537 0.537	Segment Limits Incap 2 5 hes in Segment L Fatal 1 3 Segment Limits	Crashes in S Fatal 1 2 1 2 imits Cras Incap 5 12 5 12 Crashes in S Fatal 1 2	olution Limits Incap 2 5 2 5 shes in Solution L Fatal 1 2 1 1 3 0 ution Limits Incap 5	Post-Soluti Fatal 0.855 1.710 0.000 0.000 0.855 1.710 	ion Crashes Incap 1.710 2.565 0.000 0.000 1.710 2.565 1.710 2.565 1.710 0.000 0.760 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.537 1.760 1.760 1.760 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0	Crash R Fatal 0.145 0.290 0.000 0.145 0.290 0.145 0.290 0.145 0.290 0.145 0.290 0.000 0.768 Crash R Fatal 0.145 0.290 0.000 0.000 0.145 0.290 0.0000 0.00000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.0000000 0.00000000	eduction Incap 0.290 2.435 0.000 0.290 2.435 ash Redu Fatal 0.000 0.240 0.000 0.240 0.000 0.240 0.000 0.240 0.000 0.463 1.240 eduction Incap 0.725 1.740 0.000 0.000 0.000 0.000 0.463 0.000 0.400 0.000 0.463 0.000 0.463 0.000 0.463 0.000 0.463 0.000 0.463 0.000 0.463 0.000 0.463 0.000 0.463 0.000 0.463 0.000 0.463 0.000 0.463 0.000 0.463 0.000 0.463 0.000 0.463 0.000 0.463 0.000 0.463 0.000 0.463 0.000 0.463 0.000 0.000 0.463 0.000 0.000 0.463 0.000 0.000 0.463 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.00000000

Performance Area Scoring

					I	Pavement					Bridge					Safety					Mobility					Freight			
			Estimated	Existing	Post- Solution				Existing	Post- Solution				Existing	Post- Solution				Existing	Post- Solution				Existing	Post- Solution				Total Risk Factored
Candidate	Candidate Solution	Milepost	Cost (\$	Segment	Segment	Raw	Risk	Factored	Segment	Segment	Raw	Risk	Factored	Segment	Segment	Raw	Risk	Factored	Segment	Segment	Raw	Risk	Factored	Segment	Segment	Raw	Risk	Factored	Performance
Solution #	Name	Location	millions)	Need	Need	Score	Factor	Score	Need	Need	Score	Factor	Score	Need	Need	Score	Factor	Score	Need	Need	Score	Factor	Score	Need	Need	Score	Factor	Score	Area Benefit
CS347.1	Ak-Chin Area Safety Improvements	162-171	3.7	0.144	0.144	0.000	0.00	0.000	0.000	0.000	0.000	0.00	0.000	2.333	0.951	1.381	2.43	3.358	0.392	0.355	0.037	6.26	0.232	0.594	0.543	0.051	5.40	0.273	3.863
CS347.2	Maricopa Area Mobility and Freight Improvements	174-176	6.5	0.676	0.606	0.070	3.21	0.226	0.000	0.000	0.000	0.00	0.000	0.040	0.020	0.020	4.05	0.081	5.350	4.383	0.967	4.86	4.696	3.400	3.212	0.188	5.85	1.102	6.104
CS347.3	Casa Blanca Area Safety Improvements	176-184	5.1	0.000	0.000	0.000	0.00	0.000	0.303	0.303	0.000	0.00	0.000	1.184	0.880	0.304	3.74	1.136	10.214	10.190	0.024	5.56	0.131	3.345	3.238	0.107	6.46	0.693	1.959
CS347.4	Casa Blanca Area Mobility and Freight Improvements	176-184	78.6	0.000	0.000	0.000	4.57	0.000	0.303	0.303	0.000	0.00	0.000	1.184	0.977	0.207	3.74	0.774	10.214	4.602	5.612	5.56	31.204	3.345	3.207	0.138	6.46	0.891	32.869
CS347.5	Wild Horse Pass Area Safety Improvements	184-189	5.0	0.100	0.100	0.000	0.00	0.000	0.000	0.000	0.000	0.00	0.000	5.172	2.175	2.997	3.88	11.621	9.074	8.917	0.158	5.20	0.819	3.061	2.791	0.269	6.13	1.652	14.093
CS347.6	Wild Horse Pass Area Mobility and Freight Improvements	184-189	42.1	0.100	0.000	0.100	4.40	0.440	0.000	0.000	0.000	0.00	0.000	5.172	4.024	1.148	3.88	4.451	9.074	3.585	5.489	5.53	30.337	3.061	2.873	0.188	6.13	1.153	36.381
CS347.7	SR 347/I-10 Interchange Mobility and Freight Improvements	189	5.7	0.100	0.100	0.000	0.00	0.000	0.000	0.000	0.000	0.00	0.000	5.172	5.172	0.000	3.88	0.000	9.074	6.803	2.271	0.99	2.240	3.061	3.027	0.034	3.63	0.122	2.362

Performance Effectiveness Scoring

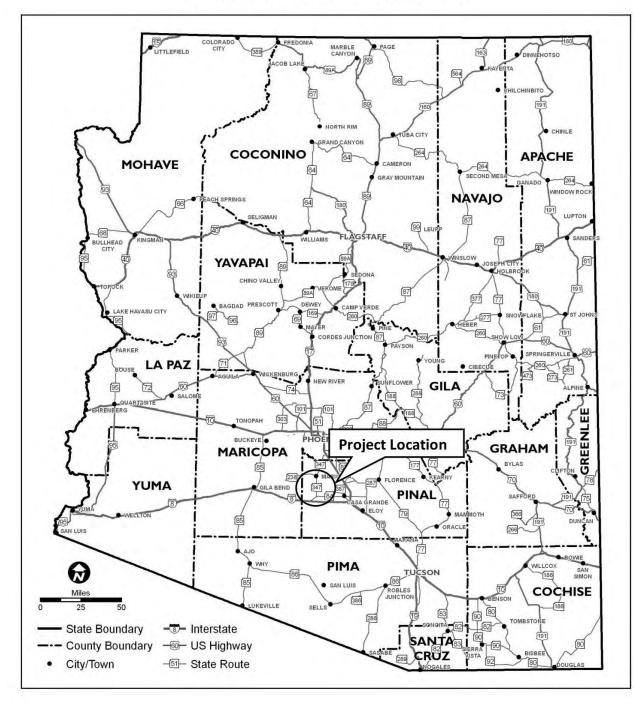
					9	Safety Em	phasis Are	ea			м	obility Em	nphasis Ai	rea			F	reight Em	phasis Are	ea			
Candidate Solution #	Candidate Solution Name	Milepost Location	••	Existing Corridor Need		Raw Score	Risk Factor	Emphasis Factor	Factored Score		Post- Solution Corridor Need	Raw Score	Risk Factor	Emphasis Factor	Factored Score		Post- Solution Corridor Need	Raw Score	Risk Factor	Emphasis Factor	Factored Score	Total Factored Benefit	VMT Factor
CS347.1	Ak-Chin Area Safety Improvements	162-171	3.7	1.297	1.053	0.244	2.43	1.50	0.891	2.276	2.276	0.000	6.26	1.50	0.000	1.891	1.869	0.023	5.40	1.50	0.183	4.938	2.53
CS347.2	Maricopa Area Mobility and Freight Improvements	174-176	6.5	1.297	1.280	0.017	4.05	1.50	0.103	2.276	2.187	0.090	4.86	1.50	0.652	1.891	1.877	0.014	5.85	1.50	0.124	6.983	1.72
CS347.3	Casa Blanca Area Safety Improvements	176-184	5.1	1.297	1.044	0.253	3.74	1.50	1.417	2.276	2.276	0.000	5.56	1.50	0.000	1.891	1.879	0.013	6.46	1.50	0.122	3.498	4.94
CS347.4	Casa Blanca Area Mobility and Freight Improvements	176-184	78.6	1.297	1.159	0.138	3.74	1.50	0.772	2.276	1.309	0.967	5.56	1.50	8.067	1.891	1.874	0.017	6.46	1.50	0.165	41.873	4.94
CS347.5	Wild Horse Pass Area Safety Improvements	184-189	5.0	1.297	0.853	0.444	3.88	1.50	2.584	2.276	2.276	0.000	5.20	1.50	0.000	1.891	1.878	0.013	6.13	1.50	0.124	16.801	4.02
CS347.6	Wild Horse Pass Area Mobility and Freight Improvements	184-189	42.1	1.297	1.132	0.165	3.88	1.50	0.960	2.276	1.683	0.593	5.53	1.50	4.918	1.891	1.879	0.013	6.13	1.50	0.116	42.376	4.68
CS347.7	SR 347/I-10 Interchange Mobility and Freight Improvements	189	5.7	1.297	1.297	0.000	3.88	1.50	0.000	2.276	2.030	0.246	0.99	1.50	0.364	1.891	1.888	0.003	3.63	1.50	0.018	2.744	0.60

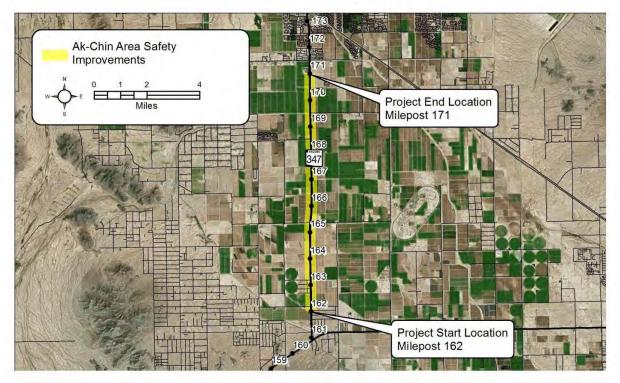
T pr	NPV Factor	Performance Effectiveness Score
3	15.3	52.1
2	20.2	37.3
1	15.3	52.0
1	20.2	53.2
2	15.3	208.7
3	20.2	95.1
)	20.2	5.9

miles	2015 ADT	1-way or 2-way	VMT
9.00	5627	2	50643
1.20	25286	2	30343.2
8.00	40126	2	321008
8.00	40126	2	321008
3.19	36806	2	117411.14
5.38	36806	2	198016.28
0.25	36806	2	9201.5

Appendix J: Solution Prioritization Scores

				Pave	ment	Brid	lge	Saf	ety	Mot	oility	Frei	ight			Ri	isk Factors	5				
Candidate Solution #	Candidate Solution Name	-	Estimated Cost (\$ millions)	Score	%	Score	%	Score	%	Score	%	Score	%	Total Factored Score	Pavement	Bridge	Safety	Mobility	Freight	Weighted Risk Factor		Prioritization Score
CS347.1	Ak-Chin Area Safety Improvements	162-171	3.7	0.000	0.0%	0.000	0.0%	4.249	86.1%	0.232	4.7%	0.457	9.2%	4.938	1.14	1.51	1.78	1.36	1.36	1.721	0.85	76
CS347.2	Maricopa Area Mobility and Freight Improvements	174-176	6.5	0.226	3.2%	0.000	0.0%	0.184	2.6%	5.349	76.6%	1.225	17.5%	6.983	1.14	1.51	1.78	1.36	1.36	1.364	1.54	78
CS347.3	Casa Blanca Area Safety Improvements	176-184	5.1	0.000	0.0%	0.000	0.0%	2.553	73.0%	0.131	3.7%	0.814	23.3%	3.498	1.14	1.51	1.78	1.36	1.36	1.667	1.62	140
CS347.4	Casa Blanca Area Mobility and Freight Improvements	176-184	78.6	0.000	0.0%	0.000	0.0%	1.546	3.7%	39.271	93.8%	1.056	2.5%	41.873	1.14	1.51	1.78	1.36	1.36	1.376	1.62	118
CS347.5	Wild Horse Pass Area Safety Improvements	184-189	5.0	0.000	0.0%	0.000	0.0%	14.205	84.6%	0.819	4.9%	1.776	10.6%	16.801	1.14	1.51	1.78	1.36	1.36	1.715	2.23	798
CS347.6	Wild Horse Pass Area Mobility and Freight Improvements	184-189	42.1	0.440	1.0%	0.000	0.0%	5.411	12.8%	35.255	83.2%	1.269	3.0%	42.376	1.14	1.51	1.78	1.36	1.36	1.411	2.23	299
CS347.7	SR 347/I-10 Interchange Mobility and Freight Improvements	189	5.7	0.000	0.0%	0.000	0.0%	0.000	0.0%	2.604	94.9%	0.140	5.1%	2.744	1.14	1.51	1.78	1.36	1.36	1.360	2.23	18


Appendix K: Preliminary Scoping Reports for Prioritized Solutions

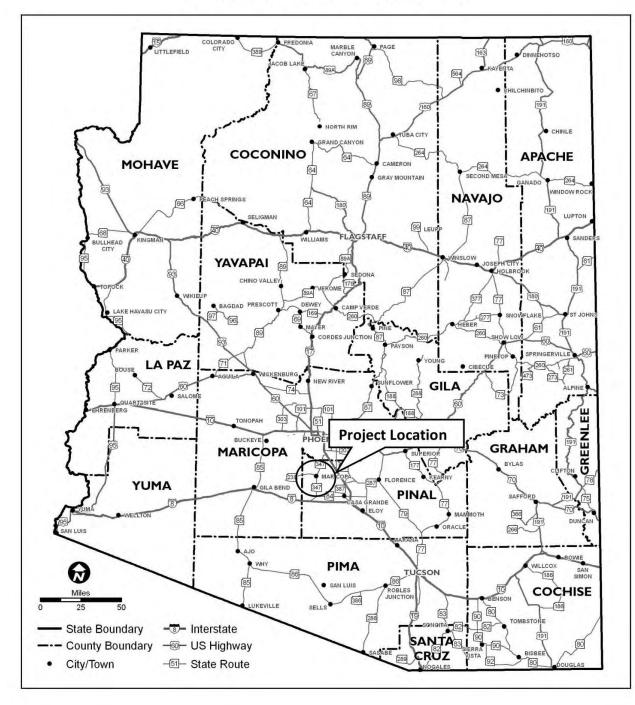

	NERAL PROJECT INFORMATION	Check any risks ide	entified that may impact the	project's scope, sched	ule, or budget:	
Date: 01-24-18	ADOT Project Manager:		c Control / Detour Issues	Right-of	and the second sec	
Project Name: Ak-Chin Area Safety Improve			ty / Construction Window Iss			
City/Town: Maricopa	County: Pinal	Stakeholder Is	and the second s	Utilities		
COG/MPO: CAG/MAG	ADOT District: Southcentral			A second s		
Primary Route/Street: SR 347		Structures & C	beotecn	Other:		
Beginning Limit: MP 162		Risk Description:				
End Limit: MP 171						
Project Length: 9 miles						
Right-of-Way Ownership(s) (where propose City/Town; County; ADOT; Pri Adjacent Land Ownership(s): (Check all that City/Town; County; ADOT; Pri						
http://gis.azland.gov/webapps/parcel/			POT	TENTIAL FUNDING S		
LOCAL PUBLIC AGEN	CY (LPA) or TRIBAL GOVERNMENT INFORMATION	Anticipated Project	t Design/Construction Fundi			Sta
	(If applicable)	Type: (Check all th			Private Triba	
LPA/Tribal Name: Ak-Chin Indian Communit	y .	- The fearer and				
LPA/Tribal Contact:				COST ESTIMAT	F	
Email Address:	Phone Number:	Preliminary	Design	Right-of-Way	Construction	Total
Administration: ADOT Administered	Self-Administered Certification Acceptance	Engineering \$96,000	\$326,000	\$0	\$3,243,000	\$3,665,000
	PROJECT NEED					1A.
Safety Need: SB Directional Safety Index is al	pove statewide averages, MP 162-171		RECO	MMENDED PROJECT	T DELIVERY	
		Delivery: Desi	gn-Bid-Build 🗌 Des	ign-Build 🗌 (Other:	
		Design Program Y	ear: FY			
		Construction Prog	ram Year: FY			
			and the second sec	The second second		
				ATTACHMENTS	5	
		1) State Loca				
		2) Project Vi				
	PROJECT PURPOSE	3) Project Sc	ope of Work			
	Preservation I Modernization Expansion I					

ATTACHMENT 1 – STATE LOCATION MAP

ATTACHMENT 2 – PROJECT VICINITY MAP

ATTACHMENT 3 – SCOPE OF WORK

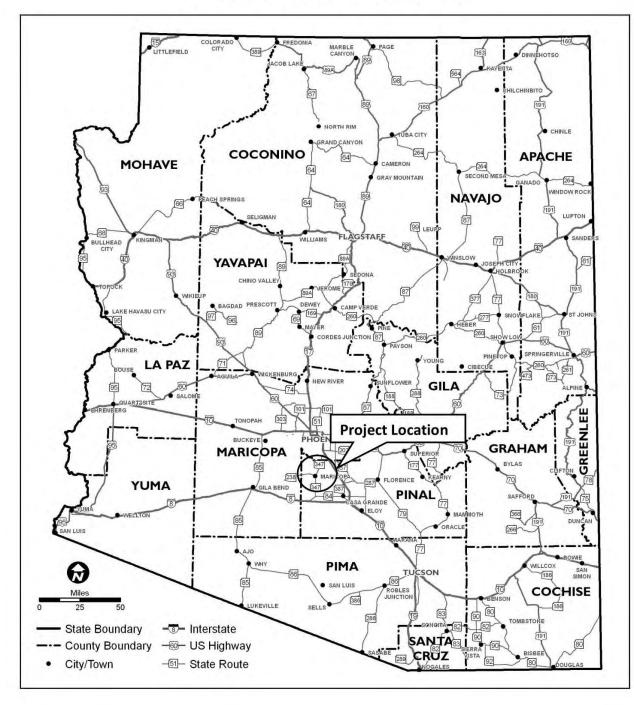
SCOPE OF WORK												
•	Rehabilitate shoulders in both directions (striping, delineators, RPMs, safety edge, and rumble strips for both shoulders), MP 162-165 and MP 168-171											
•	Improve delineation (striping, delineators and RPMs), MP 165-168											
_												
	SCOPE ITEMS CONSIDERED, BUT NOT INCLUDED											


Pursuant to 23 USC 409: Notwithstanding any other provision of law, reports, surveys, schedules, lists, or data compiled or collected for the purpose of identifying, evaluating, or planning the safety enhancement of potential accident sites, hazardous roadway conditions, or rail-way-highway crossings, pursuant to sections 130, 144, and 148 [152] of this title or for the purpose of developing any highway safety construction improvement project which may be implemented utilizing Federal-aid highway funds shall not be subject to discovery or admitted into evidence in a Federal or State court proceeding or considered for other purposes in any action for damages arising from any occurrence at a location mentioned or addressed in such reports, surveys, schedules, lists, or data.

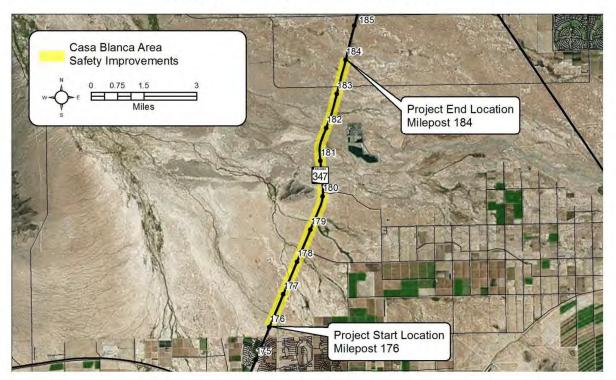
GENERAL PROJECT INFORMATION		PRELIMINARY SCOPING REPORT PROJECT RISKS							
Pate: 01-24-18 ADOT Project Manager:		Check any risks identified that may impact the project's scope, schedule, or budget:							
Project Name: Maricopa Area Mobility and Freight Improvements (CS347.2)		Access / Traffic Control / Detour Issues Right-of-Way							
ty/Town: Maricopa County: Pinal			Constructability / Construction Window Issues Environmental						
COG/MPO: MAG	ADOT District: Central								
Primary Route/Street: SR 347	The statement summer and the statement of the statement o		Stakeholder Issues						
Beginning Limit: MP 174			Structures & Geotech			Other:			
End Limit: MP 176		Risk Description:							
Project Length: 2 miles									
Right-of-Way Ownership(s) (where proposed pro City/Town; County; ADOT; Private; Adjacent Land Ownership(s): (Check all that appl									
City/Town; County; ADOT; Private									
LOCAL PUBLIC AGENCY (LPA) or TRIBAL GOVERNMENT INFORMATION		POTENTIAL FUNDING SOURCE(S)							
(If applicable)		Anticipated Project	Design/Construction Funding	STBG	П ТАР	HSIP	State		
LPA/Tribal Name: Gila River Indian Community		Type: (Check all the	at apply)	Local	Private	🗌 Tríbal	Othe		
LPA/Tribal Contact:	Phone Number:				A	Agentia later			
Email Address: Phone Number: Administration: ADOT Administered Self-Administered Certification Acceptance		COST ESTIMATE							
PROJECT NEED		Preliminary Engineering		Right-of-Way \$0	Construct \$5,757,00		Total \$6,506,000		
Mobility Need: High level of need based on the E	xisting Peak Hour V/C ratio, Future Daily V/C ratio, NB Directional PTI,	\$173,000							
and Bicycle Accommodation ratings			RECOM	MENDED PROJEC	TDELIVERY				
		RECOMMENDED PROJECT DELIVERY Delivery: Design-Bid-Build Design-Build Other:							
Freight Need: High level of need based on the Freight Index and NB/SB Directional TPTI ratings		Design Program Year: FY							
		Construction Progr							
		construction Progr							
		ATTACHMENTS							
		1) State Location Map							
		2) Project Vic	inity Map						
	PROJECT PURPOSE	3) Project Sco	ope of Work						

ATTACHMENT 1 – STATE LOCATION MAP

ATTACHMENT 2 - PROJECT VICINITY MAP



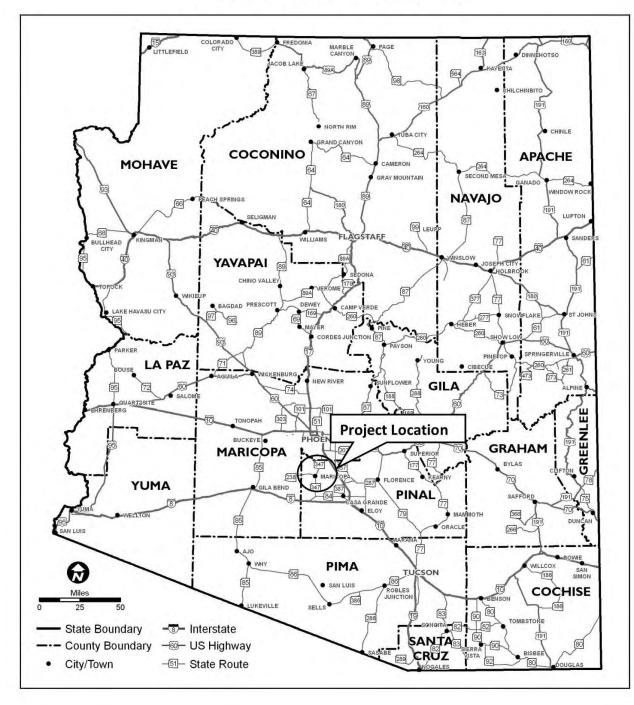
SCOPE OF WORK
Widen to the inside to provide a total of 6 lanes (3 in each direction) with a raised median; for NB, widening limits are MP 174.8-176; for SB, widening limits are MP 175.5-176
SCOPE ITEMS CONSIDERED, BUT NOT INCLUDED



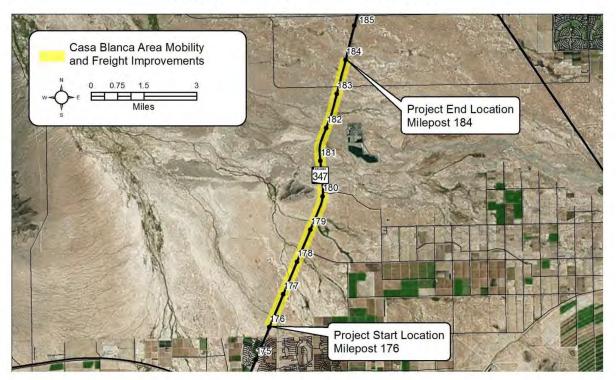
GENERAL PROJECT INFORMATION				PRELIMINARY SCOPING REPORT PROJECT RISKS					
Date: 01-24-18		ect Manager:		Check any risks identified that may impact the project's scope, schedule, or budget:					
Project Name: Casa Blanca Area Safety I				Access / Traffic Control / Detour Issues					
ity/Town: -	County: Pir	nal		Constructability / Construction Window Issues					
COG/MPO: MAG	ADOT Distr	rict: Central		Stakeholder Iss		Utilitie:			
Primary Route/Street: SR 347				Structures & Ge	is labo	Other:			
Beginning Limit: MP 176					eolech	Unter:			
nd Limit: MP 184				Risk Description:					
roject Length: 8 miles				1.000					
l ight-of-Way Ownership(s) (where prop ☐ City/Town ; ☐ County; ☑ ADOT; ☐			t apply)						
Adjacent Land Ownership(s): (Check all t City/Town; County; ADOT; ttp://gis.azland.gov/webapps/parcel/		ıl; 🗌 Other:							
LOCAL PUBLIC AG	SENCY (LPA) or TRIBAL GOVE	RNMENT INFORMAT	ION		POTEN	TIAL FUNDING S	OURCE(S)		
DA /Teibal Names Cile Diversitation Com	(If applicable)				Design/Construction Funding	STBG	П ТАР	HSIP	State
LPA/Tribal Name: Gila River Indian Community LPA/Tribal Contact:			Type: (Check all the	it apply)	Local	Private	🗌 Tribal	Other	
mail Address:	Phone Nur	mhor					A	All the second	- 24 1
Administration: ADOT Administered		and the second se	centance	COST ESTIMATE					
Administration: ADOT Administered Self-Administered Certification Acceptance PROJECT NEED				Preliminary Engineering				Total \$5,083,000	
Safety Need: Crash hot spot at MP 182-1	84			\$135,000					
					RECOM	AENDED PROJEC	TDELIVERY		
				Delivery: Desig	244 642-01		Other:		
				Design Program Ye			ouner.		
				Construction Progr					
				construction Progr					
						ATTACHMENT	S		
				1) State Locat					
	PROJECT PURPOSE			2) Project Vici 3) Project Sco					
	ct? Preservation	Modernization 🖂	Expansion	S) Hoject See	pe of work				

ATTACHMENT 2 – PROJECT VICINITY MAP

Rehabilitate shoulders in both directions (striping, delineators, RPMs, safety edge, and rumble strips for both houlders), MP 176-184 Install advanced warning signal system with detectors and beacons in both directions at Casa Blanca Road Intersection (MP 178.4) and Cement Plant intersection (MP 182.5) and lengthen NB deceleration lane to 300' at Cement Plant intersection
ntersection (MP 178.4) and Cement Plant intersection (MP 182.5) and lengthen NB deceleration lane to 300' at
SCOPE ITEMS CONSIDERED, BUT NOT INCLUDED



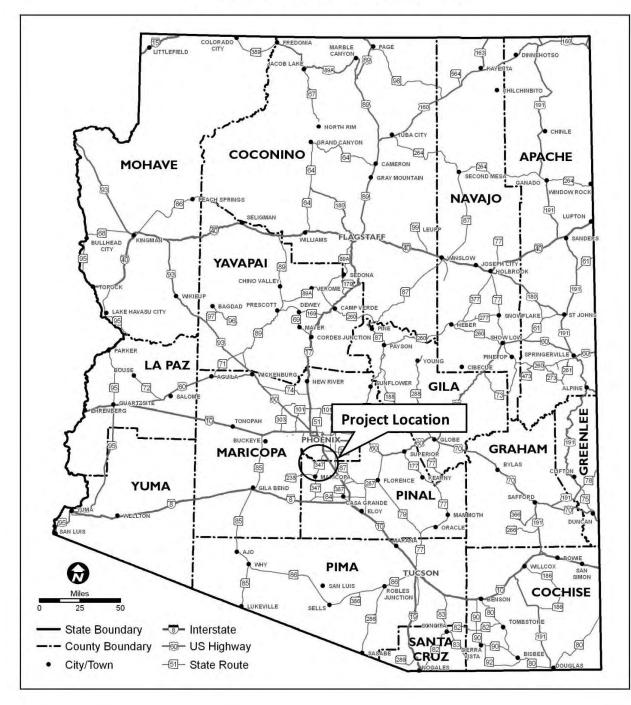
	GENERAL PROJECT INFORMATION	PROJECT RISE			
Date: 01-24-18	ADOT Project Manager:	Check any risks identified that may impact the project's scope, sche			
Project Name: Casa Blanca Area Mobility		Access / Traffic Control / Detour Issues Right-o			
City/Town: -	County: Pinal	Constructability / Construction Window Issues			
COG/MPO: MAG	ADOT District: Central				
Primary Route/Street: SR 347		Stakeholder Issues Utilitie			
Beginning Limit: MP 176		Structures & Geotech Other:			
End Limit: MP 184		Risk Description:			
Project Length: 8 miles					
Right-of-Way Ownership(s) (where propo	osed project construction would occur): <i>(Check all that apply)</i>] Private; Federal; Tribal; Other: <i>that apply</i>)				
] Private; 🗌 Federal; 🖾 Tribal; 🗌 Other:				
LOCAL PUBLIC AG	GENCY (LPA) or TRIBAL GOVERNMENT INFORMATION (If applicable)	POTENTIAL FUNDING			
		Anticipated Project Design/Construction Funding STBG			
LPA/Tribal Name: Gila River Indian Comr	munity	Type: (Check all that apply)			
LPA/Tribal Contact:					
Email Address:	Phone Number:	- COST ESTIMA			
Administration: ADOT Administered	Self-Administered Certification Acceptance	Preliminary Design Right-of-Way			
	PROJECT NEED	Engineering \$6,957,000 \$0			
		\$2,087,000			
Mobility Need: High level of heed based o	on the Existing Peak Hour and Future Daily V/C ratios				
Freight Need: High level of need based or	n the Freight Index and NB/SB Directional TPTI ratings	RECOMMENDED PROJEC			
reight weed. High level of heed based of	a the relight muck and ND/3D Directional ren ratings	Delivery: Design-Bid-Build Design-Build Design-Build			
		Design Program Year: FY			
		Construction Program Year: FY			
		ATTACHMENT			
		1) State Location Map			
	PROJECT PURPOSE	2) Project Vicinity Map 3) Project Scope of Work			


1

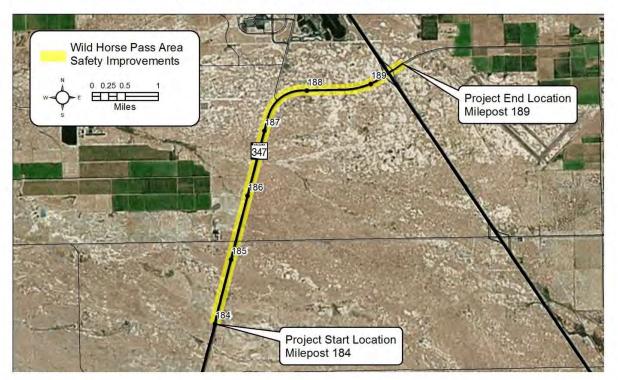
of-Wa	or budget:		
of-Wa	or budget:		
of-Wa			
	Y		
nmen	tal		
es			
SOUR	CE(S)		
] TAP	HSIP	State
E] Private	Tribal	Other:
TE			
100	Constructio	n	Total
	\$69,564,00	0	\$78,608,000
			for a formation of the
CT DE	LIVERY		
Othe	er:		
	041		
10.2			
TC			
TS			

ATTACHMENT 2 – PROJECT VICINITY MAP

SCOPE OF WORK Widen to the inside to provide a total of 6 lanes (3 in each direction) with a median concrete barrier Construct 1,200' NB acceleration lane at Casa Blanca Road intersection (MP 178.4) Widen NB and SB Gila River Bridges (MP 181.8) Widen NB and SB Santa Cruz Wash Bridges (MP 178.3) Widen NB and SB Santa Cruz Wash Bridges (MP 176.2)

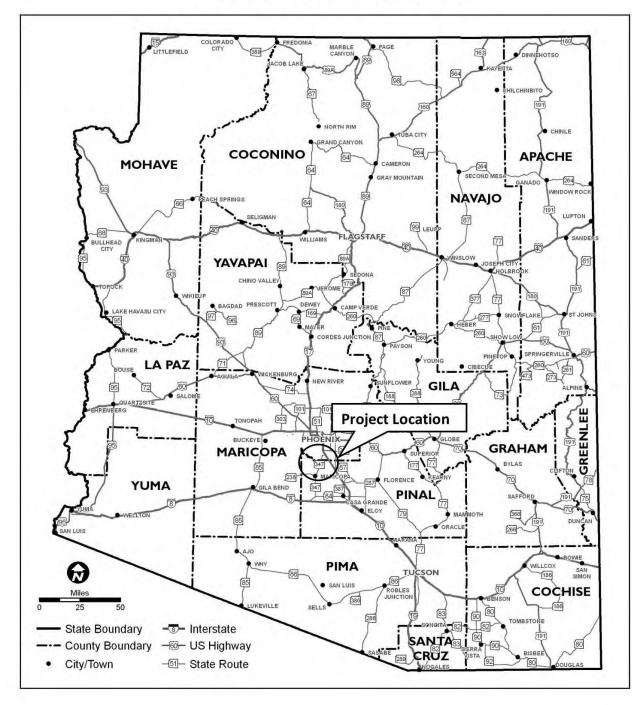

SCOPE ITEMS CONSIDERED, BUT NOT INCLUDED

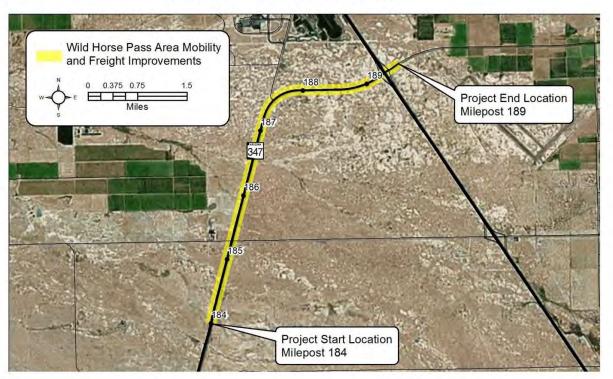
• Cable median barrier – maintenance and safety concerns voiced by Central District



	GENERAL PROJECT INFORMATION			PROJECT RISKS	- Causers		
Date: 01-24-18	ADOT Project Manager:	Check any risks ide	ntified that may impact the project		le or budget:		
Project Name: Wild Horse Pass Area Safe			Control / Detour Issues	Right-of-			
City/Town: -	County: Maricopa/Pinal		y / Construction Window Issues	Environm			
COG/MPO: MAG	ADOT District: Central				lentai		
Primary Route/Street: SR 347		Stakeholder Iss	2.3.3	Utilities			
Beginning Limit: MP 184		Structures & G	Structures & Geotech Other:				
End Limit: MP 189		Risk Description:					
Project Length: 5 miles							
☐ City/Town; ☐ County; ⊠ ADOT; ☐ Adjacent Land Ownership(s): (Check all tl	osed project construction would occur): <i>(Check all that apply)</i> Private; Federal; Tribal; Other: hat apply) Private; Federal; Tribal; Other:						
LOCAL PUBLIC AG	ENCY (LPA) or TRIBAL GOVERNMENT INFORMATION	-	POTENTI	AL FUNDING SC	URCE(S)		
	(If applicable)	Anticipated Project	Design/Construction Funding	STBG		HSIP	State
LPA/Tribal Name: Gila River Indian Comn	nunity	Type: (Check all the	Type: (Check all that apply)			Tribal	Othe
LPA/Tribal Contact:	Phone Number:						
Email Address:		(COST ESTIMATE				
Administration: 🗌 ADOT Administered	Preliminary Engineering \$133,000	Design Rig \$439,000 \$0				otal 4,955,000	
Safety Need: Safety Index above the state hot spot at MP 184-189	wide average, particularly in the SB/WB direction, at MP 184-189, with a cra	sh					
		Delivery: Desig	New York Market Market Park		ther:		
		Design Program Ye					
		Construction Progr	am Year: FY				
				ATTACHMENTS			
		1) State Locat					
the second se	PROJECT PURPOSE	2) Project Vic					
What is the Primary Purpose of the Projec	t? Preservation D Modernization Expansion D	3) Project Sco	ре от work				_
Address identified Safety Need by rehabil detectors and beacons, dual left-turn lane	itating the shoulders and installing advanced warning signal systems with es, a traffic signal, and lighting						

ATTACHMENT 2 - PROJECT VICINITY MAP


SCOPE OF WORK
• Rehabilitate shoulders in both directions (striping, delineators, RPMs, safety edge, and rumble strips for both shoulders), MP 184-189
 Install advanced warning signal system with detectors and beacons in both directions at Riggs Road intersection (MP 185.3)
 Install dual left-turn lanes on each approach at Riggs Road intersection (MP 185.3)
• Construct traffic signal at Maricopa Road intersection (MP 187.5) and provide an advanced warning signal system with detectors and beacons (both directions) and widen intersection to provide dual southbound left-turn lanes
 Install intersection lighting at Maricopa Road intersection (MP 187.5)
2
SCOPE ITEMS CONSIDERED, BUT NOT INCLUDED


	GENERAL PROJECT INFORMATION	T.		PROJECT RIS	
Date: 01-24-18	ADOT Project Manager:	Check any risks ider	tified that may impact the p		
	lobility and Freight Improvements (CS347.6)		Control / Detour Issues	Right-	
City/Town: -	County: Maricopa/Pinal		/ Construction Window Iss		
COG/MPO: MAG	ADOT District: Central				
Primary Route/Street: SR 347		Stakeholder Iss			
Beginning Limit: MP 184		Structures & Ge	otech	Other	
End Limit: MP 189		Risk Description:			
Project Length: 5 miles					
Right-of-Way Ownership(s) (where prop City/Town; County; ADOT;	pposed project construction would occur): <i>(Check all that apply)</i> Private; Pederal; Tribal; Other:				
Adjacent Land Ownership(s): (Check all City/Town; County; ADOT; http://gis.azland.gov/webapps/parcel/	l that apply) Private; Federal; Tribal; Other:				
LOCAL PUBLIC A	AGENCY (LPA) or TRIBAL GOVERNMENT INFORMATION		РОТ	ENTIAL FUNDING	
	(If applicable)	Anticipated Project	Design/Construction Fundir	ng STBG	
LPA/Tribal Name: Gila River Indian Com	nmunity	Type: (Check all tha	The second s	Local	
LPA/Tribal Contact:					
Email Address:	Phone Number:			COST ESTIMA	
Administration: ADOT Administered Self-Administered Certification Acceptance		Preliminary	Right-of-Way		
	Engineering \$3,727,000			\$0	
	PROJECT NEED	\$1,118,000		12 	
Mobility Need: High level of need based	d on the Existing Peak Hour and Future Daily V/C ratios		· · · · ·		
			RECO	MMENDED PROJE	
Freight Need: High level of need based o	on the Freight Index and NB Directional TPTI ratings	Delivery: Desig	n-Bid-Build 🗌 Desi	gn-Build	
		Design Program Yes	ar: FY		
		Construction Progra	am Year: FY		
				ATTACHMEN	
		1) State Locat			
	PROJECT PURPOSE	2) Project Vici			
		3) Project Sco	be of Work		

(S	REPORT	
1.5		
edule,	, or budget:	
of-Wa	ау	
nmer	ntal	
es		
-		
sou	RCE(S)	State
ļ	Private Tribal	Other:
TE		
	Construction Total \$37,284,000 \$42,129,	000
CTD	ELIVERY	
UD		
	er:	
	er:	
Oth	er:	
	er:	

ATTACHMENT 2 – PROJECT VICINITY MAP

	SCOPE OF WORK
•	Widen to the inside to provide a total of 6 lanes (3 in each direction) with a median concrete barrier
•	Construct 1,200' SB acceleration lane and lengthen SB deceleration lane to 300' at Maricopa Road intersection (MP 187.5)
•	Construct 1,200' NB/SB acceleration lanes and lengthen NB/SB deceleration lanes to 300' at Riggs Road intersection (MP 185.3)
_	
	SCOPE ITEMS CONSIDERED, BUT NOT INCLUDED

• Cable median barrier – maintenance and safety concerns voiced by Central District

GE	NERAL PROJECT INFORMATION	1		P	ROJECT RIS
Date: 01-24-18	ADOT Project Manager:	Check any risks ider	tified that may impact the	1.5	100 m 100 m 100 m 100 m
Project Name: SR 347/I-10 Interchange Mob			Control / Detour Issues		Right-
City/Town: -	County: Maricopa		/ Construction Window Is	ssues	Enviro
COG/MPO: MAG	ADOT District: Central	Stakeholder Issu		2010.00	
Primary Route/Street: SR 347		Structures & Ge			
Beginning Limit: MP 189					Other:
End Limit: MP 189			ay not be able to re-use tl nificantly; no detour near		g bridges, de
Project Length: 1 mile		increase the cost sig	initiality, no actour near	UY	
🗌 City/Town; 🗌 County; 🔀 ADOT; 🗌 Priv	A de Part 1 august de l'este de l'este de l'este de la constante de REC. El constante de REC.				
Adjacent Land Ownership(s): (Check all that City/Town; County; ADOT; Pr http://gis.azland.gov/webapps/parcel/					
LOCAL PUBLIC AGEN	CY (LPA) or TRIBAL GOVERNMENT INFORMATION	1	PC	TENTIA	L FUNDING
	(If applicable)	Anticipated Project	Design/Construction Fund	ling	STBG
LPA/Tribal Name: Gila River Indian Commun	nity	Type: (Check all tha	apply)	2	Local
LPA/Tribal Contact:					
Email Address:	Phone Number:			C	OST ESTIMA
Administration: ADOT Administered	Self-Administered Certification Acceptance	Preliminary	Design	Righ	t-of-Way
	PROJECT NEED	Engineering	\$500,000	\$0	
Mability Nords High lovel of pood based on th	he Existing Peak Hour and Future Daily V/C ratios	\$150,000			
woonity weed. Fight level of fleed based on th		H	DEC	OBABAES	
Freight Need: High level of need based on the	e Freight Index and NB Directional TPTI ratings		415.2	and a star but the se	DED PROJE
		Delivery: Design		sign-Bui	d [
		Design Program Yea			
		Construction Progra	m Year: FY		
				Δ	TTACHMEN
		1) State Locat	on Map		
		2) Project Vici			
	PROJECT PURPOSE	3) Project Sco	be of Work		
What is the Primary Purpose of the Project?	Preservation Modernization Expansion				

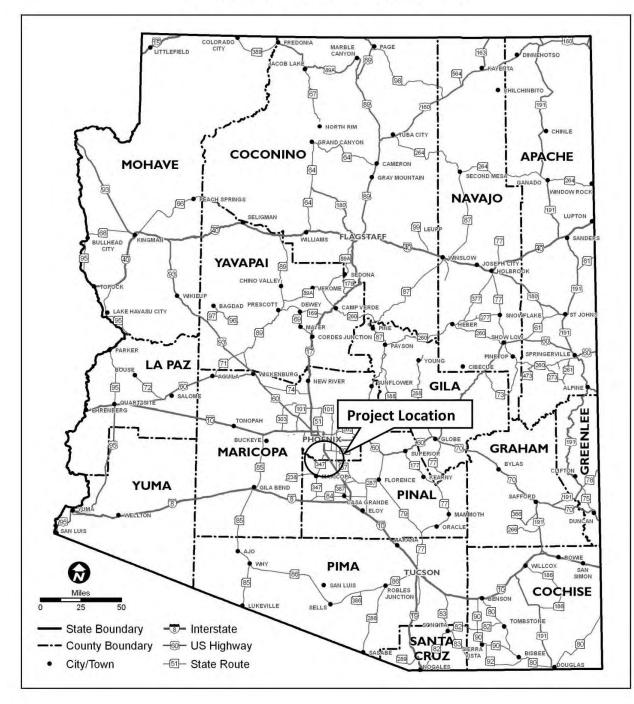
OPING REPORT

-				~
R	I.	5	K	5

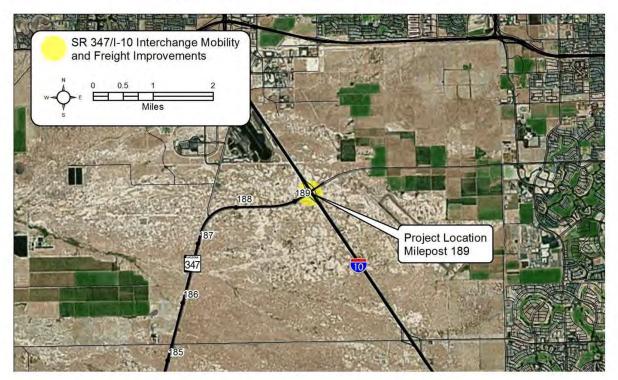
, schedule, or budget:

ight-of-Way

nvironmental


tilities

ther:


es, depending on the interchange geometry, which would

iS	OURCE(S)		
	ТАР	HSIP	State
	Private	Tribal	Other:

IMATE		-				
У	Construction \$5,000,000	Total \$5,650,000				
	DeLIVERY					
MENITS						
MENTS						

ATTACHMENT 2 - PROJECT VICINITY MAP

SCOPE OF WORK		
•	Convert SR 347/I-10 traffic interchange from conventional diamond to diverging diamond interchange	
	SCOPE ITEMS CONSIDERED, BUT NOT INCLUDED	

