FINAL REPORT

I-19 Corridor Profile Study

Nogales to Junction I-10

ADOT CONTRACT NO. 11-013177

Prepared by

189

St

Western Ave

3 km

Intl

Border

6 km

Intl Border

SIGNAL 4

I-19 CORRIDOR PROFILE STUDY

NOGALES TO JUNCTION I-10

ADOT WORK TASK NO. MPD 072A-14 ADOT CONTRACT NO. 11-013177

FINAL REPORT

MARCH 2017

PREPARED FOR:

ARIZONA DEPARTMENT OF TRANSPORTATION

PREPARED BY:

AECOM

This report was funded in part through grants from the Federal Highway Administration, U.S. Department of Transportation. The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data, and for the use or adaptation of previously published material, presented herein. The contents do not necessarily reflect the official views or policies of the Arizona Department of Transportation or the Federal Highway Administration, U.S. Department of Transportation or the standard, specification, or regulation. Trade or manufacturers' names that may appear herein are cited only because they are considered essential to the objectives of the report. The U.S. government and the State of Arizona do not endorse products or manufacturers.

Table of Contents

EXEC	CUTIVE SUMMARY	1
INTR	ODUCTION	1
1.0	INTRODUCTION	1
	1.1 Corridor Study Purpose	2
	1.2 STUDY GOALS AND OBJECTIVES	2
	1.3 CORRIDOR OVERVIEW AND LOCATION	2
	1.4 CORRIDOR SEGMENTS	2
	1.5 CORRIDOR CHARACTERISTICS	5
	1.6 CORRIDOR STAKEHOLDERS AND INPUT PROCESS	9
	1.7 PRIOR STUDIES AND RECOMMENDATIONS	9
2.0	CORRIDOR PERFORMANCE	17
	2.1 Corridor Performance Framework	
	2.2 PAVEMENT PERFORMANCE AREA	
	2.3 Bridge Performance Area	22
	2.4 MOBILITY PERFORMANCE AREA	25
	2.5 SAFETY PERFORMANCE AREA	
	2.6 FREIGHT PERFORMANCE AREA	
	2.7 CORRIDOR PERFORMANCE SUMMARY	
3.0	NEEDS ASSESSMENT	
	3.1 CORRIDOR OBJECTIVES	
	3.2 NEEDS ASSESSMENT PROCESS	
	3.3 CORRIDOR NEEDS ASSESSMENT	41
4.0	STRATEGIC SOLUTIONS	
	4.1 Screening Process	
	4.2 CANDIDATE SOLUTIONS	53
5.0	SOLUTION EVALUATION AND PRIORITIZATION	
	5.1 LIFE-CYCLE COST ANALYSIS	57
	5.2 Performance Effectiveness Evaluation	
	5.3 SOLUTION RISK ANALYSIS	
	5.4 CANDIDATE SOLUTION PRIORITIZATION	63

6.0 SUMMARY OF CORRIDOR RECOMMEN

- 6.1 PRIORITIZED CANDIDATE SOLUTION RECO
- 6.2 OTHER CORRIDOR RECOMMENDATIONS ...
- 6.3 POLICY AND INITIATIVES RECOMMENDATION
- 6.4 NEXT STEPS

DATIONS	65
OMMENDATIONS	65
	65
ONS	66
	69

List of Figures

Figure 1: Corridor Study Area	1
Figure 2: Corridor Location and Segments	4
Figure 3: Corridor Assets	8
Figure 4: Recommended Projects from Previous Studies	. 16
Figure 5: Corridor Profile Performance Framework	. 17
Figure 6: Performance Area Template	. 18
Figure 7: Pavement Performance Measures	. 19
Figure 8: Pavement Performance	. 21
Figure 9: Bridge Performance Measures	. 22
Figure 10: Bridge Performance	. 24
Figure 11: Mobility Performance Measures	. 25
Figure 12: Mobility Performance	. 28
Figure 13: Safety Performance Measures	
Figure 14: Safety Performance	
Figure 15: Freight Performance Measures	. 32
Figure 16: Freight Performance	. 34
Figure 17: Performance Summary by Primary Measure	. 35
Figure 18: Corridor Performance Summary by Performance Measure	
Figure 19: Needs Assessment Process	. 40
Figure 20: Initial Need Ratings in Relation to Baseline Performance (Bridge Example)	. 40
Figure 21: Corridor Needs Summary	. 49
Figure 22: Strategic Investment Areas	
Figure 23: Candidate Solutions	. 55
Figure 24: Candidate Solution Evaluation Process	. 56
Figure 25: Risk Matrix	. 62
Figure 26: Numeric Risk Matrix	. 62
Figure 27: Recommended Solutions	. 68

List of Tables

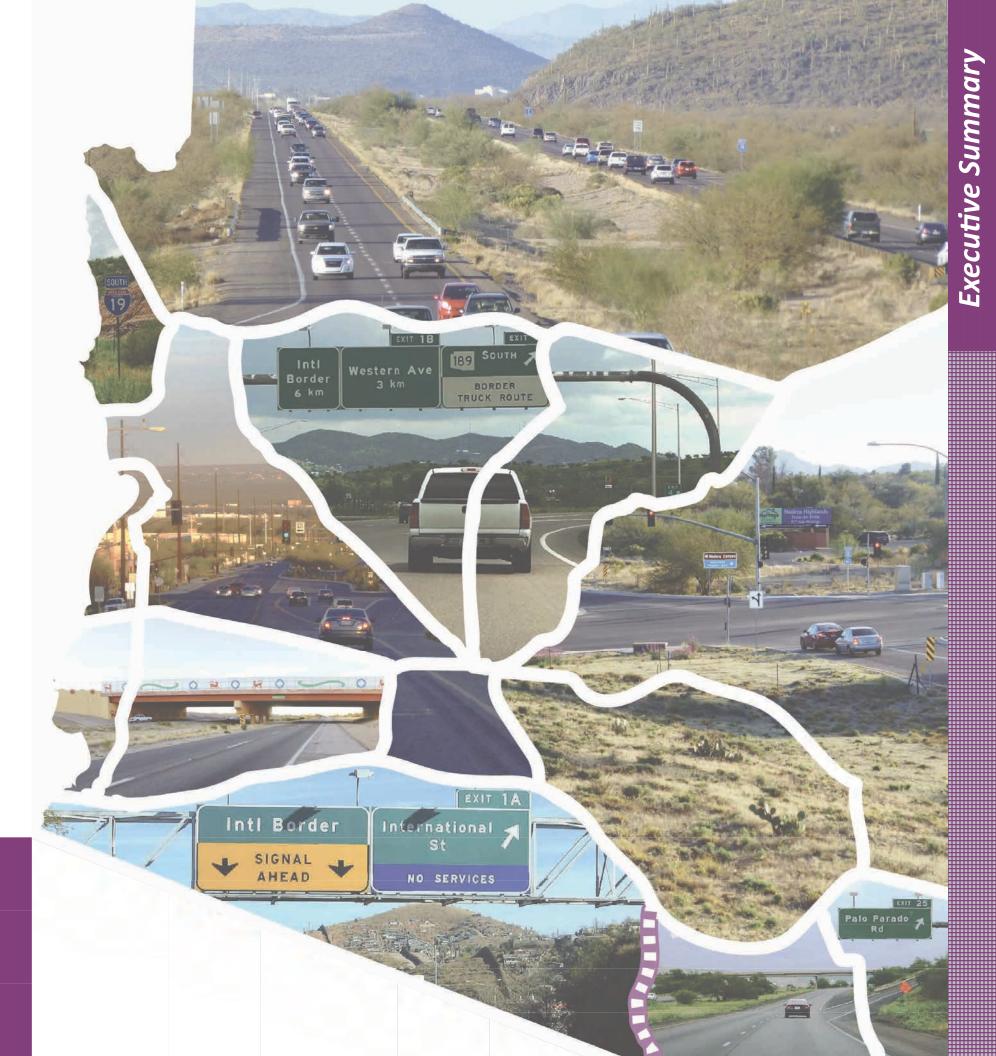
Table 1: I-19 Corridor Segments	3
Table 2: Current and Future Population	6
Table 3: Corridor Recommendations from Previous Studies	
Table 4: Corridor Performance Measures	
Table 5: Pavement Performance	
Table 6: Bridge Performance	23
Table 7: Mobility Performance	27
Table 8: Safety Performance	
Table 9: Freight Performance	
Table 10: Corridor Performance Summary by Segment and Performance Measure	
Table 11: Corridor Performance Goals and Objectives	
Table 12: Final Pavement Needs	42
Table 13: Final Bridge Needs	43
Table 14: Final Mobility Needs	
Table 15: Final Safety Needs	
Table 16: Final Freight Needs	46
Table 17: Summary of Needs by Segment	47
Table 18: Strategic Investment Area Screening	52
Table 19: Candidate Solutions	54
Table 20: Bridge Life-Cycle Cost Analysis Results	
Table 21: Pavement Life-Cycle Cost Analysis Results	58
Table 22: Performance Effectiveness Scores	61
Table 23: Performance Results	
Table 24: Prioritized Recommended Solutions List	67
Appendices	
Appendix A: Corridor Performance Maps	
Appendix B: Performance Area Detailed Calculation Methodologies	
Appendix C: Performance Area Data	
Appendix D: Needs Analysis Contributing Factors and Scores	
Appendix E: Life-Cycle Cost Analysis	
Appendix F: Crash Modification Factors and Construction Costs	
Appendix G: Performance Area Risk Factors	
Appendix H: Candidate Solution Estimates	
Appendix I: Performance Effectiveness Scores	
Appendix J: Project Prioritization Scores	

Appendix 5: Preliminary Scoping Reports for Prioritized Solutions

ACRONYMS & ABBREVIATIONS

AADT	Average Annual Daily Traffic		
ABISS	Arizona Bridge Information System	PES	Performance Effectiveness Score
ADOT	Arizona Department of Transportation	P2P	Planning to Programming
AGFD	Arizona Game and Fish Department	PDI	Pavement Distress Index
AZTDM	Arizona Travel Demand Model	PS	Prioritization Score
BCA	Benefit Cost Analysis	PSR	Pavement Serviceability Rating
bqAZ	Building a Quality Arizona	PTI	Planning Time Index
CANAMEX	Nationally designated high priority freight route linking western states, Mexico, Canada	RTP	Regional Transportation Plan
CCTV	Closed Circuit Television	SEAGO	Southeast Arizona Council of Gover
DCR	Design Concept Report	SB	Southbound
DMS	Digital Message Signs	SERI	Species of Economic and Recreation
FY	Fiscal Year	SGCN	Species of Greatest Conservation N
HCRS	Highway Condition Reporting System	SHCG	Species and Habitat Conservation G
HERE	Real time traffic conditions database produced by American Digital Cartography Inc.	SHSP	Strategic Highway Safety Plan
HPMS	Highway Performance Monitoring System	SPUI	Single Point Urban Interchange
I-19	Interstate 19	SR	State Route
IRI	International Roughness Index	SWAP	State Wildlife Action Plan
LCCA	Life Cycle Cost Analysis	ТІ	Traffic Interchange
LOS	Level of Service	TIP	Transportation Improvement Plan
MAP 21	Moving Ahead for Progress in the 21st Century	TPTI	Truck Planning Time Index
MP	Milepost	ТТІ	Travel Time Index
NB	Northbound	ТТТІ	Truck Travel Time Index
OP	Overpass	USDOT	United States Department of Transp
PAG	Pima Association of Governments	UP	Underpass
PARA	Planning Assistance for Rural Areas Studies	V/C	Volume to Capacity Ratio
		VMT	Vehicle-Miles Traveled

rernments


tional Importance

Need

Guide

sportation

Executive Summary

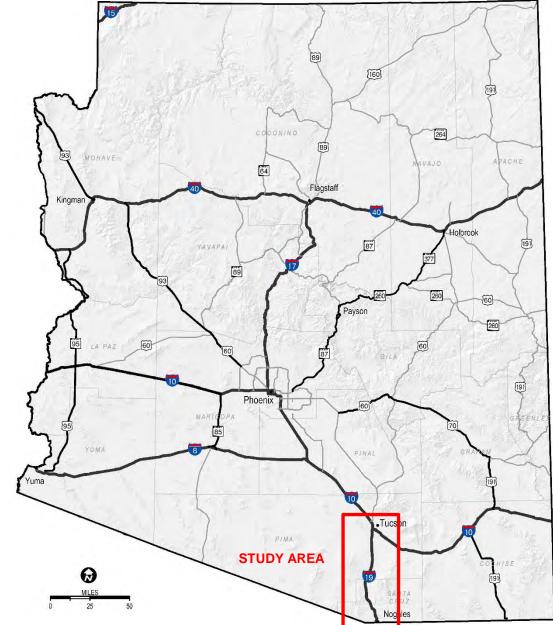
EXECUTIVE SUMMARY

INTRODUCTION

The Arizona Department of Transportation (ADOT) is the lead agency for this Corridor Profile Study (CPS) of Interstate 19 (I-19) between the International Border and Interstate 10 (I-10). This study examines key performance measures relative to the I-19 corridor, and the results of this performance evaluation will be used to identify potential strategic improvements. The intent of the corridor profile program, and of the Planning to Programming (P2P) process, is to conduct performance-based planning to identify areas of need and make the most efficient use of available funding to provide an efficient transportation network.

ADOT is conducting eleven CPS within three separate groupings. The I-19 corridor, depicted in Figure ES-1, is one of the strategic statewide corridors identified and the subject of this CPS.

Corridor Study Purpose, Goals and Objectives


The purpose of the Corridor Profile Study is to measure corridor performance to inform the development of strategic solutions that are cost-effective and account for potential risks. This purpose can be accomplished by following the process described below:

- Inventory past improvement recommendations
- Define corridor goals and objectives
- Assess existing performance based on quantifiable performance measures ٠
- Propose various solutions to improve corridor performance •
- Identify specific solutions that can provide quantifiable benefits relative to the performance measures
- Prioritize solutions for future implementation, accounting for performance effectiveness • and risk analysis findings

The objective of this study is to identify a recommended set of prioritized potential solutions for consideration in future construction programs, derived from a transparent, defensible, logical, and replicable process. The I-19 Corridor Profile Study will define solutions and improvements for the corridor that can be evaluated and ranked to determine which investments offer the greatest benefit to the corridor in terms of enhancing performance.

The following goals have been identified as the outcome of this study:

- Link project decision-making and investments on key corridors to strategic goals.
- Develop solutions that address identified corridor needs based on measured performance.
- Prioritize improvements that cost-effectively preserve, modernize, and expand transportation infrastructure.

Study Location and Corridor Segments

The I-19 Corridor is divided into 6 planning segments for analysis and evaluation. The corridor is segmented at logical breaks where the context changes such as terrain, daily traffic volumes, or roadway typical sections. Corridor segments are shown in Figure ES-2.

Figure ES-1: Corridor Study Area

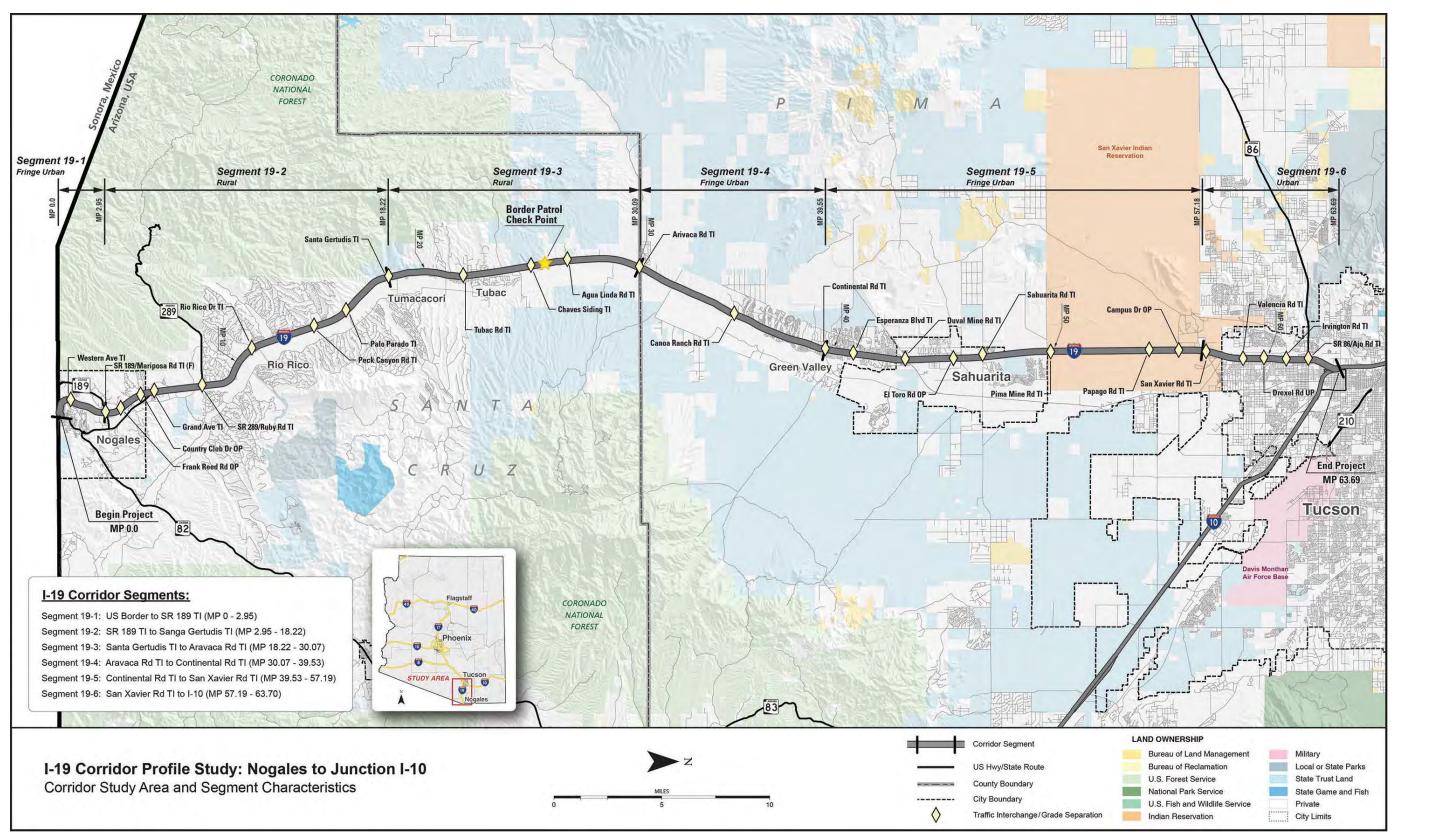
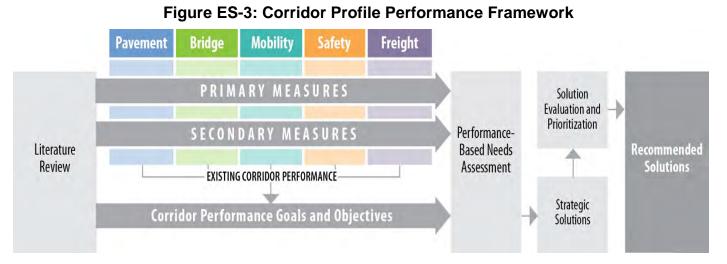


Figure ES-2: Corridor Location and Segments

I-19 Corridor Profile Study Final Report


CORRIDOR PERFORMANCE

A series of performance measure were used to assess the I-19 corridor. The results of the performance evaluation were used to define overall corridor need relative to the long term goals and objectives for the corridor.

Corridor Performance Framework

This study uses a performance-based process to define baseline corridor performance, diagnose corridor needs, develop corridor solutions, and prioritize strategic corridor investments. In support of this objective, a framework for the performance-based process was developed through a collaborative process involving ADOT and the consultant teams for the Corridor Profile Studies.

Figure ES-3 illustrates the performance framework, which includes a two-tiered system of performance measures (primary and secondary) to evaluate baseline performance.

The following five performance areas guide the performance-based corridor analyses:

- Pavement
- Bridge •
- Mobility
- Safety •
- Freight

The performance measures include five primary measures: Pavement Index, Bridge Index, Mobility Index, Safety Index, and Freight Index. Additionally, a set of secondary performance measures were identified for a more detailed analysis of corridor performance. Table ES-1 provides the complete list of primary and secondary performance measures for each of the five performance areas.

Table ES-1: Corridor Performance Measures

Performance Area	Primary Measure
	Pavement Index
Pavement	Based on a combination of International Roughness Index and Cracking
	Bridge Index
Bridge	Based on lowest of deck, substructure, superstructure and structural evaluation rating
	Mobility Index
Mobility	Based on combination of existing and future daily volume-to-capacity ratios
	Safety Index
Safety	Based on frequency of fatal and incapacitating injury crashes
	Facial (In Inc.
Freight	Freight Index Based on bi-directional truck planning time index

Each of the primary and secondary performance measures identified above is comprised of one or more quantifiable indicators. A three-level scale was developed to standardize the performance scale across the five performance areas, with numerical thresholds specific to each performance measure:

Good/Above Average Performance	 Rating is
Fair/Average Performance	– Rating is
Poor/Below Average Performance	 Rating is

The terms "good", "fair", and "poor" apply to the Pavement, Bridge, Mobility, and Freight "below average" apply to the Safety performance measures, which have thresholds referenced to statewide averages.

Secondary Measures • Directional Pavement Serviceability • Pavement Failure • Pavement Hot Spots • Bridge Sufficiency • Functionally Obsolete Bridges Bridge Rating • Bridge Hot Spots Future Congestion Peak Congestion Travel Time Reliability Multimodal Opportunities Directional Safety Index • Strategic Highway Safety Plan Emphasis Areas • Crash Unit Types Safety Hot Spots Recurring Delay • Non-Recurring Delay Closure Duration • Bridge Vertical Clearance

Bridge Vertical Clearance Hot Spots

- is above identified desirable/average range
- is within identified desirable/average range
- is below identified desirable/average range
- performance measures, which have defined thresholds. The terms "above average", "average", and

Corridor Performance Summary

Table ES-2 shows a summary of corridor performance for all primary measures and secondary measure indicators for the I-19 Corridor. A weighted corridor average rating (based on the length of the segment) was calculated for each primary and secondary measure as shown in **Table ES-2**.

- The most significant results for the I-19 corridor report Poor Safety performance on all segments except segment 19-4, including NB and SB lanes.
- Pavement performance is generally Good/Above Average throughout the corridor.
- Bridge performance is generally Good/Above Average throughout the corridor. Exceptions include a series of Functionally Obsolete bridges in segment 19-1 and an average bridge rating of 4 (Below Average) on segment 19-5.
- Mobility performance is generally Good/Above Average throughout the corridor. Exceptions include segment 19-6 in the Tucson urban area, where project traffic increases push the Mobility Index into the poor range.
- Freight performance is generally Good/Above Average throughout the corridor. Exceptions include a low clearance bridge on segment 19-5 and a corridor average PTI (NB) that is largely the result of:
 - Conditions on segment 19-1 which delay trucks from reaching signed speed limits, and
 - The US Customs Border Patrol Checkpoint on segment 19-3, where delays contribute to lower average speeds for the segment.

Table ES-2 shows a summary of all primary and secondary performance measures for the I-19 corridor. A weighted average rating (based on the length of the segment) was calculated for each primary and secondary measure as shown in **Table ES-2**.

		Pavement Performance Area Bridge Performance Area						Mobility Performance Area													
Segment	Length (miles)	Pavement Index	Direc	ctional SR	Pavement Failure	Bridge Index	Bridge Sufficiency	Bridge Rating	% Deck Area of Functionally Obsolete	Mobility Index	Future Daily	Peak	sting Hour /C	(instance	e Extent s/milepost r/mile)	Directi	onal TTI hicles)	Directio	onal PTI hicles)	% Bicycle Acc.	% Non-Single Occupancy Vehicle
			NB	SB				9	Bridges		V/C	NB	SB	NB	SB	NB	SB	NB	SB		(SOV) Opportunities
19-1 ^{1a*}	3	4.03	3.72	3.96	16.7%	5.98	90.03	5	100.0%	0.16	0.19	0.12	0.11	0.27	0.20	1.40	1.01	2.28	1.30	90%	14%
19-2 ^{2a^}	15	4.39	4.28	4.26	3.3%	5.79	92.24	5	27.3%	0.32	0.39	0.19	0.20	0.22	0.17	1.16	1.13	1.25	1.22	100%	17%
19-3 ^{2b*}	12	3.57	3.74	3.90	0.0%	6.18	93.08	6	19.7%	0.26	0.32	0.17	0.17	0.30	0.17	1.58	1.10	2.50	1.17	100%	15%
19-4 ^{1a^}	10	3.54	3.76	3.90	0.0%	6.60	95.35	6	15.7%	0.34	0.41	0.23	0.23	0.20	0.02	1.06	1.06	1.08	1.12	100%	16%
19-5 ^{1a^}	17	4.08	3.97	4.02	0.0%	5.30	90.92	4	21.3%	0.56	0.66	0.35	0.36	0.25	0.15	1.06	1.07	1.11	1.12	100%	13%
19-6 ^{1a^}	7	3.61	3.54	3.57	18.8%	6.06	77.36	5	19.4%	1.01	1.21	0.78	0.76	0.38	0.06	1.00	1.04	1.03	1.12	95%	15%
•	l Corridor rage	3.92	3.91	3.98	3.6%	5.90	90.80	5.08	25.0%	0.44	0.53	0.30	0.30	0.26	0.13	1.19	1.08	1.44	1.16	99%	15%
Sc	ale	Inter	state								Urban or F	Rural				Uı	ninterrupted	d or Interrup	ted		
Good/Abo	ve Average	> 3	.75		< 5%	> 6.5	> 80	> 6	< 12%		< 0.71 [°] < 0.56 [°]			< ().22		.15^ .30*		.30^ .00*	> 90%	> 17%
Fair/A	verage	3.2 -	3.75		5% - 20%	5.0 - 6.5	50 - 80	5 – 6	12% - 40%		0.71 - 0.8 0.56 - 0.7			0.22	- 0.62		-1.33^ -2.00*		-1.50^ -6.00*	60% - 90%	11% - 17%
Poor/Belo	w Average	<;	3.2		> 20%	< 5.0	< 50	< 5	> 40 %		> 0.89 >0.76 ²			> ().62		.33^ 00*		.50^ .00*	< 60%	< 11%

 Table ES-2: Corridor Performance Summary by Segment and Performance Measure

	Length (miles)	Safety Performance Area						Freight Performance Area								
Segment		Safety Index		tional Index	% of Fatal + Incapacitating Injury Crashes Involving SHSP Top 5 Emphasis Areas Behaviors	% of Fatal + Incapacitating Injury Crashes	Freight Index	Directional	I Truck TTI	Directional 1	Closure Duration (minutes/milepost closed/year/mile)		Vertical Bridge Clearance			
			NB	SB		Involving Trucks		NB	SB	NB	SB	NB	SB			
19-1 ^{1a*}	3	1.94	1.99	1.90	Insufficient Data	Insufficient Data	0.46	1.54	1.08	2.37	1.96	30.03	46.78	No UP		
19-2 ^{2a^}	15	1.33	1.34	1.32	59%	Insufficient Data	0.93	1.04	1.04	1.09	1.08	45.09	33.78	16.15		
19-3 ^{2b*}	12	1.36	1.59	1.12	33%	Insufficient Data	0.34	1.43	1.03	4.91	1.06	87.90	53.94	16.13		
19-4 ^{1a^}	10	0.52	0.59	0.44	44%	Insufficient Data	0.95	1.02	1.03	1.05	1.06	22.82	7.36	No UP		
19-5 ^{1a^}	17	1.48	2.11	0.86	39%	Insufficient Data	0.94	1.03	1.03	1.05	1.06	39.82	23.75	16.78		
19-6 ^{1a^}	7	1.42	0.80	2.04	53%	Insufficient Data	0.88	1.02	1.08	1.06	1.20	66.47	22.61	15.98		
Weighted Aver		1.29	1.45	1.13	45%	Insufficient Data	0.80	1.13	1.04	1.85	1.12	49.87	30.16	16.33		
Sca	ale		Urban	4 Lane	Freeway or Rural 4 Lane < 25,000 vp	d		Uninte	errupted or Inter	rupted						
Good/ Abov	ve Average	< 0.79ª < 0.73 ^b		< 49.1%ª < 42.8% ^b	N/A	> 0.77^ > 0.33*	< 1.15 ^ < 1.30*		< 1.30^ < 3.00*		< 44.18		> 16.5			
Fair/ Average		0.79-1.21ª 0.73-1.27 ^b			49.1%-59.4%ª 42.8%-52.9% ^b	N/A	0.67 - 0.77^ 0.17 - 0.33*	1.15 -1.33^ 1.30 -2.00*		1.30-1.50^ 3.00-6.00*		44.18 -124.86		16.0-16.5		
Poor/ Below Average		> 1. > 1.			> 59.4%ª > 52.9% ^b	N/A	< 0.67^ < 0.17*	> 1.33^ > 2.00*		>1.50^ > 6.00*		> 124.86		< 16.0		
^Uninterrupted I	Flow Facility	^a Urban 4 Lane Fr	eeway	¹ Urb	an Operating Environment											

*Interrupted Flow Facility ^bRural 4 Lane < 25,000 ²Rural Operating Environment

Note: "Insufficient Data" indicates there was not enough data available to generate reliable performance ratings

NEEDS ASSESSMENT

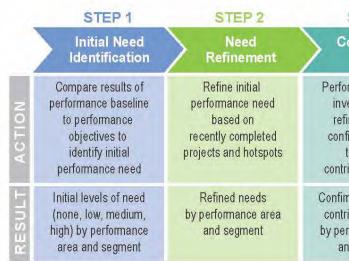
Corridor Description

The I-19 Corridor functions as a significant international and regional route, connecting the border city of Nogales to Tucson in southern Arizona. The corridor serves as a major truck route due to the border crossing, bringing manufactured goods and produce north from Mexico. ADOT has designated it as a critical link in Arizona's Primary Freight Network and the CANAMEX Trade Corridor. The connection to I-10 gives those products access to distribution points throughout the country.

Corridor Objectives

Statewide goals and performance measures were established by the ADOT Long-Range Transportation Plan (LRTP), 2010-2035. Statewide performance goals that are relevant to the I-19 performance framework areas were identified and corridor goals were then formulated for each of the five performance framework areas that aligned with the overall statewide goals established by the LRTP. Based on stakeholder input, corridor goals, corridor objectives, and performance three "Emphasis Areas" were identified for the I-19 corridor: Mobility, Safety, and Freight.

Taking into account the corridor goals and identified Emphasis Areas, performance objectives were developed for each quantifiable performance measure that identify the desired level of performance based on the performance scale levels for the overall corridor and for each segment of the corridor. For the performance Emphasis Areas, the corridor-wide weighted average performance objectives are identified with a higher standard than for the other performance areas.


Achieving corridor and segment objectives will help ensure that investments are targeted toward improvements that support the safe and efficient movement of travelers on the corridor. Corridor performance will be measured against corridor and segment objectives to determine needs – the gap between observed performance and the target.

Needs Assessment Process

The performance-based needs assessment evaluates the difference between the baseline performance and the performance objectives for each of the five performance areas used to characterize the health of the corridor: Pavement, Bridge, Mobility, Safety, and Freight. The performance-based needs assessment process is illustrated in **Figure ES-4**.

The needs assessment compares baseline corridor performance with the performance objectives to provide a starting point for the identification of performance needs. This mathematical comparison results in an initial need rating of None, Low, Medium, or High for each primary and secondary performance measure. An illustrative example of this process is shown in **Figure ES-5**.

Figure ES-4: Needs Assessment Process

Figure ES-5: Initial Need Ratings in Relation to Baseline Performance (Bridge Example)

Performance Thresholds	Performance Level	Initial Level of Need	Description			
	Good					
	Good	None	All levels of Good and top 1/3 of Fair (>6.0)			
6.5	Good	None				
0.0	Fair					
	Fair Low		Middle 1/3 of Fair (5.5-6.0)			
5.0	Fair	Medium	Lower 1/3 of Fair and top 1/3 of Poor (4.5-5.5)			
5.0	Poor	Medium				
	Poor	High	Lower 2/3 of Poor (<4.5)			
	Poor	riigii				

The initial level of need for each segment is refined to account for hot spots and recently completed or under construction projects, resulting in a final level of need for each segment. The final levels of need for each primary and secondary performance measure are combined to produce a weighted final need rating for each segment. A detailed review of available data helps identify contributing factors to the need and if there is a high level of historical investment.

STEP 3	STEP 4	STEP 5
Contributing Factors	Segment Review	Corridor Needs
orm "drill-down" vestigation of fined need to nfirm need and to identify rributing factors	Summarize need on each segment	Identify overlapping, common, and contrasting contributing factors
rmed needs and ributing factors erformance area ind segment	Numeric level of need for each segment	Actionable performance-based needs defined by location

Summary of Needs

Table ES-3 provides a summary of needs for each segment across all performance areas, and the average needs for each segment. A weighting factor of 1.5 is applied to the average need scores of the performance areas identified as emphasis areas (mobility, safety, and freight for the I-19 corridor). There are no segments with a High average need, five segments with a Medium average need, and only one segment with a Low average need. More information on the identified final needs in each performance area is provided below.

Pavement Needs

- Overall final pavement needs are Low or None throughout the corridor. No changes to the level of need resulting from hot spot analysis occur on the corridor.
- The pavement hot spot on segment 19-2 at MP 17-18 was addressed in a 2015 improvement project.
- Other pavement hot spots were identified on approximately six miles of the corridor on three segments, but are generally expected to be mitigated through upcoming programmed projects.

Bridge Needs

- Bridge needs occur due to poor performing bridges or hot spots on four of six segments, with High needs identified in segment 19-5 and Medium needs identified in segment 19-1.
- Bridge needs were identified at 17 of the total 74 bridges (23%).
- Four bridges have potential historical issues and are candidates for life-cycle cost analysis to evaluate alternative solutions.
- Bridge hot spots along I-19 are not sufficient to change the Initial Need from its original calculated value.

Mobility Needs

- The Mobility Performance Area is an Emphasis Area for the I-19 corridor, giving it a heavier weight in the analysis.
- High Mobility Needs were identified only on segment 19-6 in the Tucson area related to high traffic volumes and poor level of service values.
- While commuting traffic from residential areas south of Tucson is partly responsible for heavier traffic volumes, traffic volumes are high seven days per week. This results from Tucson's position as the regional center for shopping, entertainment, and other services in addition to being an employment center.
- Directional TTI and PTI issues on segment 19-1 are attributed to slowdowns in truck traffic at grade level intersections in Nogales. Truck traffic is expected to be dramatically reduced with improvements to SR 189 connecting to the Mariposa International Border Crossing, reducing the level of need on the segment.

Safetv Needs

- weight in the analysis.
- for the corridor as a whole.
- Multiple crash hot spots are identified, especially in the northern part of the corridor, segments 19-4 through 19-6.
- crashes, low levels of seat belt use, and other driver behaviors.
- 5, reported during the analysis period points to caution in this result.
- too few to provide significant results at any point on the corridor. Other crash types predominate.

Freight Needs

- weight in the analysis.
- and planning times are not significant factors.
- for the analysis.
- Truck traffic is also affected by slowdowns in segment 19-3 related to the Border Patrol checkpoint north of Tubac, but is not sufficient to raise the level of need.

Overlapping Needs

This section identifies overlapping performance needs on the I-19 Corridor, which provides guidance to develop strategic solutions that address more than one performance are with elevated levels of need. Completing projects that address multiple needs presents the opportunity to more effectively improve overall performance. A summary of the overlapping needs that relate to locations with elevated levels of need is provided below:

• 19-1 – Bridge (Medium) and Safety (High) Needs are elevated in this segment within

The Safety Performance Area is an Emphasis Area for the I-19 corridor, giving it a heavier

• High Safety Needs were identified in all segments except 19-4, resulting in Poor performance

• The high rate of serious injury and fatal crashes throughout the corridor may be attributed to outdated designs on some entrance ramps, lack of lighting, equipment failure, alcohol related

• While a high rate of serious injury and fatal crashes is reported on segment 19-1, the low number of such crashes (2), especially within the Strategic Highway Safety Plan (SHSP) Top

• Crashes involving trucks, motorcycles, and non-motorized during the analysis period were

• The Freight Performance Area is an Emphasis Area for the I-19 corridor, giving it a heavier

• Final Freight Needs are Low or None throughout the corridor. In general, limits on truck travel

• The most significant need shows a Low performance in the Bridge Clearance secondary measure. However, all of the low clearance bridges can be avoided by using ramps at the grade separated traffic interchanges and do not represent a hot spot under the criteria used

Nogales. This relatively short section (three miles) has lower traffic volumes than the rest of the corridor and transitions to interrupted flow characteristics. Improvements on SR 189 from the Mariposa Interchange south to the Mariposa Border Crossing will remove some pressure from the segment. The Bridge Needs relating to several functionally obsolete bridges and

Safety Needs related to high fatality rates were further evaluated in subsequent phases of the project.

- 19-5 Bridge (High) and Safety (High) Needs are elevated in this segment in the Sahuarita area. Low performing bridges, including the El Toro Road Overpass, the Pima Mine Traffic Interchange, and the Santa Cruz River Bridge are noted. Crash hot spots and higher rates of serious injury crashes contribute to the elevated Safety Need.
- 19-6 Mobility (High) and Safety (High) Needs are elevated in this segment within Tucson. Mobility issues are related to near-term growth in traffic volumes, putting the segment over capacity within 10 years. Safety Needs result from crashes associated with congestion and inadequate traffic interchange ramps.

Performance	Segment	19-1	19-2	19-3	19-4	19-5	19-6
Area	Milepost	MP 0 - 3	MP 3 -18	MP 18 - 30	MP 30 - 40	MP 40 - 57	MP 57 - 64
Pavement		Low	Low	None*	Low	None*	Low
Bridge		Medium	Low	None*	None*	High	Low
Mobility		None*	None*	Low	None*	None*	High
Safety		High	High	High	Low	High	High
Freight		Low	Low	Low	None*	None*	Low
Average Need (0-3)		1.38	1.23	1.15	0.38	1.15	1.92

Table ES-3: Summary of Needs by Segment

*A segment need rating of 'None' does not indicate a lack of needed improvements; rather, it indicates that the segment performance score exceeds the established performance thresholds and strategic solutions for that segment will not be developed as part of this study.

Scale				
None	< 0.10			
Low	0.10 - 1.00			
Medium	1.00 - 2.00			
High	> 2.00			

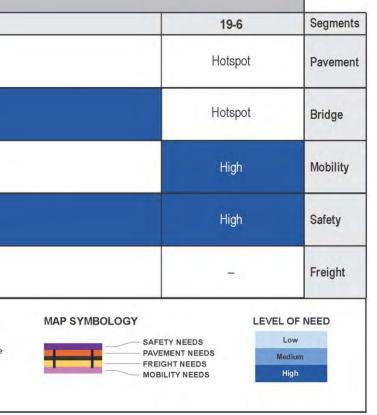
STRATEGIC SOLUTIONS

The principal objective of the corridor profile study is to identify strategic solutions (investments) that are performance-based to ensure that available funding resources are used to maximize the performance of the State's key transportation corridors. One of the first steps in the development of strategic solutions was to identify areas of elevated levels of need as addressing these needs will have the greatest effect on corridor performance. Segments with Medium or High needs and specific locations of hot spots are considered strategic investment areas for which strategic solutions should be developed. Segments with lower levels of need or without identified hot spots are not considered candidates for strategic investment and are expected to be addressed through other ADOT programming processes.

The I-19 strategic investments areas (resulting from the elevated needs) are shown in Figure ES-6.

Screening Process

In some cases, needs that are identified do not advance to solutions development and are screened out from further consideration because they have been or will be addressed through other measures including:


- A project has is programmed to address this need.
- The need is a result of a Pavement or Bridge hot spot that does not show historical investment issues. These hot spots will likely be addressed through other ADOT programming means.
- A bridge is not a hot spot but is located within a segment with a Medium or High level of need. This bridge will likely be addressed through current ADOT bridge maintenance and preservation programming processes.
- The need is determined to be non-actionable (i.e., cannot be addressed through an ADOT project).
- The conditions/characteristics of the location have changed since the performance data was collected that was used to identify the need.

STRATEGIC INVESTMENT AREAS P M MP 20 Segment 19-3 Rural Tumacacori Segment 19-4 Aqua Fria Canyon Bridge NB/SB Rural Tubac Segment 19-5 Segment 19-2 Rural Segment 19-1 Palo Parado TI Urban Western TI Southbound Rio Rico Green Valley Sahuarita Rio Rico TI EB El Toro Rd NB/SB SEGMENT Segments 19-1 19-2 19-3 19-4 19-5 Hotspot Hotspot Pavement _ _ -Hotspot Med Bridge High --Mobility -----High High High High Safety -Freight -_ -_ -Corridor Segment >z I-19 Corridor Profile Study: Nogales to Junction I-10 US Hwy/State Route Strategic Investment Areas County Boundary City Boundary

Candidate Solutions

For each elevated need within a strategic investment area that is not screened out, a candidate solution is developed to address the identified need. Each candidate solution is assigned to one of the following three P2P investment categories based on the scope of the solution:

- Preservation
- Modernization
- Expansion

Documented performance needs serve as the foundation for developing candidate solutions for corridor preservation, modernization, and expansion. Candidate solutions are not intended to be a substitute or replacement for traditional ADOT project development processes where various ADOT technical groups and districts develop candidate projects for consideration in the performance-based programming in the P2P process. Rather, these candidate solutions are intended to complement ADOT's traditional project development processes through a performance-based process to address needs in one or more of the five performance areas of Pavement, Bridge, Mobility, Safety, and Freight. Candidate solutions developed for the I-19 Corridor will be considered along with other candidate projects in the ADOT statewide programming process.

Candidate solutions include some or all of the following characteristics:

- Do not recreate or replace results from normal programming processes.
- May include programs or initiatives, areas for further study, and infrastructure projects.
- Address elevated levels of need (High or Medium) and hot spots.
- Focus on investments in Modernization projects (to optimize current infrastructure).
- Address overlapping needs.
- Reduce costly repetitive maintenance.
- Extend operational life of system and delay expansion.
- Leverage programmed projects that can be expanded to address other strategic elements.
- Provide measureable benefit (benefit/cost ratio, risk, LCCA, performance system, etc.).

Candidate solutions developed to address an elevated need in the Pavement or Bridge performance areas include two options; rehabilitation or full replacement. These solutions are initially evaluated through a Life-Cycle Cost Analysis (LCCA) to provide insights into the cost-effectiveness of these options so a recommended approach can be identified. Candidate solutions developed to address an elevated need in the Mobility, Safety, or Freight performance areas are advanced directly to the Performance Effectiveness Evaluation. In some cases, there may be multiple solutions identified to address the same area of need.

Candidate solutions that are recommended to expand or modify the scope of an already programmed project are noted and are not advanced to solution evaluation and prioritization. These solutions are directly recommended for programming.

SOLUTION EVALUATION AND PRIORITIZATION

Candidate Solutions were evaluated in multiple ways including a LCCA or BCA (where applicable), Risk Analysis, and a Performance Effectiveness Analysis. The methodology and approach to this evaluation is shown in Figure ES-7 and described more fully below.

Life-Cycle Cost Analysis

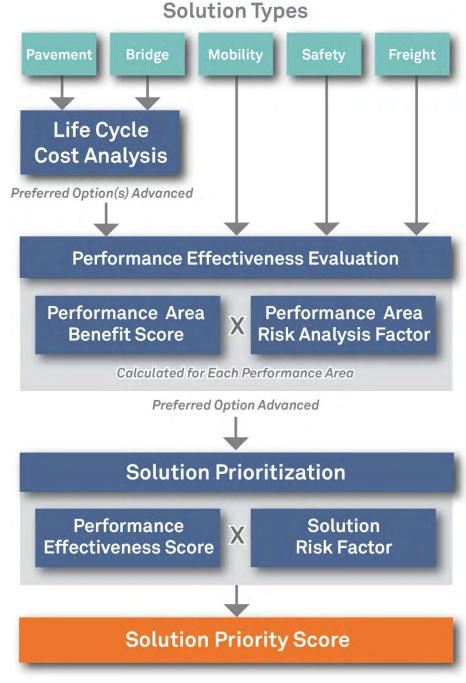
All pavement and bridge candidate solutions have multiple options, rehabilitate the area of need, or fully reconstruct the issue area or structure. These options are evaluated through a LCCA to determine the best approach for each location where a pavement or bridge solution is recommended. The LCCA could eliminate options from further consideration and will identify which options should be carried forward for further evaluation.

All Mobility, Safety, and Freight strategic investment areas that result in multiple independent candidate solutions are advanced directly to the Performance Effectiveness Evaluation.

LCCA was performed on four bridge solutions for the I-19 corridor. Of the four bridges subjected to LCCA, rehabilitation was determined to be the most effective solution in each location.

Performance Effectiveness Evaluation

After the LCCA process are complete, all remaining candidate solutions are evaluated based on their performance effectiveness. This process includes determining a performance effectiveness score (PES) based on how much each solution impacts the existing performance and needs scores for each segment. This evaluation also includes a Performance Area Risk Evaluation to help differentiate between similar solutions based on factors that are not directly addressed in the performance system.


Risk Analysis

All candidate solutions advanced through the Performance Effectiveness Evaluation are also evaluated through a Risk Analysis process. The risk analysis is conducted to develop a risk weighting factor. This risk analysis is a numeric scoring system to help address the risk of not implementing a solution based on the likelihood and severity of the performance failure.

Candidate Solution Prioritization

The PES and risk factor are combined to create a prioritization score. The candidate solutions are ranked by prioritization score from highest to lowest. The highest prioritization score indicates the candidate solution that is recommended as the highest priority. Solutions that address multiple performance areas tend to score higher in this process.

Figure ES-7: Candidate Solution Evaluation Process

SUMMARY OF CORRIDOR RECOMMENDATIONS

Prioritized Candidate Solution Recommendations

Table ES-4 and Figure ES-8 show the prioritized candidate solutions recommended for the I-19 Corridor. The recommended solutions are shown in. These solutions will increase the performance of the I-19 corridor across a majority of the performance areas. Solutions that address multiple performance areas tend to score higher in this process. The highest ranking projects tended to have overlapping benefits in Safety, Mobility, and Freight.

- Two of the top three projects include shoulder and roadside improvements through much of the corridor that will reduce the incidence of run off the road type vehicle crashes that often result in fatal and serious injuries.
- Additional benefits to Mobility and Freight will occur due to the reduction in the number of • incidents that cause delays along I-19.
- The I-19 Tucson Widening project will increase capacity on this congested segment, reduce delays, and improve safety.
- The Ajo Way/I-19 Pavement Rehabilitation project scored well due to extending the improvements of a previously programmed project to address pavement issues.
- The Drexel/Irvington Pedestrian Overpass and Barrier Fencing project will help reduce the high number of fatal vehicle-pedestrian crashes resulting from pedestrians attempting to cross I-19.
- The remaining traffic interchange ramp and lighting improvements will increase safety at those locations as well as improve traffic throughput by reducing delay and the potential for conflicting movements in the merge areas.

Other Corridor Recommendations

As part of the investigation of strategic investment areas and candidate solutions, other corridor recommendations were also identified. These recommendations could include modifications to the existing Statewide Construction Program, areas for further study, or other corridor specific recommendations that are not construction or policy related. The list below identified other corridor recommendations for the I-19 corridor:

- crashes.
- increased truck/freight traffic over the medium to long term.
- term.
- funds only programmed in the Pima Association of Governments (PAG) five year transportation facilities construction program for fiscal year 2019.
- Extend the limits of the Ajo Way TI Phase 2 scope to reach the pavement hot spot at milepost 63 in fiscal year 2018.
- When recommending future projects along I-19, review historical ratings and levels of issues:
 - Pavement MP 6-9
 - Western Ave TI OP NB (MP 1.17)
 - Pajarito Rd OP NB/SB (MP 3.67) 0
 - Ruby Road TI UP (MP 7.7)
 - Agua Fria Canyon Bridge NB/SB (MP 11.97) 0
 - Peck Canyon TI UP (MP 13.96)
 - Peck Canyon Wash SB (MP 14.37) 0
 - Palo Parado Rd (MP 15.65)
 - Agua Linda UP (MP 26.54) 0
 - El Toro Rd OP NB/SB (MP 45.80) 0
 - Pima Mine TI OP NB/SB (MP 49.62) 0
 - Papago Rest Area TI OP NB/SB (MP 54.40) 0
 - Santa Cruz River Bridge NB/SB (MP 56.80) 0
 - Airport Wash Bridge NB/SB (MP 60.32)

• The analysis shows a high ratio of fatal to incapacitating injury crashes that are not clearly patterned to specific locations. This report recommends that a Roadway Safety Analysis should be conducted on the corridor in order to better understand the high occurrence of fatal

Consider a corridor strategy to upgrade all bridges to current standards in anticipation of

Consider corridor wide ITS solutions to assist truck/freight traffic over the medium to long

Advance Irvington Rd TI Underpass to construction programming. Irvington Rd TI has design

investment. According to data used for this study, the following pavement and bridge locations have exhibited high historical investment (pavement) or rating fluctuation (bridge)

Policy and Initiatives Recommendations

In addition to location-specific needs, general corridor and system-wide needs have also been identified through the CPS process. While these needs are more overarching and cannot be individually evaluated through the CPS process, it is important to document them. A list of recommended policies and initiatives was developed for consideration when programming future projects not only on I-19, but across the entire state highway system where conditions are applicable. The following list, which is in no particular order of priority, was derived from the Round 1, Round 2, and Round 3 CPS:

- Install Intelligent Transportation System (ITS) conduit with all new infrastructure projects
- Prepare strategic plans for Closed Circuit Television (CCTV) camera and Road Weather Information System (RWIS) locations statewide
- Leverage power and communication at existing weigh-in-motion (WIM), dynamic messaging signs (DMS), and call box locations to expand ITS applications across the state
- Consider solar power for lighting and ITS where applicable
- Investigate ice formation prediction technology where applicable •
- Conduct highway safety manual evaluation for all future programmed projects •
- Develop infrastructure maintenance and preservation plans (including schedule and funding) for all pavement and bridge infrastructure replacement or expansion projects
- Develop standardized bridge maintenance procedures so districts can do routine • maintenance work
- Review historical ratings and level of previous investment during scoping of pavement and • bridge projects; in pavement locations that warrant further investigation, conduct subsurface investigations during project scoping to determine if full replacement is warranted
- For pavement rehabilitation projects, enhance the amount/level of geotechnical investigations to address issues specific to the varying conditions along the project
- Expand programmed and future pavement projects as necessary to include shoulders •
- Expand median cable barrier guidelines to account for safety performance •
- Install CCTV cameras with all DMS •
- In locations with limited communications, use CCTV cameras to provide still images rather • than streaming video
- Develop statewide program for pavement replacement

- traffic count data
- feasible
- constructed with a Safety Edge
- Collision data on tribal lands may be incomplete or inconsistent; additional coordination for data on tribal lands is recommended to ensure adequate reflection of safety issues
- Expand data collection devices statewide to measure freight delay
- Evaluate and accommodate potential changes in freight and goods movement trends that may result from improvements and expansions to the state roadway network

Next Steps

The candidate solutions recommended in this study are not intended to be a substitute or replacement for traditional ADOT project development processes where various ADOT technical groups and districts develop candidate projects for consideration in the performance-based programming in the P2P process. Rather, these candidate solutions are intended to complement ADOT's traditional project development processes through a performance-based process to address needs in one or more of the five performance areas of Pavement, Bridge, Mobility, Safety, and Freight. Candidate solutions developed for the I-19 Corridor will be considered along with other candidate projects in the ADOT statewide programming process.

It is important to note that the candidate solutions are intended to represent strategic solutions to address existing performance needs related to the Pavement, Bridge, Mobility, Safety, and Freight performance areas. Therefore, the strategic solutions are not intended to preclude recommendations related to the ultimate vision for the corridor that may have been defined in the context of prior planning studies and/or design concept reports. Recommendations from such studies are still relevant to addressing the ultimate corridor objectives.

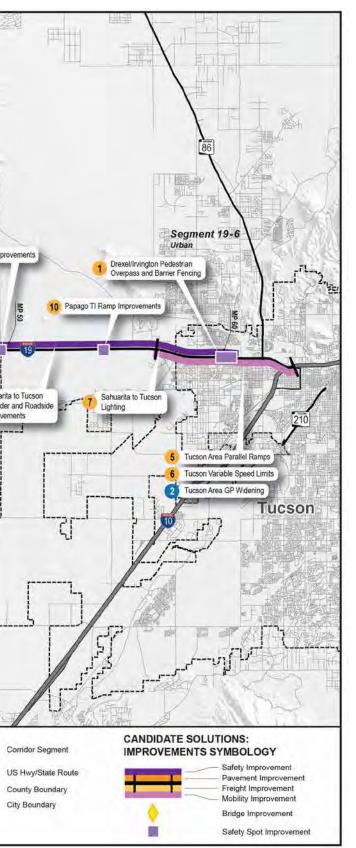
Upon completion of all three CPS rounds, the results will be incorporated into a summary document comparing all corridors that is expected to provide a performance-based review of statewide needs and candidate solutions.

Install additional continuous permanent count stations along strategic corridors to enhance

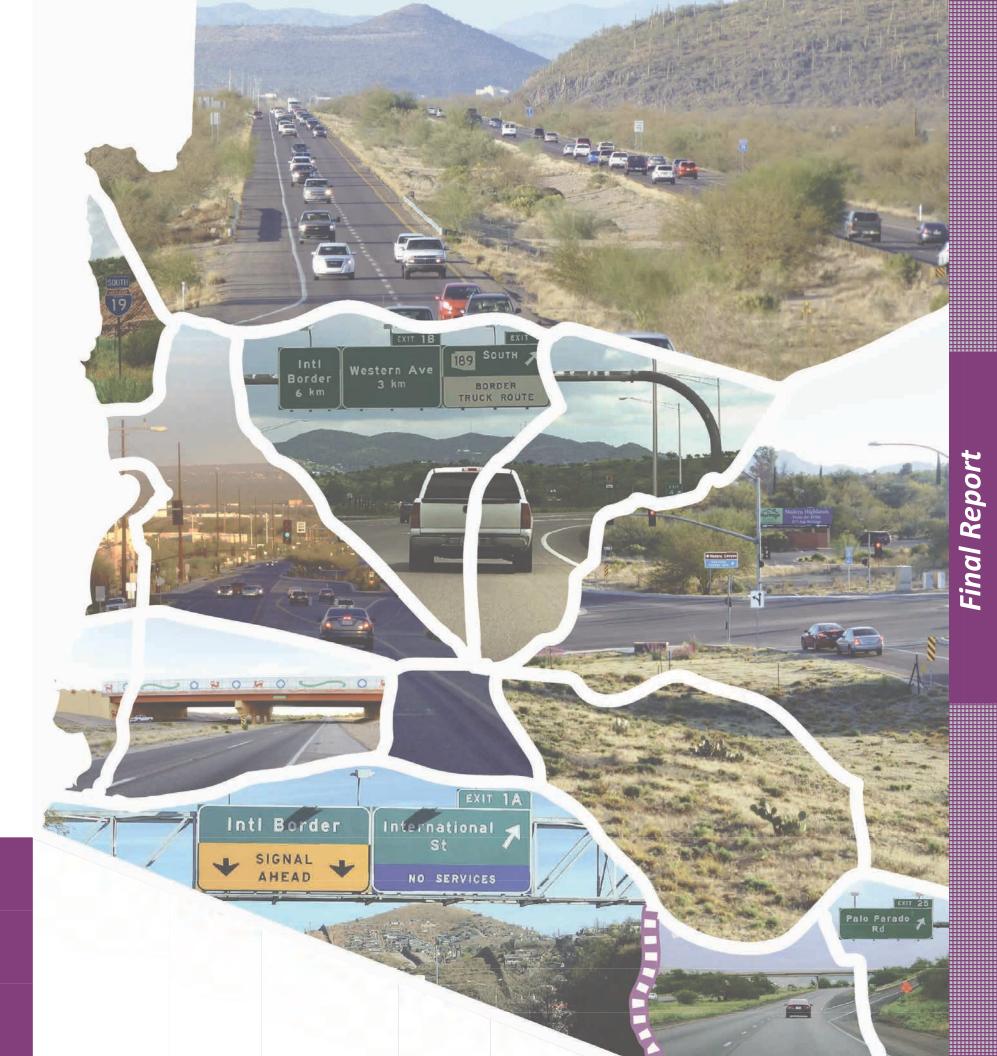
• When reconstruction or rehabilitation activities will affect existing bridge vertical clearance. the dimension of the new bridge vertical clearance should be a minimum of 16.25 feet where

All new or reconstructed roadway/shoulder edges adjacent to an unpaved surface should be

Table ES-4: Prioritized Recommended Solutions


Rank	Candidate Solution #	Solution Name and Location	Description/Scope		Investment Category (Preservation [P], Modernization [M], Expansion [E])	Prioritization Score
1	CS19.15	Drexel/Irvington Pedestrian Overpass (I-19 MP 59.5-62)	Construct pedestrian overpass between Drexel and Irvington; construct 8' barrier fencing Valencia to Ajo Way (east side) and between Drexel and Irvington Rd (west side)	\$2.25	Μ	188
2	CS19.14	Tucson Area GP Widening (I-19 MP 57-61.9)	Construct new general purpose lane (inside) in NB/SB direction between Irvington Rd and San Xavier Rd	\$33.43	E	106
3	CS19.6	Sahuarita to Tucson Shoulder & Roadside Improvements (I-19 MP 39.5-61.9)	Rehabilitate shoulders in both directions from Sahuarita Rd to Irvington Rd.	\$13.79	Μ	89
4	CS19.1	Nogales to Tubac Shoulder & Roadside Improvements (I-19 MP 3-30)	Rehabilitate shoulders in both directions from the SR189 TI to Aravaca Rd TI	\$15.19	Μ	74
5	CS19.12	Tucson Area Parallel Ramps (I-19 MP 57-61.9)	Modify entry/exit ramps to parallel configuration Implement ramp metering at Irvington Rd SB, Valencia Rd NB/SB, and San Xavier Rd NB	\$13.94	М	47
6	CS19.13	Tucson Variable Speed Limits (I-19 MP 57-64)	Implement Variable Speed Limits (both directions)	\$24.99	Μ	31
7	CS19.5	Sahuarita to Tucson Lighting (I-19 MP 39.5-60)	Install lighting (both directions)	\$27.52	Μ	16
8	CS19.3	Nogales to Tubac Lighting (I-19 MP 3-30)	Install lighting (both directions)	\$36.25	Μ	16
9	CS19.10	Pima Mine TI Ramp Improvements (I-19 MP 49.6)	Modify entry/exit ramps to parallel configuration	\$5.60	Μ	13
10	CS19.11	Papago TI Ramp Improvements (I-19 MP 54.4)	Modify entry/exit ramps to parallel configuration	\$4.43	Μ	6
11	CS19.9	Sahuarita TI Ramp Improvements (I-19 MP 46.8)	Modify entry/exit ramps to parallel configuration	\$4.43	М	1

P M A 4 Nogales to Tubac Shoulder and Segment 19-3 Roadside Improvements Rural 9 Pima Mine TI Ramp Improvements Tumacacori Segment 19-4 Segment 19-5 Rural Segment 19-2 Rural Tubac 11 Sahuarita TI Ramp Improvement Nogales to Tubac Lighting Segment 19-1 Urban Rio Rico Green Valley Sahuarita Sahuarita to Tucson Shoulder and Roadside S Improvements Vogale C 1 R I-19 Corridor Segments: Segment 19-1: US Border to SR 189 TI (MP 0 - 2.95) Segment 19-2: SR 189 TI to Sanga Gertudis TI (MP 2.95 - 18.22) Segment 19-3: Santa Gertudis TI to Aravaca Rd TI (MP 18.22 - 30.07) Patagonia Segment 19-4: Aravaca Rd TI to Continental Rd TI (MP 30.07 - 39.53) Segment 19-5: Continental Rd TI to San Xavier Rd TI (MP 39.53 - 57.19) Segment 19-6: San Xavier Rd TI to I-10 (MP 57.19 - 63.70) Same She She She # Solution Priority Rank >Z I-19 Corridor Profile Study: Nogales to Junction I-10 Preservation Projects Prioritized Recommended Solutions Modernization Projects Expansion Projects -----


Figure ES-8: Prioritized Recommended Solutions

I-19 Corridor Profile Study Final Report

Final Report

1.0 INTRODUCTION

The Arizona Department of Transportation (ADOT) is the lead agency for this Corridor Profile Study (CPS) of Interstate 19 (I-19)/ between the Mexico Line and Interstate 10 (I-10). The study examines key performance measures relative to the I-19 Corridor, and the results of this performance evaluation are used to identify potential strategic improvements. The intent of the corridor profile program, and of ADOT's Planning-to-Programming (P2P) process, is to conduct performance-based planning to identify areas of need and make the most efficient use of available funding to provide an efficient transportation network.

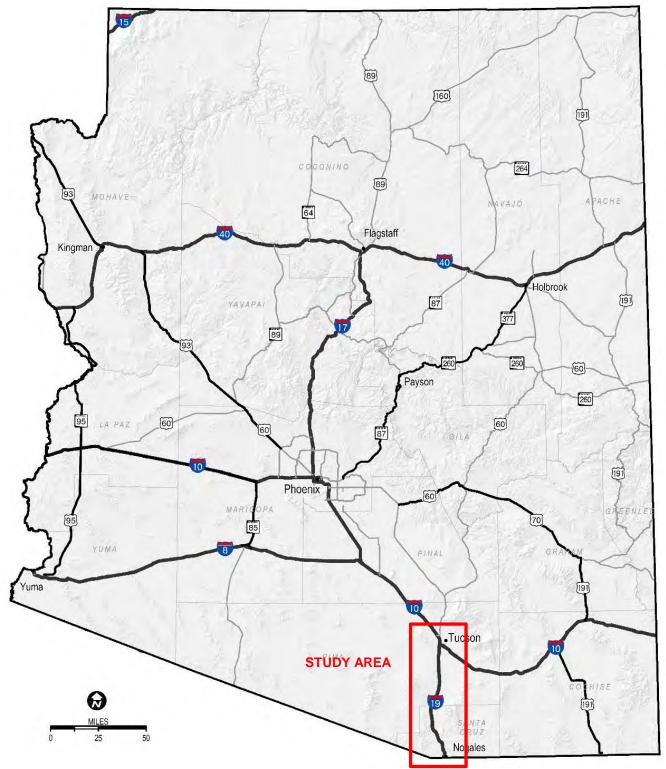
ADOT is conducting eleven CPS within three separate groupings.

The eleven corridors are being evaluated within three separate groups.

The first three studies (Round 1) began in Spring 2014, and encompass:

- I-17: SR 101L to I-40
- I-19: Nogales to I-10
- I-40: California State Line to I-17

The second round (Round 2) of studies, initiated in Spring 2015, includes:


- I-8: California State Line to I-10
- I-40: I-17 to the New Mexico State Line
- SR 95: I-8 to I-40

The third round (Round 3) of studies, initiated in Fall 2015, includes:

- I-10: California State Line to SR 85 and SR 85: I-10 to I-8
- I-10: SR 202L to New Mexico State Line
- SR 87/SR 260/SR 377: SR 202L to I-40
- US 60/US 70: SR 79 to US 191 and US 191: US 70 to SR 80
- US 93/US 60: Nevada State Line to SR 303L

The studies under this program assess the overall health, or performance, of the state's strategic highways. The CPS will identify candidate solutions for consideration in the Multimodal Planning Division's (MPD) P2P project prioritization process, providing information to guide corridor-specific project selection and programming decisions.

The I-19 Corridor, depicted in **Figure 1**, is one of the strategic statewide corridors identified and the subject of this Round 1 CPS.

Figure 1: Corridor Study Area

Corridor Study Purpose 1.1

The purpose of the CPS is to measure corridor performance to inform the development of strategic solutions that are cost-effective and account for potential risks. This purpose can be accomplished by following the process described below:

- Inventory past improvement recommendations
- Define corridor goals and objectives •
- Assess existing performance based on quantifiable performance measures
- Propose various solutions to improve corridor performance •
- Identify specific solutions that can provide quantifiable benefits relative to the performance measures
- Prioritize solutions for future implementation, accounting for performance effectiveness and risk analysis findings

Study Goals and Objectives 1.2

The objective of this study is to identify a recommended set of prioritized potential solutions for consideration in future construction programs, derived from a transparent, defensible, logical, and replicable process. The I-19 CPS defines solutions and improvements for the corridor that are evaluated and ranked to determine which investments offer the greatest benefit to the corridor in terms of enhancing performance. Corridor benefits can be categorized by the following three investment types:

- Preservation: Activities that protect transportation infrastructure by sustaining asset condition or extending asset service life
- Modernization: Highway improvements that upgrade efficiency, functionality, and safety • without adding capacity
- Expansion: Improvements that add transportation capacity through the addition of new • facilities and/or services

This study identifies potential actions to improve the performance of the I-19 Corridor. Proposed actions are compared based on their likelihood of achieving desired performance levels, life-cycle costs, cost-effectiveness, and risk analysis to produce a prioritized list of solutions that help achieve corridor goals.

The following goals are identified as the desired outcome of this study:

- Link project decision-making and investments on key corridors to strategic goals
- infrastructure

1.3 Corridor Overview and Location

Interstate 19 (I-19) is a major corridor for intrastate and international commerce between Mexico and the United States. It is one of nine ADOT defined corridors that play a key role in the understanding the overall health of the statewide transportation system. I-19 is considered a strategic highway corridor by ADOT as well as a key commerce corridor as part of the National Primary Freight Network. Safe and reliable movement of people, vehicles, and goods, and the maintenance of corridor infrastructure are priorities for I-19. Within Tucson, I-19 serves as a route for daily commuters and intrastate and international travel to and from Mexico. As both Tucson and the use of international trade ports of Mexico continue to grow in the future, highway capacity, safety, and freight logistics will become higher priorities along I-19.

1.4 Corridor Segments

The I-19 Corridor is a multi-modal corridor located in southern Arizona that serves international. regional, and local traffic and commerce demand between the United States and Mexico. I-19 spans approximately 63 miles from the international border near Nogales, Arizona at milepost 0.00 north to the junction with Interstate 10 (I-10) at milepost 63.69 in Tucson, Arizona as illustrated in Figure 2.

The I-19 Corridor is divided into 6 planning segments to allow for an appropriate level of detailed needs analysis, performance evaluation, and comparison between different segments of the corridor. The corridor is segmented at logical breaks where the context changes due to differences in characteristics such as terrain, daily traffic volumes, or roadway typical section. Corridor segments are described in Table 1 and shown in Figure 2.

• Develop solutions that address identified corridor needs based on measured performance Prioritize improvements that cost-effectively preserve, modernize, and expand transportation

Segment	Begin	End	Approx. Begin Milepost	Approx. End Milepost	Approx. Length (miles)	Typical Through Lanes (NB/EB, SB/WB)	2014/2035 Average Annual Daily Traffic Volume (vpd)	
19-1	International Border	Nogales	0.00	2.95	3	4	10,015 / 15,591	Fringe urban, rollir lane divided, 0 inte
19-2	Nogales	Santa Gertudis TI (Rock Corral Rd)	2.95	18.22	15	4	20,595 / 31,603	Rural, level terrain
19-3	Santa Gertudis TI	Aravaca Rd TI	18.22	30.07	12	4	16,071 / 25,329	Rural, level terrain
19-4	Aravaca Rd Tl	Continental Rd TI	30.07	39.53	10	4	21,491 / 32,910	Fringe urban, leve
19-5	Continental Rd TI	San Xavier Rd. TI	39.53	57.19	17	4	36,855 / 51,970	Fringe urban, leve Tohono O'odham l
19-6	San Xavier Rd. TI	Tucson	57.19	63.70	7	4-6	67,438 / 101,375	Urban, level terrair Tucson, Tohono C

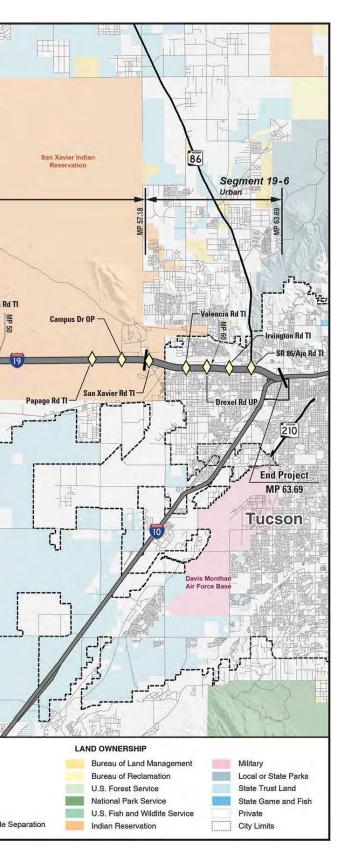
Table 1: I-19 Corridor Segments

Character Description

lling terrain, transition from 4-lane surface street to 4nterchanges, Santa Cruz County, City of Nogales

in, 4-lane divided, 6 interchanges, Santa Cruz County

in, 4-lane divided, 3 interchanges, Santa Cruz County,


vel terrain, 4-lane divided, 4 interchanges, Pima County

vel terrain, 4-lane divided, 7 interchanges, Pima County, n Nation San Xavier District

ain, 4-lane divided, 7 interchanges, Pima County, City of O'odham Nation San Xavier District

CORONADO NATIONAL FOREST P M A Segment 19-Fringe Urban Segment 19-2 Rural Segment 19-3 Rural Segment 19-4 Fringe Urban Segment 19-5 Fringe Urban Border Patrol Check Point Santa Gertudis TI tal Rd TI Tubac - Agua Linda Rd Tl Tumacacori **Rio Rico Dr Tl Chaves Siding TI** 28 Duval Mine Rd - Tubac Rd Tl Canoa Ranch Rd TI Palo Parado TI Peck Canyon Rd TI Western Ave TI Rio Rico osa Rd TI (F Green Valley SR 189/Ma Sahuarita Pima Mine Rd TI El Toro Rd OP S T Grand Ave TI SR 289/Ruby Rd TI Nogales Country Club Dr OP Frank Reed Rd OP U Z R **Begin Project** MP 0.0 I-19 Corridor Segments: CORONADO Segment 19-1: US Border to SR 189 TI (MP 0 - 2.95) NATIONAL FOREST Segment 19-2: SR 189 TI to Sanga Gertudis TI (MP 2.95 - 18.22) Segment 19-3: Santa Gertudis TI to Aravaca Rd TI (MP 18.22 - 30.07) Segment 19-4: Aravaca Rd TI to Continental Rd TI (MP 30.07 - 39.53) Segment 19-5: Continental Rd TI to San Xavier Rd TI (MP 39.53 - 57.19) 10 1 Segment 19-6: San Xavier Rd TI to I-10 (MP 57.19 - 63.70) Corridor Segment I-19 Corridor Profile Study: Nogales to Junction I-10 US Hwy/State Route Corridor Study Area and Segment Characteristics County Boundary City Boundary \diamond Traffic Interchange/Grade Separation

Figure 2: Corridor Location and Segments

I-19 Corridor Profile Study Final Report

1.5 Corridor Characteristics

I-19 is a major corridor for intrastate and international commerce between Mexico and the United States. It is one of nine ADOT defined corridors that play a key role in the understanding the overall health of the statewide transportation system.

National Context

The I-19 Corridor functions as a significant international and regional route, connecting the border city of Nogales to Tucson in southern Arizona. It is primarily a four-lane access controlled Interstate facility with a divided median. The terrain is generally flat with some rolling, or hilly, sections on the south end. Volumes are generally moderate to the south ranging from 11,000 - 22,000, increasing in the Tucson area up to 82,000 vehicles per day.

Regional Connectivity

There are approximately 60 miles of frontage roads, mostly on the southern two-thirds of the corridor. Frontage roads, cross roads, and freeway ramps are not included in this analysis. I-19 will eventually connect to the proposed I-11 corridor transporting freight and other traffic throughout Arizona.

Commercial Truck Traffic

The corridors serves as a major truck route due to the border crossing, bringing manufactured goods and produce north from Mexico and has been designated by ADOT as a critical link in Arizona's Primary Freight Network and the CANAMEX Trade Corridor, envisioned to connect Mexico, the United States and Canada. The connection to I-10 gives those products access to distribution points throughout the country. Total truck volumes are about 8-14% of the total vehicle flow, with over 5,000 trucks per day on I-19 in the Tucson area.

Commuter Traffic

I-19 serves as a commuter route from communities south of Tucson to employment centers in the metropolitan area. With over 369,000 jobs in Tucson (US Census 2010), the City itself is a major traffic generator and receiver of local and regional trips. Resulting traffic volumes on the northern segments of the corridor, already pushing capacity limits with about 82,000 vehicles per day is projected to grow to over 100,000 vehicles per day by 2035. Efficient travel for commuting traffic must be maintained in order to fulfill the corridor's role in support of the State's economic vitality.

Recreation and Tourism

The corridor serves as a tourism and travel route between Arizona and Mexico. Recreational opportunities along the corridor include:

- Coronado National Forest 1,783,639 acres of multiple use opportunities throughout southeastern Arizona
- Tubac Home to the Art Colony of Tubac

- Presidio State Historic Park Presidio established 1752 at Tubac
- Santa Cruz River a top spot for Arizona birding
- Saguaro National Park near Tucson, over 700,000 annual visitors

<u>Multi-Modal Uses</u>

Freight Rail

The CANAMEX Corridor is a nationally designated high priority freight route linking western states to Mexico and Canada. The CANAMEX Corridor generally follows I-19 from Nogales to Tucson, then north to Phoenix. Approximately six trains per day carry six million tons annually on the UPRR Nogales Subdivision. Growing international trade is expected to increase the need to develop the corridor in the near future.

Passenger Rail

No passenger rail services are currently available on the corridor. However, the Arizona State Rail Plan supports the possibility of intercity passenger rail from Tucson to Nogales and across the border to Mexico as a recommended action.

Bicycles/Pedestrians

Bicycles are permitted on the outside shoulders of I-19 from MP 0 - 43. They are prohibited on the portion of the corridor between MP 43 - 64 (Jct I-10). Pedestrians are prohibited along the entire length of I-19 mainline.

Bus/Transit

The Pima Association of Governments (PAG) manages federal transportation dollars apportioned to the Tucson region, including funding for regional transit improvements. Regional transit is also supported by a Regional Transportation Authority's funded through a ½ cent transaction privilege tax (Short Range Transit Plan, PAG, 2013).

PAG operates a variety of services, designed as an integrated and seamless transit concept, including:

- Sun Tran
- Sun Express
- Sun Van
- Sun Shuttle
- Sun Shuttle Dial-a-Ride

Riders use an integrated fare payment system to access different services without the need to purchase additional full fare passes. The services provide an important link connecting the Tucson Metropolitan area to surrounding rural and suburban communities.

ablished 1752 at Tubac oirding er 700.000 annual visitors The current Sun Tran system provides over 20 million passenger trips annually utilizing a fleet of 253 buses on 27 local routes and 17 express routes serving the majority of the City of Tucson as well as South Tucson, Marana, unincorporated Pima County, and Oro Valley. Sun Tran's 253 bus fleet runs 365 days a year to meet the transportation needs of customers.

Dial-a-Ride services extend to Oro Valley and Green Valley/Sahuarita. The Town of Oro Valley funds, manages and operates Sun Shuttle Dial-a-Ride senior services as well as general public services in Oro Valley.

Although there is interest in transit services from Nogales along the I-19 corridor to Rio Rico and Tubac, with connections to Tucson, no public agency has been identified to operate a transit system in the area (Unified Nogales South Santa Cruz County Transportation Plan 2010). No private service is available on the corridor.

Aviation

The region is served by Tucson International Airport. It is the second largest airport in Arizona, with approximately 1.5 million annual enplanements. The airport is not a hub or focus city for any airline. Public transportation to the airport is available through Sun Tran.

<u>Tribes</u>

The Tohono O'odham Nation, San Xavier District abuts the I-19 corridor south of Tucson. Approximately 1,250 people live within the District. It operates two Desert Diamond Casino locations near Valencia Road/Nogales Highway and at I-19/Pima Mine Road in Sahuarita.

The Pascua Yaqui Indian Reservation is located in Pima County, in the southwestern part of the Tucson metropolitan area near Drexel Heights and Valencia West, with a resident population over 3,300. The Tribe operates two gaming facilities, the Casino of the Sun and the Casino del Sol. While not directly adjacent to the I-19 corridor, it is nearby. It is adjacent to eastern section of the Tohono O'odham Nation, San Xavier District.

Land Ownership, Land Uses, and Jurisdictions

The I-19 corridor serves a variety of land uses and jurisdictions. The corridor begins in the City of Nogales on the south end at the border with Mexico. Segments 19-1 and 19-2 are characterized as fringe urban in nature, dominated by commercial, industrial, and transportation industry uses.

The north end is anchored by the City of Tucson, and transitions from fringe urban in segment 19-5 to urban uses and heavier traffic in segment 19-6. The outlying areas include residential subdivisions with a variety of lot sizes, dispersed residences, and light commercial development.

Population Centers

The corridor between the two cities is predominantly rural in nature, with several retirement and bedroom communities. The small towns of Rio Rico, Tumacacori, Tubac, and Amado are in Santa Cruz County. The communities of Green Valley and Sahuarita in Pima County orient more toward Tucson, with many people commuting to employment in the City.

Pima County will grow from just over one million residents in 2015 to 1.3 million by 2035, with over half the County's residents in Tucson. Overall, the County will see moderate growth during the period, with faster growth in some outlying areas such as Sahuarita. The urbanized zone will grow toward the south, with accompanying urban-style traffic. Santa Cruz County is also projected to receive moderate population growth during the period. **Table 2** summarizes the current and project population for the jurisdictions within Santa Cruz County and Pima County.

Table 2: Current and Future Population

Community	2015 Population	2035 Population	Annual Growth Rate	Total Growth
Santa Cruz County	50,903	67,923	1.45%	33.4%
Nogales	22,348	29,821	1.45%	33.4%
Patagonia	978	1,305	1.45%	33.4%
Rio Rico CDP	20,370	27,181	1.45%	33.4%
Sonoita CDP	879	1,173	1.45%	33.4%
Tubac CDP	1,279	1,707	1.45%	33.4%
Balance of County	27,576	36,797	1.45%	33.4%
Pima County	1,022,079	1,312,101	1.26%	28.4%
Marana	41,019	68,859	2.62%	67.9%
Oro Valley	42,259	52,072	1.05%	23.2%
Sahuarita	28,483	48,527	2.70%	70.4%
South Tucson	5,670	5,544	-0.11%	-2.2%
Tucson	537,129	683,038	1.21%	27.2%
Balance of County	367,519	454,061	1.06%	23.5%

source: https://population.az.gov/population-projections

Wildlife Linkages

The Arizona State Wildlife Action Plan (SWAP) provides a 10-year vision for the entire state, identifying wildlife and habitats in need of conservation, insight regarding the stressors to those resources, and suggestive actions that can be taken to alleviate those stressors. The Habimap ToolTM (http://www.habimap.org/) provides an interactive database of information included in the SWAP. These databases and other environmental resources should be conducted early on during all project related activities to ensure appropriate environmental compliance. Managers of potentially impacted areas should be included in outreach and coordination programs. The following wildlife and habitat considerations affecting rights-of-way along the I-19 corridor were identified should not be considered a comprehensive listing of affected resources:

- Wildlife waters None
- Important Bird Areas None •
- Allotments/Pastures (grazing) including State Land Department, Bureau of Land Management, US Forest Service – Tumacacori area, north of Tubac
- Arizona Game and Fish Department Parcels None •
- State Land Trust lands are present, immediately adjacent to the corridor near Tumacacori and Sahuarita
- Arizona Wildlife Linkages Missing or Potential Linkages noted: Tumacacori Santa Ritas Linkage at Polero Creek north of Nogales, in the Tumacacori area, north of Tubac, and near W. Arivaca Rd
- Species and Habitat Conservation Guide (SHCG) indicates several high value areas of sensitive habitats throughout the southern part of the corridor
- Species of Economic and Recreational Importance (SERI) model indicates areas of high importance throughout the southern end of the corridor
- Species of Greatest Conservation Need (SGCN) identifies several areas of high value sensitive habitats throughout the southern part of the corridor

Corridor Assets

Corridor transportation assets of note are summarized in Figure 3.

- Grade separated traffic interchanges: 23
- Signalized intersections in Nogales: 3
- Un-signalized intersections in Nogales: 2
- Grade separated cross roads: 5
- Frontage roads: NB 32 miles; SB 29 miles
- Port of Entry: 2
 - Nogales Private vehicles and pedestrians only at MP 0.0
 - Mariposa Land Port of Entry Commercial vehicles at US 189 MP 0.0
- Border Patrol check point: MP 25.0 NB
- Rest Area: Canoa Ranch Rest Area MP 34.0 near Green Valley
- Permanent traffic counters: MP 7.7, MP 26.6, MP 61.1, MP 62.1
- Digital Message Signs (DMS): MP 57.9 NB, MP 60.1 SB, MP 61.4 NB, MP 62.8 SB
- Tucson International Airport

Figure 3: Corridor Assets

I-19 Corridor Profile Study Final Report

1.6 Corridor Stakeholders and Input Process

A Technical Advisory Committee (TAC) was created that was comprised of representatives from the stakeholders. TAC meetings were held at key milestones to present results and obtain feedback. In addition, several meetings were conducted with key stakeholders between June 2014 and October 2016 to present the results and obtain feedback.

Key stakeholders identified for this study include:

- ADOT South Central District
- City of Nogales
- City of Tucson
- Fresh Produce Association of the Americas
- Greater Nogales Santa Cruz County Port Authority
- Pascua Yagui Tribe
- PAG
- Pima County
- Regional Transportation Authority/Mainstreet Program
- Santa Cruz County
- SEAGO
- Tohono O'odham Nation
- Town of Sahuarita
- Tucson Hispanic Chamber

Several Working Papers were developed during the course of the Corridor Profile Study. The Working Papers were provided to the TAC for review and comment.

Prior Studies and Recommendations 1.7

This study identified recommendations from previous studies, plans, and preliminary design documents. Studies, plans, and programs pertinent to the I-19 Corridor were reviewed to understand the full context of future planning and design efforts within and around the study area. These studies are organized below into four categories: Framework and Statewide Studies, Regional Planning Studies, Planning Assistance for Rural Areas (PARAs) and Small Area Transportation Studies (SATS), and Design Concept Reports (DCRs) and Project Assessments (PAs).

Framework Studies

- 2015-2019 Five-Year Transportation Facilities Construction Program
- What Moves You Arizona, Arizona Long-Range Transportation Plan 2010-2035
- Arizona Statewide Travel Demand Model (AZTDM)

Regional Planning Studies

- PAG 2040 Regional Transportation Plan (RTP)
- PAG 2015-2019 5-Year Regional Transportation Improvement Program
- PAG Regional Significant Corridor Study
- PAG Southeast Area Arterial Study
- Regional Transportation Authority Our Mobility Plan
- PAG Short-Range Transit Program Implementation Plan FY2014-FY2018
- PAG High Capacity Transit System Plan
- I-11 Southern Arizona Future Connectivity Corridor Feasibility Assessment Report
- Arizona-Sonora Border Master Plan
- Mariposa Port of Entry Bottleneck Study
- Mariposa/I-19 Connector Route Study Final Report
- Study
- Santa Cruz County Comprehensive Plan
- Unified Nogales Santa Cruz County Transportation Plan
- City of Nogales General Plan

PAG State Transportation System Mobility and Regional Circulation Needs Feasibility Study

Southeast Arizona Regional Transportation Profile Study – Nogales Railroad Assessment

Planning Assistance for Rural Areas (PARA) Studies

- Sahuarita/El Toro Corridor Study Final Report
- Rio Rico Walking and Biking Study
- Town of Sahuarita Area Transportation Study
- San Xavier District Pedestrian Access and Safety Study

Design Concept Studies and Final Design

- I-19 Pavement Preservation, MP 31.8 to MP 42.5
- SR 189: International Border to Grand Avenue Stage I Alternative Corridor Screening
- I-19 East Frontage Rd Project Assessment, Ruby Road to Rio Rico Dr.
- I-19, Southbound Valencia Road Exit Ramp Final Design
- I-19, Ajo Way TI Final Design
- I-19, San Xavier to I-10 DCR and EA
- I-19 Frontage Roads Study
- I-19 Corridor Study, I-10 to Pima/Santa Cruz County Line

Summary of Prior Recommendations

The recommendations of each study were carefully considered during the corridor profile study. Many of the studies recommend duplicate actions, representing significant capacity and operational improvements to the corridor. Many of these recommendations have already been implemented or programmed for completion. The aggregate recommendations are summarized in **Table 3** and illustrated on **Figure 4**.

A summary of major prior recommendations includes:

Major Widening/Capacity Improvements

- Widen to 6 lanes from SR 189/Mariposa TI to Tubac Road TI
- Widen to 6 lanes from Continental Road TI to Sahuarita Road TI
- Widen to 8 lanes from Sahuarita Road TI to I-10

Interchanges

- SR 189/Mariposa Road pending completion of Environmental Assessment
- Minor improvements have been recommended at all traffic interchanges from Nogales to Continental Road TI
- Reconstruction or other major improvements have been recommended at all traffic interchanges from Continental Road TI north to I-10
- New traffic interchange at Los Reales Road
- New traffic interchange at Drexel Road

Мар Кеу	Begin	End	Length	Project Description	(Pres Mode	ment Ca servatio ernizatio pansion	on[M],	State	tus of Recommendation		– Name of Study	
Ref. No.	MP	MP	(miles)		Р	М	E	Program Year	Project No.	Environmental Documentation (Y/N)?		
1	0	3	3	International Border - Mariposa/SR 189 Mill and Replace	\checkmark			FY 2015	H839401C	Ν	2015-2019 Five-Year Transportation Facilities Construction Program	
2	0	1.17	1.17	I-19, I-19B Terminus to West Street - Roadway Improvements for Future Capacity			\checkmark	N/A	N/A	Ν	Unified Nogales Santa Cruz County Transportation Plan 2010, Site 75	
3	0.71	4.95	1.25	Conduct Feasibility Study for the extension of the I-19 Frontage Road System between Country Club Road, Frank Reed Road and Mariposa Road			$\sqrt{1}$	N/A N/A N/A	N/A N/A N/A	Ν	I-19 Frontage Road Study 2008 Unified Nogales Santa Cruz County Transportation Plan 2010, Site 26 City of Nogales General Plan Santa Cruz County Complete Plan 2013	
4	2.95	18.19	15.24	I-19, SR 189/Mariposa Road TI to Tumacocori TI – Roadway Improvements for Future Capacity			\checkmark	N/A	N/A	Ν	Unified Nogales Santa Cruz County Transportation Plan 2010, Site 76	
5	2.95	-	N/A	I-19 and Mariposa TI reconfiguration			\checkmark	N/A	N/A	N	Unified Nogales Santa Cruz County Transportation Plan 2010, Site 13 City of Nogales General Plan	
6	2.95	-	N/A	Add dual southbound left turn lanes at I-19 and Mariposa Southbound off-ramp at the Mariposa Road (SR 189) intersection		$\sqrt[n]{\sqrt{1}}$		N/A N/A	H8045 01L N/A	Y	SR 189, International Border to Grand Avenue, Stage I Alternative Screening Memo – April 2014	
7	2.95	-	N/A	Add dual eastbound left turn lanes on SR 189 (Mariposa) at the I-19 and Mariposa TI northbound on-ramp (COMPLETED)		$\sqrt[n]{\sqrt{1}}$		N/A N/A	H8045 01L N/A	Y	SR 189, International Border to Grand Avenue, Stage I Alternative Screening Memo – April 2014 Bottleneck Study – Mariposa Port of Entry – October 2008	
8	2.95	-	N/A	Widen the throat of the I-19 and Mariposa TI northbound on-ramp (COMPLETED)		√ √		N/A N/A	H8045 01L N/A	Y	SR 189, International Border to Grand Avenue, Stage I Alternative Screening Memo – April 2014 Bottleneck Study – Mariposa Port of Entry – October 2008	
9	5	6	1	West Frontage Rd At Country Club - Intersection Improvements		\checkmark		FY 2015	H868501C	Ν	2015-2019 Five-Year Transportation Facilities Contraction Program	
10	5.3	-	N/A	I-19/Grand Avenue Partial Interchange – Interchange Improvement		\checkmark		N/A	N/A	Ν	Unified Nogales Santa Cruz County Transportation Plan 2010, Site 35 City of Nogales General Plan	
11	5.30	10.96	5.66	I-19 East and West Frontage Roads, Grand Ave TI to Rio Rico Drive TI – Roadway Improvements for Future Capacity			\checkmark	N/A	N/A	Ν	Unified Nogales Santa Cruz County Transportation Plan 2010, Site 77	
12	7.70	14.37	6.67	Complete Shared Use Path along I-19 West Frontage Road (Ruby Road to Peck Canyon Wash)		\checkmark		N/A	N/A	Ν	Rio Rico Walking and Biking Study - 2013	
13	7.71	10.88	3.17	Evaluate and recommend operational improvements at the intersection of the I-19 East Frontage Road and Ruby Road		√ √		N/A N/A	H840101L N/A	Y	Final Project Assessment – East Frontage Road, Ruby Road – Rio Rico Drive (MP 7.71 – MP 10.88) – June 2014 Unified Nogales Santa Cruz County Transportation Plan 2010, Site 30 Rio Rico Walking and Biking Study – 2013 Arizona-Sonoran Border Master Plan	
14	8.4	9.4	1.0	I-19 "The Curve", Safety Corridor Improvements				N/A	N/A	Ν	Unified Nogales Santa Cruz County Transportation Plan 2010, Site 34	
15	10.06	10.89	0.82	Design and construct New I-19 West Frontage Road from Yavapai Drive (Rio Rico Drive) to Calle Calabasas			$\sqrt[n]{\sqrt{1}}$	N/A N/A N/A	N/A N/A N/A	Ν	I-19 Frontage Road Study 2008 Unified Nogales Santa Cruz County Transportation Plan 2010, Site16 Santa Cruz County Complete Plan 2013	

Table 3: Corridor Recommendations from Previous Studies

Map Key	Begin	End	Length	(Preservation [P] Modernization[M]		ngth Project Description Investment Catego Investment Catego (Preservation [P], Modernization[M] Expansion [E])		n [P], n[M],	Statu	us of Recomn	nendation	
Ref. No.	Ref. No. MP MP (miles)		Ρ	м	E	Program Year	Project No.	Environmental Documentation (Y/N)?				
16	10.89	13.95	3.11	Improve pavement condition along I-19 West Frontage Road	$\sqrt[n]{}$			N/A N/A N/A	N/A N/A N/A	N		
17	10.96	-	N/A	Improvements recommended include a formal modification of the existing striped shoulder area to a striped and signed bike lane for one way travel together with a sidewalk in both directions at the Rio Rico Drive and I-19 OP (Approximately 700 feet including approaches and I-19 On Ramps)		√		N/A	N/A	N		
18	11.13	11.77	0.69	Design and construct continuous left-turn lane from the I-19 West Frontage Road and Circlo Mercado intersection to 0.25 miles south of Circulo Mercado intersection		$\sqrt[n]{}$		N/A N/A N/A	N/A N/A N/A	N		
19	13.82	-	N/A	Design and construct a northbound left-turn lane and a southbound right-turn lane at the I-19 West Frontage Road and Camino Lito Galindo Intersection		$\sqrt[n]{}$		N/A N/A N/A	N/A N/A N/A	N		
20	13.96	30.00	N/A	I-19, Exit 22 (Peck Canyon Rd) to Exit 48 (Arivaca Road) – Interchange Improvements		\checkmark		N/A	N/A	Ν		
21	13.96	-	N/A	I-19, Exit 22 (Peck Canyon Rd) widen overpass and approach roads		\checkmark		N/A	N/A	Ν		
22	14.03	14.17	0.13	Design and construct a continuous left-turn lane between the access to the San Cayetano Elementary School and the access to the school district bus barn along the I-19 West Frontage Road.		$\sqrt[n]{}$		N/A N/A N/A	N/A N/A N/A	N		
23	16	21	5	I-19 - MP 16 to MP 21.1 - RR (4" TL, 3" PL) + FR	\checkmark			FY 2015	H815601C	Ν		
24	18.23	-	N/A	Design and construct a northbound left-turn lane at the I-19 East Frontage Road and Tumacacori Road Intersection		$\sqrt[n]{}$		N/A N/A N/A	N/A N/A N/A	N		
25	18.19	21.64	N/A	I-19, Tumacocori to Tubac Wildlife Preservation Crossings			\checkmark	N/A	N/A	Ν	T	
26	21.71	-	N/A	Design and construct northbound and southbound left-turn lanes at the I-19 East Frontage Road and Barrio De Tubac Road intersection.				N/A N/A N/A	N/A N/A N/A	N		
27	21.90	22.41	0.7	Design and construct a continuous left-turn lane at the I-19 East Frontage Road and Avenida Goya intersection to Bridge Road.		$\sqrt[n]{}$		N/A N/A N/A	N/A N/A N/A	N		
28	22.92	-	N/A	Design and construct a northbound right-turn lanes at the I-19 East Frontage Road and Avenida de Otero intersection		$\sqrt[n]{}$		N/A N/A N/A	N/A N/A N/A	N		
29	25.56	26.46	1.0	Design and construct a new one-way I-19 East Frontage Road from Chavez Siding to Agua Linda Road.			$\sqrt[n]{}$	N/A N/A N/A	N/A N/A N/A	N		
30	25.74	26.41	0.67	Design and construct a new one-way I-19 West Frontage Road from Chavez Siding to Agua Linda Road.				N/A N/A N/A	N/A N/A N/A	N		

I-19 Frontage Road Study 2008 Unified Nogales Santa Cruz County Transportation Plan 2010, Site 17 Santa Cruz County Complete Plan 2013

Rio Rico Walking and Biking Study - 2013

I-19 Frontage Road Study 2008

I-19 Frontage Road Study 2008 Unified Nogales Santa Cruz County Transportation Plan 2010, Site 19 Santa Cruz County Complete Plan 2013

Unified Nogales Santa Cruz County Transportation Plan 2010, Site 53

Unified Nogales Santa Cruz County Transportation Plan 2010, Site 18

I-19 Frontage Road Study 2008 Unified Nogales Santa Cruz County Transportation Plan 2010, Site 19 Santa Cruz County Complete Plan 2013

2015-2019 Five-Year Transportation Facilities Contraction Program

I-19 Frontage Road Study 2008 Unified Nogales Santa Cruz County Transportation Plan 2010, Site 22 Santa Cruz County Complete Plan 2013

Unified Nogales Santa Cruz County Transportation Plan 2010, Site 29

I-19 Frontage Road Study 2008 Unified Nogales Santa Cruz County Transportation Plan 2010, Site 23 Santa Cruz County Complete Plan 2013

I-19 Frontage Road Study 2008 Unified Nogales Santa Cruz County Transportation Plan 2010 Site 24 Santa Cruz County Complete Plan 2013

I-19 Frontage Road Study 2008 Unified Nogales Santa Cruz County Transportation Plan 2010 Site 25 Santa Cruz County Complete Plan 2013

I-19 Frontage Road Study 2008 Unified Nogales Santa Cruz County Transportation Plan 2010, Site 21 Santa Cruz County Complete Plan 2013

I-19 Frontage Road Study 2008 Unified Nogales Santa Cruz County Transportation Plan 2010 Site 20 Santa Cruz County Complete Plan 2013

Map Key	Begin	End	Length	Project Description	(Pres Mode	ment Ca servation ernization pansion	n [P], n[M],	State	us of Recomn	nendation
Ref. No.	NO. MP MP (miles)		r toject beschption	Ρ	м	E	Program Year	Project No.	Environmental Documentation (Y/N)?	
31	29.96	-	N/A	Design and construct northbound left-turn lanes at the I-19 West Frontage Road and Arivaca Road intersection Design and construct a southbound left-turn lane at the I-19 West Frontage Road and County Line Road intersection.				N/A N/A N/A	N/A N/A N/A	N
32	31.8	42.5	10.7	I-19 - MP 31.8 to MP 42.5 – Mill & Replace	\checkmark			Not Programmed	H871601D	Y
33	34.96	39.54	4.55	Design and construct wider shoulders along I-19 West Frontage Road from Continental Road to Canoa Ranch Road. Design and construct intersection lighting at the I-19 West Frontage Road and Camino Encanto. Design and construct intersection lighting at the I-19 West Frontage Road and Via Del Petirrojo.)	is along I-19 West Frontage Road from to add the I-19 West Frontage Road and $\sqrt{1}$			N/A N/A N/A N/A	N/A N/A N/A N/A	N
34	35	36	1	Canoa Shoulders - Construct Shoulder Widening		\checkmark		FY 2015	H868801C	Ν
35	35.50	-	N/A	Design and construct a northbound left-turn lane and intersection Lighting at the I-19 West Frontage Road and Calle Tres Intersection.		$\sqrt[n]{}$		N/A N/A N/A	N/A N/A N/A	Ν
36	37.68	-	N/A	Construct a New Freeway Crossing on the Camino Encanto Roadway Alignment		\checkmark		N/A	H594901L	Ν
37	39.44	46.81	7.37	I-19, Continental Road to Sahuarita Road (Helmet Peak) TI – Widen to 6 – lanes plus auxiliary lane			\checkmark	N/A	H594901L	Ν
38	39.45	45.80	6.35	I-19, Continental Road to El Toro Road – Widen to 6 - lanes			$\sqrt[n]{}$	N/A N/A N/A	H594901L N/A N/A	Ν
39	39.44	-	N/A	I-19 and Continental Road TI – TI reconstruction to incorporate wider mainline			\checkmark	N/A	H594901L	Ν
40	40.65	-	N/A	I-19 and Esperanza Blvd TI - Construct Pedestrian Enhancements		\checkmark		FY 2016	H828601C	Ν
41	40.65	-	N/A	I-19 and Esperanza Blvd TI – TI reconstruction to incorporate wider mainline			\checkmark	N/A	H594901L	N
42	43.10	-	N/A	I-19 and Duval Mine Road TI – TI reconstruction to incorporate wider mainline			\checkmark	N/A	H594901L	N
43	43.10	-	0.50	I-19 East Frontage Road – Realign and Reconstruct Roadway from S ¼ corner of Sec 26,T17S,R13E to Nogales Highway		$\sqrt[n]{\sqrt{1}}$		N/A N/A	N/A N/A	Ν
44	45.80	-	1.0	El Toro Road OP, SB #1573 & NB #1572 - Design Bridge Deck Rehabilitation	\checkmark			FY 2016	None Assigned	Ν
45	45.70	58.90	13.20	I-19, El Toro Road to Valencia Road – Widen to 6 - lanes			$\sqrt[n]{}$	N/A N/A N/A	H594901L N/A N/A	Ν
46	45.70 / 49.62	-	N/A	Alternate truck route to avoid the future I-10/I-19 interchange congestion for eastbound freight. Project would require a new interchange at El Toro and I-19 or an upgrade to Pima Mine Road and I-19.			$\sqrt[n]{\sqrt{1}}$	N/A N/A	N/A N/A	Ν

I-19 Frontage Road Study 2008

Final Design - 2014

I-19 Frontage Road Study 2008

2015-2019 Five-Year Transportation Facilities Contraction Program

I-19 Frontage Road Study 2008

I-19 Corridor Study – I-10 to Pima/Santa Cruz Line – Oct 2003

I-19 Corridor Study – I-10 to Pima/Santa Cruz Line – Oct 2003

PAG 2040 Regional Transportation Plan

I-19 Corridor Study – I-10 to Pima/Santa Cruz Line – Oct 2003

2015-2019 Five-Year Transportation Facilities Contraction Program

I-19 Corridor Study – I-10 to Pima/Santa Cruz Line – Oct 2003

I-19 Corridor Study – I-10 to Pima/Santa Cruz Line – Oct 2003

Town of Sahuarita Area Transportation Study – 2010 PAG 2040 Regional Transportation Plan

2015-2019 Five-Year Transportation Facilities Contraction Program

PAG 2040 Regional Transportation Plan

Town of Sahuarita Area Transportation Study – 2010 PAG Southeast Area Study Sahuarita/El Toro Corridor Study – March 2013

Map Key	Begin	End	Length	gth Project Description		n [P], n[M],	Statu	us of Recomn	nendation		
Ref. No.	MP MP (miles)		r roject bescription	Ρ	М	E	Program Year	Project No.	Environmental Documentation (Y/N)?		
47	46.81	-	N/A	I-19 and Sahuarita Road (Helmet Peak Rd) TI – Reconstruct traffic interchange			$\sqrt[n]{}$	N/A N/A	N/A N/A	Ν	
48	46.81	-	N/A	I-19 and Sahuarita Road – Park & Ride Lots		$\sqrt[n]{\sqrt{1}}$		N/A N/A	N/A N/A	N	
49	46.81	63	16.19	Reconstruct I-19 to four lanes in each direction and provide auxiliary lanes for Northbound and Southbound I-19 from the I-19 and Sahuarita TI to I-10			\checkmark	N/A	H594901L	Ν	I
50	49.62	-	N/A	Pima Mine TI OP BR SB# 1304/ NB #1303 - Bridge Deck Rehabilitation	\checkmark			FY 2016	H817801C	Ν	-
51	49.62	-	N/A	I-19 and Pima Mine Road Interchange (Phase 1) – Reconstruct interchange and widen Pima Mine Road to 4-lanes east of north ramp to Casino Entrance (or Nogales Highway)				N/A N/A N/A	H594901L N/A N/A	N	
52	54.40	-	N/A	I-19 and Papago TI – Reconstruct traffic interchange			\checkmark	N/A	H594901L	Ν	
53	56.3	63	6.7	Reconstruct I-19 to four lanes in each direction between San Xavier Road and I-10			\checkmark \checkmark	N/A N/A N/A	H594901L H846701L N/A	Y	
54	56.80	57.80	1	Santa Cruz River BR SB# 1244 / NB #1243 Bridge Deck Rehabilitation	\checkmark			FY 2016	H858201C	Ν	
55	56.90	58.85	1.95	Construct modified split diamond interchange between San Xavier Road and Los Reales Road connected by Collector-Distributor (CD) roads.			$\begin{array}{c} \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \end{array}$	N/A N/A N/A	H594901L H846701L N/A	N	
56	56.90	61.90	5.00	I-19, San Xavier Rd to Ajo Way – Widen to 6 - lanes			$\sqrt[n]{\sqrt{1}}$	N/A N/A	N/A H846701L	Ν	
57	56.95	-	N/A	Shared Use Path near San Xavier Road and I-19 TI On and Off Ramps		\checkmark		N/A	N/A	Ν	
58	58.82	63	4.15	Provide auxiliary lanes for Northbound I-19 between Los Reales Road and Valencia Road, Valencia Road and Drexel Road, Drexel Road and Irvington Road and Ajo Way, and Ajo Way and I-10			$\sqrt[n]{\sqrt{1}}$	N/A N/A	H594901L H846701L	Y	
59	58.82	59.90	1.08	Reconstruct the existing Southbound I-19 off-ramp at Valencia Road to accommodate the new braided ramps between Valencia Road and Drexel Road			$\sqrt[n]{\sqrt{1}}$	N/A N/A	H594901L H846701L	Y	
60	58.82	-	N/A	Los Reales Road & I-19 – Connect Los Reales from I-19 to Old Nogales Highway. Construct New TI at Los Reales Road and I-19			$\sqrt[n]{}$	N/A N/A	H594901L H846701L	Y	
61	59.90	-	N/A	Drexel Road and I-19 – Construct New SPUI			$\sqrt[n]{\sqrt{1}}$	N/A N/A	H594901L H846701L	Y	

Town of Sahuarita Area Transportation Study – 2010 PAG Southeast Area Study

PAG 2040 Regional Transportation Plan

Town of Sahuarita Area Transportation Study – 2010 PAG 2040 Regional Transportation Plan (Reserve)

I-19 Corridor Study – I-10 to Pima/Santa Cruz Line – Oct 2003

2015-2019 Five-Year Transportation Facilities Contraction Program

I-19 Corridor Study – I-10 to Pima/Santa Cruz Line – Oct 2003 Sahuarita/El Toro Corridor Study – March 2013 Town of Sahuarita Area Transportation Study – 2010 PAG Southeast Area Study PAG 2040 Regional Transportation Plan

I-19 Corridor Study – I-10 to Pima/Santa Cruz Line – Oct 2003

Final Design Concept Report, I-19 San Xavier Road TO I-10, August 23, 2012

2015-2019 Five-Year Transportation Facilities Construction Program

I-19 Corridor Study – I-10 to Pima/Santa Cruz Line – Oct 2003 Final Design Concept Report, I-19 San Xavier Road TO I-10, August 23, 2012 PAG 2040 Regional Transportation Plan

PAG 2040 Regional Transportation Plan

San Xavier District Pedestrian Access and Safety Study – 2009

Final Design Concept Report, I-19 San Xavier Road TO I-10, August 23, 2012

I-19 Corridor Study – I-10 to Pima/Santa Cruz Line – Oct 2003 Final Design Concept Report, I-19 San Xavier Road TO I-10, August 23, 2012

I-19 Corridor Study – I-10 to Pima/Santa Cruz Line – Oct 2003 PAG Southeast Area Study Final Design Concept Report, I-19 San Xavier Road TO I-10, August 23, 2012

I-19 Corridor Study – I-10 to Pima/Santa Cruz Line – Oct 2003 Final Design Concept Report, I-19 San Xavier Road TO I-10, August 23, 2012 PAG 2040 Regional Transportation Plan

Map Key	Begin	End	Length	Broject Description	Project Description		n [P], n[M],	Statu	us of Recomm	endation
Ref. No.	MP	MP	(miles)	Project Description			E	Program Year	Project No.	Environmental Documentation (Y/N)?
62	60.95	-	N/A	Irvington Road and I-19 – Design and reconstruct new TI (SPUI)			$\begin{array}{c} \checkmark\\ \checkmark\\ \checkmark\\ \checkmark\\ \checkmark\\ \checkmark\end{array}$	N/A FY 2019 N/A N/A	H594901L None Assigned H846701L N/A	Y
63	60.95	63	2.05	Reconstruct the existing ramps in the southbound direction between I-10 and Ajo Way (SR 86), and between Ajo Way and Irvington Road as braided ramps (Phase 1)			$\begin{array}{c} \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \end{array}$	N/A FY 2015 N/A N/A	H594901L H84601D H846701L N/A	Y
64	61.40	-	N/A	Construct new pedestrian bridge over I-19 near Michigan Street					H846701L	Y
65	61.90	-	N/A	Reconstruct the existing partial clover leaf TI at Ajo Way (SR 86) to a SPUI (Phase 2)				N/A FY 2018 N/A N/A	N/A H84601D N/A N/A	Y
66	61.90	63	1.1	Provide CD roads between Ajo Way and I-10				N/A	H846701L	Y
67	61.90	63	1.1	Reconstruct the existing ramps in the northbound direction between Ajo Way and I-10 as braided ramps			\checkmark	N/A	H846701L	Y
68			N/A	High Occupancy Vehicle (HOV) Lanes Expansion – I-10 & I-19				N/A	N/A	Ν
69	-	-	N/A	Freeway Management System Expansion – I-10 & I-19				N/A N/A	H846701L N/A	Ν
70	-	-	N/A	Reevaluation of I-19/I-10 System Interchange to accommodate 2030 traffic demands in the vicinity of the system interchange			\checkmark	N/A	H594901L	Ν

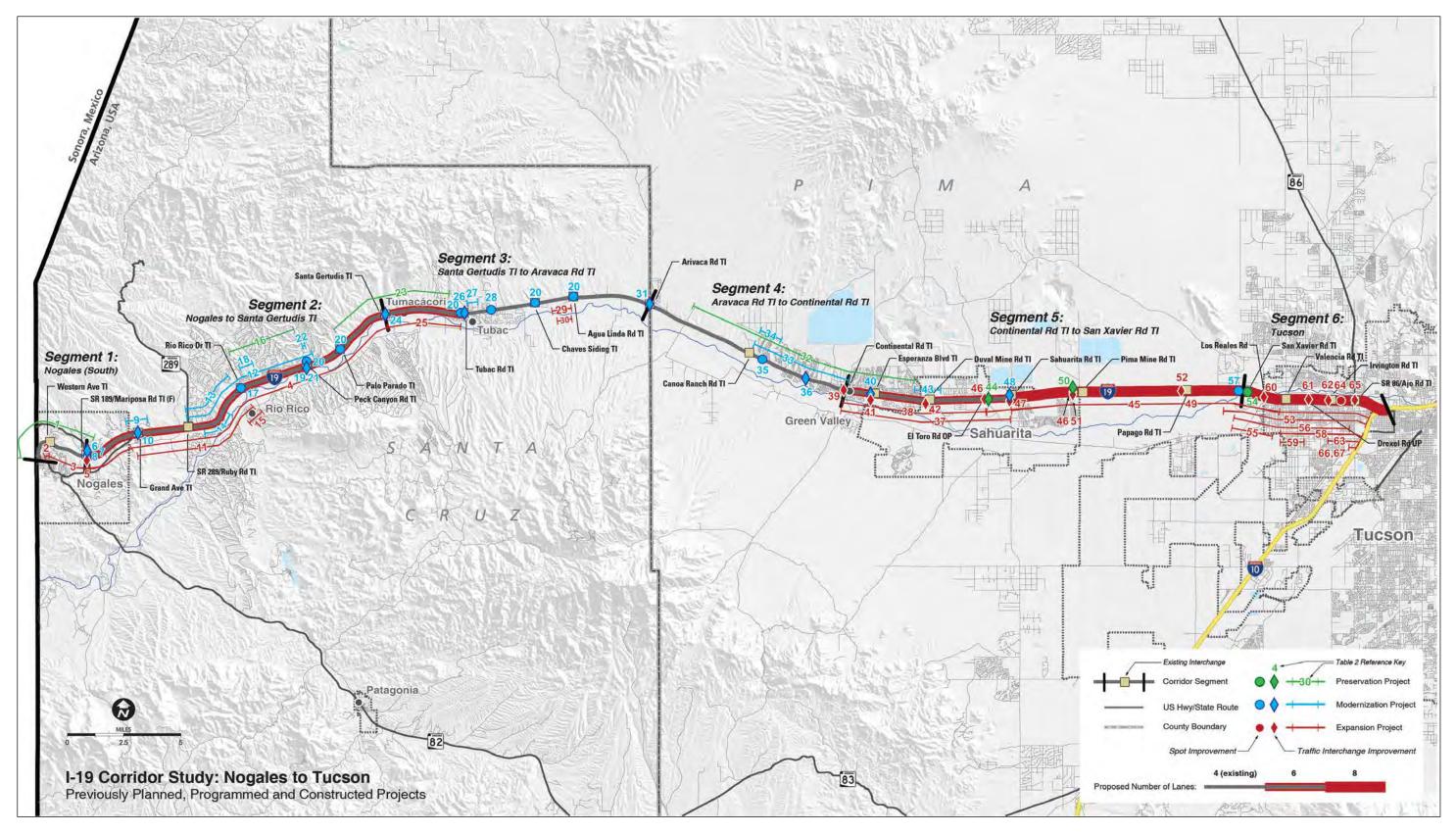
2015-2019 PAG Five-Year Transportation Facilities Construction Program Final Design Concept Report, I-19 San Xavier Road TO I-10, August 23, 2012 PAG 2040 Regional Transportation Plan

I-19 Corridor Study – I-10 to Pima/Santa Cruz Line – Oct 2003 2015-2019 Five-Year Transportation Facilities Construction Program Final Design Concept Report, I-19 San Xavier Road TO I-10, August 23, 2012 PAG 2040 Regional Transportation Plan

Final Design Concept Report, I-19 San Xavier Road TO I-10, August 23, 2012

I-19 Corridor Study – I-10 to Pima/Santa Cruz Line – Oct 2003 2015-2019 Five-Year Transportation Facilities Construction Program Final Design Concept Report, I-19 San Xavier Road TO I-10, August 23, 2012 PAG 2040 Regional Transportation Plan

Final Design Concept Report, I-19 San Xavier Road TO I-10, August 23, 2012


Final Design Concept Report, I-19 San Xavier Road TO I-10, August 23, 2012

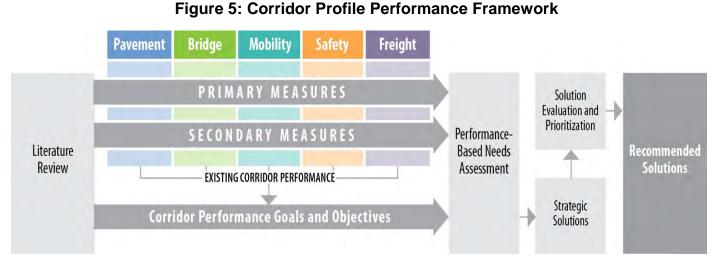
PAG 2040 Regional Transportation Plan (Reserve)

I-19 Corridor Study – I-10 to Pima/Santa Cruz Line – Oct 2003 PAG 2040 Regional Transportation Plan (Reserve)

I-19 Corridor Study – I-10 to Pima/Santa Cruz Line – Oct 2003

Figure 4: Corridor Recommendations from Previous Studies

I-19 Corridor Profile Study Final Report


CORRIDOR PERFORMANCE 2.0

This chapter describes the evaluation of the existing performance of the I-19 corridor. A series of performance measures is used to assess the corridor. The results of the performance evaluations are used to define corridor needs relative to the long term goals and objectives for the corridor.

2.1 **Corridor Performance Framework**

This study uses a performance-based process to define baseline corridor performance, diagnose corridor needs, develop corridor solutions, and prioritize strategic corridor investments. In support of this objective, a framework for the performance-based process was developed through a collaborative process involving ADOT and the CPS consultant teams.

Figure 5 illustrates the performance framework, which includes a two-tiered system of performance measures (primary and secondary) to evaluate baseline performance. The primary measures in each of five performance areas are used to define the overall health of the corridor, while the secondary measures identify locations that warrant further diagnostic investigation to delineate needs. Needs are defined as the difference between baseline corridor performance and established performance objectives.

The following five performance areas guide the performance-based corridor analyses:

- Pavement •
- Bridge
- Mobility •
- Safety
- Freight

These performance areas reflect national performance goals stated in Moving Ahead for Progress in the 21st Century (MAP-21):

- roads.
- good repair.
- Highway System.
- System Reliability: To improve the efficiency of the surface transportation system.
- support regional economic development.
- protecting and enhancing the natural environment.

The MAP-21 performance goals were considered in the development of ADOT's P2P process, which integrates transportation planning with capital improvement programming and project delivery. Because the P2P program requires the preparation of annual transportation system performance reports using the five performance areas adopted for the CPS, consistency is achieved in the performance measures used for various ADOT analysis processes.

The performance measures include five primary measures: Pavement Index, Bridge Index, Mobility Index, Safety Index, and Freight Index. Additionally, a set of secondary performance measures provides for a more detailed analysis of corridor performance.

Each of the primary and secondary performance measures is comprised of one or more quantifiable indicators. A three-level scale was developed to standardize the performance scale across the five performance areas, with numerical thresholds specific to each performance measure:

Good/Above Average Performance	 Rating is
Fair/Average Performance	 Rating is
Poor/Below Average Performance	 Rating is

Table 4 provides the complete list of primary and secondary performance measures for each of the five performance areas.

March 2017

Safety: To achieve a significant reduction in traffic fatalities and serious injuries on all public

Infrastructure Condition: To maintain the highway infrastructure asset system in a state of

Congestion Reduction: To achieve a significant reduction in congestion on the National

Freight Movement and Economic Vitality: To improve the national freight network, strengthen the ability of rural communities to access national and international trade markets, and

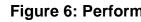
Environmental Sustainability: To enhance the performance of the transportation system while

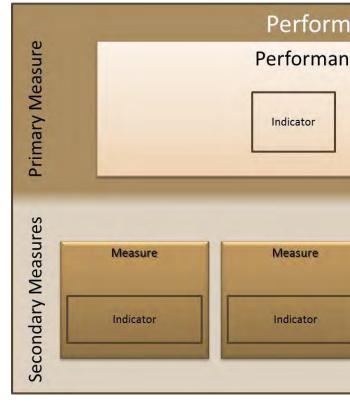
 Reduced Project Delivery Delays: To reduce project costs, promote jobs and the economy, and expedite the movement of people and goods by accelerating project completion.

is above identified desirable/average range

is within identified desirable/average range

is below identified desirable/average range

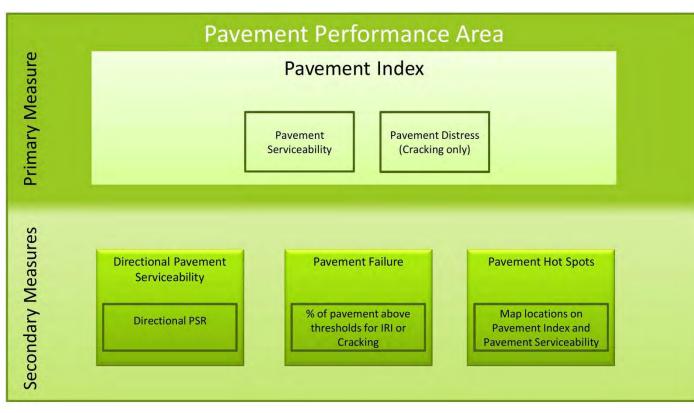

Performance Area	Primary Measure	Secondary Measures
Pavement	Pavement Index Based on a combination of International Roughness Index and cracking	 Directional Pavement Serviceability Pavement Failure Pavement Hot Spots
Bridge	Bridge Index Based on lowest of deck, substructure, superstructure and structural evaluation rating	 Bridge Sufficiency Functionally Obsolete Bridges Bridge Rating Bridge Hot Spots
Mobility	Mobility Index Based on combination of existing and future daily volume-to-capacity ratios	 Future Congestion Peak Congestion Travel Time Reliability Multimodal Opportunities
Safety	Safety Index Based on frequency of fatal and incapacitating injury crashes	 Directional Safety Index Strategic Highway Safety Plan Emphasis Areas Crash Unit Types Safety Hot Spots
Freight	Freight Index Based on bi-directional truck planning time index	 Recurring Delay Non-Recurring Delay Closure Duration Bridge Vertical Clearance Bridge Vertical Clearance Hot Spots


The general template for each performance area is illustrated in Figure 6.

The guidelines for performance measure development are:

- Indicators and performance measures for each performance area should be developed for relatively homogeneous corridor segments
- Performance measures for each performance area should be tiered, consisting of primary measure(s) and secondary measure(s)
- Primary and secondary measures should assist in identifying those corridor segments that warrant in-depth diagnostic analyses to identify performance-based needs and a range of corrective actions known as solution sets

- One or more primary performance measures should be used to develop a Performance Index to communicate the overall health of a corridor and its segments for each performance area; the Performance Index should be a single numerical index that is quantifiable, repeatable, scalable, and capable of being mapped; primary performance measures should be transformed into a Performance Index using mathematical or statistical methods to combine one or more data fields from an available ADOT database
- One or more secondary performance measure indicators should be used to provide additional details to define corridor locations that warrant further diagnostic analysis; secondary performance measures may include the individual indicators used to calculate the Performance Index and/or "hot spot" features



ance Area	
ce Area Index	
Indicator	
Measure	Measure
Indicator Indicator	Indicator Indicator

Figure 6: Performance Area Template

2.2 Pavement Performance Area

The Pavement performance area consists of a primary measure (Pavement Index) and three secondary measures, as shown in Figure 7. These measures assess the condition of the existing pavement along the I-10/SR 85 Corridor. The detailed calculations and equations developed for each measure are available in Appendix B and the performance data for this corridor is contained in Appendix C.

Figure 7: Pavement Performance Measures

Primary Pavement Index

The Pavement Index is calculated using two pavement condition ratings: the Pavement Serviceability Rating (PSR) and the Pavement Distress Index (PDI).

The PSR is extracted from the International Roughness Index (IRI), a measurement of pavement roughness based on field-measured longitudinal roadway profiles. The PDI is extracted from the Cracking Rating (CR), a field-measured sample from each mile of highway.

Both the PSR and PDI use a 0 to 5 scale with 0 representing the lowest performance and 5 representing the highest. The Pavement Index for each segment is a weighted average of the directional ratings based on the number of travel lanes. Therefore, the condition of a section with more travel lanes will have a greater influence on the resulting segment Pavement Index than the condition of a section with fewer travel lanes.

Each corridor segment is rated on a scale with other segments in similar operating environments. Within the Pavement performance area, the relevant operating environments are designated as interstate and non-interstate segments. For the I-19 Corridor, the following operating environment was identified:

• Interstate: all segments

Secondary Pavement Measures

Three secondary measures provide an in-depth evaluation of the different characteristics of pavement performance.

Directional Pavement Serviceability

each direction of travel.

Pavement Failure

Percentage of pavement area rated above failure thresholds for IRI or Cracking.

Pavement Hot spots

- "poor" condition.
- Highlights problem areas that may be under-represented in a segment average. This

Weighted average (based on number of lanes) which measures the PSR of the pavement in

• A pavement "hot spot" exists where a given 1-mile section of roadway rates as being in

measure is recorded, but not included in the Pavement Performance Area rating calculations.

Pavement Performance Results

The Pavement Index provides a high-level assessment of the pavement condition for the corridor and for each segment. The three secondary measures provide more detailed information to assess pavement performance.

Based on the results of this analysis, the following observations were made:

- No Poor/Below Average pavement conditions are reported on the corridor.
- Northbound lanes show somewhat lesser Pavement Serviceability Rating than southbound lanes.
- Segment 19-6 in the Tucson area shows generally lower level of pavement performance than the rest of the corridor.
- Segments 19-1 and 19-6 show Pavement Failure ratings in the Fair/Average range.
- Pavement Hot spots include:
 - o Segment 19-1 NB MP 0-1
 - o Segment 19-2 NB 17-18
 - o Segment 19-6 NB MP 62-63; SB MP 63-64

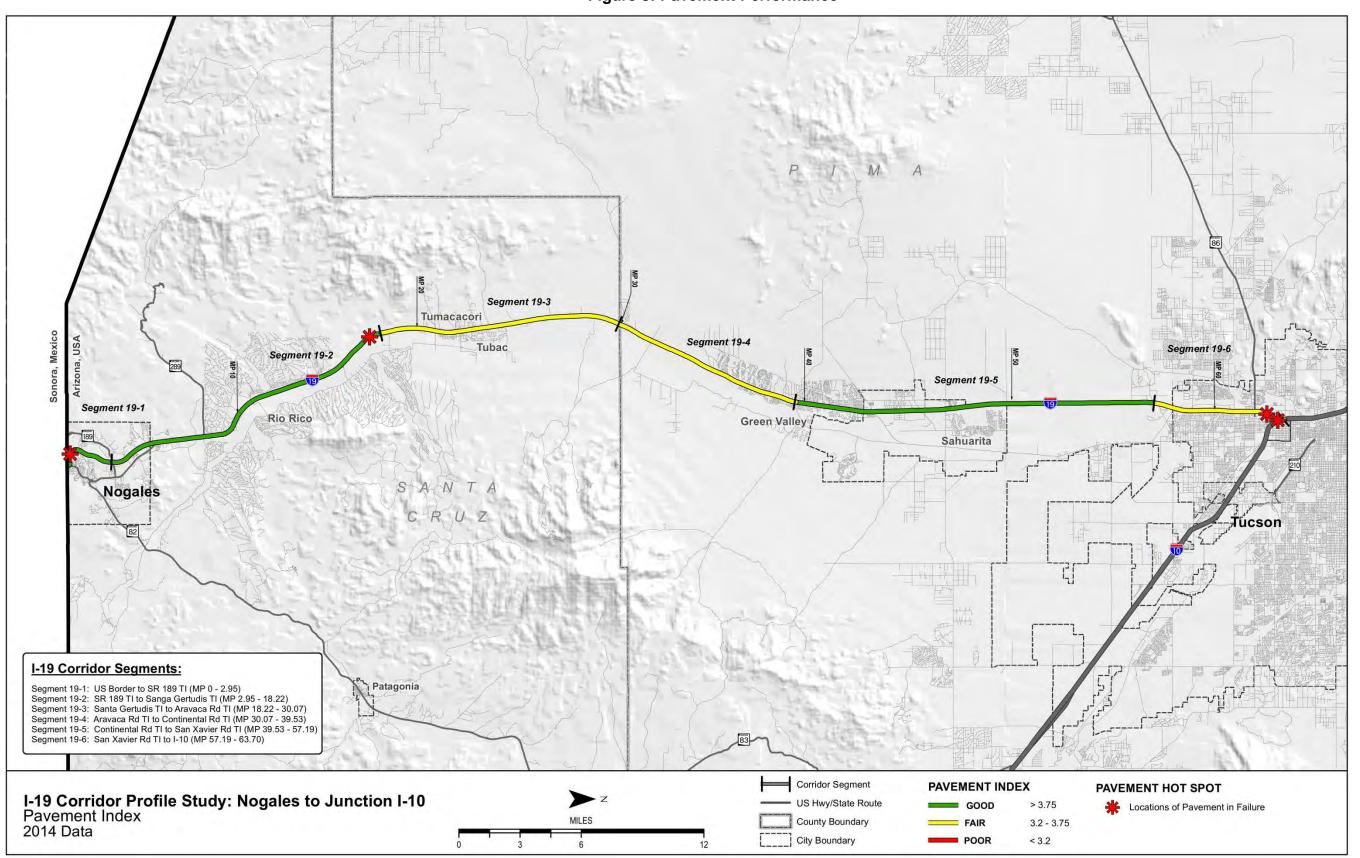
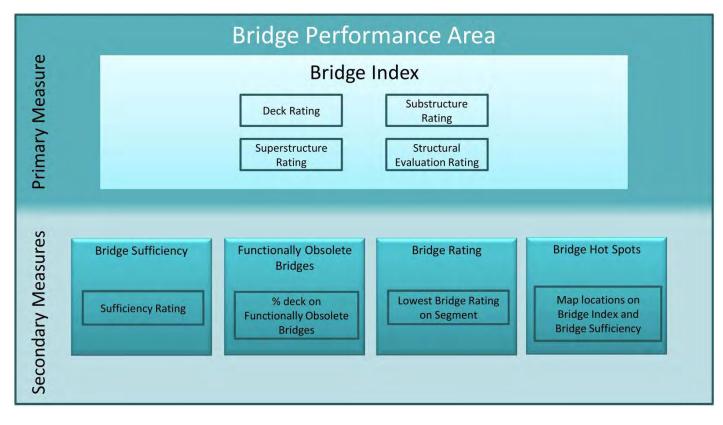

Table 5 summarizes the pavement performance for the I-19 corridor.**Figure 8** illustrates theprimary Pavement Index performance and locations of Pavement hot spots along the I-19 Corridor.Maps for each secondary measure can be found in **Appendix A**.

Table 5: Pavement Performance

Commont	Segment Length	Devement Indev	Directio	nal PSR	
Segment	(miles)	Pavement Index	NB	SB	% Area Failure
19-1	19-1 3		3.72	3.96	16.7%
19-2	15	4.39	4.28	4.26	3.3%
19-3	12	3.57	3.74	3.90	0.0%
19-4	10	3.54	3.76	3.90	0.0%
19-5	17	4.08	3.97	4.02	0.0%
19-6	7	3.61	3.54	3.57	18.8%
Weighted Cor	ridor Averages	3.92	3.91	3.98	3.6%
		SCALES			
		Interstate			
Go	bod	>	< 5%		
F	air	3.2	5% - 20%		
P	oor	<	> 20%		

Figure 8: Pavement Performance



ADOT

2.3 Bridge Performance Area

The Bridge Performance Area consists of a primary measure (Bridge Index) and four secondary measures, as shown in **Figure 9**. These measures assess the condition of the existing bridges along the I-19 Corridor.

Only bridges that carry mainline traffic or bridges that cross the mainline are included in the calculation. The detailed calculations and equations developed for each measure are available in **Appendix B** and the performance data for this corridor is contained in **Appendix C**.

Figure 9: Bridge Performance Measures

Primary Bridge Index

The Bridge Index is calculated based on the use of four bridge condition ratings from the ADOT Bridge Database, also known as the Arizona Bridge Information and Storage System (ABISS). The four ratings include the Deck Rating, Substructure Rating, Superstructure Rating, and Structural Evaluation Rating. These ratings are based on inspection reports and are used to establish the structural adequacy of each bridge. The condition of each individual bridge is established by using the lowest of these four ratings. The use of these ratings, and the use of the lowest rating, is consistent with the approach used by ADOT Bridge Group to assess the need for bridge rehabilitation. The Bridge Index is calculated as weighted average for each segment based on deck area.

Secondary Bridge Measures

Four secondary measures provide an in-depth evaluation of the characteristics of each bridge:

Bridge Sufficiency

- Multipart rating includes structural adequacy and safety factors as well as functional aspects such as traffic volume and length of detour
- Rates the structural and functional sufficiency of each bridge on a 100-point scale

Functionally Obsolete Bridges

- Percentage of total deck area in a segment that is on functionally obsolete bridges
 Identifies bridges that no longer meet standards for current traffic volumes, lane width,
- Identifies bridges that no longer meet star shoulder width, or bridge rails
- A bridge that is functionally obsolete may still be structurally sound

Bridge Rating

- The lowest rating of the four bridge condition ratings (substructure, superstructure, deck, and structural evaluation) on each segment
- Identifies lowest performing evaluation factor on each bridge

Bridge Hot Spots

- A Bridge "hot spot" is identified where a given bridge has a bridge rating of 4 or lower or multiple ratings of 5 between the deck, superstructure, and substructure ratings
 Identifies particularly low-performing bridges or those that may decline to low performance in
- Identifies particularly low-performing bridg the immediate future

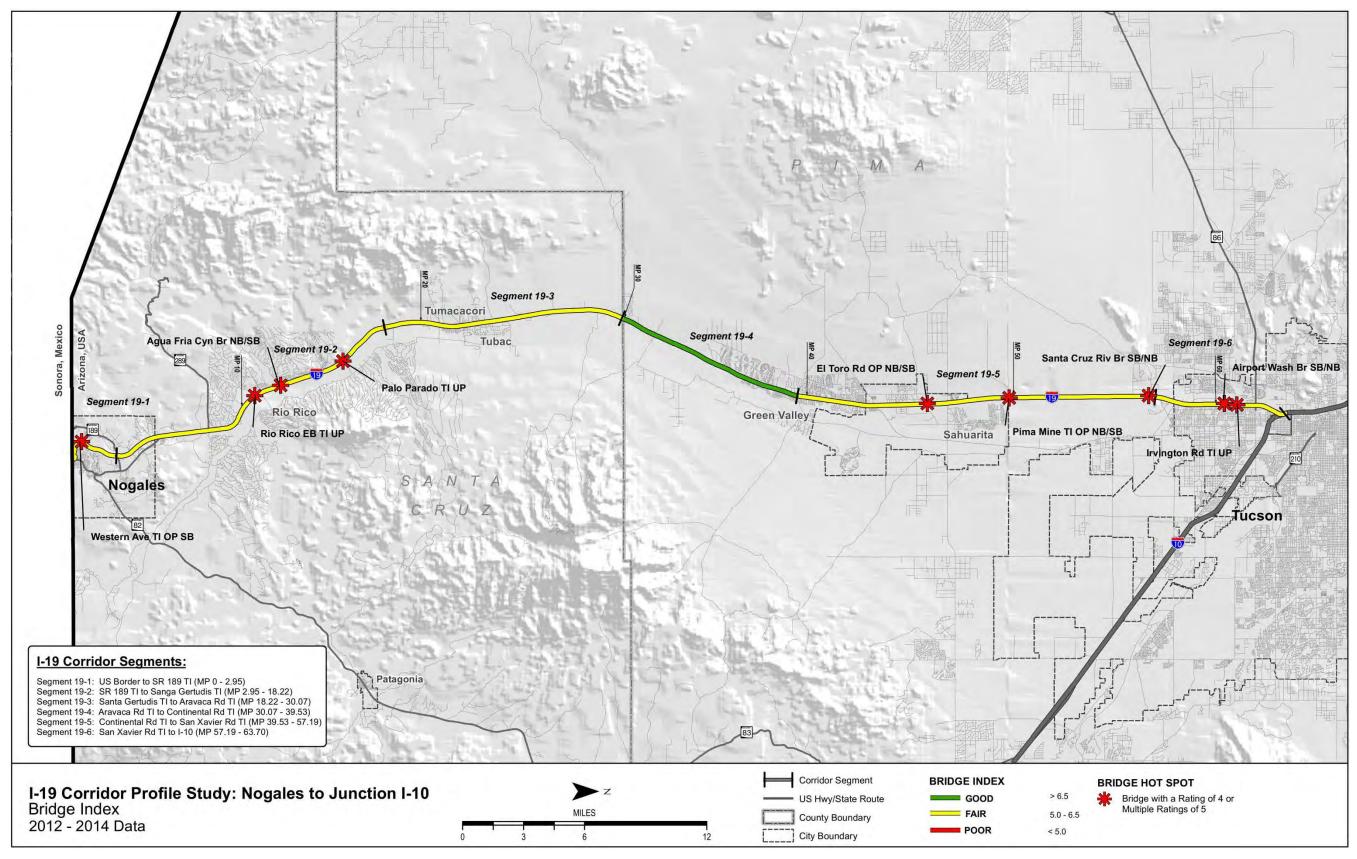
Bridge Performance Results

The Bridge Index provides a high-level assessment of the structural condition of bridges for the corridor and for each segment. The four secondary measures provide more detailed information to assess bridge performance.

Based on the results of this analysis, the following observations were made:

- The Bridge Index is predominantly in the Fair/Average range, with the exception of segment 19-4 where the Index shows Good/Above Average.
- Bridge Rating averages in the Fair/Average range (5 or 6) throughout the corridor with the exception of segment 19-5 where the rating is 4, indicating structural or recurring maintenance issues.
- Bridge Sufficiency Every segment along I-19 rates in the Good range with the exception of Segment 6 near Tucson which rates Fair. The sufficiency rating for the bridges at the Valencia Road Traffic Interchange and the Irvington Road Traffic Interchange both rate below 70.0, which lowers the segment average score into the Fair range.
- Functionally Obsolete Bridges Every segment along I-19 rates Fair in terms of the percentage of functionally obsolete bridges, with the exception of Segment 19-1 near Nogales. All bridges within Segment 19-1 are considered functionally obsolete by current ADOT design standards, primarily due to insufficient width for current traffic volumes.
- Bridge Hot spots along I-19 include:
 - Western Ave TI OP SB
 - o Rio Rico EB TI UP
 - Agua Fria Canyon Br NB/SB
 - o Palo Parado TI UP
 - o El Toro Rd OP NB/SB
 - o Pima Mine TI OP NB/SB
 - Santa Cruz River Br NB/SB
 - Airport Wash Br NB/SB
 - Pedestrian UP (MP 61.4)

Table 6 summarizes the Bridge performance results for the I-19 Corridor. **Figure 10** illustrates the primary Bridge Index performance and locations of bridge hot spots along the I-19 Corridor. Maps for each secondary measure can be found in **Appendix A**.


Table 6:	: Brid
----------	--------

Segment	Length (miles)	# of Bridges	Bridge Index	Bridge Sufficiency	Bridge Rating	% Deck Area of Functionally Obsolete Bridges
19-1	3	4	5.98	90.03	5	100.0%
19-2	15	18	5.79	92.24	5	27.3%
19-3	12	9	6.18	93.08	6	19.7%
19-4	10	10	6.60	95.35	6	15.7%
19-5	17	22	5.30	90.92	4	21.3%
19-6	7	11	6.06	77.36	5	19.4%
Weighted Co	orridor Avera	ages	5.90	90.80	5.08	25.0%
			SCALES			
(Good		> 6.5	> 80	> 6	< 12%
	Fair		5.0 - 6.5	50 - 80	5 – 6	12% - 40%
	Poor		< 5.0	< 50	< 5	> 40 %

Ige Performance

Figure 10: Bridge Performance

2.4 Mobility Performance Area

The Mobility performance area consists of a primary measure (Mobility Index) and four secondary measures, as shown in **Figure 11**. These measures assess the condition of existing mobility along theI-19 Corridor. The detailed calculations and equations developed for each measure are available in Appendix B and the performance data for this corridor is contained in Appendix C.

Mobility Performance Area Primary Measure Mobility Index **Existing Daily Future Daily** Volume-to-AVERAGE Volume-to-Capacity Ratio Capacity Ratio Secondary Measures **Future Congestion Peak Congestion** Travel Time Reliability Multimodal Opportunities % Bicycle Accommodation **Closure Extent** Existing Peak Hour Future Daily Volume-to-Volume-to-Capacity **Capacity Ratio** % Non-SOV Trips Travel Time Index Ratio **Planning Time Index** % Transit Dependency

Figure 11: Mobility Performance Measures

Primary Mobility Index

The Mobility Index is an average of the existing (2014) daily volume-to-capacity (V/C) ratio and the future (2035 AZTDM) daily V/C ratio for each segment of the corridor. The V/C ratio is an indicator of the level of congestion. This measure compares the average annual daily traffic (AADT) volume to the capacity of the corridor segment as defined by the service volume for level of service (LOS) E. By using the average of the existing and future year daily volumes, this index measures the level of daily congestion projected to occur in approximately ten years (2025) if no capacity improvements are made to the corridor.

Each corridor segment is rated on a scale with other segments in similar operating environments. Within the Mobility performance area, the relevant operating environments are urban vs. rural setting and interrupted flow (e.g., signalized at-grade intersections are present) vs. uninterrupted flow (e.g., controlled access grade-separated conditions such as a freeway or interstate highway). For the I-19 Corridor, the following operating environments were identified:

- Urban Interrupted Flow: Segment 19-1
- Urban Uninterrupted Flow: Segments 19-4 through 19-6
- Rural Interrupted Flow: Segment 19-3
- Rural Uninterrupted Flow: Segment 19-4

Secondary Mobility Measures

Four secondary measures provide an in-depth evaluation of operational characteristics of the corridor:

Future Congestion – Future Daily V/C

- The future (2035 AZTDM) daily V/C ratio. This measure is the same value used in the calculation of the Mobility Index
- Provides a measure of future congestion if no capacity improvements are made to the corridor

Peak Congestion – Existing Peak Hour V/C

- The peak hour V/C ratio for each direction of travel
- Provides a measure of existing peak hour congestion during typical weekdays

Travel Time Reliability- Three separate travel time reliability indicators together provide a comprehensive picture of how much time may be required to travel within the corridor:

- Closure Extent:

• The average number of instances a particular milepost is closed per year per mile on a given segment of the corridor in a specific direction of travel; a weighted average was applied to each closure that takes into account the distance over which the closure occurs Closures related to crashes, weather, or other incidents are a significant contributor to non-recurring delays; construction-related closures were excluded from the analysis

- Directional Travel Time Index (TTI):
 - The ratio of the average peak period travel time to the free-flow travel time (based on the posted speed limit) in a given direction
 - The TTI recognizes the delay potential from recurring congestion during peak periods; different thresholds are applied to uninterrupted flow (freeways) and interrupted flow (non-freeways) to account for flow characteristics
- Directional Planning Time Index (PTI):
 - The ratio of the 95th percentile travel time to the free-flow travel time (based on the posted speed limit) in a given direction
 - The PTI recognizes the delay potential from non-recurring delays such as traffic crashes, weather, or other incidents; different thresholds are applied to uninterrupted flow (freeways) and interrupted flow (non-freeways) to account for flow characteristics
 - The PTI indicates the amount of time in addition to the typical travel time that should be allocated to make an on-time trip 95% of the time in a given direction

Multimodal Opportunities – Three multimodal opportunity indicators reflect the characteristics of the corridor that promote alternate modes to the single occupancy vehicle (SOV) for trips along the corridor:

- % Bicycle Accommodation:
 - Percentage of the segment that accommodates bicycle travel; bicycle accommodation on the roadway or on shoulders varies depending on traffic volumes, speed limits, and surface type
 - Encouraging bicycle travel has the potential to reduce automobile travel, especially on non-interstate highways
- % Non-SOV Trips:
 - The percentage of trips (less than 50 miles in length) by non-SOVs
 - The percentage of non-SOV trips in a corridor gives an indication of travel patterns along a section of roadway that could benefit from additional multimodal options
- % Transit Dependency:
 - The percentage of households that have zero or one automobile and households where the total income level is below the federally defined poverty level
 - Used to track the level of need among those who are considered transit dependent and more likely to utilize transit if it is available

Mobility Performance Results

The Mobility Index provides a high-level assessment of mobility conditions for the corridor and for each segment. The four secondary measures provide more detailed information to assess mobility performance.

Based on the results of this analysis, the following observations were made:

- volumes that exceed capacity of the roadway.
- urban area where it is 'Poor'.
- The Existing Peak Hour traffic operations are 'Good' throughout, with the exception of segment 19-6 in the Tucson urban area where it is 'Fair.'
- were more frequent or longer in duration on the northbound lanes in four segments:
 - 19-1 Non-freeway conditions.
 - 19-3 US Customs Border Patrol Checkpoint.
 - 19-5 Vehicle crashes and other non-recurring closures.
 - 19-6 Vehicle crashes and other non-recurring closures.
- sustained speeds, especially for commercial trucks.
- Non-SOV Travel is rated 'Fair' throughout the corridor.
- allowed to travel on the paved shoulders throughout the length of the corridor.

 Table 7 summarizes the mobility performance results for the I-19 Corridor. Figure 12 illustrates the
 primary Mobility Index performance along I-19. Maps for each secondary measure can be found in Appendix A.

• The Mobility Index is 'Good' throughout the corridor, with the exception of Segment 19-6 in the Tucson urban area where it is 'Poor' possibly as a result of current and future traffic

• The Future V/C is 'Good' throughout, also with the exception of Segment 19-6 in the Tucson

• The Closure extent is rated Good for the length of all southbound lanes. However, closures

• The TTI and PTI measures are mostly 'Good' throughout the corridor, with the exception of segments 19-1, 19-2, and 19-3 TTI measures which are 'Fair.' These slightly lower results coming north from the US – Mexico Border are possibly due to lower speed limits and lower

All segments show 'Good' performance for Bicycle Accommodation since bicycles are

• Segments 19-1 and 19-3 are considered Interrupted Flow segments. 19-1 is located within parts of arterial streets in Nogales. There is a Border Patrol checkpoint in segment 19-3 that requires all traffic to stop. These characteristics will result in increased PTI and TTI scores.

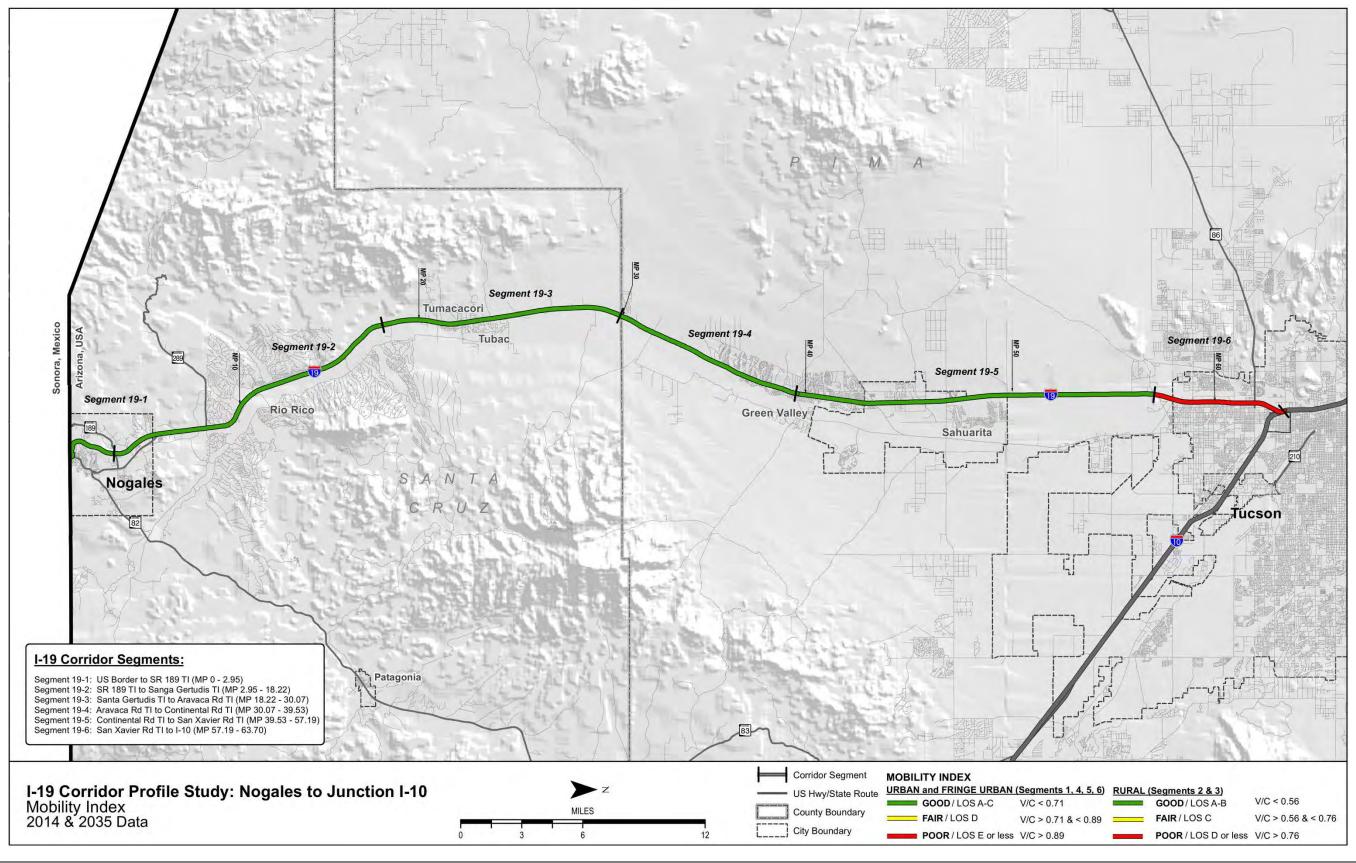

Segment	Length	Mobility Index	Future Daily	-	Peak Hour /C		re Extent rrences)	Directional TTI (all vehicles)		Directional PTI (all vehicles)		% Bicycle	% Non-Single Occupancy
	(miles)		V/C	NB	SB	NB	SB	NB	SB	NB	SB	Accommodation	Vehicle (SOV) Trips
19-1 ^{1*}	3	0.16	0.19	0.12	0.11	0.27	0.20	1.40	1.01	2.28	1.30	90%	14%
19-2 ²	15	0.32	0.39	0.19	0.20	0.22	0.17	1.16	1.13	1.25	1.22	100%	17%
19-3 ^{2*}	12	0.26	0.32	0.17	0.17	0.30	0.17	1.58	1.10	2.50	1.17	100%	15%
19-4 ¹	10	0.34	0.41	0.23	0.23	0.20	0.02	1.06	1.06	1.08	1.12	100%	16%
19-5 ¹	17	0.56	0.66	0.35	0.36	0.25	0.15	1.06	1.07	1.11	1.12	100%	13%
19-6 ¹	7	1.01	1.21	0.78	0.76	0.38	0.06	1.00	1.04	1.03	1.12	95%	15%
Weighted Corr	ridor Averages	0.44	0.53	0.30	0.30	0.26	0.13	1.19	1.08	1.44	1.16	99%	15%
							SCALES						
Performa	nce Level		Urban (Rural)			L	All	Uninterrupted		d (Interrupted)		All	
Gc	ood	< 0.71 (< 0.56)				< 0.22		< 1.15 < 1.30		< 1.30 (< 3.00)		> 90%	> 17%
Fa	Fair 0.71 - 0.89 (0.56 - 0.76)			0.22 – 0.62		1.15 - 1.33 (1.30 - 2.00)		1.30 - 1.50 (3.00 - 6.00)		60% - 90%	11% - 17%		
Po	or		> 0.89 (> 0.76)			>	0.62	> 1.33	(> 2.00)	> 1.50	(> 6.00)	< 60%	< 11%

Table 7: Mobility Performance

¹Urban Operating Environment ²Rural Operating Environment [^]Uninterrupted Flow Facility *Interrupted Flow Facility

Figure 12: Mobility Performance

I-19 Corridor Profile Study Final Report

2.5 Safety Performance Area

The Safety performance area consists of a primary measure (Safety Index) and four secondary measures, as illustrated in Figure 13. All measures relate to crashes that result in fatal and incapacitating injuries, as these types of crashes are the emphasis of the ADOT Strategic Highway Safety Plan (SHSP), FHWA, and MAP-21. The detailed calculations and equations developed for each measure are available in Appendix B and the performance data for this corridor is contained in Appendix C.

Figure 13: Safety Performance Measures

Primary Safety Index

The Safety Index is based on the bi-directional frequency and rate of fatal and incapacitating injury crashes, the relative cost of those types of crashes, and crash occurrences on similar roadways in Arizona. According to ADOT's 2010 Highway Safety Improvement Program Manual, fatal crashes have an estimated cost that is 14.5 times the estimated cost of incapacitating injury crashes (\$5.8 million compared to \$400,000).

Each corridor segment is rated on a scale by comparing the segment score with the average statewide score for similar operating environments. Because crash frequencies and rates vary depending on the operating environment of a particular roadway, statewide values were developed for similar operating environments defined by functional classification, urban vs. rural setting, number of travel lanes, and traffic volumes.

For the I-19 Corridor, the following operating environments were identified:

- Segment 19-1: Urban 4 Lane Freeway
- Segment 19-2: Urban 4 Lane Freeway
- Segment 19-3: Rural 4 Lane Freeway < 25,000 vehicles per day
- Segment 19-4: Urban 4 Lane Freeway
- Segment 19-5: Urban 4 Lane Freeway
- Segment 19-6: Urban 4 Lane Freeway

Secondary Safety Measures

Four secondary measures provide an in-depth evaluation of the different characteristics of safety performance:

Directional Safety Index

crashes

SHSP Emphasis Areas

ADOT's 2014 SHSP identified several emphasis areas for reducing fatal and incapacitating injury crashes. This measure compared rates of crashes in the top five SHSP emphasis areas to other corridors with a similar operating environment. The top five SHSP emphasis areas related to the following driver behaviors:

- Speeding and aggressive driving
- Impaired driving
- Lack of restraint usage
- Lack of motorcycle helmet usage
- Distracted driving

Crash Unit Types

roads with similar operating environments

Safety Hot Spots

- The hot spot analysis identifies abnormally high concentrations of fatal and incapacitating injury crashes along the study corridor by direction of travel
- For the Safety Index and the secondary safety measures, any segment that has too small of a sample size to generate statistically reliable performance ratings for a particular performance measure is considered to have "insufficient data" and is excluded from the safety performance evaluation for that particular performance measure

• This measure is based on the directional frequency and rate of fatal and incapacitating injury

 The percentage of total fatal and incapacitating injury crashes that involves crash unit types of motorcycles, trucks, or non-motorized travelers is compared to the statewide average on

March 2017

Safety Performance Results

The Safety Index provides a high-level assessment of safety performance for the corridor and for each segment. The four secondary measures provide more detailed information to assess safety performance.

Based on the results of this analysis, the following observations were made:

- The Safety Index the corridor rates 'Below Average' for all segments, with the exception of segment 19-4 with an 'Above Average' rating.
- There is some directional variation within the Safety Index on the northbound and southbound lanes, providing insight to the conditions and factors contributing to the crash history.
- Due to the short length of segment 19-1 and limited number of recorded crashes during the analysis period, the analysis does not include Fatal/Incapacitating SHSP Top 5 crash types on this segment.
- Segments 19-2 and 19-6 report Fatal/Incapacitating SHSP Top 5 crash types in the 'Average' range, with remaining segments rating 'Above Average'.
- There was insufficient data to report SHSP Crash Unit Types on the corridor.
- Safety Hot spots include:
 - o Segment 19-2 SB MP 9.0
 - o Segment 19-4 NB 31.0, 33.0, 39.0
 - o Segment 19-5
 - NB MP 43.0, 45.0, 53.0, 56.0
 - SB MP 47.0, 54.0
 - o Segment 19-6
 - NB MP 58.0, 59.0, 61.0
 - SB MP 61.0

Table 8 summarizes the Safety performance results for the I-19 corridor. **Figure 14** illustrates the primary Safety Index performance and locations of safety hot spots along the I-19 Corridor. Maps for each secondary measure can be found in **Appendix A**.

Segment	Length (miles)	Total Fatal & Incapacitating Injury Crashes	Safety Index		nal Safety dex	% of Fatal + Incapacitating Injury Crashes Involving SHSP Top 5 Emphasis	% of Fatal + Incapacitating Injury Crashes Involving		
		(F/I)		NB	SB	Areas Behaviors	Ir	ucks	
19-1ª	3	2 / 1	1.94	1.99	1.90	Insufficient Data	Insuffic	cient Data	
19-2ª	15	10 / 12	1.33	1.34	1.32	59%	Insuffic	cient Data	
19-3 ^ь	19-3 ^b 12 5 / 7 1		1.36	1.59	1.12	33%	Insuffic	cient Data	
19-4ª	10	2/7	0.52	0.59	0.44	44%	Insuffic	cient Data	
19-5ª	17	18 / 13	1.48	2.11	0.86	39%	Insufficient Data		
19-6ª	7	8 / 11	1.42	0.80	2.04	53%	Insuffic	cient Data	
Weigh	ted Corrid	or Averages	1.29	1.45	1.13	45%	Insuffic	cient Data	
				SCA	LES				
					Urban 4 Lan	e Freeway (Rural 4 Lane <	25,000)		
	Above	e Average		< 0.79	(< 0.73)	< 49.1% (< 4	2.8%)	N/A	
	Av	verage		0.79-1.21	(0.73-1.27)	49.1%-59.4% (42.	49.1%-59.4% (42.8%-52.9%)		
	Below	/ Average		> 1.21	(> 1.27)	> 59.4% (> 5	> 59.4% (> 52.9%)		

^aUrban 4 Lane Freeway Operating Environment

^bRural 4 Lane Freeway with Daily Volume < 25,000

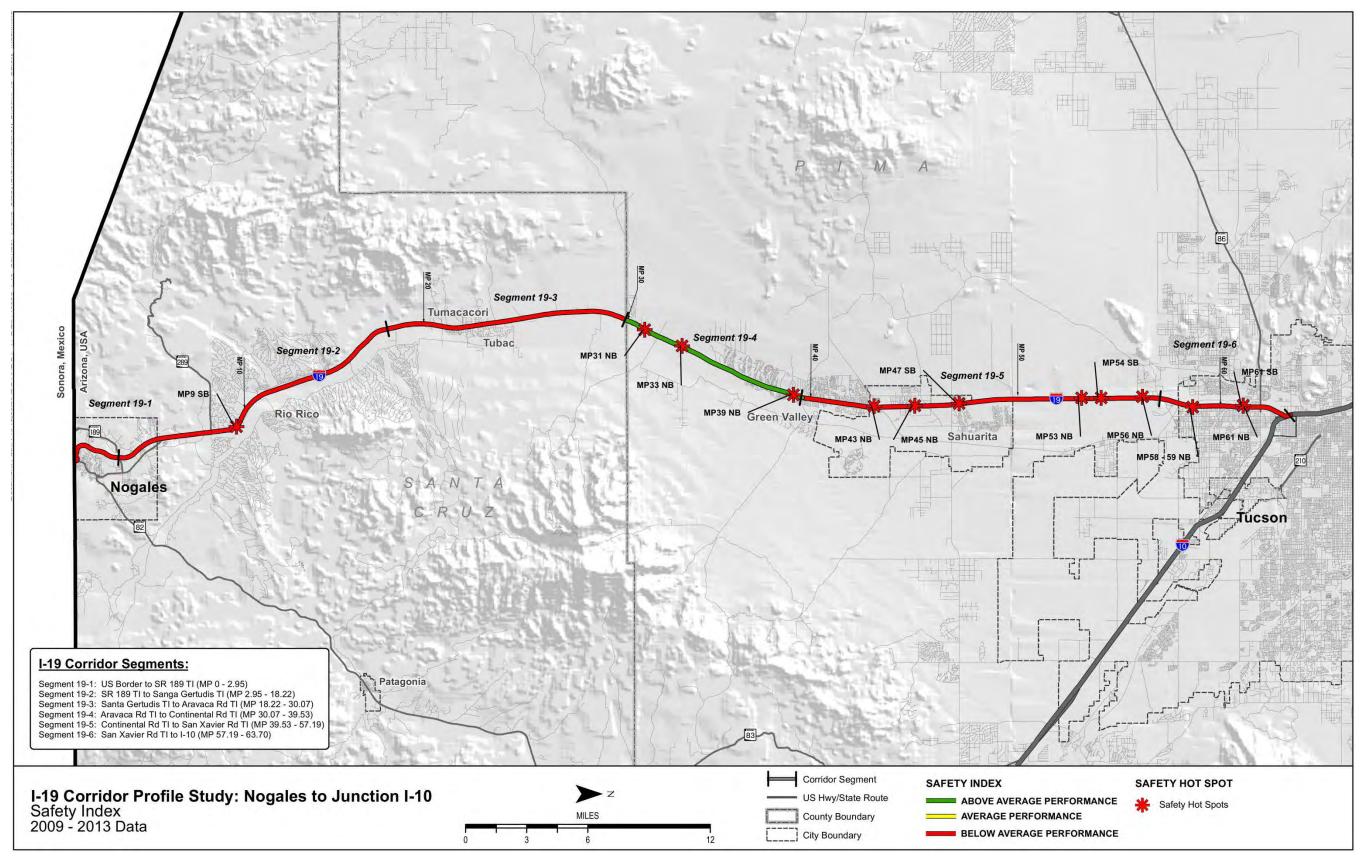

Note: "Insufficient Data" indicates there was not enough data available to generate reliable performance ratings

Table 8: Safe

ety	Ρ	e	rf	0	rr	n	а	n	С	е
-----	---	---	----	---	----	---	---	---	---	---

Figure 14: Safety Performance

Freight Performance Area 2.6

The Freight performance area consists of a single Freight Index and five secondary measures as illustrated in Figure 15. All measures relate to the reliability of truck travel as measured by observed truck travel time speed and delays to truck travel from freeway closures or physical restrictions to truck travel. The detailed calculations and equations developed for each measure can be referenced in Appendix B and the performance data for this corridor is contained in Appendix C.

Figure 15: Freight Performance Measures

Primary Freight Index

The Freight Index is a reliability performance measure based on the PTI for truck travel. The Truck Planning Time Index (TPTI) is the ratio of the 95th percentile truck travel time to the free-flow truck travel time. The TPTI reflects the extra buffer time needed for on-time delivery while accounting for non-recurring delay. Non-recurring delay refers to unexpected or abnormal delay due to closures or restrictions resulting from circumstances such as crashes, inclement weather, and construction activities.

Each corridor segment is rated on a scale with other segments in similar operating environments. Within the Freight performance area, the relevant operating environments are interrupted flow (e.g., signalized at-grade intersections are present) and uninterrupted flow (e.g., controlled access gradeseparated conditions such as a freeway or interstate highway).

Secondary Freight Measures

The Freight performance area includes five secondary measures that provide an in-depth evaluation of the different characteristics of freight performance:

Recurring Delay (Directional Truck Travel Time Index [TTTI])

- The ratio of the average peak period truck travel time to the free-flow truck travel time
- The TTTI recognizes the delay potential from recurring congestion during peak periods; freeways) to account for flow characteristics

Non-Recurring Delay (Directional TPTI)

- The ratio of the 95th percentile truck travel time to the free-flow truck travel time (based on the posted speed limit up to a maximum of 65 miles per hour) in a given direction
- The TPTI recognizes the delay potential from non-recurring delays such as traffic crashes, weather, or other incidents; different thresholds are applied to uninterrupted flow (freeways) and interrupted flow (non-freeways) to account for flow characteristics
- The TPTI indicates the amount of time in addition to the typical travel time that should be allocated to make an on-time trip 95% of the time in a given direction

Closure Duration

closure that takes into account the distance over which the closure occurs

Bridge Vertical Clearance

each segment

Bridge Vertical Clearance Hot Spots

- A Bridge vertical clearance "hot spot" exists where the underpass vertical clearance over the mainline travel lanes is less than 16.25 feet and no exit/entrance ramps exist to allow vehicles to bypass the low clearance location
- If a location with a vertical clearance less than 16.25 feet can be avoided by using immediately adjacent exit/entrance ramps rather than the mainline, it is not considered a hot spot

(based on the posted speed limit up to a maximum of 65 miles per hour) in a given direction different thresholds are applied to uninterrupted flow (freeways) and interrupted flow (non-

 The average time (in minutes) a particular milepost is closed per year per mile on a given segment of the corridor in a specific direction of travel; a weighted average is applied to each

• The minimum vertical clearance (in feet) over the travel lanes for underpass structures on

The Freight Indexe

Freight Performance Results

The Freight Index provides a top-level assessment of the freight mobility for the corridor and for each segment. The four secondary measures provide more detailed information to assess freight performance for each segment.

Each corridor segment is rated on a scale with other segments in similar operating environments. Within the freight performance area, the relevant operating environments included interrupted flow (signalized at-grade intersections are present) and uninterrupted flow (controlled access grade-separated conditions such as a freeway or interstate highway).

Each Segment along I-19 was classified with the following flow type:

Segment 19-1: Interrupted Flow Facility

Segment 19-2: Uninterrupted Flow Facility

Segment 19-3: Interrupted Flow Facility

Segment 19-4: Uninterrupted Flow Facility

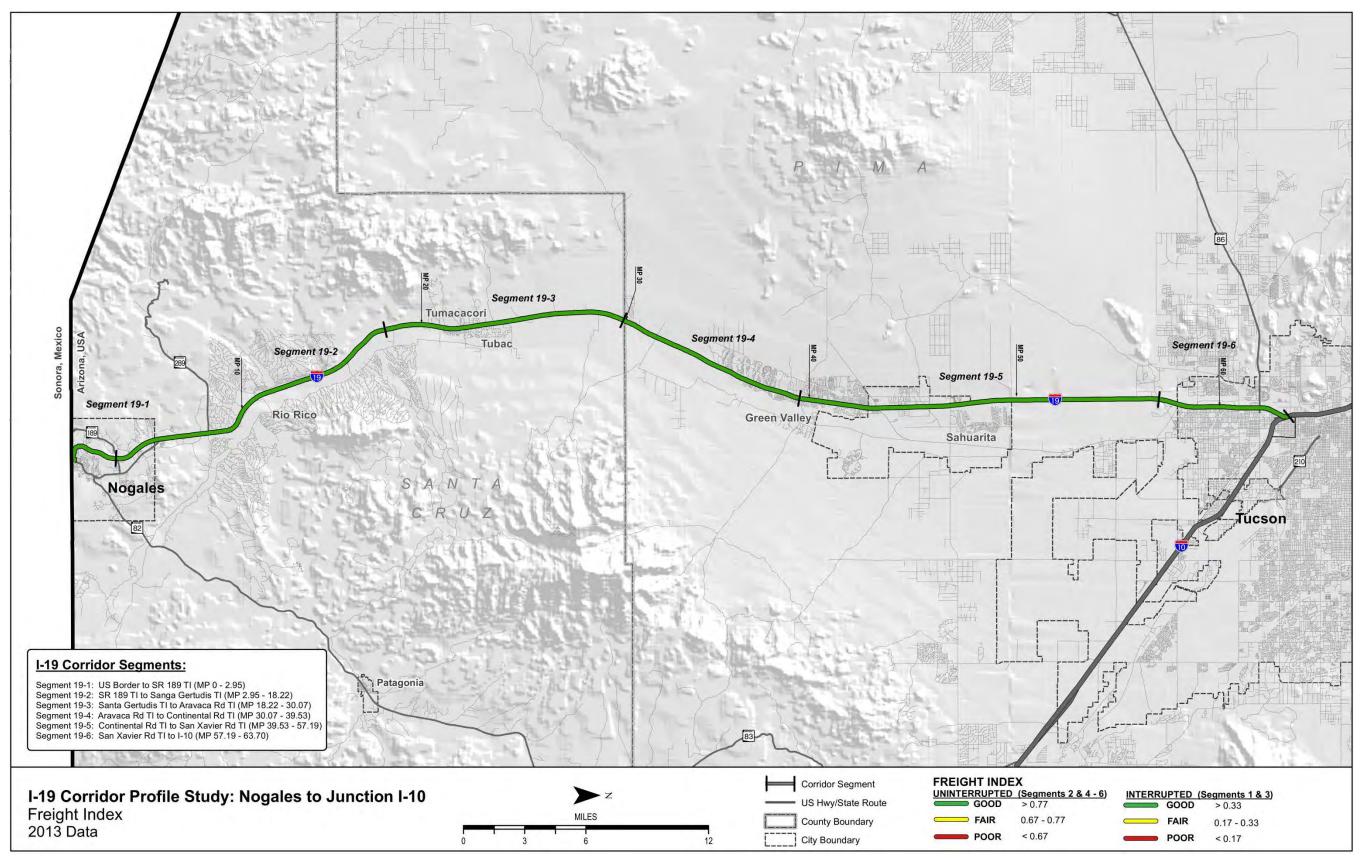
Segment 19-5: Uninterrupted Flow Facility

Segment 19-6: Uninterrupted Flow Facility

Based on the results of this analysis, the following observations could be made:

- Recurring delay is also reported as Poor for the Truck Travel Time Index and the Truck Planning Time Index on the urban segment 19-1 in Nogales.
- Recurring delay is also reported as Poor for the Truck Planning Time Index on segment 19-3 in the northbound lanes, a result of the Border Patrol checkpoint.
- Fair performance is reported for Closure Duration on segments 19-1 (SB), 19-2 (NB), 19-3 (NB & SB), and 19-6 (NB).
- Vertical Bridge Clearance is reported Fair on segments 19-2 and 19-3 with low points just under the design standard of 16.' The Ajo Way underpass measures just under the design standard, resulting in the Poor performance rating on segment 19-6. These low clearance structures can be avoided by using the off-on ramps at the interchange.
- No Vertical Bridge Clearance Hot spots are present on the corridor where the clearance is less than the design standard and cannot be avoided by using interchange ramps.

Table 9 summarizes the freight performance for the I-19 corridor. **Figure 16** illustrates the primary Freight Index performance and locations of freight hot spots along I-19. Maps for each secondary measure can be found in **Appendix A**.


Table 9: Freight Performance

Segment	Length (miles)	Freight Index		tional k TTI		tional k PTI	(minutes	Duration /milepost ear/mile)	Vertical Bridge Clearance
			NB	SB	NB	SB	NB SB		(feet)
19-1*	3	0.46	1.54 1.08		2.37	1.96	30.03	46.78	No UP
19-2^	15	0.93	1.04	1.04	1.09	1.08	45.09	33.78	16.15
19-3*	12	0.34	1.43	1.03	4.91	1.06	87.90	53.94	16.13
19-4^	10	0.95	1.02	1.03	1.05	1.06	22.82	7.36	No UP
19-5^	17	0.94	1.03	1.03	1.05	1.06	39.82	23.75	16.78
19-6^	7	0.88	1.02	1.08	1.06	1.20	66.47	22.61	15.98
Weighted Avera		0.80	1.13	1.04	1.85	1.12	49.87	30.16	16.34
				S	CALES				
Perforn Lev		l	Jninterrup	ted (Interru	ALL				
Good		> 0.77 (> 0.33)	< 1.15	(< 1.30)	< 1.30	(< 3.00)	< 44	4.18	> 16.5
Fa	ir	0.67 - 0.77 (0.17 - 0.33)	1.15 -1.33 (1.30 - 2.00)			- 1.50 -6.00)	44.18 -	124.86	16.0 - 16.5
Poor		< 0.67 (< 0.17)	> 1.33 (> 2.00)		> 1.50	(> 6.00)	> 12	4.86	< 16.0

^Uninterrupted Flow Facility *Interrupted Flow Facility

Figure 16: Freight Performance

I-19 Corridor Profile Study Final Report

March 2017

2.7 Corridor Performance Summary

Based on the results presented in the preceding sections, the following general observations were made related to the performance of the I-19 Corridor:

- The most significant results for the I-19 Corridor report Poor Safety performance on all segments except segment 19-4, including NB and SB lanes.
- Pavement performance is generally Good/Above Average throughout the corridor.
- Bridge performance is generally Good/Above Average throughout the corridor. Exceptions include a series of Functionally Obsolete bridges in segment 19-1 and an average bridge rating of 4 (Poor/Below Average) on segment 19-5.
- Mobility performance is generally Good/Above Average throughout the corridor. Exceptions include segment 19-6 in the Tucson urban area, where project traffic increases push the Mobility Index into the Poor/Below Average range.
- Freight performance is generally Good/Above Average throughout the corridor. Exceptions include a low clearance bridge on segment 19-5 and a corridor average PTI (NB) that is largely the result of:
 - Conditions on segment 19-1 which delay trucks from reaching signed speed limits, and
 - The US Customs Border Patrol Checkpoint on segment 19-3, where delays contribute to lower average speeds for the segment.

Figure 17 shows the percentage of the I-19 corridor that rates either "good/above average performance", "fair/average performance", or "poor/below average" performance for each primary measure. All segments on the corridor are performing in the Fair/Average or Good/Above Average range in all performance areas with the exception of the Safety Index. A total of 54 miles or 84% of the corridor is performing in the Poor/Below Average range for the Safety Index.

Table 10 shows a summary of corridor performance for all primary measures and secondary measure indicators for the I-19 corridor. A weighted corridor average rating (based on the length of the segment) was calculated for each primary and secondary measure. The weighted average ratings are summarized in **Figure 18** which also provides a brief description of each performance measure. **Figure 18** represents the average for the entire corridor and any given segment or location could have a higher or lower rating than the corridor average.

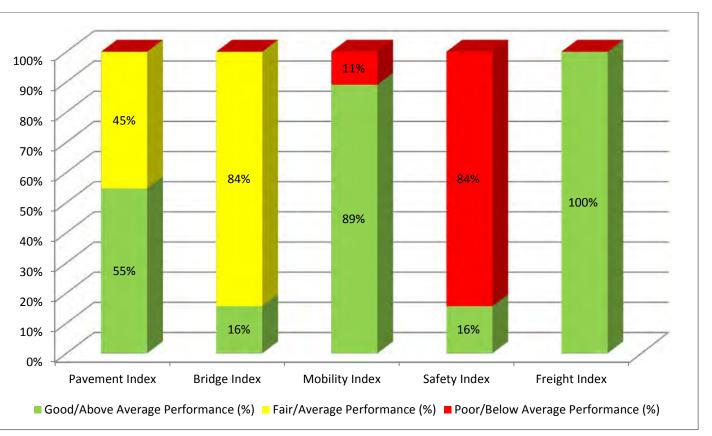


Figure 17: Performance Summary by Primary Measure

Pavement	Bridge	Mobility	Safety	Freight
Serviceability (WB) PI % Area Failure	Sufficiency BI Bridge Rating	Current V/C (NB) (NB) TTI (NB) PTI (NB) Future V/C SD) Future SOV Kurrent V/C (SB) Closures (SB) (SB) (SB) (SB) (SB) (SB) (SB) (SB)	% SHP Emphasis Area SI SI Safety Index (NB) Safety Index (SB)	TTTI TTTI (NB) (SB) TPTI (NB) FI (SB) FI (SB) Bridge Clearance Closure Duration (SB) (SB)
Pavement Index (PI): based on two pavement condition ratings from the ADOT Pavement Database; the two ratings are the International Roughness Index (IRI) and the Cracking Rating.	Bridge Index (BI): based on four bridge condition ratings from the ADOT Bridge Database; the four ratings are the Deck Rating, Substructure Rating, Superstructure Rating, and Structural Evaluation Rating	Mobility Index (MI): an average of the existing daily volume-to-capacity (V/C) ratio and the projected 2035 daily V/C ratio	Safety Index (SI): combines the bi-directional frequency and rate of fatal and incapacitating injury crashes, compared to crash occurrences on similar roadways in Arizona	Freight Index (FI): a reliability performance measure based on the bi-directional planning time index for truck travel
 Directional Pavement Serviceability Rating (PSR) – the weighted average (based on number of lanes) of the PSR for the pavement in each direction of travel % Area Failure – the percentage of pavement area rated above failure thresholds for IRI or Cracking 	 Sufficiency Rating – multipart rating includes structural adequacy and safety factors as well as functional aspects such as traffic volume and length of detour % of Deck Area on Functionally Obsolete Bridges—the percentage of deck area in a segment that is on functionally obsolete bridges; identifies bridges that no longer meet standards for current traffic volumes, lane width, shoulder width, or bridge rails; a bridge that is functionally obsolete may still be structurally sound Lowest Bridge Rating –the lowest rating of the four bridge condition ratings on each segment 	 Future Daily V/C – the future 2035 V/C ratio provides a measure of future congestion if no capacity improvements are made to the corridor Existing Peak Hour V/C – the existing peak hour V/C ratio for each direction of travel provides a measure of existing peak hour congestion during typical weekdays Closure Extent – the average number of instances a particular milepost is closed per year per mile on a given segment of the corridor in a specific direction of travel Directional Travel Time Index (TTI) – the ratio of the average peak period travel time to the free-flow travel time; the TTI represents recurring delay along the corridor Directional Planning Time Index (PTI) – the ratio of the 95th percentile travel time to the free-flow travel time; the PTI represents non-recurring delay along the corridor % Bicycle Accommodation – the percentage of a segment that accommodates bicycle travel % Non-single Occupancy Vehicle (Non-SOV) Trips – the percentage of trips that are taken by vehicles carrying more than one occupant 	 Directional Safety Index – the combination of the directional frequency and rate of fatal and incapacitating injury crashes, compared to crash occurrences on similar roadways in Arizona % of Fatal + Incapacitating Injury Crashes Involving SHSP Top 5 Emphasis Areas Behaviors – the percentage of fatal and incapacitating crashes that involve at least one of the five Strategic Highway Safety Plan (SHSP) emphasis areas on a given segment compared to the statewide average percentage on roads with similar operating environments % of Fatal + Incapacitating Crashes Involving SHSP Crash Unit Types – the percentage of total fatal and incapacitating injury crashes that involves a given crash unit type (motorcycle, truck, non-motorized traveler) compared to the statewide average percentage on roads with similar operating environments 	 Directional Truck Travel Time Index (TTTI) – the ratio of the average peak period truck travel time to the free-flow truck travel time; the TTTI represents recurring delay along the corridor Directional Truck Planning Time Index (TPTI) – the ratio the 95th percentile truck travel time to the free-flow truck travel time; the TPTI represents non-recurring delay along the corridor Closure Duration – the average time a particular milepost is closed per year per mile on a given segment of the corridor in a specific direction of travel Bridge Vertical Clearance – the minimum vertical clearance over the travel lanes for underpass structures on each segment

Figure 18: Corridor Performance Summary by Performance Measure

		Paver	nent Per	formance	e Area		Bridge Perfor	mance Are	a						М	lobility Per	formance A	rea			
Segment	Length (miles)	Pavement Index		ctional SR	Pavement Failure	Bridge Index	Bridge Sufficiency	Bridge Rating	Obsolete Bridges	Mobility Index	Future Daily	Peak	sting Hour /C	(instance	e Extent s/milepost r/mile)		onal TTI hicles)		onal PTI hicles)	% Bicycle Acc.	% Non-Single Occupancy Vehicle
			NB	SB				U	5		V/C	NB	SB	NB	SB	NB	SB	NB	SB		(SOV) Opportunities
19-1 ^{1a*}	3	4.03	3.72	3.96	16.7%	5.98	90.03	5	100.0%	0.16	0.19	0.12	0.11	0.27	0.20	1.40	1.01	2.28	1.30	90%	14%
19-2 ^{2a^}	15	4.39	4.28	4.26	3.3%	5.79	92.24	5	27.3%	0.32	0.39	0.19	0.20	0.22	0.17	1.16	1.13	1.25	1.22	100%	17%
19-3 ^{2b*}	12	3.57	3.74	3.90	0.0%	6.18	93.08	6	19.7%	0.26	0.32	0.17	0.17	0.30	0.17	1.58	1.10	2.50	1.17	100%	15%
19-4 ^{1a^}	10	3.54	3.76	3.90	0.0%	6.60	95.35	6	15.7%	0.34	0.41	0.23	0.23	0.20	0.02	1.06	1.06	1.08	1.12	100%	16%
19-5 ^{1a^}	17	4.08	3.97	4.02	0.0%	5.30	90.92	4	21.3%	0.56	0.66	0.35	0.36	0.25	0.15	1.06	1.07	1.11	1.12	100%	13%
19-6 ^{1a^}	7	3.61	3.54	3.57	18.8%	6.06	77.36	5	19.4%	1.01	1.21	0.78	0.76	0.38	0.06	1.00	1.04	1.03	1.12	95%	15%
-	l Corridor ages	3.92	3.91	3.98	3.6%	5.90	90.80	5.08	25.04%	0.44	0.53	0.30	0.30	0.26	0.13	1.19	1.08	1.44	1.16	99%	15%
Sc	ale	Inter	state							U	rban or Ru	ral				Ur	ninterrupted	l or Interrup	ted		
Good/Abo	ve Average	> 3	.75		< 5%	> 6.5	> 80	> 6	< 12%		< 0.71 ¹ < 0.56 ²			< ().22		.15^ .30*		.30^ 3.00*	> 90%	> 17%
Fair/A	verage	3.2 -	3.7		5% - 20%	5.0 - 6.5	50 - 80	5 – 6	12% - 40%		0.71 - 0.89 0.56 - 0.76			0.22	- 0.62		-1.33^ -2.00*		-1.50^ -6.00*	60% - 90%	11% - 17%
Poor/Belo	w Average	<:	3.2		> 20%	< 5.0	< 50	< 5	> 40 %		> 0.89 ¹ >0.76 ²			> ().62		.33^ .00*		.50^ 6.00*	< 60%	< 11%

Table 10: Corridor Performance Summary by Segment and Performance Measure

				S	afety Performance Area					Freight Performan	ce Area			
Segment	Length (miles)	Safety Index		tional Index	% of Fatal + Incapacitating Injury Crashes Involving SHSP Top 5 Emphasis Areas Behaviors	% of Fatal + Incapacitating Injury Crashes	Freight Index	Directiona	I Truck TTI	Directional T	ruck PTI	Closure Duration (minutes/milepost closed/year/mile)		Vertical Bridge Clearance
			NB	SB		Involving Trucks		NB	SB	NB	SB	NB	SB	
19-1 ^{1a*}	3	1.94	1.99	1.90	Insufficient Data	Insufficient Data	0.46	1.54	1.08	2.37	1.96	30.03	46.78	No UP
19-2 ^{2a^}	15	1.33	1.34 1.32		59%	Insufficient Data	0.93	1.04	1.04	1.09	1.08	45.09	33.78	16.15
19-3 ^{2b*}	12	1.36	1.59	1.12	33%	Insufficient Data	0.34	1.43	1.03	4.91	1.06	87.90	53.94	16.13
19-4 ^{1a^}	10	0.52	0.59	0.44	44%	Insufficient Data	0.95	1.02	1.03	1.05	1.06	22.82	7.36	No UP
19-5 ^{1a^}	17	1.48	2.11	0.86	39%	Insufficient Data	0.94	1.03	1.03	1.05	1.06	39.82	23.75	16.78
19-6 ^{1a^}	7	1.42	0.80	2.04	53%	Insufficient Data	0.88	1.02	1.08	1.06	1.20	66.47	22.61	15.98
Weighted Avera		1.29	1.45	1.13	45%	Insufficient Data	0.80	1.13	1.04	1.85	1.12	49.87	30.16	16.34
Sca	ale		Urban	4 Lane I	Freeway or Rural 4 Lane < 25,000 vp	d		Uninte	errupted or Inter	rupted				
Good/ Abov	ve Average	< 0. < 0.			< 49.1%ª < 42.8% ^b	N/A	> 0.77^ > 0.33*	< 1. < 1.	15 ^ .30*	< 1.30 < 3.00		< 44	4.18	> 16.5
Fair/ Av	verage	0.79-1.21ª 0.73-1.27 ^b			49.1%-59.4%ª 42.8%-52.9% ^b	N/A	0.67 - 0.77^ 0.17 - 0.33*	1.15 -1.33^ 1.30 -2.00*		1.30-1.50^ 3.00-6.00*		44.18 -124.86		16.0-16.5
Poor/ Belov	w Average	rage > 1.21ª > 1.27 ^b		> 59.4%ª > 52.9% ^b	N/A	< 0.67^ < 0.17*	> 1.33^ > 2.00*		>1.50^ > 6.00*		> 124.86		< 16.0	
^Uninterrupted I	Flow Facility	^a Urban 4 Lane Fr	eeway	¹ Urb	an Operating Environment									

*Interrupted Flow Facility

Note: "Insufficient Data" indicates there was not enough data available to generate reliable performance ratings

^bRural 4 Lane < 25,000 ²Rural Operating Environment

3.0 NEEDS ASSESSMENT

3.1 Corridor Objectives

Statewide goals and performance measures were established by the ADOT Long-Range Transportation Plan (LRTP), 2010-2035. Statewide performance goals that are relevant to I-19 performance areas were identified and corridor goals were then formulated for each of the five performance areas that aligned with the overall statewide goals established by the LRTP. Based on stakeholder input, corridor goals, corridor objectives, and performance results, three "Emphasis Areas" were identified for the I-19 Corridor: Mobility, Safety, and Freight.

Taking into account the corridor goals and identified emphasis areas, performance objectives were developed for each quantifiable performance measure that identify the desired level of performance based on the performance scale levels for the overall corridor and for each segment of the corridor. For the performance emphasis areas, the corridor-wide weighted average performance objectives are identified with a higher standard than for the other performance areas. **Table 11** shows the I-19 Corridor goals, corridor objectives, and performance objectives, and how they align with the statewide goals.

It is not reasonable within a financially constrained environment to expect that every performance measure will always be at the highest levels on every corridor segment. Therefore, individual corridor segment objectives have been set as fair or better and should not fall below that standard.

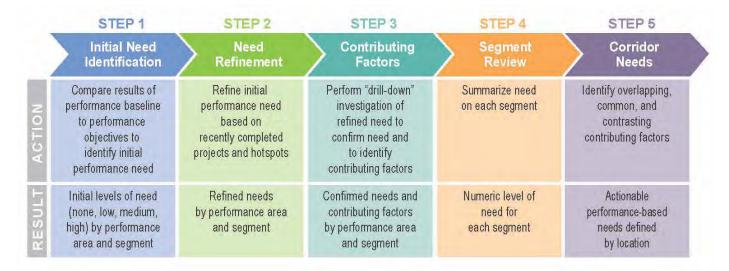
Achieving corridor and segment performance objectives will help ensure that investments are targeted toward improvements that support the safe and efficient movement of travelers on the corridor. Addressing current and future congestion, thereby improving mobility on congested segments, will also help the corridor fulfill its potential as a significant contributor to the region's economy.

Corridor performance is measured against corridor and segment objectives to determine needs – the gap between observed performance and performance objectives.

Goal achievement will improve or reduce current and future congestion, increase travel time reliability, and reduce fatalities and incapacitating injuries resulting from vehicle crashes. Where performance is currently rated "good", the goal is always to maintain that standard, regardless of whether or not the performance is in an emphasis area.

ADOT Statewide	I-19 Corridor Goals	140 Corridor Objectives	Performance	Performance Measure	Performan	ce Objective	
LRTP Goals	I-19 Condor Goals	I-19 Corridor Objectives	Area	Secondary Measure Indicators	Corridor Average	Segment	
Preserve & Maintain	Maintain and preserve highway infrastructure	Improve pavement ride quality for all corridor	Pavement	Pavement Index	Fair or better		
the State Transportation		users		Pavement Serviceability (Directional)			
System		Reduce long-term pavement maintenance costs		Percent Pavement Area Failure		Fair or better	
		Maintain structural integrity of bridges	Bridge	Bridge Index	Fair or better		
				Bridge Rating		Fair or better	
				Bridge Sufficiency			
				Obsolete Bridges			
nprove Mobility &	Improve mobility through additional capacity and	Reduce current congestion and plan to	Mobility	Mobility Index	Good		
Accessibility	improved roadway geometry	facilitate future congestion that accounts for	(Emphasis Area)	Future V/C			
	Provide a safe and reliable route for recreational	anticipated growth and land use changes		Existing Peak Hour V/C (Directional)			
upport Economic	and tourist travel to/from Mexico, and Southern Arizona destinations	Reduce delays from recurring and non-		Closure Extent (Directional)		Fair or better	
Growth		recurring events to improve reliability		Travel Time Index (Directional)		Fair or better	
	Provide safe, reliable and efficient connection to all communities along the corridor to permit	Improve bicycle and pedestrian		Planning Time Index (Directional)			
	efficient regional travel	accommodations		Percent Non-SOV Trips			
				Bicycle Accommodation			
Enhance Safety &	Provide a safe, reliable, and efficient connection	Reduce fatal and incapacitating injury crashes	Safety	Safety Index	Above Average		
ecurity	for the communities along the corridor	for all roadway users	(Emphasis Area)	Safety Index (Directional)			
	Promote safety by implementing appropriate countermeasures			Percent Fatal/Incapacitating Crashes in SHSP Emphasis Areas			
				Percent Fatal/Incapacitating Truck Crashes		Average or better	
				Percent Fatal/Incapacitating Motorcycle Crashes			
				Percent Fatal/Incapacitating Non- motorized Crashes			
mprove Mobility &	Provide a safe, reliable and efficient freight route	Reduce delays and restrictions to freight	Freight	Freight Index	Good		
ccessibility	between Arizona and Mexico	movement to improve reliability	(Emphasis Area)	Travel Time Index (Directional)			
		Improve travel time reliability (including		Planning Time Index (Directional)		Fair or better	
upport Economic		impacts to motorists due to freight traffic)		Closure Duration			
Growth				Bridge Vertical Clearance			

Table 11: Corridor Performance Goals and Objectives



3.2 Needs Assessment Process

The following guiding principles were used as an initial step in developing a framework for the performance-based needs assessment process:

- Corridor needs are defined as the difference between the corridor performance and the performance objectives
- The needs assessment process should be systematic, progressive, and repeatable, but also allow for engineering judgment where needed
- The process should consider all primary and secondary performance measures developed for the study
- The process should develop multiple need levels including programmatic needs for the entire length of the corridor, performance area-specific needs, segment-specific needs, and location-specific needs (defined by MP limits)
- The process should produce actionable needs that can be addressed through strategic investments in corridor preservation, modernization, and expansion

The performance-based needs assessment process is illustrated in **Figure 19** and described in the following sections.

Figure 19: Needs Assessment Process

Step 1: Initial Need Identification

The first step in the needs assessment process links baseline (existing) corridor performance with performance objectives. In this step, the baseline corridor performance is compared to the performance objectives to provide a starting point for the identification of performance needs. This mathematical comparison results in an initial need rating of None, Low, Medium, or High for each primary and secondary performance measure. An illustrative example of this process is shown below in **Figure 20**.

Figure 20: Initial Need Ratings in Relation to Baseline Performance (Bridge Example)

*A segment need rating of 'None' does not indicate a lack of needed improvements; rather, it indicates that the segment performance score exceeds the established performance thresholds and strategic solutions for that segment will not be developed as part of this study.

The levels of need for each primary and secondary performance measure are combined to produce a weighted need rating for each segment. Values of 0, 1, 2, and 3 are assigned to the initial need levels of None, Low, Medium, and High, respectively. A weight of 1.0 is applied to the Performance Index need and equal weights of 0.20 are applied to each need for each secondary performance measure. For directional secondary performance measures, each direction of travel receives a weight of 0.10.

Need	Description
	All levels of Good and top 1/3 of Fair (>6.0)
	Middle 1/3 of Fair (5.5-6.0)
	Lower 1/3 of Fair and top 1/3 of Poor (4.5-5.5)
	Lower 2/3 of Poor (<4.5)
adad imar	Lower 2/3 of Poor (<4.5)

Step 2: Need Refinement

In Step 2, the initial level of need for each segment is refined using the following information and engineering judgment:

- For segments with an initial need of None that contain hot spots, the level of need should be increased from None to Low
- For segments with an initial level of need where recently completed projects or projects under construction are anticipated to partially or fully address the identified need, the level of need should be reduced or eliminated as appropriate
- Programmed projects that are expected to partially or fully address an identified need are not justification to lower the initial need because the programmed projects may not be implemented as planned; in addition, further investigations may suggest that changes in the scope of a programmed project may be warranted

The resulting final needs are carried forward for further evaluation in Step 3.

Step 3: Contributing Factors

In Step 3, a more detailed review of the condition and performance data available from ADOT is conducted to identify contributing factors to the need. Typically, the same databases used to develop the baseline performance serve as the principle sources for the more detailed analysis. However, other supplemental databases may also be useful sources of information. The databases used for diagnostic analysis are listed below:

Pavement Performance Area

Pavement Rating Database

Bridge Performance Area

ABISS

Mobility Performance Area

- Highway Performance Monitoring System (HPMS) Database
- AZ Travel Demand Model (AZTDM)
- Real time traffic conditions database produced by American Digital Cartography Inc. (HERE) Database
- Highway Conditions Reporting System (HCRS) Database

Safety Performance Area

Crash Database

Freight Performance Area

- HERE Database
- HCRS Database

In addition, other sources were considered to help identify the contributing factors such as:

- Field observations from ADOT district personnel could be used to provide additional information regarding a need that has been identified.
- Previous studies can provide additional information regarding a need that has been identified.

Step 3 results in the identification of performance-based needs and contributing factors by segment (and MP locations, if appropriate) that can be addressed through investments in preservation, modernization, and expansion projects to improve corridor performance. See Appendix D for more information.

Step 4: Segment Review

In this step, the needs identified in Step 1 and refined in Step 2 are quantified for each segment to numerically estimate the level of need for each segment. Values of 0 to 3 were assigned to the final need levels (from Step 3) of None, Low, Medium, and High, respectively. A weighting factor is applied to the performance areas identified as emphasis areas and a weighted average need was calculated for each segment. The resulting average need score can be used to compare levels of need between segments within a corridor and between segments in different corridors.

Step 5: Corridor Needs

In this step, the needs and contributing factors for each performance area are reviewed on a segment-by-segment basis to identify actionable needs and to facilitate the formation of solution sets that address multiple performance areas and contributing factors. The intent of this process is to identify overlapping, common, and contrasting needs to help develop strategic solutions. This step will result in the identification of corridor needs by specific location.

Corridor Needs Assessment 3.3

This section documents the results of the needs assessment process described in the prior section. The needs in each performance area were classified as either None, Low, Medium, or High based on how well each segment performed in the existing performance analysis. The needs for each segment were numerically combined to estimate the average level of need for each segment of the corridor

The final needs assessments for each performance measure, along with the scales used in the analysis are shown in Table 12 through Table 16.

 Maintenance history (from ADOT PeCoS for pavement), the level of past investments, or trends in historical data were used to help provide context for pavement and bridge history.

Pavement Needs

- Overall final pavement needs are generally Low or None throughout the corridor. The only change in the level of need resulting from hot spot analysis occurs on segment 19-2, resulting in raising the level of need from None to Low.
- The hot spot on segment 19-2 at MP 17-18 has a particularly high level of historical investment, meaning that some previous projects have proven to provide only temporary improvements and require frequent attention.
- Other pavement hot spots were identified on approximately six miles of the corridor on three segments, but are generally expected to be mitigated through upcoming projects.

- See other Contributing Factors in Appendix D, including descriptions of currently programmed projects that have not yet been constructed.
- See Appendix D for detailed information on contributing factors.

	Perf	ormance Scor	e and Level o	f Need	Initial			Final
Segment	Pavement Index		nal PSR	% Area Failure	Segment Need	Hot spots	Recently Completed or Programmed Projects	Final Segment Need
		NB	SB					orginent roota
19-1	4.03	3.72	3.96	17%	0.4	NB (MP 0-1)	Pavement Preservation project programmed FY15 from MP 0 - MP3	Low
19-2	4.39	4.28	4.26	3%	0.0	NB (MP 17-18)	Pavement Preservation (RR[4" TL, 3" PL] + FR) from MP 16 - MP 21 programmed FY 15	Low
19-3	3.57	3.74	3.90	0%	0.0	None	Pavement Preservation MP 16-21 is programmed in FY 15 and from MP 21-32 in FY 19	None
19-4	3.54	3.76	3.90	0%	1.0	None	Pavement Preservation MP 21-32 and MP 32-44 is programmed in FY 19	Low
19-5	4.08	3.97	4.02	0%	0.0	None	None	None
19-6	3.61	3.54	3.57	19%	0.5	NB and SB (MP 62- 63)	None	Low
Level of Need (Score)	P	Performance S	core Need Sc	ale	Segment Level Need Scale			
None* (0)	>	> 3.30		< 10%	0			
Low (1)	3.10 – 3.30 10%-15%			10%-15%	< 1.5			
Medium (2)	2.7	0 – 3.10		15%-25%	1.5-2.5			
High (3)	<	< 2.70		> 25%	> 2.5			

Table 12: Final Pavement Needs

*A segment need rating of 'None' does not indicate a lack of needed improvements; rather, it indicates that the segment performance score exceeds the established performance thresholds and strategic solutions for that segment will not be developed as part of this study.

March 2017

Bridge I	<u>Needs</u>

- Bridge needs occur due to poor performing bridges or hot spots on four of six segments, with High Needs identified in segment 19-5.
- Bridge needs were identified at 17 of the total 74 bridges (23%).
- Four bridges have potential historical issues and are candidates for life-cycle cost analysis to evaluate alternative solutions.
- Bridge hot spots along I-19 are not sufficient to change the Initial Need from original calculated values.
- See other Contributing Factors in Appendix C, including descriptions of currently programmed projects that have not yet been constructed.
- See Appendix D for detailed information on contributing factors.

		Performance Scor	es and Level of Need					
Segment	Bridge Index	Bridge Sufficiency	Bridge Rating	Functionally Obsolete Bridges	Initial Segment Need	Hot Spots	Recently Completed or Programmed Projects	Final Segment Need
19-1	5.98	90.0	5	100.0%	1.5	Yes	None	Medium
19-2	5.79	92.2	5	27.3%	1.3	Yes	None	Low
19-3	6.18	93.1	6	19.7%	0.0	No	None	None
19-4	6.60	95.4	6	15.7%	0.0	No	None	None
19-5	5.30	90.9	4	21.3%	2.5	Yes	El Toro Rd OP SB & NB Bridge Deck Rehabilitation programmed FY 16; Pima Mine TI SB & NB programmed FY 16; Santa Cruz River Bridge SB & NB Bridge Deck Rehabilitation FY 16.	High
19-6	6.06	77.4	5	19.4%	0.2	Yes	Ajo Way TI reconstruction programmed FY 18.	Low
Level of Need (Score)		Performance S	core Needs Scale		Segment Level Need Scale			
None* (0)	> 6.0	> 70	> 5.0	< 21.0%	0			
Low (1)	5.5-6.0	60-70	5.0	21.0%-31.0%	< 1.5			
Medium (2)	4.5-5.5	40-60	4.0	31.0%-49.0%	1.5-2.5			
High (3)	< 4.5	< 40	< 4.0	> 49.0%	> 2.5			

Table 13: Final Bridge Needs

*A segment need rating of 'None' does not indicate a lack of needed improvements; rather, it indicated that the segment performance score exceeds the established performance thresholds and strategic solutions for that segment will not be developed as part of this study.

19-2 ^{2^}	0.32	0.39	0.19	0.20	0.22	0.17	1.16	1.13	1.25	1.22	100%	0.0	None
19-3 ^{2*}	0.26	0.32	0.17	0.17	0.30	0.17	1.58	1.10	2.50	1.17	100%	0.1	Canoa Shoulders
19-4 ¹	0.34	0.41	0.23	0.23	0.20	0.02	1.06	1.06	1.08	1.12	100%	0.0	None
19-5 ¹	0.56	0.66	0.35	0.36	0.25	0.15	1.06	1.07	1.11	1.12	100%	0.0	None
19-6 ^{1^}	1.01	1.21	0.78	0.76	0.38	0.06	1.00	1.04	1.03	1.12	95%	3.8	Ajo Way TI - Reco Irvington Road an
Level of Need (Score)	Performance Score Needs Scale											Segment Level Need Scale	
None* (0)	< 0.77 ¹ < 0.63 ²			< 0.35		< 1.21^ < 1.53*		< 1.37^ < 2.67*		> 80%	0		
Low (1)	0.77-0.83 ¹ 0.63-0.69 ²				0.35-0.49		1.21-1.27^ 1.53-1.77*		1.37-1.43^ 2.67-3.33*		70%-80%	< 1.5	
Medium (2)	0.83-0.95 ¹ 0.69-0.83 ²			0.49-0.75		1.27-1.39^ 1.77-2.23*		1.43-1.57^ 3.33-4.67*		50%-70%	1.5-2.5		
High (3)	> 0.95 ¹ > 0.83 ²			> 0.75		> 1.39^ > 2 23*		> 1.57^ > 4 67*		< 50%	> 2.5		

> 2.23*

Directional TTI

SB

1.01

NB

1.40

Performance Scores and Level of Need

Closure Extent

SB

0.20

NB

0.27

Mobility Needs

Segment

19-1^{1*}

Mobility

Index

0.16

Future V/C

0.19

> 0.832

- The Mobility Performance Area is an Emphasis Area for the I-19 corridor. High Mobility Needs identified only one segment, Segment 19-6 in the Tucson area, related to high traffic volumes and poor level of service values.
- While commuting traffic from residential areas south of Tucson is partly responsible for • heavier traffic volumes, traffic volumes are high seven days per week. This results from Tucson's position as the regional center for shopping, entertainment, and other services in addition to being an employment center.

Existing

Peak Hour V/C

SB

0.11

NB

0.12

- the level of need on the segment.
- See other Contributing Factors in **Appendix D**, including descriptions of currently programmed projects that have not yet been constructed.

Initial Segment

Need

0.0

None

Bicycle

Accommodation

90%

¹Urban Operating Environment ²Rural Operating Environment

[^]Uninterrupted Flow

> 4.67*

Table 14: Final Mobility Needs

SB

1.30

Directional PTI

NB

2.28

• Directional TTI and PTI issues on segment 19-1 are attributed to slowdowns in truck traffic at grade level intersections in Nogales. Truck traffic is expected to be dramatically reduced with improvements to SR 189 connecting to the Mariposa International Border Crossing, reducing

Recently Completed Projects	Final Segment Need
	None
	None
ers FY 2015	Low
	None
	None
econstruct TI and Mainline 2015,/2018 and I-19 – Design and reconstruct new TI	High

Safety Needs

- The Safety Performance Area is an Emphasis Area for the I-19 corridor. High Safety Needs were identified in all segments except 19-4, resulting in 'Below Average' performance for the corridor as a whole.
- Multiple crash hot spots are identified, especially in the northern part of the corridor, segments 19-4 through 19-6.
- The high rate of serious injury and fatal crashes throughout the corridor may be attributed to outdated designs on some entrance ramps, lack of lighting, equipment failure, alcohol related crashes, low levels of seat belt use, and other driver behaviors.
- period points to caution in this result.
- too few to provide significant results at any point on the corridor. Other crash types predominate.
- See other Contributing Factors in **Appendix D**, including descriptions of currently programmed projects that have not yet been constructed.

				Performance Scores an	d Level of Need						Final
Segment	Safety Index	Safety Direct		Fatal/Incapacitating	5	SHSP Crash Unit Type		Initial Segment Need	Hot spots	Recently Completed Projects	Segment
	,	NB	SB	SHSP Top 5	Truck	Motorcycle	Non-motorized	-			Need
19-1ª	1.94	1.99	1.90	Insufficient Data	Insufficient Data	Insufficient Data	Insufficient Data	3.6	None	None	High
19-2ª	1.33	1.34	1.32	59%	Insufficient Data	Insufficient Data	Insufficient Data	2.8	SB MP 9	None	High
19-3 ^ь	1.36	1.59	1.12	33%	Insufficient Data	Insufficient Data	Insufficient Data	2.5	None	Canoa Shoulders FY 2015	High
19-4ª	0.52	0.59	0.44	44%	Insufficient Data	Insufficient Data	Insufficient Data	0.0	NB MP 31, 33, 39	None	Low
19-5ª	1.48	2.11	0.86	39%	Insufficient Data	Insufficient Data	Insufficient Data	3.3	NB MP 43, 45, 53, 56 SB MP 47, 54	None	High
19-6ª	1.42	0.80	2.04	53%	Insufficient Data	Insufficient Data	Insufficient Data	3.5	NB MP 58, 59, 61 SB MP 61	Ajo Way TI - Reconstruct TI and Mainline 2015,/2018; Irvington Road and I-19 – Design and reconstruct new TI	High
Level of Need (Score)				Performance Score	Needs Scale			Segment Level Need Scale			
None* (0)		< 0.93ª < 0.91 ^b		< 52%ª < 46% ^b	N/A	N/A	N/A	0			
Low (1)		0.93-1.07 ^a 0.91-1.09 ^b		52%-55%ª 46%-49% ^b	N/A	N/A	N/A	< 1.5			
Medium (2)		1.07-1.35ª 1.09-1.45 ^b		55%-62%ª 49%-56% ^b	N/A	N/A	N/A	1.5-2.5			
High (3)		> 1.35ª > 1.45⁵		> 62%ª > 56% ^b	N/A	N/A	N/A	> 2.5			

Table 15: Final Safety Needs

^aUrban 4 Lane Operating Environment

^bRural 4 Lane Freeway with Daily Volume < 25,000

*A segment need rating of 'None' does not indicate a lack of needed improvements; rather, it indicates that the segment performance score exceeds the established performance thresholds and strategic solutions for that segment will not be developed as part of this study.

• While a high rate of serious injury and fatal crashes is reported on segment 19-1, the low number of such crashes (2), especially within the SHSP Top 5, reported during the analysis

• Crashes involving trucks, motorcycles, and non-motorized during the analysis period were

Freight Needs

weight in the analysis.

and planning times are not significant factors.

• The Freight Performance Area is an Emphasis Area for the I-19 corridor, giving it a heavier

• The most significant need evident on Table 16 shows a Low performance in the Bridge

• Final Freight Needs are Low or None throughout the corridor. In general, limits on truck travel

Clearance secondary measure. However, all of the low clearance bridges can be avoided by

> 7.0*

			I	Performance	Scores and	Level of Ne	ed					Final
Segment	Freight Index	Directio	onal TTTI	Directio	onal TPTI		Duration	Vertical Bridge Clearance	Initial Segment Need	Hot Spots	Recently Completed Projects	Final Segment Need
	·	NB	SB	NB	SB	NB	SB					Neeu
19-1*	0.46	1.54	1.08	2.37	1.96	30.03	46.78	No Underpass in segment	0.1	None	Mariposa Land Port of Entry in Nogales on SR 189 MP 0.12 DMS	Low
19-2^	0.93	1.04	1.04	1.09	1.08	45.09	33.78	16.15	0.4	None		Low
19-3*	0.34	1.43	1.03	4.91	1.06	87.90	53.94	16.13	0.6	None	Canoa Shoulders FY 2015	Low
19-4^	0.95	1.02	1.03	1.05	1.06	22.82	7.36	No Underpass in segment	0.0	None		None
19-5^	0.94	1.03	1.03	1.05	1.06	39.82	23.75	16.78	0.0	None		None
19-6^	0.88	1.02	1.08	1.06	1.20	66.47	22.61	15.98	0.4	None	Ajo Way TI - Reconstruct TI and Mainline 2015,/2018 Irvington Road and I-19 – Design and reconstruct new TI	Low
Level of Need (Score)				Performa	nce Score N	eeds Scale			Segment Level Need Scale			
None* (0)	> 0.74^ > 0.28*		1.21^ 1.53*		.37^ 4.0*	< 7	1.07	> 16.33	0			
Low (1)	0.70-0.74^ 0.22-0.28*		-1.27^ 3-1.77*		-1.43^ -5.0*	71.07	7-97.97	16.17-16.33	< 1.5			
Medium (2)	0.64-0.70^ 0.12-0.22*		′-1.39^ ′-2.23*		-1.57^ -7.0*	97.97	-151.75	15.83-16.17	1.5-2.5			
High (3)	< 0.64^ < 0.12*		1.39^ 2.23*		.57^ 7.0*	> 1	51.75	< 15.83	> 2.5			

Table 16: Final Freight Needs

^Uninterrupted Flow Facility

< 0.12*

> 2.23*

*Interrupted Flow Facility

*A segment need rating of 'None' does not indicate a lack of needed improvements; rather, it indicates that the segment performance score exceeds the established performance thresholds and strategic solutions for that segment will not be developed as part of this study.

using ramps at the grade separated traffic interchanges and do not represent a Hot spot under the criteria used for the analysis.

- checkpoint north of Tubac, but is not sufficient to raise the level of need.
- See other Contributing Factors in Appendix C, including descriptions of currently programmed projects that have not yet been constructed.
- See Appendix D for detailed information on contributing factors.

March 2017

• Truck traffic is also affected by slowdowns in segment 19-3 related to the Border Patrol

Segment Review

The needs for each segment were combined to numerically estimate the average level of need for each segment of the corridor. **Table 17** provides a summary of needs for each segment across all performance areas, with the average need score for each segment presented in the last row of the table. A weighting factor of 1.5 is applied to the need scores of the performance areas identified as emphasis areas (Mobility, Safety, and Freight for the I-19 Corridor). There are five segments with a Medium overall average need, and one segment with a Low overall average need.

Performance	Segment	19-1	19-2	19-3	19-4	19-5	19-6
Area	Milepost	MP 0 - 3	MP 3 -18	MP 18 - 30	MP 30 - 40	MP 40 - 57	MP 57 - 64
Pavem	ent	Low	Low	None* Low		None*	Low
Bridç	je	Medium	Low	None*	None*	High	Low
Mobili	ty+	None*	None*	Low	None*	None*	High
Safet	у+	High	High	High	Low	High	High
Freight+		Low	Low	Low	None*	None*	Low
Average Ne	ed (0-3)	1.38	1.23	1.15	0.38	1.15	1.92

Table 17: Summary of Needs by Segment

*A segment need rating of 'None' does not indicate a lack of needed improvements; rather, it indicates that the segment performance score exceeds the established performance thresholds and strategic solutions for that segment will not be developed as part of this study.

+ Identified as an emphasis area for the I-19 Corridor.

Scale								
None	< 0.10							
Low	0.1 - 1.0							
Medium	1.0 - 2.0							
High	> 2.0							

Summary Corridor Needs

The needs in each performance area are shown in **Figure 21** and summarized below:

Pavement Performance Area

- Overall final pavement needs are Low or None throughout the corridor. No changes to the level of need resulting from hot spot analysis occur on the corridor.
- The pavement hot spot on segment 19-2 at MP 17-18 was addressed in a 2015 improvement project.
- Other pavement hot spots were identified on approximately six miles of the corridor on three segments, but are generally expected to be mitigated through upcoming programmed projects.

Bridge Performance Area

- Bridge needs occur due to poor performing bridges or hot spots on four of six segments, with High needs identified in segment 19-5 and Medium needs identified in segment 19-1.
- Bridge needs were identified at 17 of the total 74 bridges (23%).
- Four bridges have potential historical issues and are candidates for life-cycle cost analysis to evaluate alternative solutions.
- Bridge hot spots along I-19 are not sufficient to change the Initial Need from its original calculated value.

Mobility Performance Area

- The Mobility Performance Area is an Emphasis Area for the I-19 corridor, giving it a heavier weight in the analysis.
- High Mobility Needs were identified only on segment 19-6 in the Tucson area related to high traffic volumes and poor level of service values.
- While commuting traffic from residential areas south of Tucson is partly responsible for heavier traffic volumes, traffic volumes are high seven days per week. This results from Tucson's position as the regional center for shopping, entertainment, and other services in addition to being an employment center.
- Directional TTI and PTI issues on segment 19-1 are attributed to slowdowns in truck traffic at • grade level intersections in Nogales. Truck traffic is expected to be dramatically reduced with improvements to SR 189 connecting to the Mariposa International Border Crossing, reducing the level of need on the segment.

Safety Performance Area

- weight in the analysis.
- for the corridor as a whole.
- Multiple crash hot spots are identified, especially in the northern part of the corridor, segments 19-4 through 19-6.
- crashes, low levels of seat belt use, and other driver behaviors.
- period points to caution in this result.
- too few to provide significant results at any point on the corridor. Other crash types predominate.

Freight Performance Area

- weight in the analysis.
- and planning times are not significant factors.
- The most significant need evident on Table 16 shows a Low performance in the Bridge under the criteria used for the analysis.
- checkpoint north of Tubac, but is not sufficient to raise the level of need.

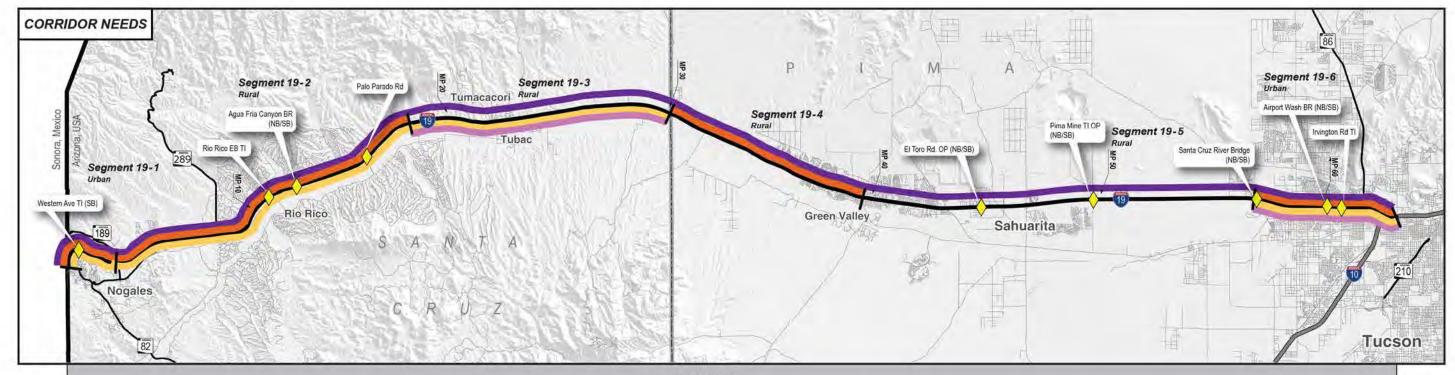
The Safety Performance Area is an Emphasis Area for the I-19 corridor, giving it a heavier

• High Safety Needs were identified in all segments except 19-4, resulting in Poor performance

• The high rate of serious injury and fatal crashes throughout the corridor may be attributed to outdated designs on some entrance ramps, lack of lighting, equipment failure, alcohol related

• While a high rate of serious injury and fatal crashes is reported on segment 19-1, the low number of such crashes (2), especially within the SHSP Top 5, reported during the analysis

• Crashes involving trucks, motorcycles, and non-motorized during the analysis period were


• The Freight Performance Area is an Emphasis Area for the I-19 corridor, giving it a heavier

• Final Freight Needs are Low or None throughout the corridor. In general, limits on truck travel

Clearance secondary measure. However, all of the low clearance bridges can be avoided by using ramps at the grade separated traffic interchanges and do not represent a hot spot

• Truck traffic is also affected by slowdowns in segment 19-3 related to the Border Patrol

Figure 21: Corridor Needs Summary

				SEGMENT			
Segments	19-1	19-2	19-3	19-4	19-5	19-6	Segments
Pavement	Low	Low	None*	Low	None*	Low	Pavement
Bridge	Med	Low	None*	None*	High	Low	Bridge
Mobility	None*	None*	Low	None*	None*	High	Mobility*
Safety	High	High	High	Low	High	High	Safety*
Freight	Low	Low	Low	None*	None*	Low	Freight*
	9 Corridor Pro	ofile Study: Nogales to Junction I-10 dor Needs	D	X MILES 5 10	US Hwy/State Route PAVE County Boundary City Roundary	LEVEL OF ETY NEEDS Low GHT NEEDS Medium ILITY NEEDS High GEE NEEDS High	n

*A segment need rating of 'None' does not indicate a lack of needed improvements; rather, it indicates that the segment performance score exceeds the established performance thresholds and strategic solutions for that segment will not be developed as part of this study.

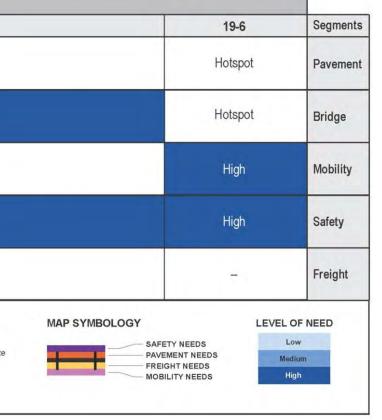
4.0 STRATEGIC SOLUTIONS

The principal objective of the CPS is to identify strategic solutions (investments) that are performance-based to ensure that available funding resources are used to maximize the performance of the State's key transportation corridors. One of the first steps in the development of strategic solutions is to identify areas of elevated levels of need (i.e., Medium or High). Addressing areas of Medium or High need would have the greatest effect on corridor performance and are the focus of the strategic solutions. Segments with Medium or High needs and specific locations of hot spots are considered strategic investment areas for which strategic solutions should be developed. Segments with lower levels of need or without identified hot spots are not considered candidates for strategic investment and are expected to be addressed through other ADOT programming processes. The I-19 strategic investment areas (resulting from the elevated needs) are shown in **Figure 22**.

4.1 Screening Process

This section examines qualifying strategic needs and determines if the needs in those locations require action. In some cases, needs that are identified do not advance to solutions development and are screened out from further consideration because they have been or will be addressed through other measures including:

- A project is programmed to address this need
- The need is a result of a Pavement or Bridge hot spot that does not show historical investment or rating issues; these hot spots will likely be addressed through other ADOT programming means.
- A bridge is not a hot spot but is located within a segment with a Medium or High level of need; this bridge will likely be addressed through current ADOT bridge maintenance and preservation programming processes.
- The need is determined to be non-actionable (i.e., cannot be addressed through an ADOT project)
- The conditions/characteristics of the location have changed since the performance data was collected that was used to identify the need


Table 18 notes if each potential strategic need advanced to solution development, and if not, the reason for screening the potential strategic need out of the process. Locations advancing to solutions development are marked with Yes (Y); locations not advancing are marked with No (N) and highlighted. This screening table provides specific information about the needs in each segment that will be considered for strategic investment. The table identifies the level of need – either Medium or High segment needs, or segments without Medium or High level of need that have a hot spot. Each area of need is assigned a location number in the screening table to help document and track locations considered for strategic investment.

STRATEGIC INVESTMENT AREAS P M MP 20 Segment 19-3 Rural Tumacacori Segment 19-4 Aqua Fria Canyon Bridge NB/SB Rural Tubac Segment 19-5 Segment 19-2 Rural Segment 19-1 Palo Parado TI Urban Western TI Southbound Rio Rico Green Valley Sahuarita Rio Rico TI EB El Toro Rd NB/SB SEGMENT Segments 19-1 19-2 19-3 19-4 19-5 Hotspot Hotspot Pavement _ _ _ Hotspot Med Bridge High --Mobility -----High High High High Safety -Freight -_ ---Corridor Segment >z I-19 Corridor Profile Study: Nogales to Junction I-10 US Hwy/State Route Strategic Investment Areas County Boundary City Boundary

Table 18: Strategic Investment Area Screening

	Lev	vel of	Strate	gic Ne	ed					
Segment	Pavement	Bridge	Mobility	Safety	Freight	Location #	Туре	Need Description	Advance (Y/N)	
	ot	u				L1	Pavement	Hot spot in northbound lanes MP 0-1	N	Pavement preservation projec
19-1	Hot spot	Medium		High	ı	L2	Bridge	Medium level of need, including a hot spot at the Western TI Overpass (SB) (#1546) with deck rating 5, superstructure rating 5	N	Structure does not meet criter investment
	Т	2				L3	Safety	High level of need resulting from two fatal crashes in 2012	N	Not enough data to determine
						L4	Pavement	Hot spot on NB side from MP 17-18.5, which includes an area of high historical investment	N	Pavement preservation project
						L5	Bridge	Hot spot at Rio Rico TI (EB) (#933) with deck rating 5, superstructure rating 5	N	Structure does not meet criter investment
19-2	spot	Hot spot		High		L6	Bridge	Hot spot at Agua Fria Canyon Bridge (NB) (#353) with deck rating 5, superstructure rating 5	N	Structure does not meet criter investment
10 2	Hot	Hot		Ī		L7	Bridge	dge Hot spot at Agua Fria Canyon Bridge (SB) (#906) with deck rating 5, superstructure rating 5, substructure rating 5		Meets criteria for strategic inve
						L8	Bridge	Hot spot at Palo Parado TI (#937) with deck rating 5, superstructure 5	Y	Meets criteria for strategic inve
						L9	Safety	High number of crashes resulting from run off the road and merging in unlighted areas.	Y	Meets criteria for strategic inve
				د	ш	L10	Safety	High number of crashes resulting from run off the road and merging in unlighted areas.		Meets criteria for strategic invo
19-3	1	1	1	High	Medium	L11	Freight	Medium level of need due to elevated Truck Travel Time and Truck Planning Time Index		Elevated need due to NB bord strategic investment
19-4	I.	I.	I		1	NA	NA	None	N	NA
						L12	Bridge	Hot spot at El Toro Road Overpass (NB) (#1572) with deck rating 4	Y	Bridge deck rehabilitation proj consideration
						L13	Bridge	Hot spot at El Toro Road Overpass (SB) (#1573) with deck rating 4	Y	Bridge deck rehabilitation proj consideration
						L14	Bridge	Hot spot at Pima Mine OP (NB) (#1303) with deck rating 4	N	Bridge deck rehabilitation proj
19-5		High		High		L15	Bridge	Hot spot at Pima Mine OP (SB) (#1304) with deck rating 4	N	Bridge deck rehab project pro
		-		-		L16	Bridge	Hot spot at Santa Cruz River Bridge (NB) (#1243) with deck rating 4	N	Bridge deck rehab project pro
						L17	Bridge	Hot spot at Santa Cruz River Bridge (SB) (#1244) with deck rating 4	N	Bridge deck rehab project pro
						L18	Safety	Medium level of need with hot spots northbound lanes at MP 53-56	Y	Meets criteria for strategic inve
						L19	Safety	Medium level of need with hot spots southbound lanes at MP 47-49	Y	Meets criteria for strategic inve
						L20	Pavement	Hot spot NB/SB at MP 62-63.7	N	I-19 reconstruction project pro modifying existing programme
						L21	Bridge	Hot spot at Airport Wash Bridge (NB) (#1121) with deck rating 5, superstructure rating 5	Y	Meets criteria for strategic inve
19-6	spot	Hot spot	High	High		L22	Bridge	Hot spot at Airport Wash Bridge (SB) (#1122) with deck rating 5, superstructure rating 5	Y	Meets criteria for strategic inve
	Hot	Hot	Ξ	Ī	· ·	L23	Bridge	Hot spot at Irvington Road TI (#1123) with deck rating 5, superstructure rating 5	N	TI design programmed FY 207
						L24	Mobility	High level of need resulting from poor current and future volume to capacity ratios	Y	Meets criteria for strategic inve will address some of need
						L25	Safety	High number of pedestrian/bicycle fatalities	Y	Meets criteria for strategic inve

Screening Description

ect programmed MP 0-3 FY 2015 will address need

eria for historical review, therefore not considered for strategic

ne a trend and define a solution, therefore not considered strategic

ect programmed MP 15-21 FY 2016 will address need

eria for historical review, therefore not considered for strategic

eria for historical review, therefore not considered for strategic

nvestment

nvestment

nvestment

nvestment

order patrol checkpoint in Tubac, therefore not considered for

roject programmed FY 2016 (design only); advance for construction

roject programmed FY 2016 (design only); advance for construction

oject programmed for construction FY 2016 will address need

rogrammed for construction FY 2016 will address need

rogrammed for construction FY 2016 will address need

rogrammed for construction FY 2016 will address need

nvestment

nvestment

programmed FY 2015 and FY 2018 MP 58-62; recommend ned project to address hot spots

nvestment

nvestment

2019; advance for construction consideration

nvestment. Ajo Way TI reconstruction project programmed 2018

nvestment

4.2 Candidate Solutions

For each elevated need within a strategic investment area that is not screened out, a candidate solution is developed to address the identified need. Each candidate solution is assigned to one of the following three P2P investment categories based on the scope of the solution:

- Preservation
- Modernization •
- Expansion

Documented performance needs serve as the foundation for developing candidate solutions for corridor preservation, modernization, and expansion. Candidate solutions are not intended to be a substitute or replacement for traditional ADOT project development processes where various ADOT technical groups and districts develop candidate projects for consideration in the performancebased programming in the P2P process. Rather, these candidate solutions are intended to complement ADOT's traditional project development processes through a performance-based process to address needs in one or more of the five performance areas of Pavement, Bridge, Mobility, Safety, and Freight. Candidate solutions developed for the I-19 Corridor will be considered along with other candidate projects in the ADOT statewide programming process.

Characteristics of Strategic Solutions

Candidate solutions should include some or all of the following characteristics:

- Do not recreate or replace results from normal programming processes •
- May include programs or initiatives, areas for further study, and infrastructure projects •
- Address elevated levels of need (High or Medium) and hot spots •
- Focus on investments in modernization projects (to optimize current infrastructure)
- Address overlapping needs ٠
- Reduce costly repetitive maintenance •
- Extend operational life of system and delay expansion ٠
- Leverage programmed projects that can be expanded to address other strategic elements ٠
- Provide measurable benefit •

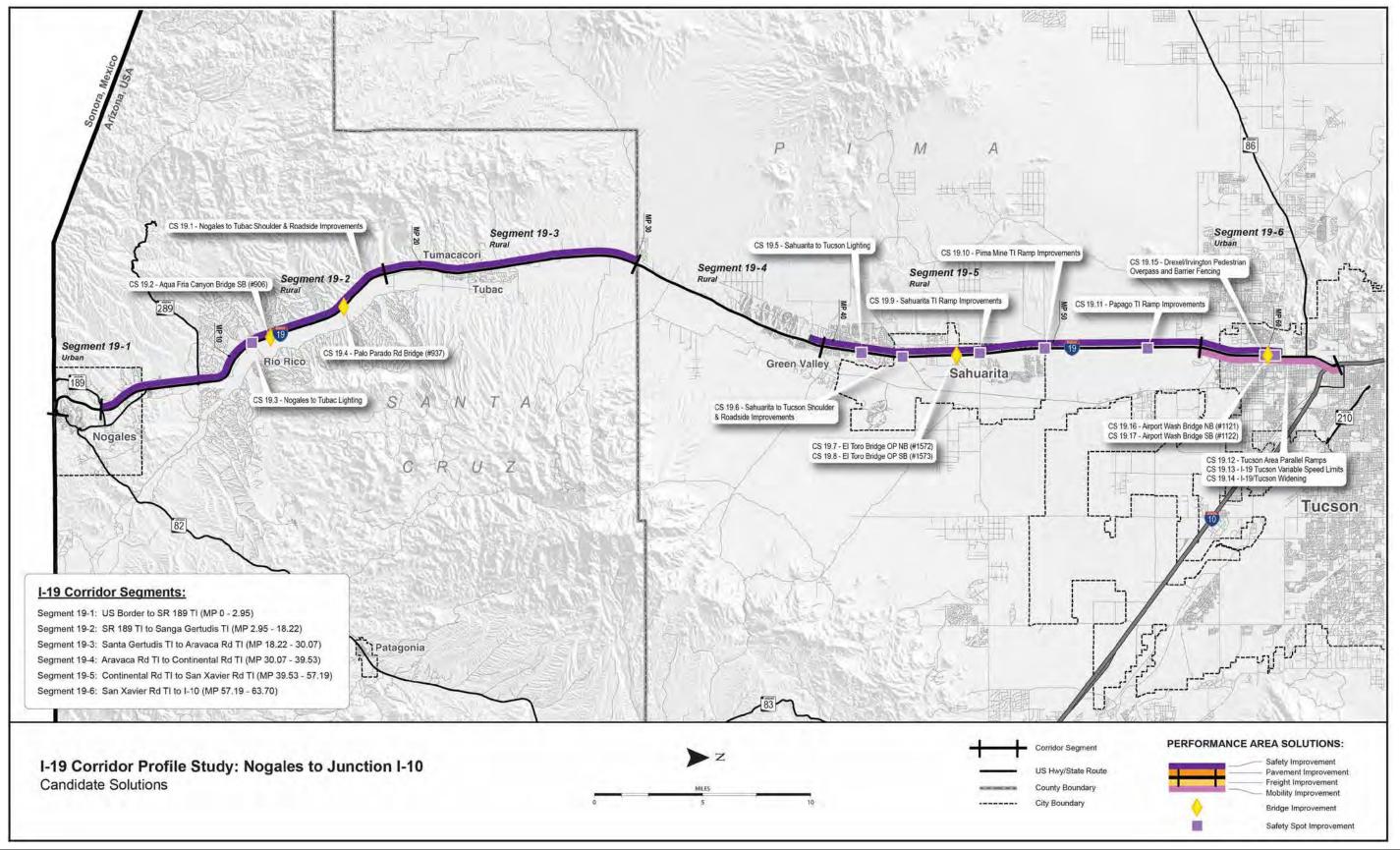
Candidate Solutions

A set of 17 candidate solutions are proposed to address the identified needs on the I-19 Corridor.

Table 19 identifies each strategic location that has been assigned a candidate solution with a number (e.g., CS19.1, CS19.2, etc.). Each candidate solution is comprised of one or more components to address the identified needs. The assigned candidate solution numbers are linked to the location number and provide tracking capability through the rest of the process. The locations of proposed solutions are shown on the map in Figure 23.

Candidate solutions developed to address an elevated need in the Pavement or Bridge performance area will include two options; rehabilitation or full replacement. These solutions are initially evaluated through a Life-Cycle Cost Analysis (LCCA) to provide insights into the costeffectiveness of these options so a recommended approach can be identified. Candidate solutions developed to address an elevated need in the Mobility, Safety, or Freight performance areas are advanced directly to the Performance Effectiveness Evaluation. In some cases, there may be multiple solutions identified to address the same area of need.

Candidate solutions that are recommended to expand or modify the scope of an already programmed project are noted and are not advanced to solution evaluation and prioritization. These solutions are directly recommended for programming.


Table 19: Candidate Solutions

Candidate Solution	Segment	Location	Beg Milepost	End Milepost	Candidate Solution Name	Option*	Scope	Investment Category (Preservation [P], Modernization [M], Expansion [E])
CS19.1	19-2 19-3	L9 L10	3	30	Nogales to Tubac Shoulder & Roadside Improvements	-	Rehabilitate shoulders in both directions from the SR189 TI to Aravaca Rd TI	М
0040.0	40.0		10.0	10.0		А	Rehabilitate bridge	Р
CS19.2	19-2	L7	12.0	12.0	Agua Fria Canyon Bridge SB (#906)	В	Replace bridge	М
CS19.3	19-2 19-3	L8	3	30	Nogales to Tubac Lighting	-	Install lighting (both directions)	М
00404	40.0		45.7	45.7		А	Rehabilitate bridge	Р
CS19.4	19-2	L8	15.7	15.7	Palo Parado Rd Bridge (#937)	В	Replace bridge	М
CS 19.5	19-5 19-6	L10	39.5	60	Sahuarita to Tucson Lighting	-	Install lighting (both directions)	М
CS19.6	19-5 19-6	L18 L19	39.5	62	Sahuarita to Tucson Shoulder & Roadside Improvements	-	Rehabilitate shoulders in both directions from Sahuarita Rd to Irvington Rd.	М
CS19.7	19-5	L12	45.8	45.8	El Toro Bridge OP NB (#1572)	-	Rehabilitate bridge following programmed design FY 2016	Р
CS19.8	19-5	L13	45.8	45.8	El Toro Bridge OP SB (#1573)	-	Rehabilitate bridge following programmed design FY 2016	Р
CS 19.9	19-5	L18 L19	46.8	46.8	Sahuarita TI Ramp Improvements	-	Modify entry/exit ramps to parallel configuration	М
CS19.10	19-5	L18 L19	49.6	49.6	Pima Mine TI Ramp Improvements	-	Modify entry/exit ramps to parallel configuration	М
CS19.11	19-5	L18 L19	54.4	54.4	Papago TI Ramp Improvements	-	Modify entry/exit ramps to parallel configuration	М
CS19.12	19-5 19-6	L24	57	62	Tucson Area Parallel Ramps	-	Modify entry/exit ramps to parallel configuration Implement ramp metering at Irvington Rd SB, Valencia Rd NB/SB, and San Xavier Rd NB	М
CS19.13	19-5 19-6	L24	57	64	I-19 Tucson Variable Speed Limits	-	Implement Variable Speed Limits (both directions)	М
CS19.14	19-5 19-6	L24	57	62	I-19/Tucson Widening	-	Construct new general purpose lane (inside) in NB/SB direction between Irvington Rd and San Xavier Rd	E
CS19.15	19-5 19-6	L25	59.5	61.5	Drexel-Irvington Pedestrian Overpass and Barrier Fencing	-	Construct pedestrian overpass between Drexel and Irvington; construct 8' barrier fencing Valencia to Ajo Way (east side)	М
004040	40.0		00.0			А	Rehabilitate bridge	Р
CS19.16	19-6	L21	60.3	60.3	Airport Wash Bridge NB (#1121)	В	Replace bridge	М
004047	40.0	1.00				A	Rehabilitate bridge	Р
CS19.17	19-6	L22	60.3	60.3	Airport Wash Bridge SB (#1122)	В	Replace bridge	М

* '-': Indicates only one solution is being proposed and no options are being considered

Figure 23: Candidate Solutions

I-19 Corridor Profile Study Final Report

5.0 SOLUTION EVALUATION AND PRIORITIZATION

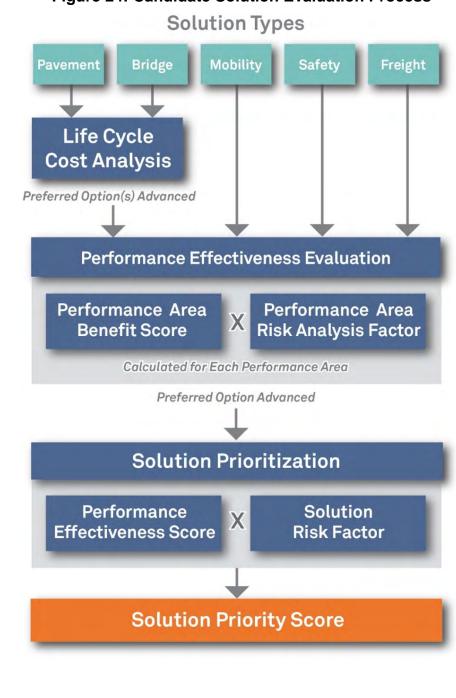
Candidate solutions are evaluated using the following steps: LCCA (where applicable), Performance Effectiveness Evaluation, Solution Risk Analysis, and Candidate Solution Prioritization. The methodology and approach to this evaluation are shown in Figure 24 and described more fully below.

Life-Cycle Cost Analysis

All Pavement and Bridge candidate solutions have two options: rehabilitation/repair or reconstruction. These options are evaluated through an LCCA to determine the best approach for each location where a Pavement or Bridge solution is recommended. The LCCA can eliminate options from further consideration and identify which options should be carried forward for further evaluation.

When multiple independent candidate solutions are developed for Mobility, Safety, or Freight strategic investment areas, these candidate solution options advance directly to the Performance Effectiveness Evaluation without an LCCA.

Performance Effectiveness Evaluation


After completing the LCCA process, all remaining candidate solutions are evaluated based on their performance effectiveness. This process includes determining a Performance Effectiveness Score (PES) based on how much each solution impacts the existing performance and needs scores for each segment. This evaluation also includes a Performance Area Risk Analysis to help differentiate between similar solutions based on factors that are not directly addressed in the performance system.

Solution Risk Analysis

All candidate solutions advanced through the Performance Effectiveness Evaluation are also evaluated through a Solution Risk Analysis process. A solution risk probability and consequence analysis is conducted to develop a solution-level risk weighting factor. This risk analysis is a numeric scoring system to help address the risk of not implementing a solution based on the likelihood and severity of performance failure.

Candidate Solution Prioritization

The PES, weighted risk factor, and segment average need score are combined to create a prioritization score. The candidate solutions are ranked by prioritization score from highest to lowest. The highest prioritization score indicates the candidate solution that is recommended as the highest priority. Solutions that address multiple performance areas tend to score higher in this process.

Figure 24: Candidate Solution Evaluation Process

5.1 Life-Cycle Cost Analysis

LCCA is conducted for any candidate solution that is developed as a result of a need in the Pavement or Bridge performance area. The intent of the LCCA is to determine which options warrant further investigation and eliminate options that would not be considered strategic.

LCCA is an economic analysis that compares cost streams over time and presents the results in a common measure, the present value of all future costs. The cost stream occurs over an analysis period that is long enough to provide a reasonably fair comparison among alternatives that may differ significantly in scale of improvement actions over shorter time periods. For both bridge and pavement LCCA, the costs are focused on agency (ADOT) costs for corrective actions to meet the objective of keeping the bridge or pavement serviceable over a long period of time.

LCCA is performed to provide a more complete holistic perspective on asset performance and agency costs over the life of an investment stream. This approach helps ADOT look beyond initial and short-term costs, which often dominate the considerations in transportation investment decision making and programming.

Bridge LCCA

For the bridge LCCA, three basic strategies are analyzed that differ in timing and scale of improvement actions to maintain the selected bridges, as described below:

- Bridge replacement (large upfront cost but small ongoing costs afterwards)
- Bridge rehabilitation until replacement (moderate upfront costs then small to moderate ongoing costs until replacement)
- On-going repairs until replacement (low upfront and ongoing costs until replacement)

The bridge LCCA model developed for the CPS reviews the characteristics of the candidate bridges including bridge ratings and deterioration rates to develop the three improvement strategies (full replacement, rehabilitation until replacement, and repair until replacement). Each strategy consists of a set of corrective actions that contribute to keeping the bridge serviceable over the analysis period. Cost and effect of these improvement actions on the bridge condition are essential parts of the model. Other considerations in the model include bridge age, elevation, pier height, length to span ratio, skew angle, and substandard characteristics such as shoulders and vehicle clearance. The following assumptions are included in the bridge LCCA model:

- The bridge LCCA only addresses the structural condition of the bridge and does not address other issues or costs
- The bridge will require replacement at the end of its 75-year service life regardless of current condition
- The bridge elevation, pier height, skew angle, and length to span ratio can affect the replacement and rehabilitation costs
- The current and historical ratings are used to estimate a rate of deterioration for each candidate bridge
- Following bridge replacement, repairs will be needed every 20 years

- and benefit to the bridge rating
- dollars
- needed

Based on the candidate solutions presented in **Table 19**, LCCA was conducted on four bridges on the I-19 Corridor. A summary of this analysis is shown in **Table 20.** Additional information regarding the bridge LCCA is included in Appendix E.

Pavement LCCA

The LCCA approach to pavement is very similar to the process used for bridges. For the pavement LCCA, three basic strategies are analyzed that differ in timing and scale of improvement actions to maintain the selected pavement, as described below:

- replacement with asphalt or concrete pavement)
- moderate ongoing costs until replacement)
- replacement)

The pavement LCCA model developed for the CPS reviews the characteristics of the candidate paving locations including the historical rehabilitation frequency to develop potential improvement strategies (full replacement, major rehabilitation until replacement, and minor rehabilitation until replacement, for either concrete or asphalt, as applicable). Each strategy consists of a set of corrective actions that contribute to keeping the pavement serviceable over the analysis period. The following assumptions are included in the pavement LCCA model:

- other issues or costs
- future rehabilitation frequencies
- expected service life
- dollars

Different bridge repair and rehabilitation strategies have different costs, expected service life,

• The net present value of future costs is discounted at 3% and all dollar amounts are in 2015

• If the LCCA evaluation recommends rehabilitation or repair, the solution is not considered strategic and the rehabilitation or repair will be addressed by normal programming processes Because this LCCA is conducted at a planning level, and due to the variabilities in costs and improvement strategies, the LCCA net present value results that are within 15% should be considered equally; in such a case, the solution should be carried forward as a strategic replacement project - more detailed scoping will confirm if replacement or rehabilitation is

• Pavement replacement (large upfront cost but small ongoing costs afterwards - could be

• Pavement major rehabilitation until replacement (moderate upfront costs then small to

• Pavement minor rehabilitation until replacement (low upfront and ongoing costs until

The pavement LCCA only addresses the condition of the pavement and does not address

• The historical pavement rehabilitation frequencies at each location are used to estimate

• Different pavement replacement and rehabilitation strategies have different costs and

• The net present value of future costs is discounted at 3% and all dollar amounts are in 2015

- If the LCCA evaluation recommends rehabilitation or repair, the solution is not considered strategic and the rehabilitation will be addressed by normal programming processes
- Because this LCCA is conducted at a planning level, and due to the variabilities in costs and improvement strategies, the LCCA net present value results that are within 15% should be considered equally; in such a case, the solution should be carried forward as a strategic replacement project - more detailed scoping will confirm if replacement or rehabilitation is needed

Based on the candidate solutions presented in Table 19, the following conclusions were determined based on the LCCA:

- Rehabilitation or repair was determined to be the most effective approach for all the candidate solutions evaluated.
- The following bridges do not require replacement according to the results of the LCCA, therefore, it is assumed that these will be addressed by normal programming processes and were dropped from further consideration:
 - Agua Fria Canyon Bridge SB (CS19.2)

- Palo Parado Road Bridge (CS 19.4)
- these structures were recommended through other Candidate Solutions.
- LCCA was not conducted on the following bridges because design funds are currently advancing those projects to construction, including:
 - El Toro Rd. Bridge NB (CS 19.7)
 - El Toro Rd. Bridge SB (CS.19.8)

There are no Candidate Solutions that require a pavement LCCA for the I-19 Corridor.

Candidate Solution	Preser	t Value at 3% Discoun	t Rate (\$)	Ratio of Present V	Ratio of Present Value Compared to Lowest Present Value				
Candidate Solution	Replace	Rehab	Repair	Replace	Rehab	Repair	Needs		
Airport Wash Bridge NB (CS19.16)	\$1,044,000	\$927,000	\$756,000	1.38	1.23	1.00	Yes	Not si evalu	
Airport Wash Bridge SB (CS19.17)	\$1,044,000	\$951,000	\$764,000	1.36	1.24	1.00	Yes	Not st evalua	
Agua Fria Canyon Bridge SB (CS19.2)	\$566,000	\$588,000	\$412,000	1.37	1.43	1.00	No	Not st evalu	
Palo Parado Road Bridge (CS 19.4)	\$1,263,000	\$1,074,000	\$912,000	1.38	1.18	1.00	No	Not s evalu	

Table 20: Bridge Life-Cycle Cost Analysis Results

Table 21: Pavement Life-Cycle Cost Analysis Results

Candidate Solution	Present Valu	ie at 3% Disco	ount Rate (\$)		esent Value C vest Present V	Other Needs		
	Replace	Rehab	Repair	Replace	Rehab	Repair	Neeus	
		No LC	CCA conducted	l for any pavem	ent solutions o	n the I-19 Corr	idor.	

 While Airport Wash Bridge NB (CS 19.16) and Airport Wash Bridge SB (CS 19.17) do not qualify for a standalone bridge replacement according to LCCA results, improvements to

programmed in the ADOT 5 Year STIP. This I-19 Corridor Profile Study recommends

Results

strategic as a stand-alone project; carry forward for further luation with other Needs

strategic as a stand-alone project; carry forward for further luation with other Needs

strategic as a stand-alone project and no other Needs - no further

luation

strategic as a stand-alone project and no other Needs - no further luation

Results

5.2 Performance Effectiveness Evaluation

The results of the Performance Effectiveness Evaluation are combined with the results of a Performance Area Risk Analysis to determine a Performance Effectiveness Score (PES). The objectives of the Performance Effectiveness Evaluation include:

- Measure the benefit to the performance system versus the cost of the solution
- Include risk factors to help differentiate between similar solutions •
- Apply to each performance area that is affected by the candidate solution
- Account for emphasis areas identified for the corridor

The Performance Effectiveness Evaluation includes the following steps:

- Estimate the post-solution performance for each of the five performance areas (Pavement, Bridge, Mobility, Safety, and Freight)
- Use the post-solution performance scores to calculate a post-solution level of need for each of the five performance areas
- Compare the pre-solution level of need to the post-solution level of need to determine the reduction in level of need (potential solution benefit) for each of the five performance areas
- Calculate performance area risk weighting factors for each of the five performance areas
- Use the reduction in level of need (benefit) and risk weighting factors to calculate the PES

Post-Solution Performance Estimation

For each performance area, a slightly different approach is used to estimate the post-solution performance. This process is based on the following assumptions:

- Pavement:
 - The IRI rating would decrease (to 30 for replacement or 45 for rehabilitation)
 - The Cracking rating would decrease (to 0 for replacement or rehabilitation)
- Bridge:
 - The structural ratings would increase (+1 for repair, +2 for rehabilitation, or increase to 8 for replacement)
 - o The Sufficiency Rating would increase (+10 for repair, +20 for rehabilitation, or increase to 98 for replacement)
- Mobility:
 - o Additional lanes would increase the capacity and therefore affect the Mobility Index and associated secondary measures
 - Other improvements (e.g., ramp metering, parallel ramps, variable speed limits) would also increase the capacity (to a lesser extent than additional lanes) and therefore would affect the Mobility Index and associated secondary measures
 - o Changes in the Mobility Index (due to increased capacity) would have a direct effect on the TTI secondary measure
 - o Changes in the Mobility Index (due to increased capacity) and Safety Index (due to crash reductions) would have a direct effect on the PTI secondary measure

- the Closure Extent secondary measure
- Safety:
 - reduction in crashes (for additional information see Appendix F)
- Freight:
 - secondary measure
 - on the TTTI secondary measure
 - the Closure Duration secondary measure

Performance Area Risk Analysis

The Performance Area Risk Analysis is intended to develop a numeric risk weighting factor for each of the five performance areas (Pavement, Bridge, Mobility, Safety, and Freight). This risk analysis addresses other considerations for each performance area that are not directly included in the performance system. A risk weighting factor is calculated for each candidate solution based on the specific characteristics at the solution location. For example, the Pavement Risk Factor is based on factors such as the elevation, daily traffic volumes, and amount of truck traffic. Additional information regarding the Performance Area Risk Factors is included in Appendix G.

Following the calculation of the reduction in level of need (benefit) and the Performance Area Risk Factors, these values are used to calculate the PES. In addition, the reduction in level of Need in each emphasis area is also included in the PES.

Net Present Value Factor

The benefit (reduction in need) is measured as a one-time benefit. However, different types of solutions will have varying service lives during which the benefits will be obtained. For example, a preservation solution would likely have a shorter stream of benefits over time when compared to a modernization or expansion solution. To address the varying lengths of benefit streams, each solution is classified as a 10-year, 20-year, 30-year, or 75-year benefit stream, or the net present value (NPV) factor (F_{NPV}). A 3% discount rate is used to calculate F_{NPV} for each classification of solution. The service lives and respective factors are described below:

- solutions, a F_{NPV} of 8.8 is used in the PES calculation
- solutions, a F_{NPV} of 15.3 is used in the PES calculation

o Changes in the Safety Index (due to crash reductions) would have a direct effect on

o Crash modification factors were developed that would be applied to estimate the

o Changes in the Mobility Index (due to increased capacity) and Safety Index (due to crash reductions) would have a direct effect on the Freight Index and the TPTI

Changes in the Mobility Index (due to increased capacity) would have a direct effect

o Changes in the Safety Index (due to crash reductions) would have a direct effect on

• A 10-year service life is generally reflective of preservation solutions such as pavement and bridge preservation; these solutions would likely have a 10-year stream of benefits; for these

• A 20-year service life is generally reflective of modernization solutions that do not include new infrastructure; these solutions would likely have a 20-year stream of benefits; for these

- A 30-year service life is generally reflective of expansion solutions or modernization solutions that include new infrastructure; these solutions would likely have a 30-year stream of benefits; for these solutions, a F_{NPV} of 20.2 is used in the PES calculation
- A 75-year service life is used for bridge replacement solutions; these solutions would likely have a 75-year stream of benefits; for these solutions, a F_{NPV} of 30.6 is used in the PES calculation

Vehicle-Miles Travelled Factor

Another factor in assessing benefits is the number of travelers who would benefit from the implementation of the candidate solution. This factor varies between candidate solutions depending on the length of the solution and the magnitude of daily traffic volumes. Multiplying the solution length by the daily traffic volume results in vehicle-miles travelled (VMT), which provides a measure of the amount of traffic exposure that would receive the benefit of the proposed solution. The VMT is converted to a VMT factor (known as F_{VMT}), which is on a scale between 0 and 5, using the equation below:

 $F_{VMT} = 5 - (5 \times e^{VMT \times -0.0000139})$

Performance Effectiveness Score

The PES is calculated using the following equation:

PES = (Sum of all Risk Factored Benefit Scores + Sum of all Risk Factored Emphasis Area Scores) / Cost) x F_{VMT} x F_{NPV}

Where:

- Risk Factored Benefit Score = Reduction in Segment-Level Need (benefit) x Performance Area Risk Weighting Factor (calculated for each performance area)
- Risk Factored Emphasis Area Score = Reduction in Corridor-Level Need x Performance Area Risk Factors x Emphasis Area Factor (calculated for each emphasis area)
- Cost = estimated cost of candidate solution in millions of dollars (see **Appendix H**)
- F_{VMT} = Factor between 0 and 5 to account for VMT at location of candidate solution based on existing (2014) daily volume and length of solution
- F_{NPV} = Factor (ranging from 8.8 to 30.6 as previously described) to address anticipated longevity of service life (and duration of benefits) for each candidate solution

The resulting PES values are shown in **Table 22**. Additional information regarding the calculation of the PES is contained in **Appendix I**.

For candidate solutions with multiple options to address Mobility, Safety, or Freight needs, the PES should be compared to help identify the best performing option. If one option clearly performs better than the others (more than twice the PES value and a difference in magnitude of at least 20 points) the lower scoring options can be eliminated from further consideration. If multiple options have similar PES values, or there are other factors not accounted for in the performance system that could significantly influence the ultimate selection of an option (e.g., potential environmental concerns, potential adverse economic impacts), those options should all be advanced to the prioritization process. On the I-19 Corridor, there were no candidate solutions with options to address Mobility, Safety, or Freight needs.

Following the LCCA, the following Candidate Solutions were eliminated from further consideration as standalone projects or have been directly recommended for construction programming. These Candidate Solutions have not been evaluated for prioritization:

- Agua Fria Canyon Bridge SB (CS19.2) Eliminated
- Palo Parado Road Bridge (CS19.4) Eliminated
- El Toro Road Bridge NB (CS19.7) Advance to Programming
- El Toro Road Bridge SB (CS19.8) Advance to Programming
- Airport Wash Bridge NB (CS19.16) Eliminated
- Airport Wash Bridge SB (CS19.17) Eliminated

Eliminated inated vance to Programming vance to Programming vinated inated

Candidate Solution	Segment	Option	Candidate Solution Name	Milepost Location	Estimated Cost		Risk Fa	ctored Bene	it Score		Risk Fa	ctored Emph Scores	asis Area	Total Factored Benefit Score	Fvmt	F _{NPV}	Performance Effectiveness
Solution				Location	(\$ million)	Pavement	Bridge	Safety	Mobility	Freight	Safety	Mobility	Freight	Benefit Score			Score
CS19.1	19-2 19-3	-	Nogales to Tubac Shoulder & Roadside Improvements	3-30	\$15.19	0.00	0.00	5.498	0.07	0.05	1.35	0.00	0.00	6.962	5.00	15.3	35.0
CS19.3	19-2 19-3	-	Nogales to Tubac Lighting	3-30	\$36.25	0.00	0.00	2.77	0.03	0.01	0.70	0.00	0.00	3.505	5.00	15.3	7.4
CS19.5	19-5 19-6	-	Sahuarita to Tucson Lighting	39.5-60	\$27.52	0.00	0.00	1.93	0.15	0.02	0.45	0.00	0.00	2.546	5.00	15.3	7.1
CS19.6	19-5 19-6	-	Sahuarita to Tucson Shoulder & Roadside Improvements	39.5-62	\$13.79	0.00	0.00	5.45	0.359	0.064	0.76	0.015	0.00	6.652	5.00	15.3	36.9
CS19.9	19-5	-	Sahuarita TI Ramp Improvements	46.8	\$4.43	0.00	0.00	0.025	0.040	0.004	0.012	0.015	0.00	0.095	1.13	20.2	0.5
CS19.10	19-5	-	Pima Mine TI Ramp Improvements	49.6	\$5.60	0.00	0.59	0.72	0.044	0.013	0.249	0.015	0.00	1.622	1.13	20.2	6.6
CS19.11	19-5	-	Papago TI Ramp Improvements	54.4	\$4.43	0.00	0.00	0.357	0.042	0.009	0.15	0.015	0.00	0.569	1.13	20.2	2.9
CS19.12	19-6	-	Tucson Area Parallel Ramps	57 – 62	\$13.94	0.00	0.345	1.237	1.798	0.016	0.175	0.025	0.00	3.596	3.04	20.2	15.9
CS19.13	19-6	-	Tucson Variable Speed Limits	57 – 64	\$24.99	0.00	0.00	0.748	2.743	0.012	0.106	0.038	0.00	3.646	4.99	15.3	11.1
CS19.14	19-6	-	Tucson Area GP Widening	57 – 62	\$33.43	4.05	0.35	0.65	8.72	0.016	0.09	0.104	0.00	13.976	4.95	20.2	41.8
CS19.15	19-6	-	Drexel/Irvington Pedestrian Overpass	59.5-61.5	\$2.25	0.00	0.00	5.11	0.097	0.05	0.65	0.00	0.00	5.912	1.04	20.2	55.4

Table 22: Performance Effectiveness Scores

5.3 Solution Risk Analysis

Following the calculation of the PES, an additional step is taken to develop the prioritized list of solutions. A solution risk probability and consequence analysis is conducted to develop a solutionlevel risk weighting factor. This risk analysis is a numeric scoring system to help address the risk of not implementing a solution based on the likelihood and severity of performance failure. Figure 25 shows the risk matrix used to develop the risk weighting factors.

			Sev	erity/Conseque	ence	
		Major	Catastrophic			
poc	Very Rare	Low	Low	Low	Moderate	Major
celiho	Rare	Low	Low	Moderate	Major	Major
cy/Lil	Seldom	Low	Moderate	Moderate	Major	Severe
Frequency/Likelihood	Common	Moderate	Moderate	Major	Severe	Severe
Free	Frequent	Moderate	Major	Severe	Severe	Severe

Figure 25: Risk Matrix

Using the risk matrix in Figure 25, numeric values were assigned to each category of frequency and severity. The higher the risk, the higher the numeric factor assigned. The risk weight for each area of the matrix was calculated by multiplying the severity factor times the frequency factor. These numeric factors are shown in Figure 26.

Figure 26: Numeric Risk Matrix

				Severity/Consequence									
			Insignificant	Minor	Significant	Major	Catastrophic						
		Weight	1.00	1.10	1.20	1.30	1.40						
poc	Very Rare	1.00	1.00	1.10	1.20	1.30	1.40						
celiho	Rare	1.05	1.10	1.21	1.32	1.43	1.54						
cy/Lil	Seldom	1.10	1.20	1.32	1.44	1.56	1.68						
Frequency/Likelihood	Common	1.15	1.30	1.43	1.56	1.69	1.82						
Frec	Frequent	1.20	1.40	1.54	1.68	1.82	1.96						

Low	<u>Moderate</u>	<u>Major</u>	<u>Severe</u>
1.14	1.36	1.51	1.78

The risk weighting factors listed above are assigned to the five performance areas as follows:

- Safety = 1.78
- Bridge = 1.51
 - weighting factor
- Mobility and Freight = 1.36
 - weighing factor
- Pavement = 1.14
 - therefore, it is assigned the Low (1.14) risk weighting factor

The benefit in each performance area is calculated for each candidate solution as part of the Performance Effectiveness Evaluation. Using this information on benefits and the risk factors listed above, a weighted (based on benefit) solution-level numeric risk factor is calculated for each candidate solution. For example, a solution that has 50% of its benefit in Safety and 50% of its benefit in Mobility has a weighted risk factor of $1.57 (0.50 \times 1.36 + 0.50 \times 1.78 = 1.57)$.

Using the values in **Figure 26**, risk weighting factors were calculated for each of the four risk categories (low, moderate, major, and severe). These values are simply the average of the values in Figure 26 that fall within each category. The resulting average risk weighting factors are:

• The Safety performance area quantifies the likelihood of fatal or incapacitating injury crashes; therefore, it is assigned the Severe (1.78) risk weighting factor

• The Bridge performance area focuses on the structural adequacy of bridges; a bridge failure may result in crashes or traffic being detoured for long periods of time resulting in significant travel time increases; therefore, it is assigned the Major (1.51) risk

• The Mobility and Freight performance areas focus on capacity and congestion; failure in either of these performance areas would result in increased travel times but would not have significant effect on safety (crashes) that would not already be addressed in the Safety performance area; therefore, they are assigned the Moderate (1.36) risk

• The Pavement performance area focuses on the ride quality of the pavement; failure in this performance area would likely be a spot location that would not dramatically affect drivers beyond what is already captured in the Safety performance area;

5.4 Candidate Solution Prioritization

The PES, weighted risk factor, and segment average need score are combined to create a prioritization score as follows:

Prioritization Score = PES x Weighted Risk Factor x Segment Average Need Score

Where:

PES = Performance Effectiveness Score as shown in Table 22

Weighted Risk Factor = Weighted factor to address risk of not implementing a solution based on the likelihood and severity of the performance failure

Segment Average Need Score = Segment level need score as shown in **Table 17**

Table 23 shows the prioritization scores for the candidate solutions subjected to the solution evaluation and prioritization process. Solutions that address multiple performance areas tend to score higher in this process. The prioritized list of candidate solutions is provided in the subsequent section. See **Appendix J** for additional information on the prioritization process.

Candidate Solution	Segment	Option	Candidate Solution Name	Milepost Location	Estimated Cost (in millions)	Performance Effectiveness Score	Weighted Risk Factor	Segment Average Need Score	Prioritization Score	Percentage by which Solution Reduces Performance Area Segment Needs				
										Pavement	Bridge	Mobility	Safety	Freight
CS19.1	19-2 and 19-3	-	Nogales to Tubac Shoulder & Roadside Improvements	3 - 30	\$15.19	35.0	1.773	1.19	74	0.00%	0.00%	2.29%	43.56%	2.85%
CS19.3	19-2 and 19-3	-	Nogales to Tubac Lighting	3-30	\$36.25	7.4	1.766	1.19	16	0.00%	0.00%	1.01%	19.71%	0.42%
CS19.5	19-5 and 19-6	-	Sahuarita to Tucson Lighting	39.5-60	\$27.52	7.1	1.752	1.26	16	0.00%	0.00%	1.09%	14.44%	1.18%
CS19.6	19-5 and 19-6	-	Sahuarita to Tucson Shoulder & Roadside Improvements	39.5-62	\$13.79	36.9	1.752	1.37	89	0.00%	0.00%	1.53%	38.13%	3.29%
CS19.9	19-5	-	Sahuarita TI Ramp Improvements	46.8	\$4.43	0.5	1.520	1.15	1	0.00%	0.00%	6.79%	0.40%	0.97%
CS19.10	19-5	-	Pima Mine TI Ramp Improvements	49.6	\$5.60	6.6	1.664	1.15	13	0.00%	9.74%	7.48%	11.67%	2.90%
CS19.11	19-5	-	Papago TI Ramp Improvements	54.4	\$4.43	2.9	1.731	1.15	6	0.00%	0.00%	7.20%	5.82%	1.93%
CS19.12	19-6	-	Tucson Area Parallel Ramps	57 – 62	\$13.94	15.9	1.539	1.92	47	0.00%	15.20%	22.89%	17.42%	1.24%
CS19.13	19-6	-	Tucson Variable Speed Limits	57 – 64	\$24.99	11.1	1.458	1.92	31	0.00%	0.00%	22.73%	10.53%	0.93%
CS19.14	19-6	-	Tucson Area GP Widening	57 – 62	\$33.43	41.8	1.322	1.92	106	87.60%	15.20%	72.68%	9.10%	1.24%
CS19.15	19-6	-	Drexel/Irvington Pedestrian Overpass	59.5 – 61.5	\$2.25	55.4	1.770	1.92	188	0.00%	0.00%	0.93%	71.97%	3.88%

Table 23: Prioritization Scores

SUMMARY OF CORRIDOR RECOMMENDATIONS 6.0

Prioritized Candidate Solution Recommendations 6.1

Table 24 and Figure 27 show the ranked prioritized candidate solutions recommended for the I-10/SR 85 corridor. Implementation of these solutions is anticipated to improve performance of the I-10/SR 85 corridor. The following observations were noted about the prioritized solutions:

- Two of the top three projects include shoulder and roadside improvements through much of the corridor that will reduce the incidence of run off the road type vehicle crashes that often result in fatal and serious injuries.
- Additional benefits to Mobility and Freight will occur due to the reduction in the number of incidents that cause delays along I-19.
- The I-19 Tucson Area GP Widening project will increase capacity on this congested segment, reduce delays, and improve safety.
- The Drexel/Irvington Pedestrian Overpass and Barrier Fencing project will help reduce the • high number of fatal vehicle-pedestrian crashes resulting from pedestrians attempting to cross I-19.
- The remaining traffic interchange ramp and lighting improvements will increase safety at those locations as well as improve traffic throughput by reducing delay and the potential for conflicting movements in the merge areas.

6.2 Other Corridor Recommendations

As part of the investigation of strategic investment areas and candidate solutions, other corridor recommendations were also identified. These recommendations could include modifications to the existing Statewide Construction Program, areas for further study, or other corridor specific recommendations that are not construction or policy related. The list below identified other corridor recommendations for the I-19 corridor:

- crashes.
- Consider a corridor strategy to upgrade all bridges to current standards in anticipation of increased truck/freight traffic over the medium to long term.
- term.
- funds only programmed in the Pima Association of Governments (PAG) five year transportation facilities construction program for fiscal year 2019.
- 63 in fiscal year 2018.
- When recommending future projects along I-19, review historical ratings and levels of investment. According to data used for this study, the following pavement and bridge issues:
 - Pavement MP 6-9
 - Western Ave TI OP NB (MP 1.17) 0
 - Pajarito Rd OP NB/SB (MP 3.67)
 - Ruby Road TI UP (MP 7.7) 0
 - Agua Fria Canyon Bridge NB/SB (MP 11.97)
 - Peck Canyon TI UP (MP 13.96) 0
 - Peck Canyon Wash SB (MP 14.37) 0
 - Palo Parado Rd (MP 15.65) 0
 - Agua Linda UP (MP 26.54) 0
 - EI Toro Rd OP NB/SB (MP 45.80) 0
 - Pima Mine TI OP NB/SB (MP 49.62) 0
 - Papago Rest Area TI OP NB/SB (MP 54.40) 0
 - Santa Cruz River Bridge NB/SB (MP 56.80) 0
 - Airport Wash Bridge NB/SB (MP 60.32) 0

• The analysis shows a high ratio of fatal to incapacitating injury crashes that are not clearly patterned to specific locations. This report recommends that a Roadway Safety Analysis should be conducted on the corridor in order to better understand the high occurrence of fatal

Consider corridor wide ITS solutions to assist truck/freight traffic over the medium to long

Advance Irvington Rd TI Underpass to construction programming. Irvington Rd TI has design

Extend the limits of the Ajo Way TI Phase 2 scope to reach the pavement hot spot at milepost

locations have exhibited high historical investment (pavement) or rating fluctuation (bridge)

6.3 Policy and Initiatives Recommendations

In addition to location-specific needs, general corridor and system-wide needs have also been identified through the CPS process. While these needs are more overarching and cannot be individually evaluated through this process, it is important to document them. A list of recommended policies and initiatives was developed for consideration when programming future projects not only on I-19, but across the entire state highway system where the conditions are applicable. The following list, which is in no particular order of priority, was derived from the Round 1, Round 2, and Round 3 CPS:

- Install Intelligent Transportation System (ITS) conduit with all new infrastructure projects
- Prepare strategic plans for Closed Circuit Television (CCTV) camera and Road Weather • Information System (RWIS) locations statewide
- Leverage power and communication at existing weigh-in-motion (WIM), dynamic message signs (DMS), and call box locations to expand ITS applications across the state
- Consider solar power for lighting and ITS where applicable
- Investigate ice formation prediction technology where applicable ٠
- Conduct highway safety manual evaluation for all future programmed projects •
- Develop infrastructure maintenance and preservation plans (including schedule and ٠ funding) for all pavement and bridge infrastructure replacement or expansion projects
- Develop standardized bridge maintenance procedures so districts can do routine • maintenance work
- Review historical ratings and level of previous investment during scoping of pavement and bridge projects. In pavement locations that warrant further investigation, conduct subsurface investigations during project scoping to determine if full replacement is warranted
- For pavement rehabilitation projects, enhance the amount/level of geotechnical investigations to address issues specific to the varying conditions along the project
- Expand programmed and future pavement projects as necessary to include shoulders •
- Expand median cable barrier guidelines to account for safety performance •
- Install CCTV cameras with all DMS •
- In locations with limited communications, use CCTV cameras to provide still images rather • than streaming video
- Develop statewide program for pavement replacement •
- Install additional continuous permanent count stations along strategic corridors to enhance • traffic count data
- When reconstruction or rehabilitation activities will affect existing bridge vertical clearance, the dimension of the new bridge vertical clearance should be a minimum of 16.25 feet where feasible
- All new or reconstructed roadway/shoulder edges adjacent to an unpaved surface should be constructed with a Safety Edge
- Collision data on tribal lands may be incomplete or inconsistent; additional coordination for • data on tribal lands is required to ensure adequate reflection of safety issues
- Expand data collection devices statewide to measure freight delay

may result from improvements and expansions to the state roadway network

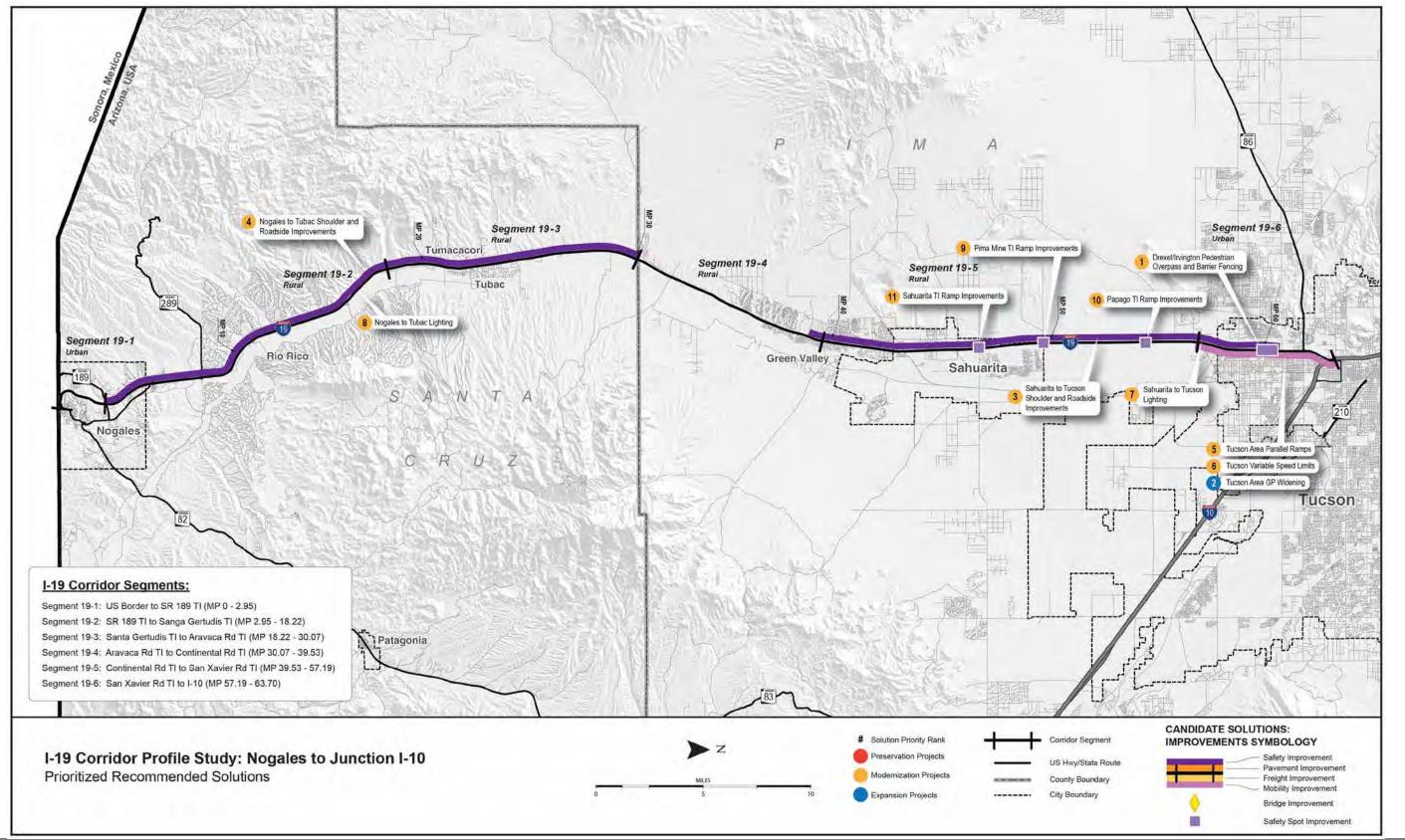

• Evaluate and accommodate potential changes in freight and goods movement trends that

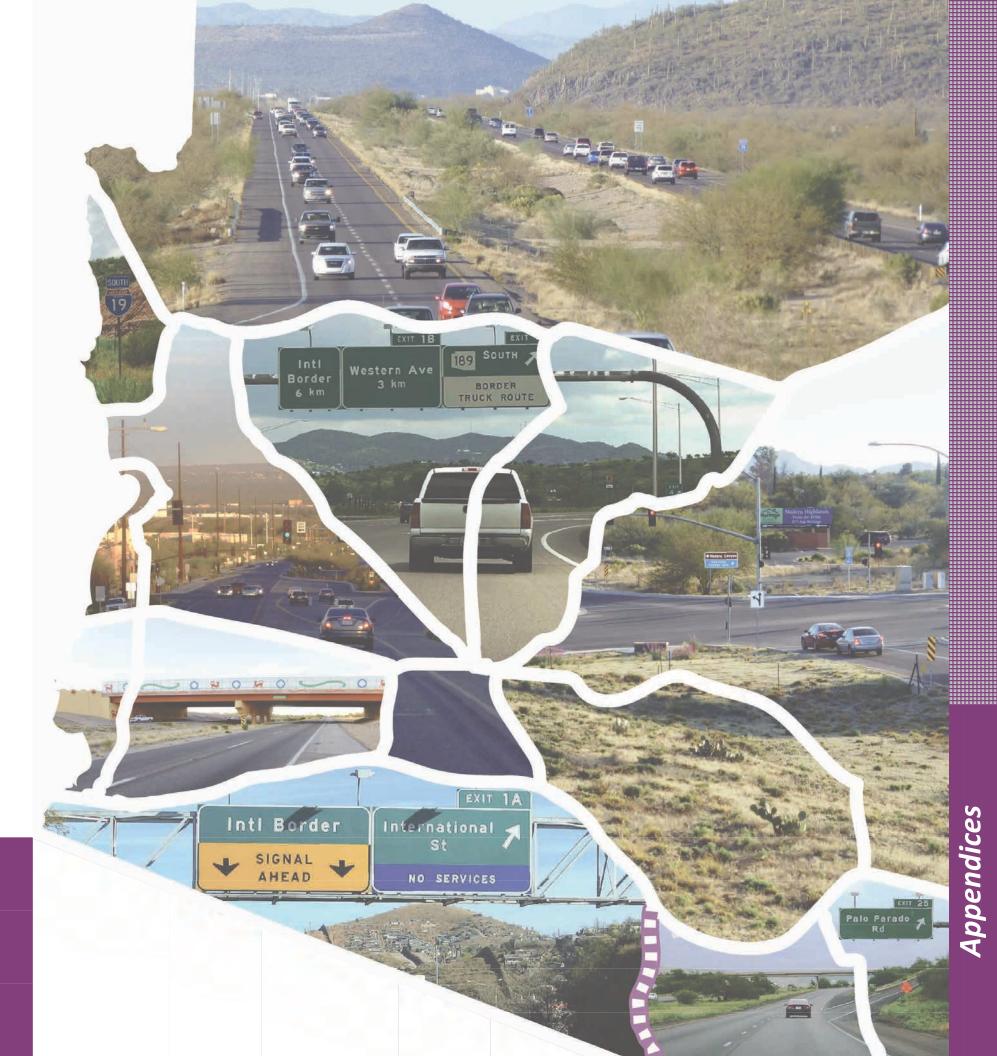
Table 24: Prioritized Recommended Solutions

Rank	Candidate Solution	Solution Name and Location	Description/Scope	Estimated Cost (\$ million)	Investment Category (Preservation [P], Modernization [M], Expansion [E])	Prioritization Score
1	CS19.15	Drexel/Irvington Pedestrian Overpass (I-19 MP 59.5-62)	Construct pedestrian overpass between Drexel and Irvington; construct 8' barrier fencing Valencia to Ajo Way (east side) and from Drexel to Irvington Rd (west side)	\$2.25	М	188
2	CS19.14	Tucson Area GP Widening (I-19 MP 57-61.9)	Construct new general purpose lane (inside) in NB/SB direction between Irvington Rd and San Xavier Rd	\$33.43	E	106
3	CS19.6	Sahuarita to Tucson Shoulder & Roadside Improvements (I-19 MP 39.5-61.9)	Rehabilitate shoulders in both directions from Sahuarita Rd to Irvington Rd.	\$13.79	М	89
4	CS19.1	Nogales to Tubac Shoulder & Roadside Improvements (I-19 MP 3-30)	Rehabilitate shoulders in both directions from the SR189 TI to Aravaca Rd TI	\$15.19	М	74
5	CS19.12	Tucson Area Parallel Ramps (I-19 MP 57-61.9)	Modify entry/exit ramps to parallel configuration Implement ramp metering at Irvington Rd SB, Valencia Rd NB/SB, and San Xavier Rd NB	\$13.94	М	47
6	CS19.13	Tucson Variable Speed Limits (I-19 MP 57-64)	Implement Variable Speed Limits (both directions)	\$24.99	М	31
7	CS19.5	Sahuarita to Tucson Lighting (I-19 MP 39.5-60)	Install lighting (both directions)	\$27.52	М	16
8	CS19.3	Nogales to Tubac Lighting (I-19 MP 3-30)	Install lighting (both directions)	\$36.25	М	16
9	CS19.10	Pima Mine TI Ramp Improvements (I-19 MP 49.6)	Modify entry/exit ramps to parallel configuration	\$5.60	М	13
10	CS19.11	Papago TI Ramp Improvements (I-19 MP 54.4)	Modify entry/exit ramps to parallel configuration	\$4.43	М	6
11	CS19.9	Sahuarita TI Ramp Improvements (I-19 MP 46.8)	Modify entry/exit ramps to parallel configuration	\$4.43	М	1

Figure 27: Recommended Solutions

I-19 Corridor Profile Study Final Report

6.4 Next Steps


The candidate solutions recommended in this study are not intended to be a substitute or replacement for traditional ADOT project development processes where various ADOT technical groups and districts develop candidate projects for consideration in the performance-based programming in the P2P process. Rather, these candidate solutions are intended to complement ADOT's traditional project development processes through a performance-based process to address needs in one or more of the five performance areas of Pavement, Bridge, Mobility, Safety, and Freight. Candidate solutions developed for the I-19 Corridor will be considered along with other candidate projects in the ADOT statewide programming process.

It is important to note that the candidate solutions are intended to represent strategic solutions to address existing performance needs related to the Pavement, Bridge, Mobility, Safety, and Freight performance areas. Therefore, the strategic solutions are not intended to preclude recommendations related to the ultimate vision for the corridor that may have been defined in the context of prior planning studies and/or design concept reports. Recommendations from such studies are still relevant to addressing the ultimate corridor objectives.

Upon completion of all three CPS rounds, the results will be incorporated into a summary document comparing all corridors that is expected to provide a performance-based review of statewide needs and candidate solutions.

Appendices

Appendix A: Corridor Performance Maps

This appendix contains maps of each primary and secondary measure associated with the five performance areas for the I-19 Corridor. The following are the areas and maps included:

Pavement Performance Area:

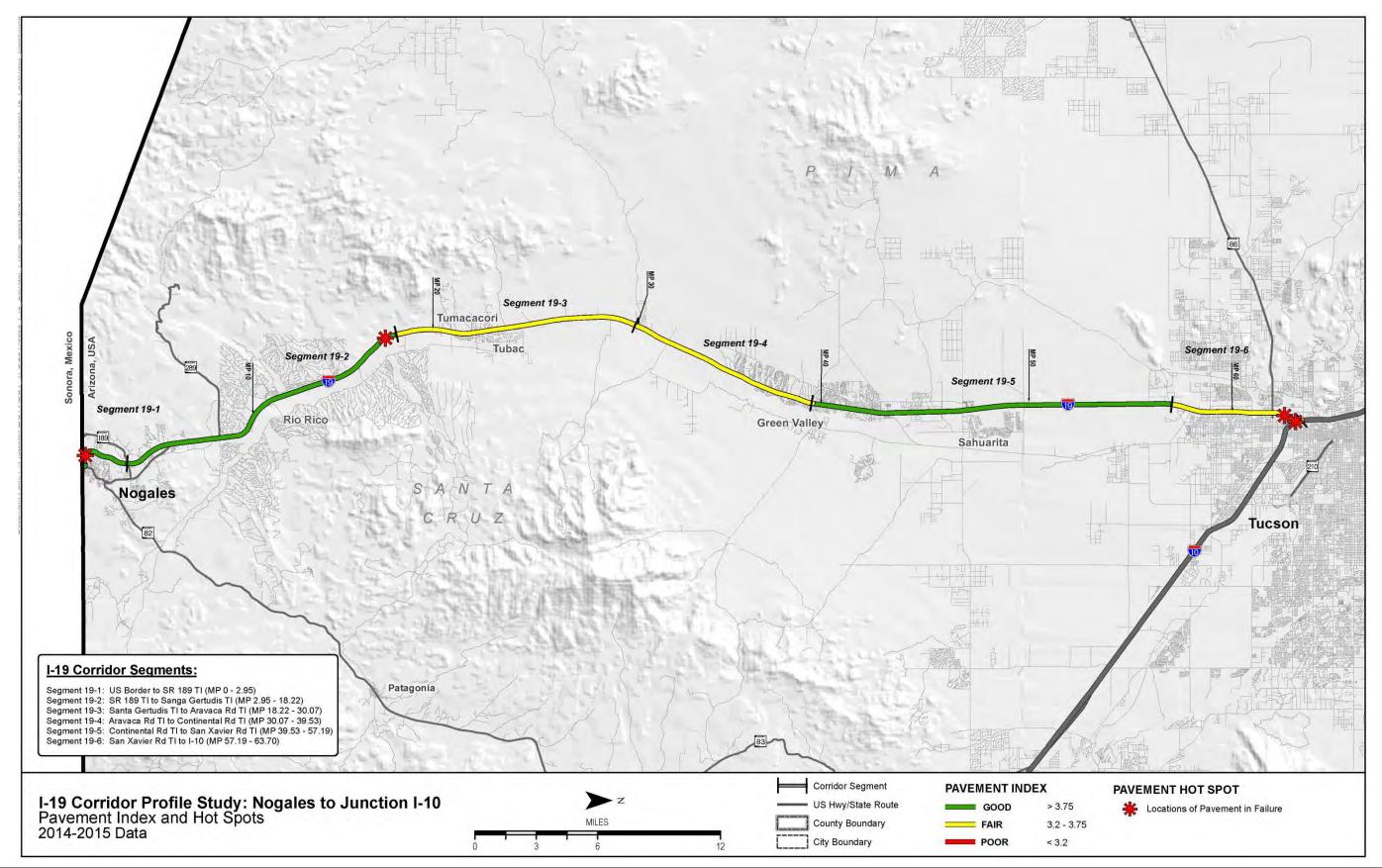
- Pavement Index and Hot Spots
- Pavement Serviceability (directional)
- Percentage of Pavement Area Failure

Bridge Performance Area:

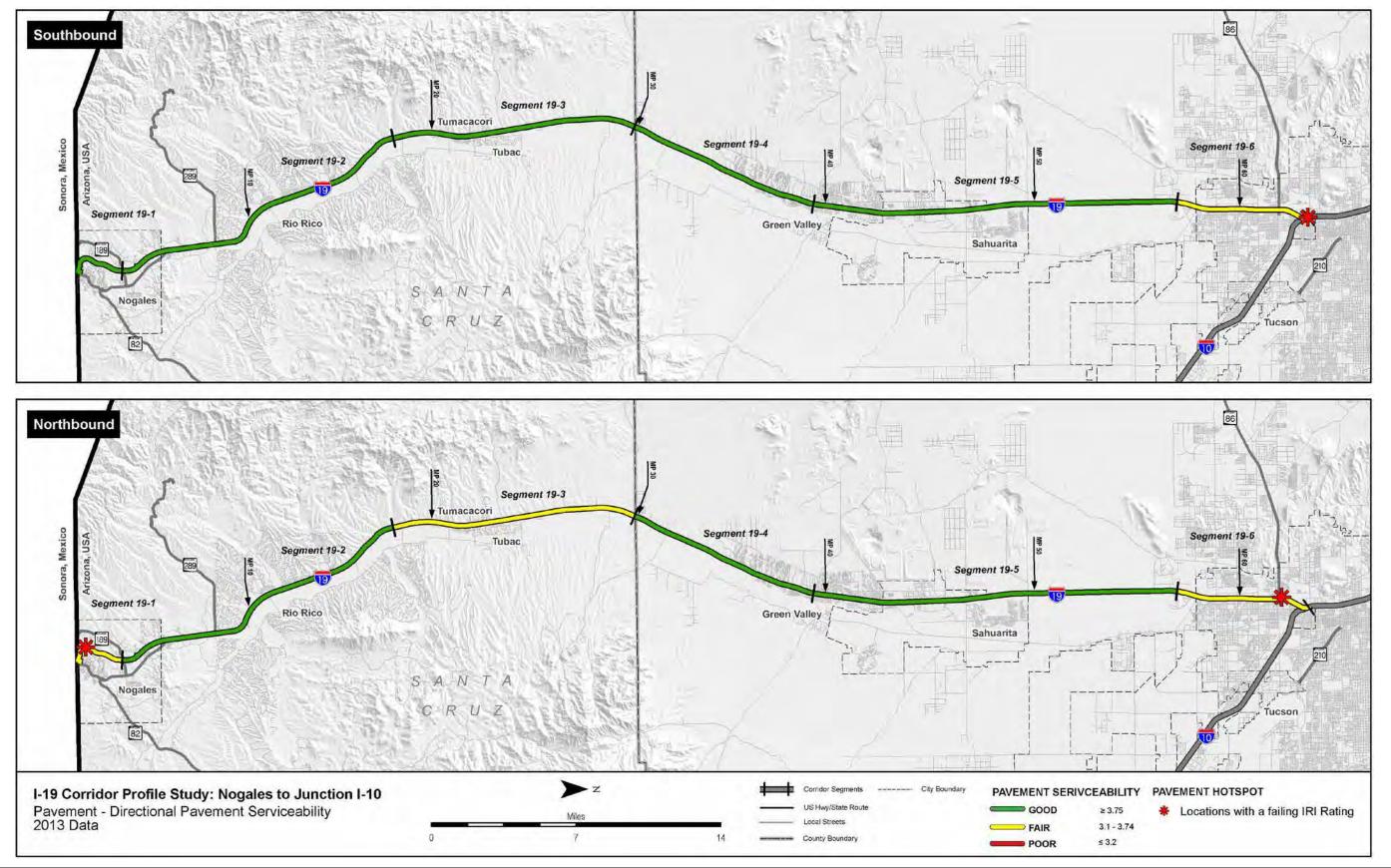
- Bridge Index and Hot Spots
- Bridge Sufficiency
- Percent of Deck Area on Functionally Obsolete Bridges
- Lowest Bridge Rating

Mobility Performance Area:

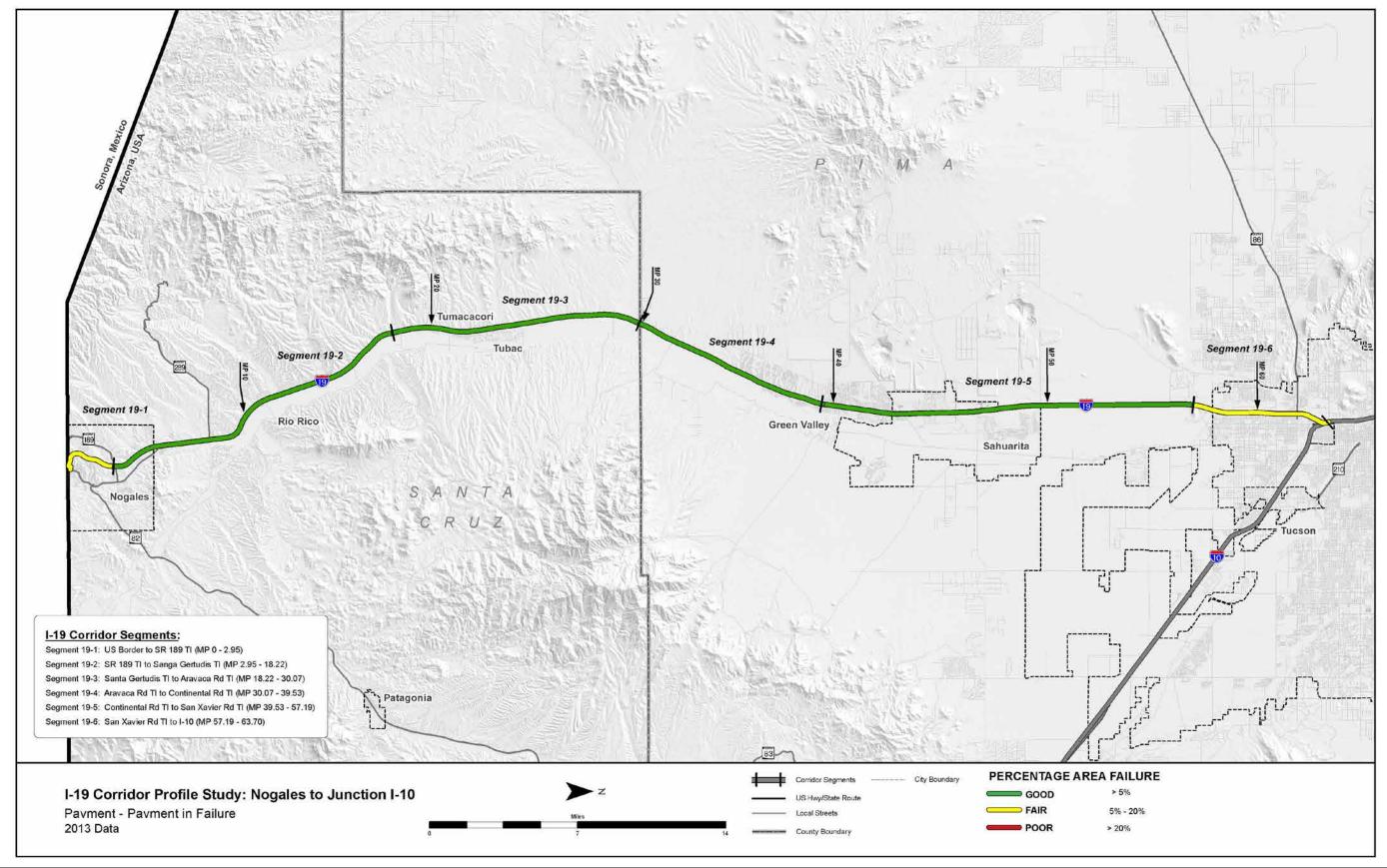
- Mobility Index
- Future Daily V/C
- Existing Peak V/C (directional)
- Average Instances Per Year a Given Milepost is Closed Per Segment Mile
- All Vehicles Travel Time Index
- All Vehicles Planning Time Index
- Multimodal Opportunities
- Percentage of Bicycle Accommodation

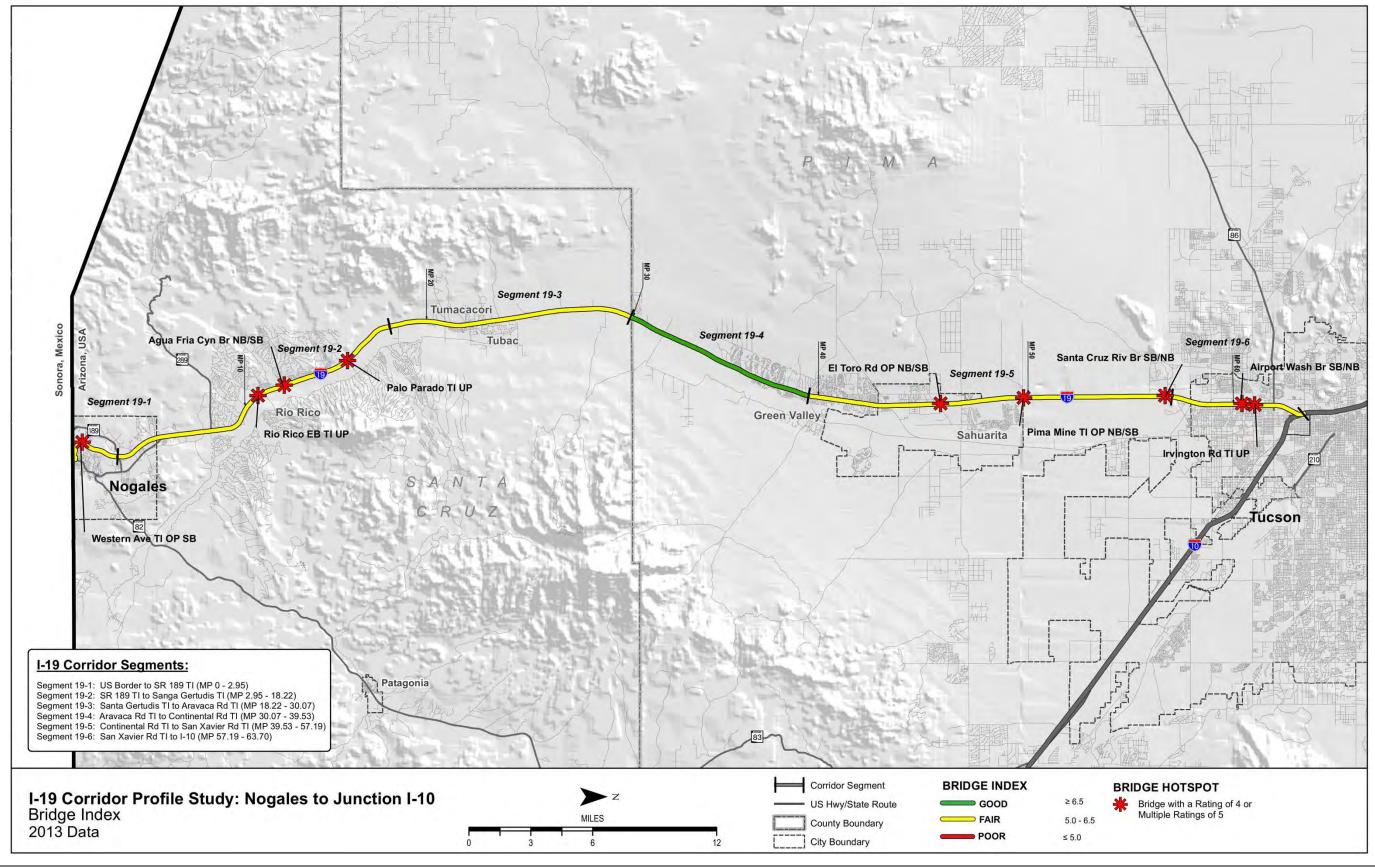

Safety Performance Area:

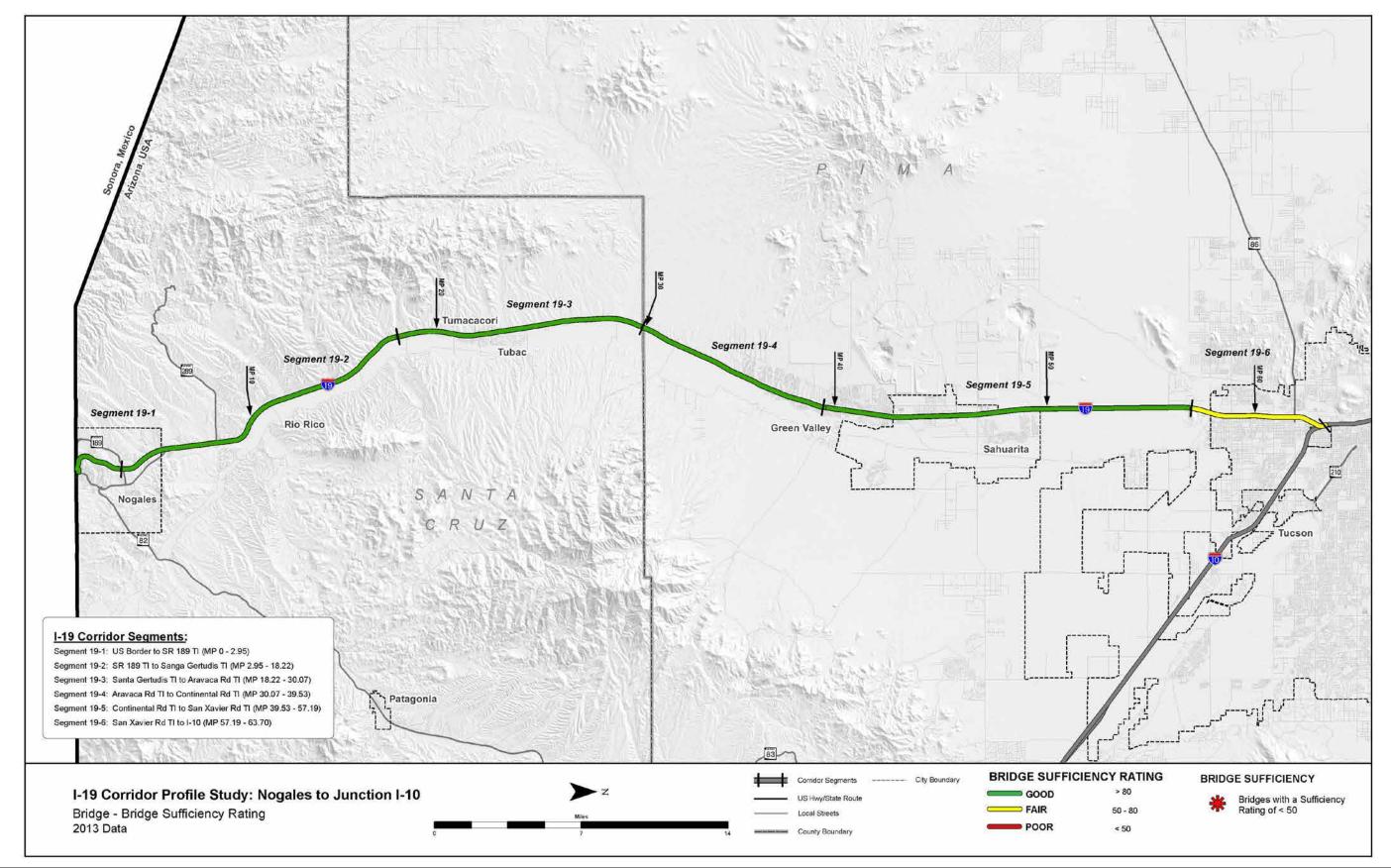
- Safety Index and Hot Spots
- Safety Index and Hot Spots (directional)
- Relative Frequency of Fatal + Incapacitating Injury Crashes Involving SHSP Top 5 Emphasis Areas Behaviors Compared to the Statewide Average for Similar Segments

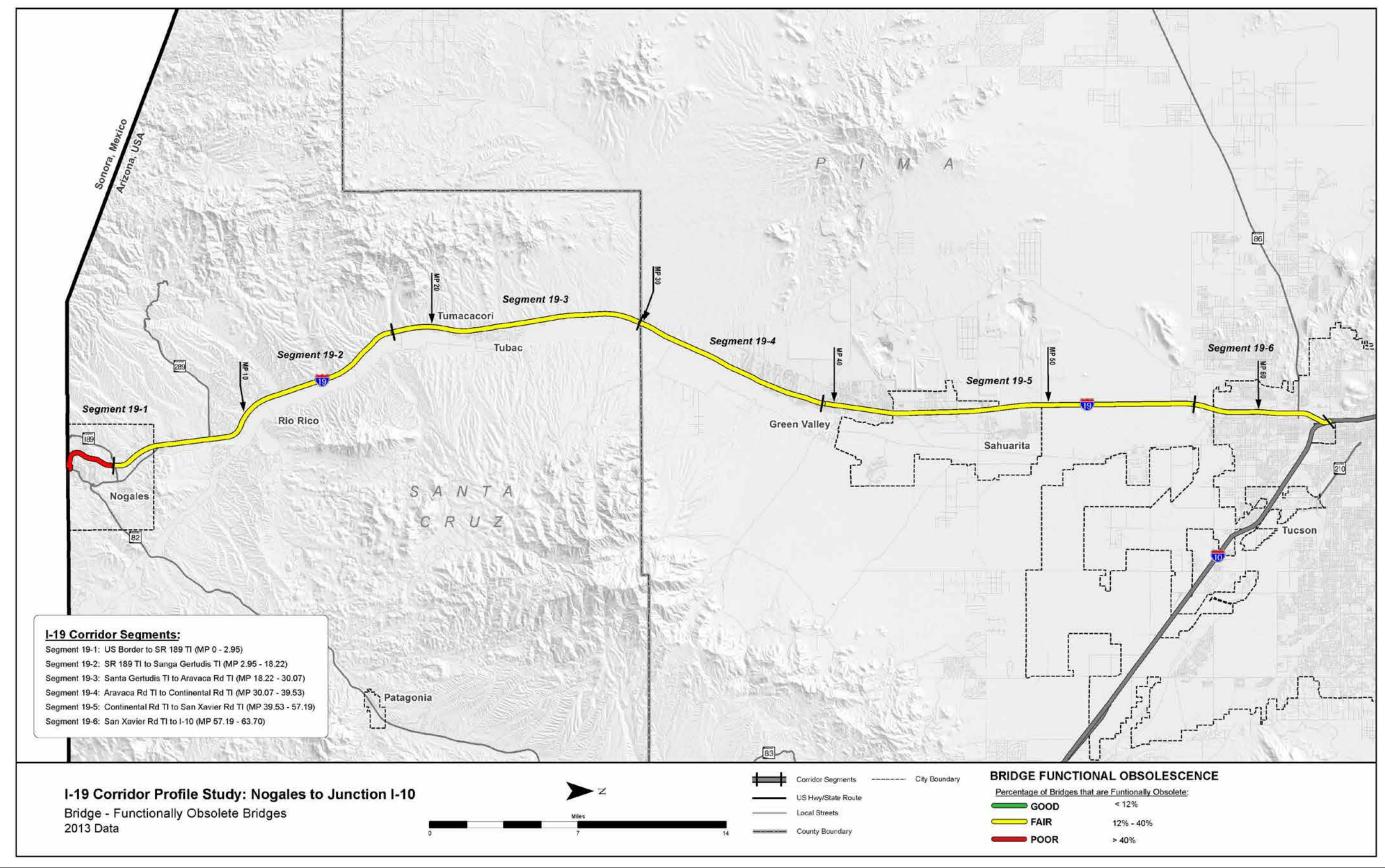

Freight Performance Area:

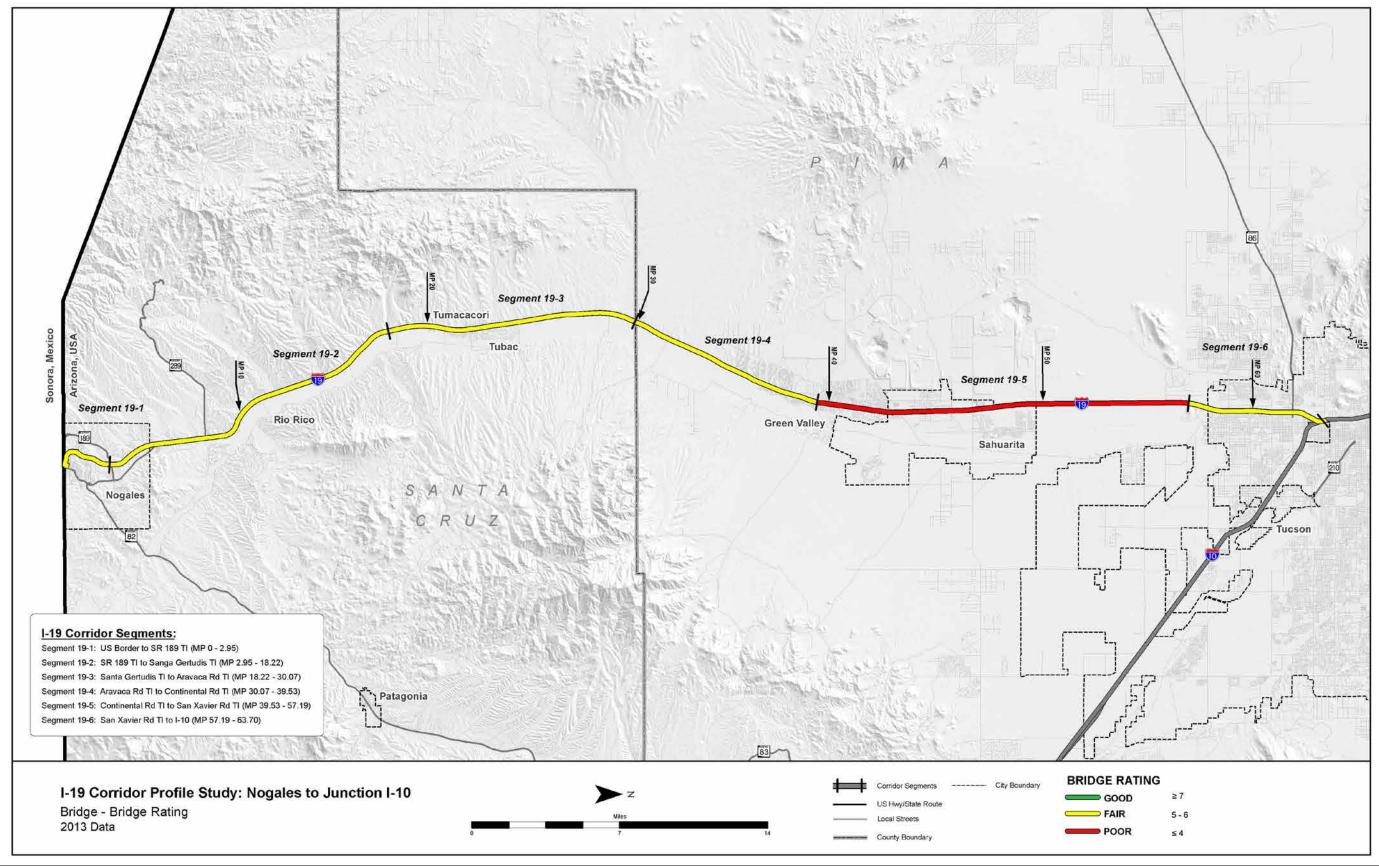
- Freight Index and Hot Spots
- Truck Travel Time Index
- Truck Planning Time Index
- Average Minutes Per Year Given Milepost is Closed Per Segment Mile
- Bridge Vertical Clearance

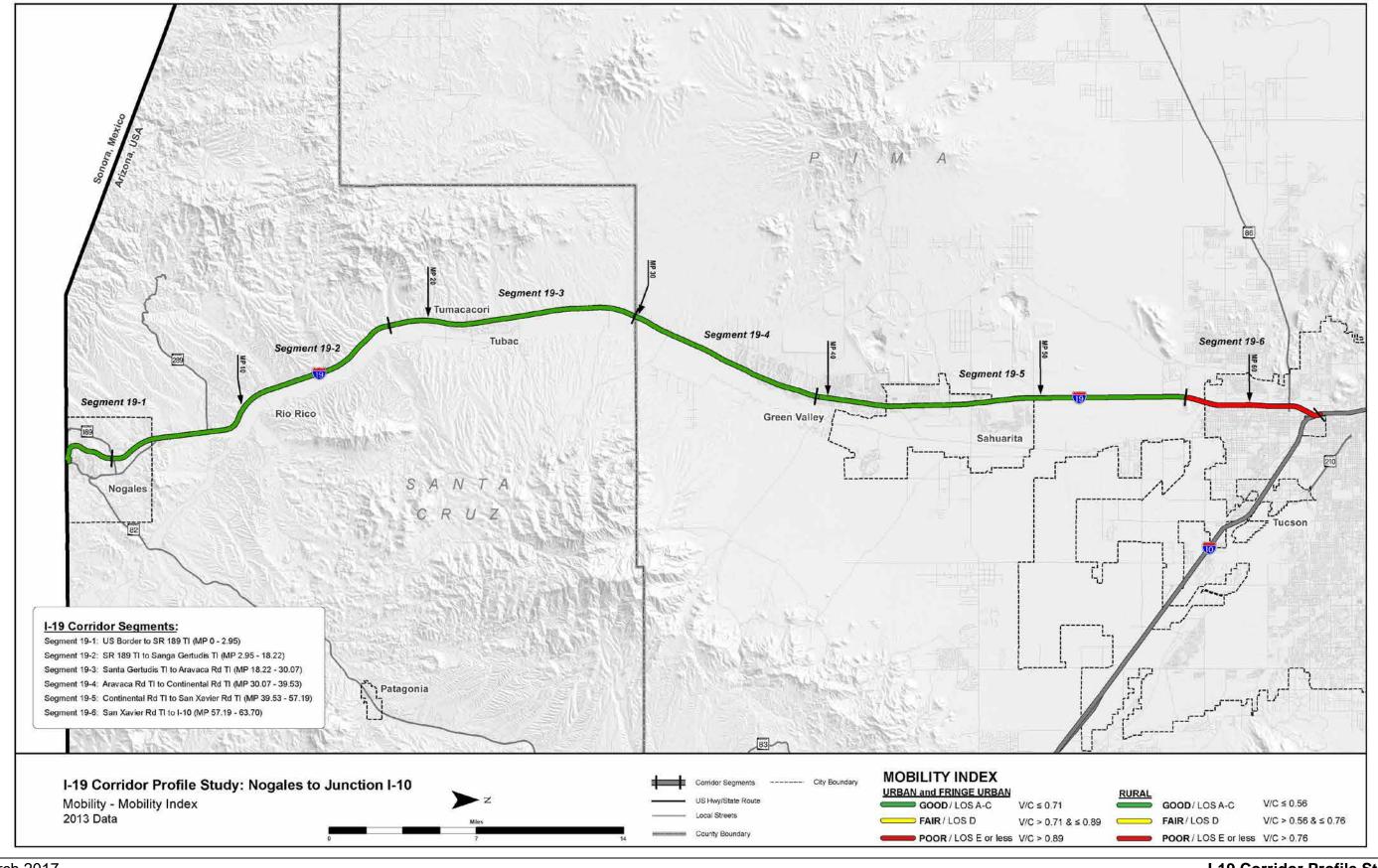


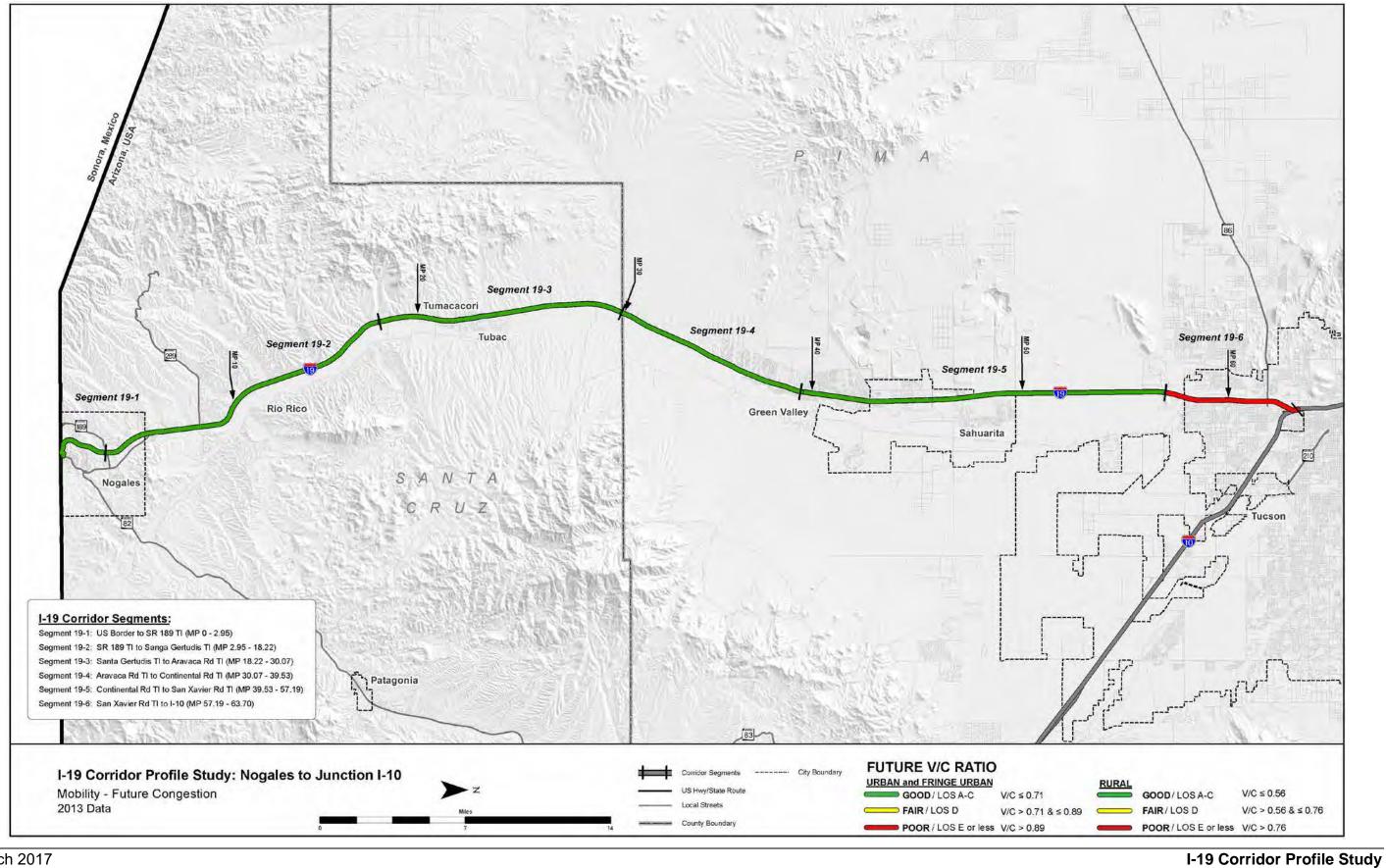


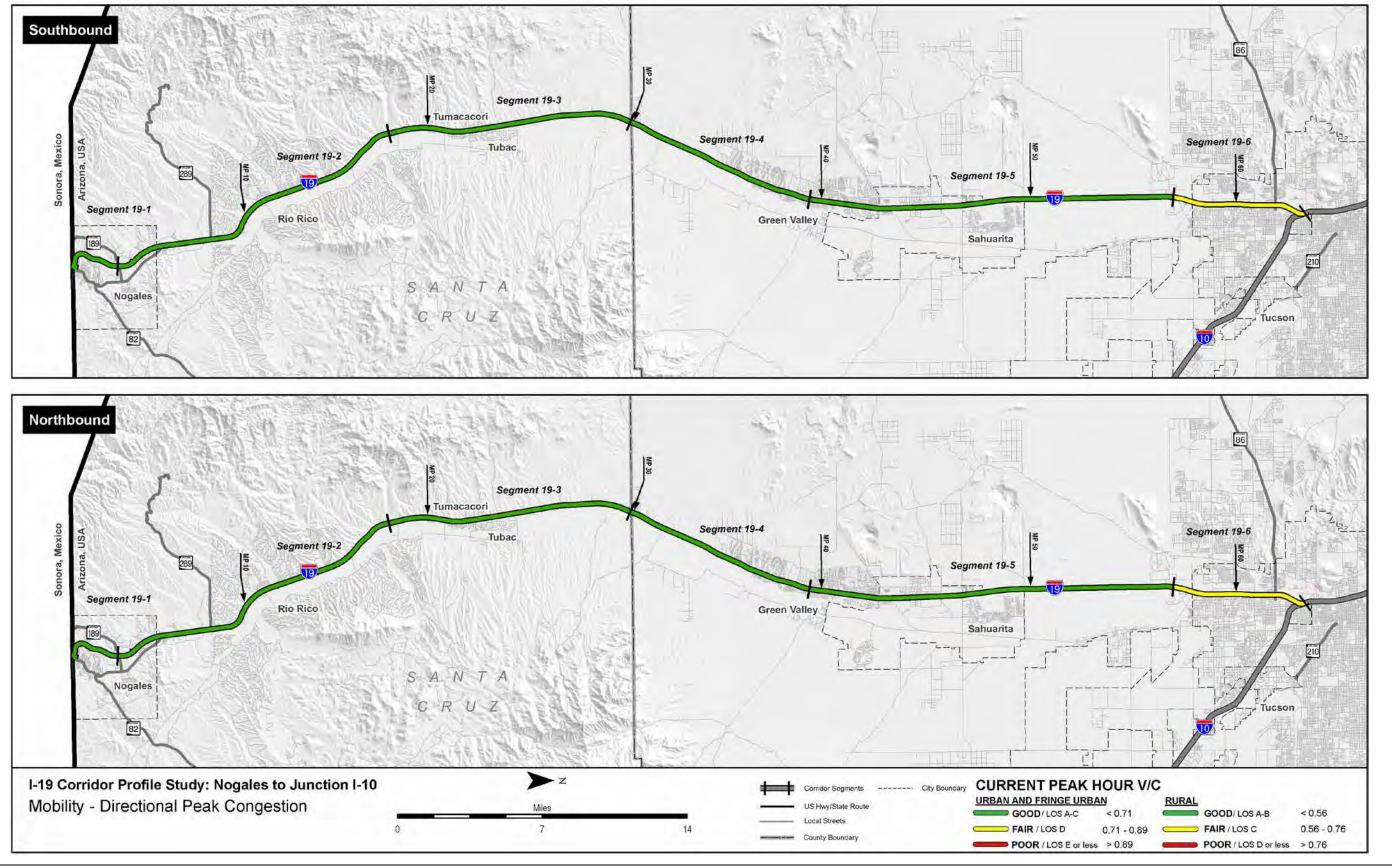


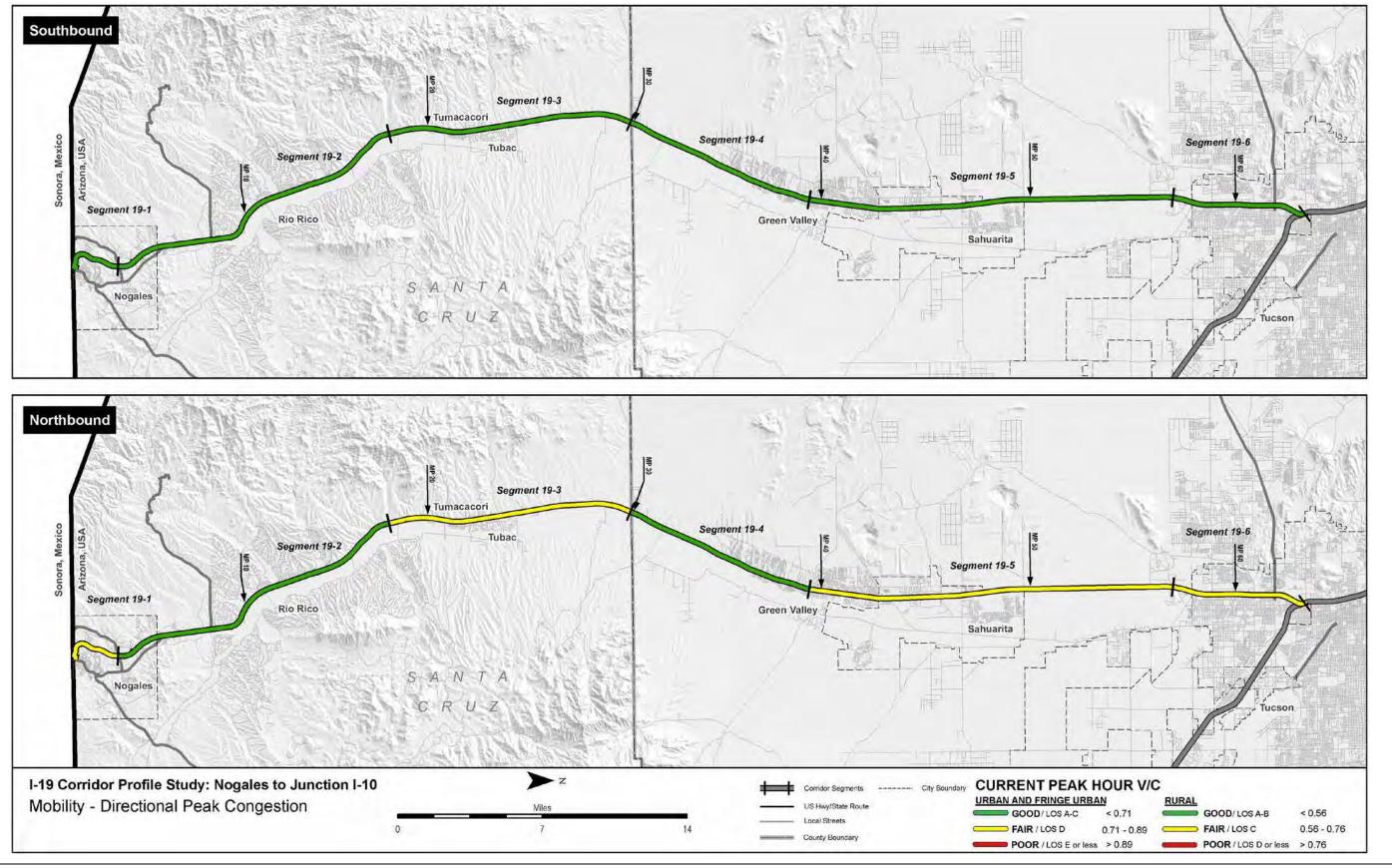


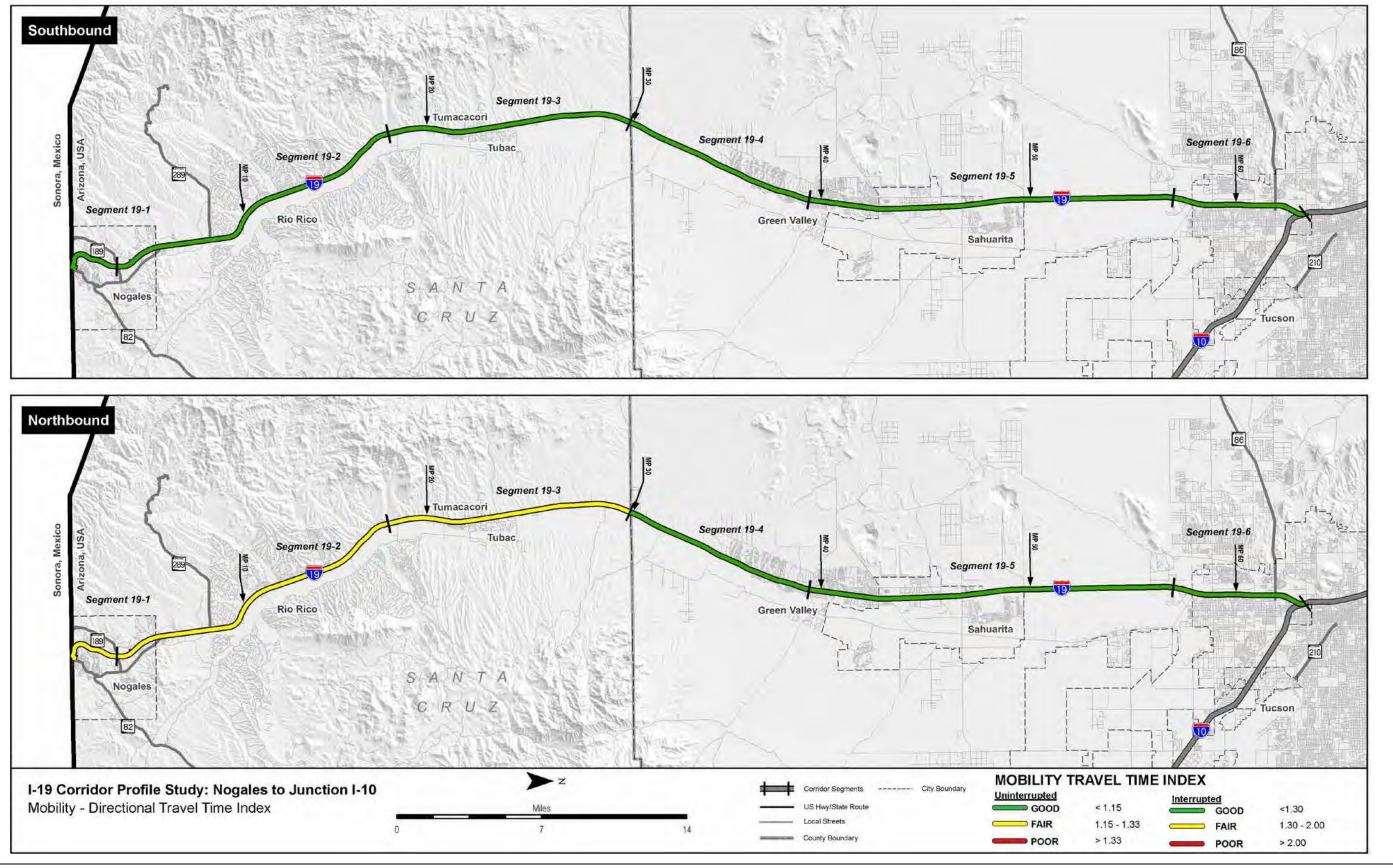

I-19 Corridor Profile Study Final Report

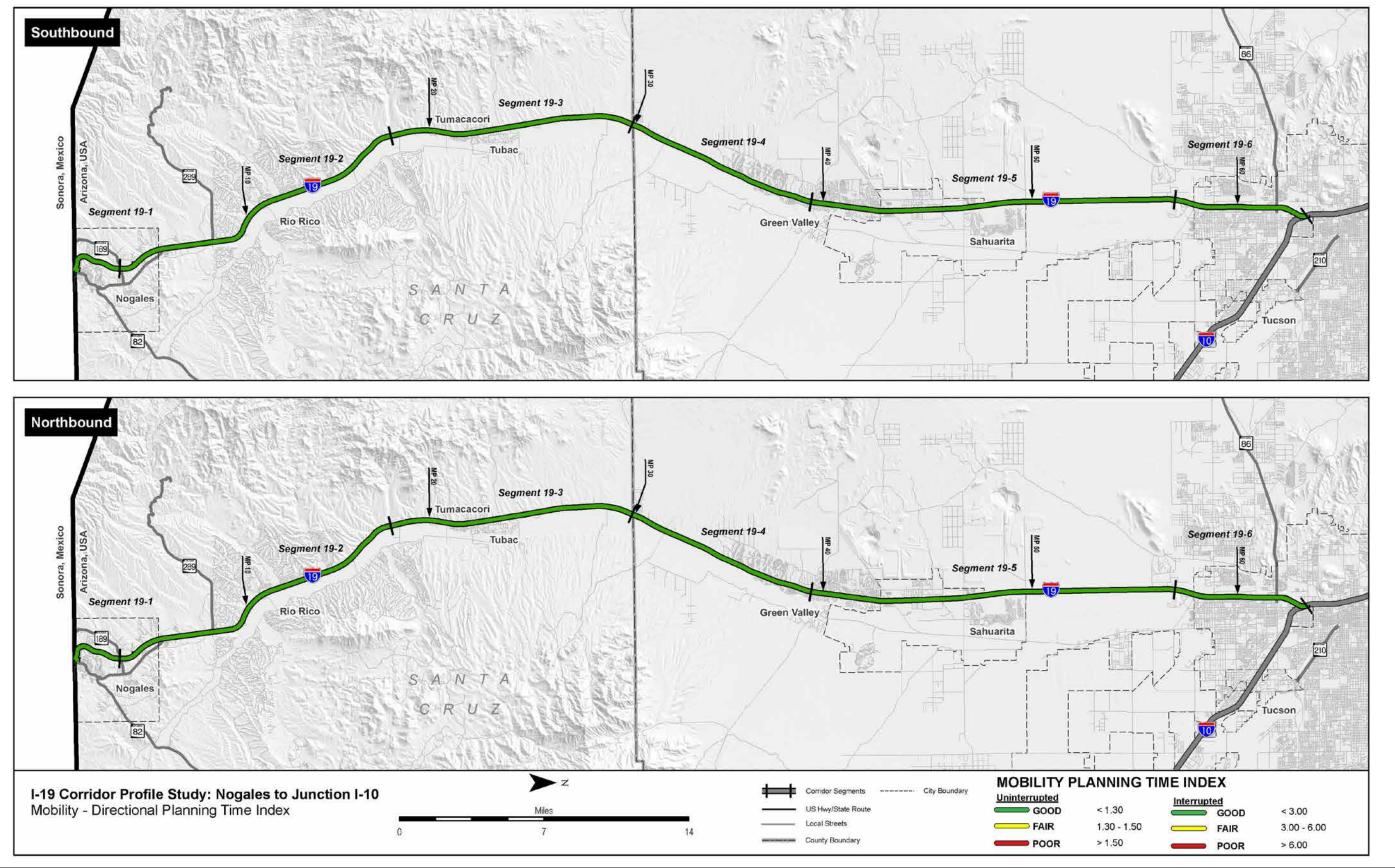


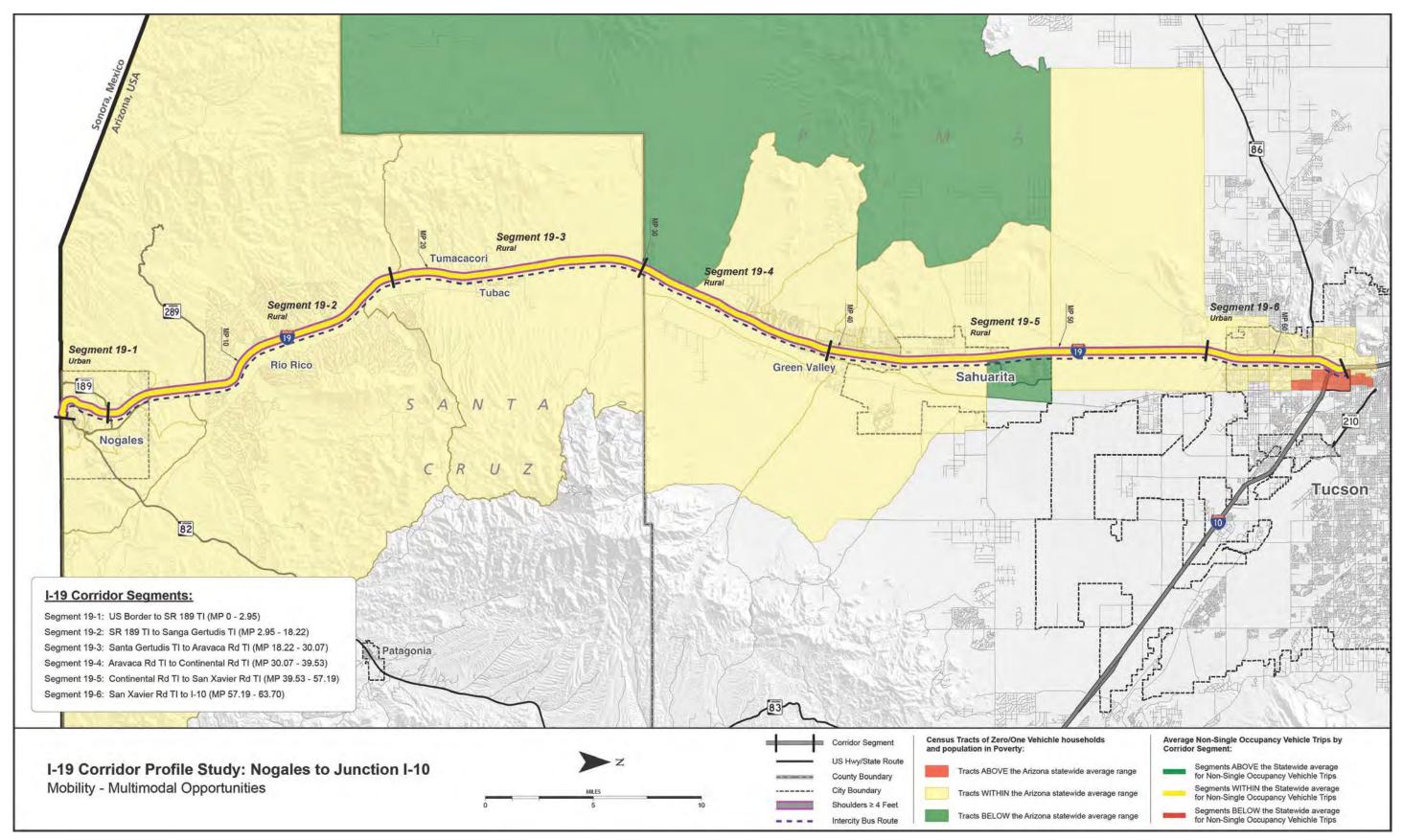


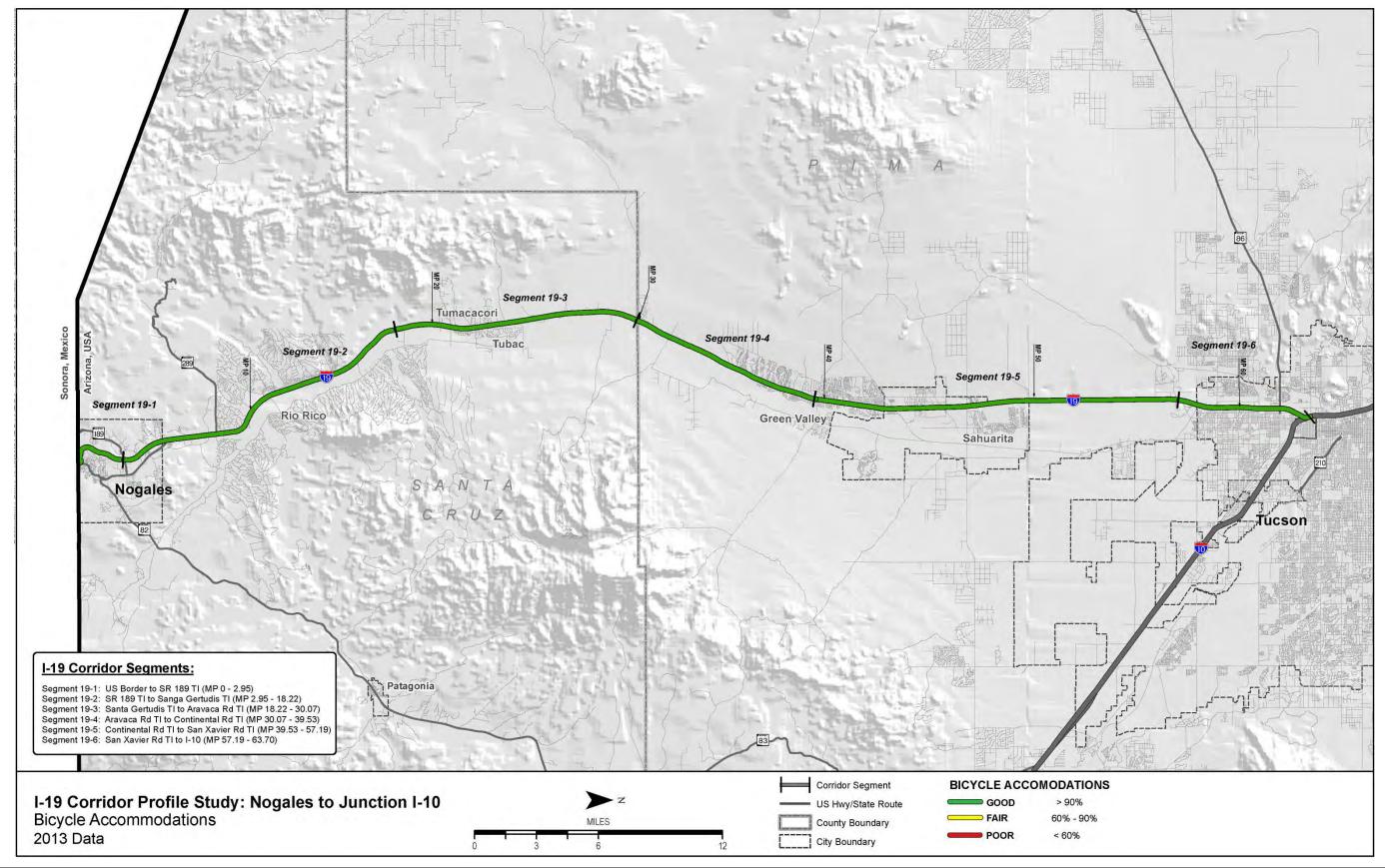


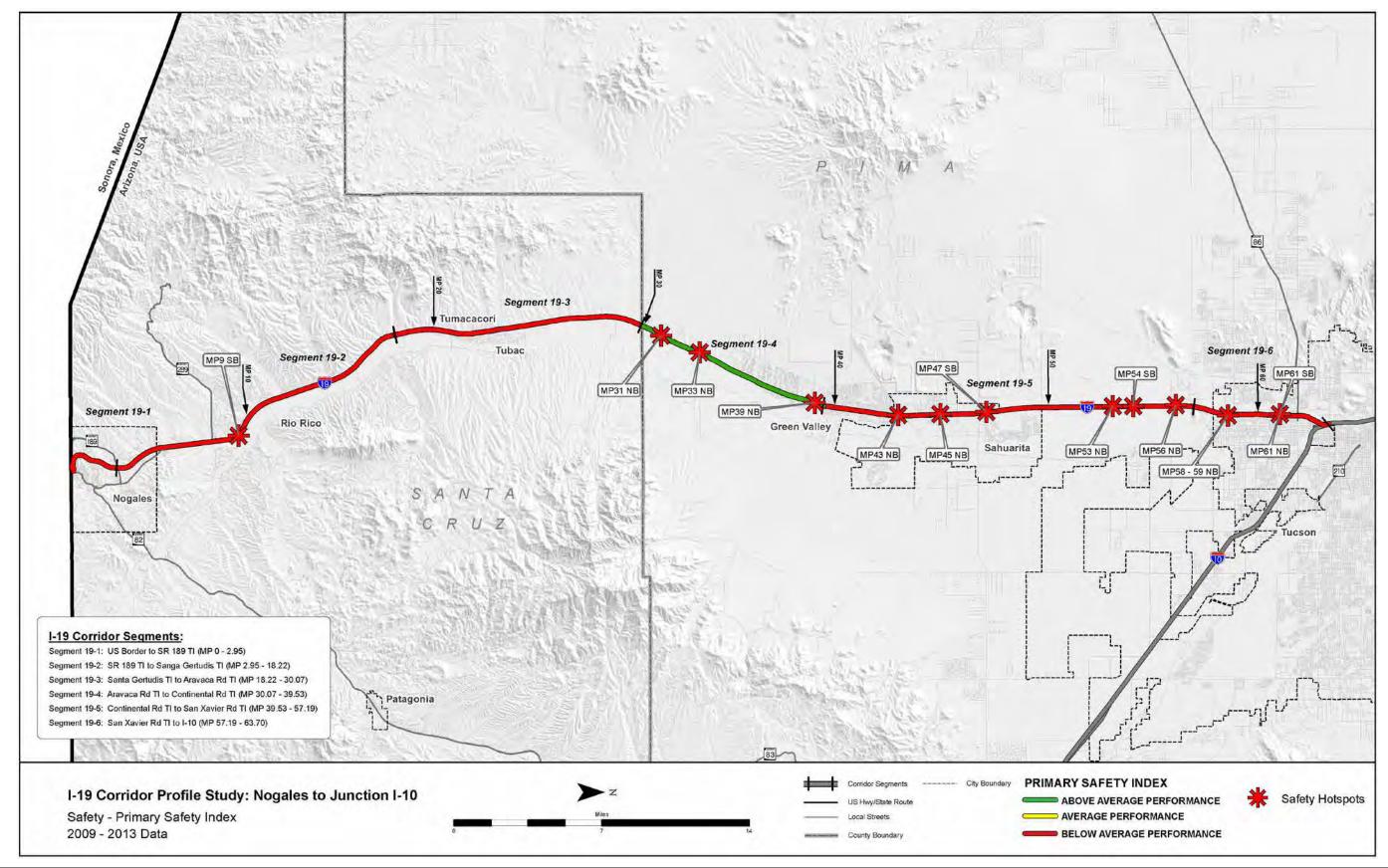


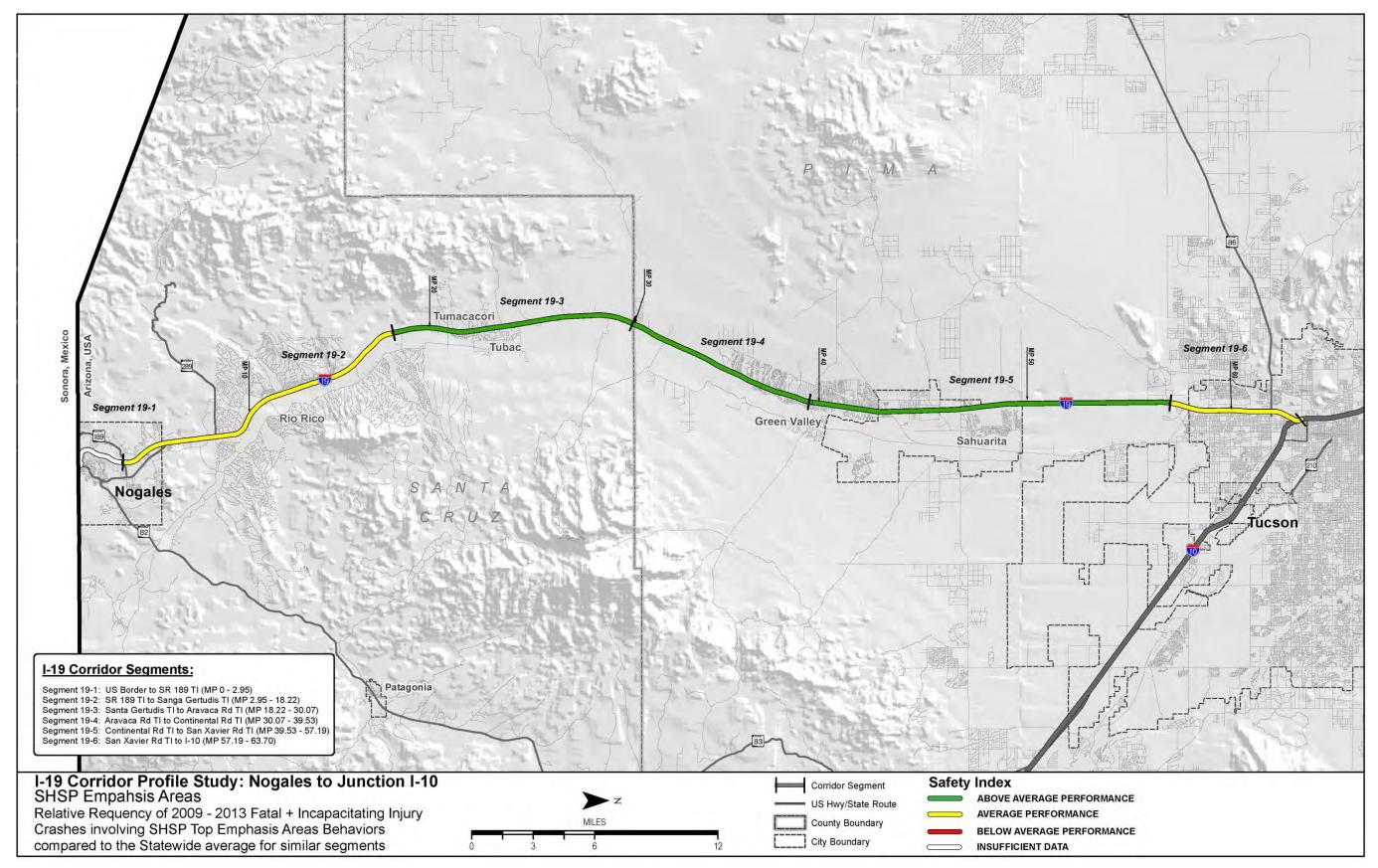

Final Report

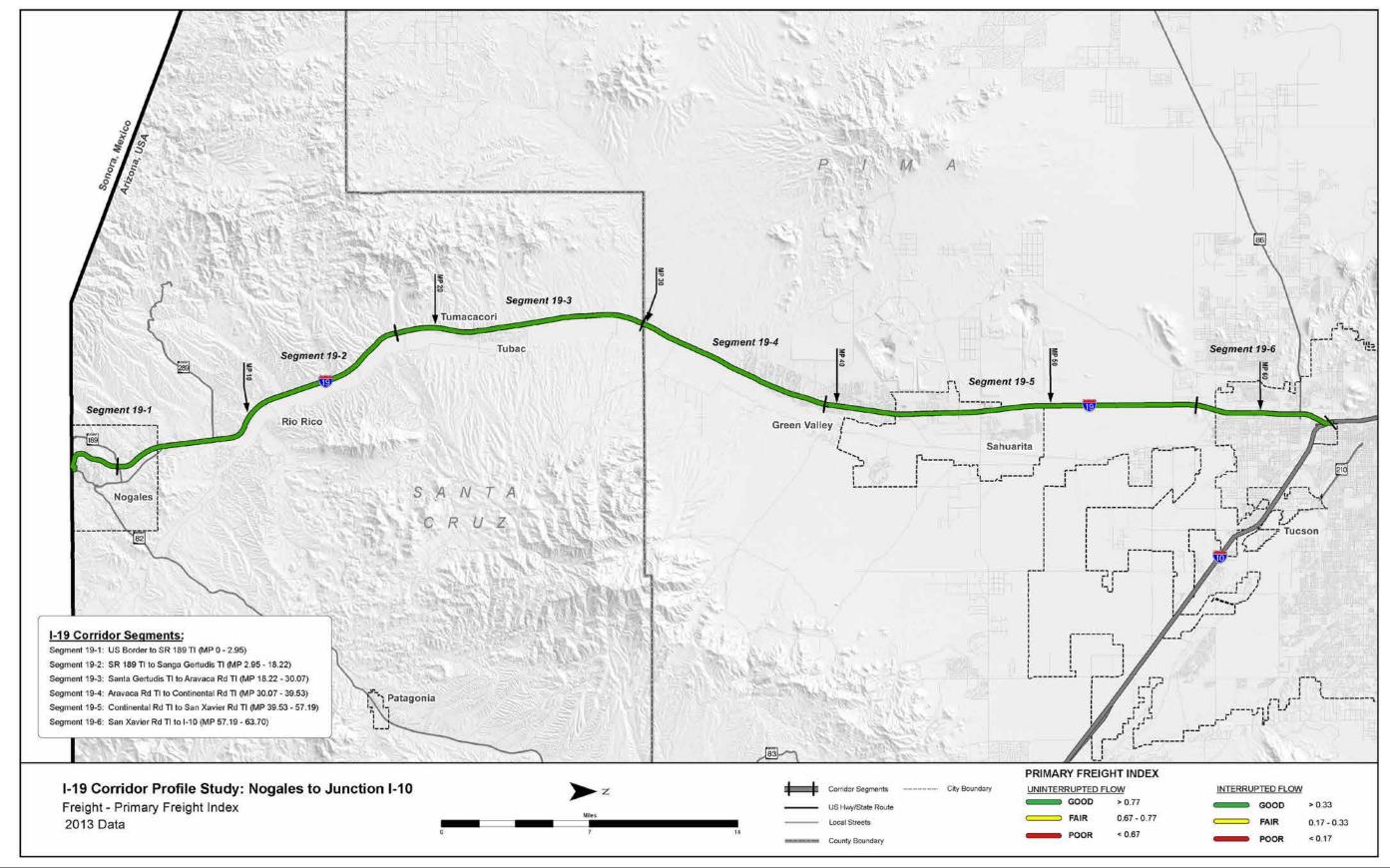


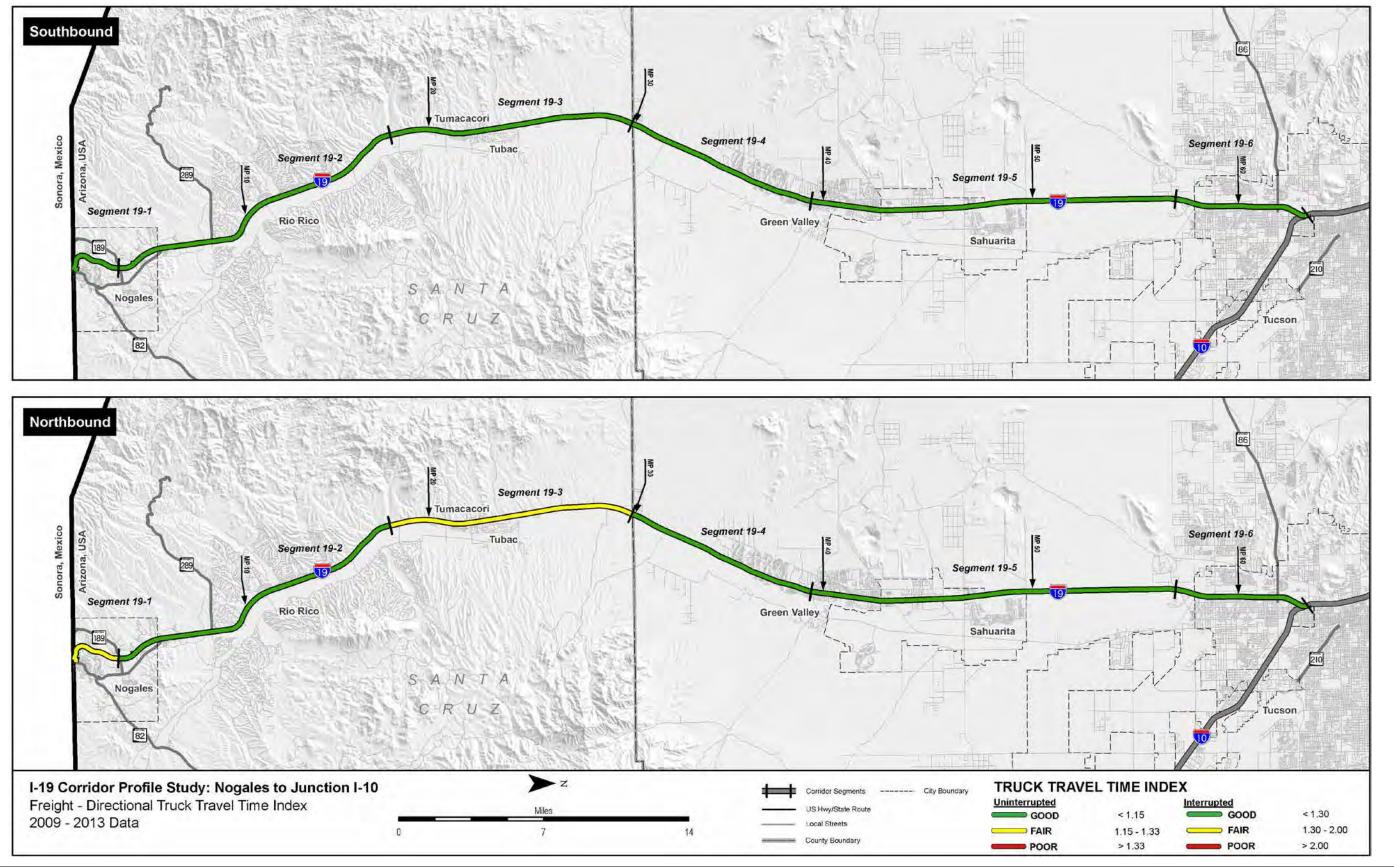


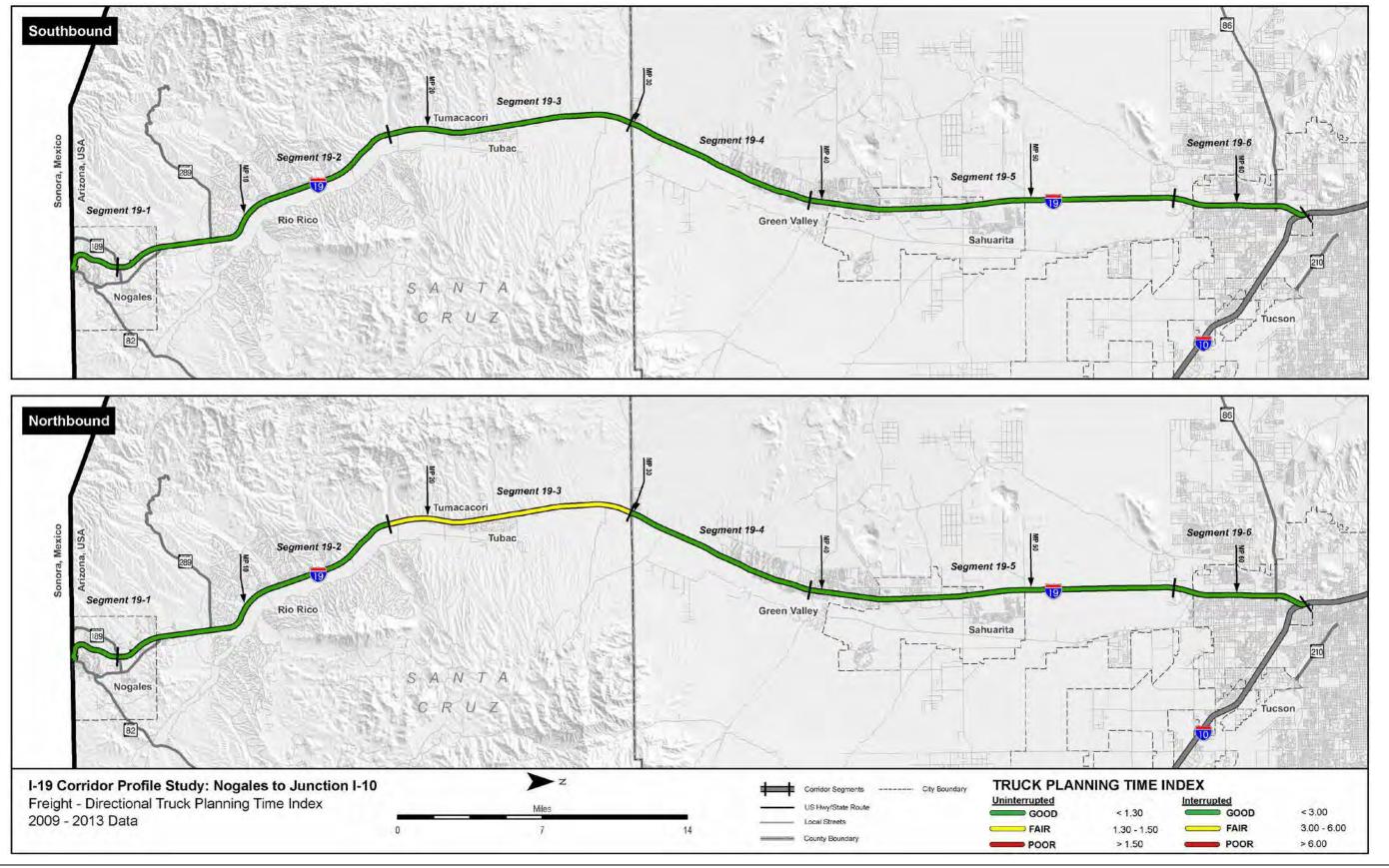


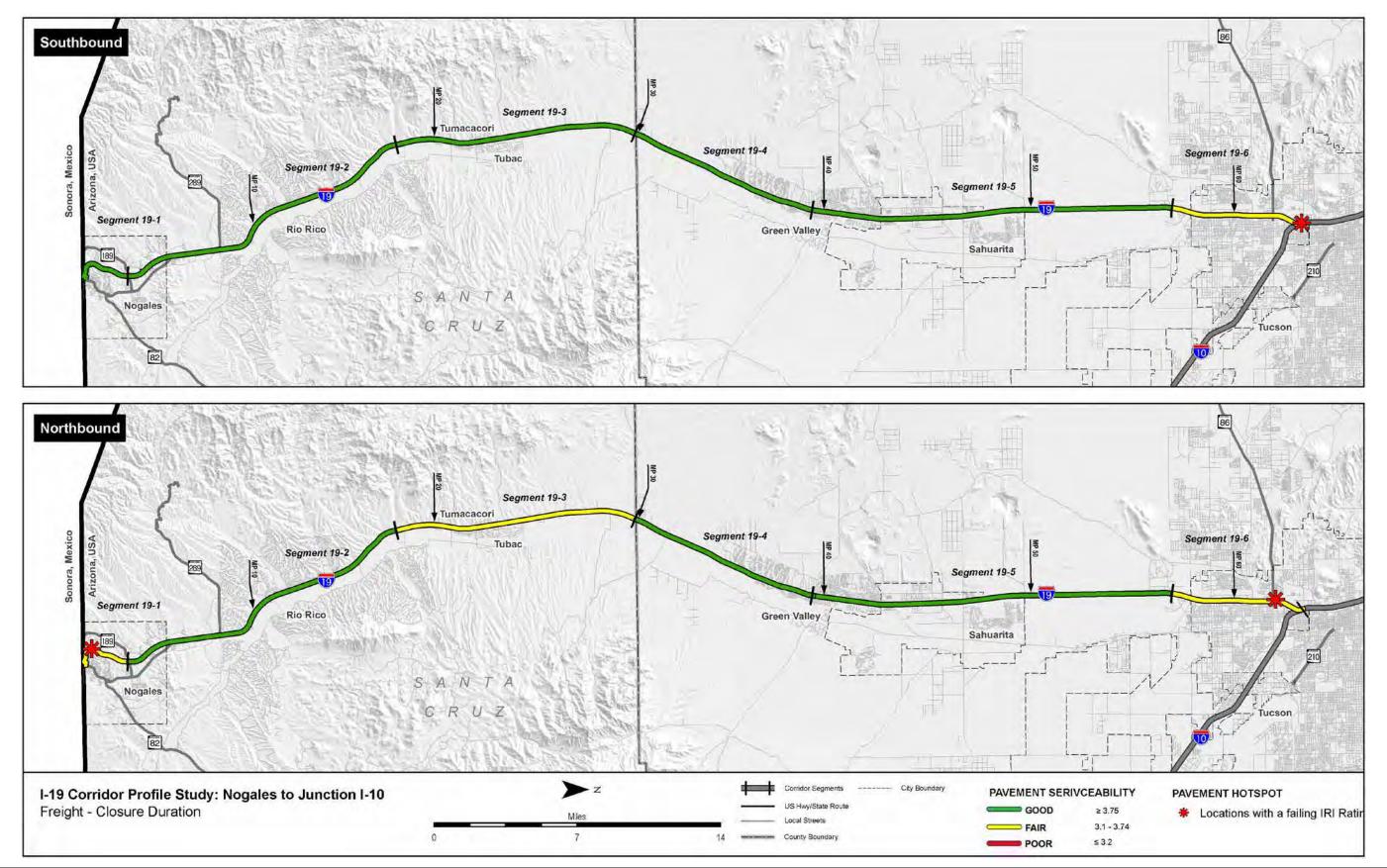


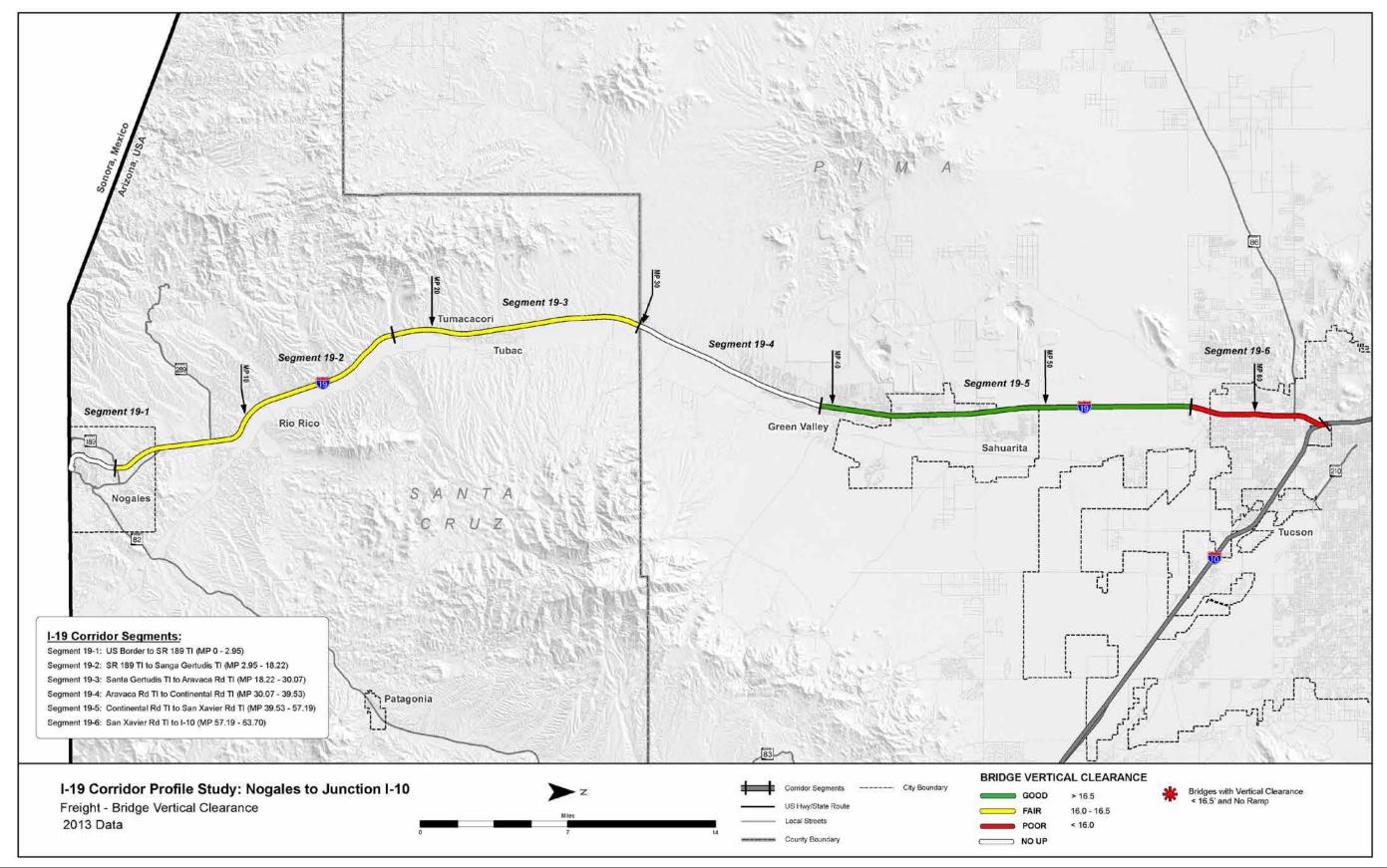


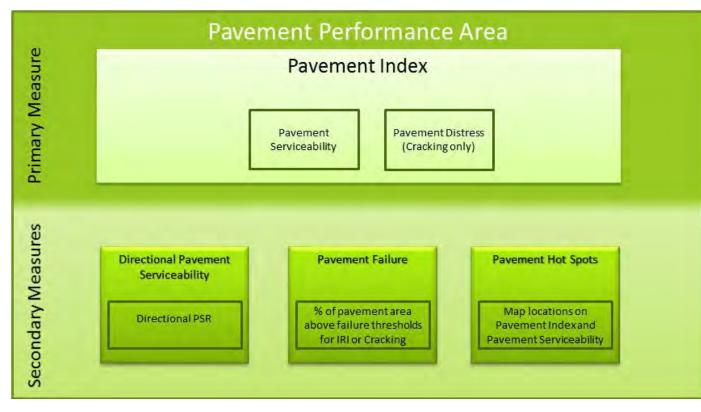












Appendix B: Performance Area Detailed Calculation Methodologies

Pavement Performance Area Calculation Methodologies

This section summarizes the approach for developing the primary and secondary performance measures in the Pavement performance area as shown in the following graphic:

This performance area is used to evaluate mainline pavement condition. Pavement condition data for ramps, frontage roads, crossroads, etc. was not included in the evaluation.

Primary Pavement Index

The Pavement Index is calculated based on the use of two pavement condition ratings from the ADOT Pavement Database. The two ratings are the International Roughness Index (IRI) and the Cracking rating. The calculation of the Pavement Index uses a combination of these two ratings.

The IRI is a measurement of the pavement roughness based on field-measured longitudinal roadway profiles. To facilitate the calculation of the index, the IRI rating was converted to a Pavement Serviceability Rating (PSR) using the following equation:

$$PSR = 5 * e^{-0.0038 * IRI}$$

The Cracking Rating is a measurement of the amount of surface cracking based on a fieldmeasured area of 1,000 square feet that serves as a sample for each mile. To facilitate the calculation of the index, the Cracking Rating was converted to a Pavement Distress Index (PDI) using the following equation:

$$PDI = 5 - (0.345 * C^{0.66})$$

Both the PSR and PDI use a 0 to 5 scale with 0 representing the lowest performance and 5 representing the highest performance. The performance thresholds for interstates and non-interstates shown in the tables below were used for the PSR and PDI.

Performance Level for Interstates	IRI (PSR)	Cracking (PDI)
Good	<75 (>3.75)	<7 (>3.75)
Fair	75 - 117 (3.20 - 3.75)	7 - 12 (3.22 - 3.75)
Poor	>117 (<3.20)	>12 (<3.22)

Performance Level for Non-Interstates	IRI (PSR)	Cracking (PDI)
Good	<94 (>3.5)	<9 (>3.5)
Fair	94 - 142 (2.9 - 3.5)	9 - 15 (2.9 - 3.5)
Poor	>142 (<2.9)	>15 (<2.9)

The PSR and PDI are calculated for each 1-mile section of roadway. If PSR or PDI falls into a poor rating (<3.2 for interstates, for example) for a 1-mile section, then the score for that 1-mile section is entirely (100%) based on the lower score (either PSR or PDI). If neither PSR or PDI fall into a poor rating for a 1-mile section, then the score for that 1-mile section is based on a combination of the lower rating (70% weight) and the higher rating (30% weight). The result is a score between 0 and 5 for each direction of travel of each mile of roadway based on a combination of both the PSR and the PDI.

The project corridor has been divided into segments. The Pavement Index for each segment is a weighted average of the directional ratings based on the number of travel lanes. Therefore, the condition of a section with more travel lanes will have a greater influence on the resulting segment Pavement Index than a section with fewer travel lanes.

Secondary Pavement Measures

Three secondary measures are evaluated:

- Directional Pavement Serviceability
- Pavement Failure
- Pavement Hot Spots

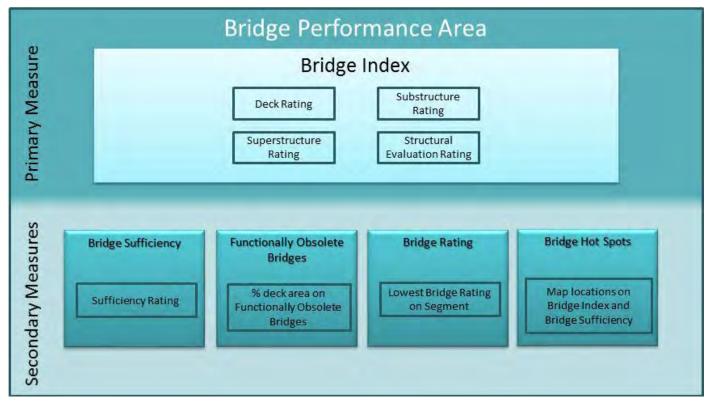
Directional Pavement Serviceability: Similar to the Pavement Index, the Directional Pavement Serviceability is calculated as a weighted average (based on number of lanes) for each segment. However, this rating only utilizes the PSR and is calculated separately for each direction of travel. The PSR uses a 0 to 5 scale with 0 representing the lowest performance and 5 representing the highest performance.

Pavement Failure: The percentage of pavement area rated above the failure thresholds for IRI or Cracking is calculated for each segment. In addition, the Standard score (z-score) is calculated for each segment.

The Standard score (z-score) is the number of standard deviations above or below the mean. Therefore, a Standard score between -0.5 and +0.5 is "average", less than -0.5 is lower (better) than average, and higher than +0.5 is above (worse) than average.

Pavement Hot Spots: The Pavement Index map identifies locations that have an IRI rating or Cracking rating that fall above the failure threshold as identified by ADOT Pavement Group. For interstates, an IRI rating above 105 or a Cracking rating above 15 will be used as the thresholds which are slightly different than the ratings shown previously. For non-interstates, an IRI rating above 142 or a Cracking rating above 15 will be used as the thresholds.

<u>Scoring</u>


Performance	Pavement Index	
Level	Interstates	Non-Interstates
Good	>3.75	>3.5
Fair	3.2 - 3.75	2.9 - 3.5
Poor	<3.2	<2.9

Performance	Directional Pavement Serviceability	
Level	Interstates	Non-Interstates
Good	>3.75	>3.5
Fair	3.2 - 3.75	2.9 - 3.5
Poor	<3.2	<2.9

Performance Level	% Pavement Failure
Good	< 5%
Fair	5% – 20%
Poor	>20%

Bridge Performance Area Calculation Methodologies

This section summarizes the approach for developing the primary and secondary performance measures in the Bridge performance area as shown in the following graphic:

This performance area is used to evaluate mainline bridges. Bridges on ramps (that do not cross the mainline), frontage roads, etc. should not be included in the evaluation. Basically, any bridge that carries mainline traffic or carries traffic over the mainline should be included and bridges that do not carry mainline traffic, run parallel to the mainline (frontage roads), or do not cross the mainline should not be included.

Primary Bridge Index

The Bridge Index is calculated based on the use of four bridge condition ratings from the ADOT Bridge Database, also known as the Arizona Bridge Information and Storage System (ABISS). The four ratings are the Deck Rating, Substructure Rating, Superstructure Rating, and Structural Evaluation Rating. The calculation of the Bridge Index uses the lowest of these four ratings.

Each of the four condition ratings use a 0 to 9 scale with 0 representing the lowest performance and 9 representing the highest performance.

The project corridor has been divided into segments and the bridges are grouped together according to the segment definitions. In order to report the Bridge Index for each corridor segment, the Bridge Index for each segment is a weighted average based on the deck area for each bridge.

Bridge Index than a smaller bridge.

Secondary Bridge Measures

Four secondary measures will be evaluated:

- Bridge Sufficiency
- Functionally Obsolete Bridges
- Bridge Rating
- Bridge Hot Spots

Bridge Sufficiency: Similar to the Bridge Index, the Bridge Sufficiency rating is calculated as a weighted average (based on deck area) for each segment. The Bridge Sufficiency rating is a scale of 0 to 100 with 0 representing the lowest performance and 100 representing the highest performance. A rating of 80 or above represents "good" performance, a rating between 50 and 80 represents "fair" performance, and a rating below 50 represents "poor" performance.

Functionally Obsolete Bridges: The percentage of total deck area in a segment that is on functionally obsolete bridges is calculated for each segment. The deck area for each bridge within each segment that has been identified as functionally obsolete is totaled and divided by the total deck area for the segment to calculate the percentage of deck area on functionally obsolete bridges for each segment.

The thresholds for this performance measure are determined based on the Standard score (zscore). The Standard score (z-score) is the number of standard deviations above or below the mean. Therefore, a Standard score between -0.5 and +0.5 is "average", less than -0.5 is lower (better) than average, and higher than +0.5 is above (worse) average.

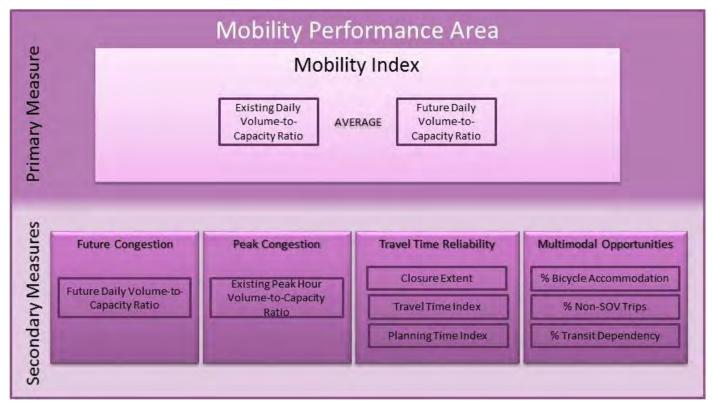
Bridge Rating: The Bridge Rating simply identifies the lowest bridge rating on each segment. This performance measure is not an average and therefore is not weighted based on the deck area. The Bridge Index identifies the lowest rating for each bridge, as described above. Each of the four condition ratings use a 0 to 9 scale with 0 representing the lowest performance and 9 representing the highest performance.

Bridge Hot Spots: The Bridge Index map identifies individual bridge locations that are identified as hot spots. Hot spots are bridges that have a single rating of 4 in any of the four ratings, or multiple ratings of 5 in the deck, substructure or superstructure ratings.

Therefore, the condition of a larger bridge will have a greater influence on the resulting segment

<u>Scoring:</u>

Performance Level	Bridge Index
Good	>6.5
Fair	5.0-6.5
Poor	<5.0


Performance Level	Sufficiency Rating
Good	>80
Fair	50-80
Poor	<50

Performance Level	Bridge Rating
Good	>6
Fair	5-6
Poor	<5

Performance Level	% Functionally Obsolete
Good	< 12%
Fair	12%-40%
Poor	>40%

Mobility Performance Area Calculation Methodologies

This section summarizes the approach for developing the primary and secondary performance measures in the Mobility performance area as shown in the following graphic:

Primary Mobility Index

The primary Mobility Index is an average of the existing daily volume-to-capacity (V/C) ratio and the future daily V/C ratio for each segment of the corridor.

Existing Daily V/C: The existing daily V/C ratio for each segment is calculated by dividing the 2014 Annual Average Daily Traffic (AADT) volume for each segment by the total Level of Service (LOS) E capacity volume for that segment

The capacity is calculated using the HERS Procedures for Estimating Highway Capacity¹. The HERS procedure incorporates HCM 2010 methodologies. The methodology includes capacity estimation procedures for multiple facility types including freeways, rural two-lane highways, multilane highways, and signalized and non-signalized urban sections.

The segment capacity is defined as a function of the number of mainline lanes, shoulder width, interrupted or uninterrupted flow facilities, terrain type, percent of truck traffic, and the designated urban or rural environment.

The AADT for each segment is calculated by applying a weighted average across the length of the segment based on the individual 24-hour volumes and distances associated with each HPMS count station within each segment.

The following example equation is used to determine the weighted average of a segment with two HPMS count locations within the corridor

((HPMS 1 Distance x HPMS 1 Volume) + (HPMS 2 Distance x HPMS 2 Volume))/Total Segment Length

For specific details regarding the HERS methodology used, refer to the Procedures for Estimating Highway Capacity, draft Technical Memorandum.

Future Daily V/C: The future daily V/C ratio for each segment is calculated by dividing the 2035 AADT volume for each segment by the 2014 LOS E capacity. The capacity volume used in this calculation is the same as is utilized in the existing daily V/C equation.

The future AADT daily volumes are generated by applying an average annual compound growth rate (ACGR) to each 2014 AADT segment volume. The following equation is used to apply the average annual compound growth rate:

The ACGR for each segment is defined by comparing the total volumes in the 2010 Arizona Travel Demand Model (AZTDM2) to the 2035 AZTDM2 traffic volumes at each existing HPMS count station location throughout the corridor. Each 2010 and 2035 segment volume is defined using the same weighted average equation described in the Existing Daily V/C section above and then summing the directional volumes for each location. The following equation is used to determine the ACGR for each segment:

Secondary Mobility Measures

Four secondary measures are evaluated:

- Future Congestion
- Peak Congestion
- Travel Time Reliability
 - o Closure Extent
 - Directional Travel Time Index
 - Directional Planning Time Index
- Multimodal Opportunities
 - o % Bicycle Accommodation
 - % Non-Single Occupancy Vehicle (SOV) Trips
 - % Transit Dependency

 $2035 \text{ AADT} = 2014 \text{ AADT} \times ((1 + ACGR)^{(2035-2014)})$

ACGR = ((2035 Volume/2010 Volume)^(1/(2035-2010))))-1

¹ HERS Support - 2011, Task 6: Procedures for Estimating Highway Capacity, draft Technical Memorandum. Cambridge Systematics. Prepared for the Federal Highway Administration. March 2013.

Future Congestion: The future daily V/C ratios for each segment in the corridor that are calculated and used in the Mobility Index as part of the overall average between Existing Daily V/C and Future Daily V/C are applied independently as a secondary measure. The methods to calculate the Future Daily V/C can be referenced in the Mobility Index section.

Peak Congestion: Peak Congestion has been defined as the peak hour V/C ratio in both directions of the corridor. The peak hour V/C ratio is calculated using the HERS method as described previously. The peak hour volume utilizes the directional AADT for each segment, which is calculated by applying a weighted average across the length of the segment based on the individual directional 24-hour volumes and distances associated with each HPMS count station within each segment. The segment capacity is defined based on the characteristics of each segment including number of lanes, terrain type, and environment, similar to the 24-hour volumes using the HERS method.

Travel Time Reliability: Travel time reliability is a secondary measure that includes three indicators. The three indicators are the number of times a piece of a corridor is closed for any specific reason, the directional Travel Time Index (TTI), and the directional Planning Time Index (PTI).

Closure Extent: The number of times a roadway is closed is documented through the HCRS dataset. Closure Extent is defined as the average number of times a particular milepost of the corridor is closed per year per mile in a specific direction of travel. The weighted average of each occurrence takes into account the distance over which a specific occurrence spans.

Thresholds that determine levels of good, fair, and poor are based on the average number of closures per mile per year within each of the identified statewide significant corridors by ADOT. The thresholds shown at the end of this section represent statewide averages across those corridors.

Directional Travel Time and Planning Time Index: In terms of overall mobility, the TTI is the relationship of the mean peak period travel time in a specific section of the corridor to the free-flow travel time in the same location. The PTI is the relationship of the 95th percentile highest travel time to the free-flow travel time (based on the posted speed limit) in a specific section of the corridor. The TTI and PTI can be converted into speed-based indices by recognizing that speed is equal to distance traveled divided by travel time. The inverse relationship between travel time and speed means that the 95th percentile highest travel time corresponds to the 5th percentile lowest speed.

Using HERE data provided by ADOT, four time periods for each data point were collected throughout the day (AM peak, mid-day, PM peak, and off-peak). Using the mean speeds and 5th percentile lowest mean speeds collected over 2014 for these time periods for each data location, four TTI and PTI calculations were made using the following formulas:

TTI = Posted Speed Limit/Mean Peak Hour Speed

PTI = Posted Speed Limit/5th Percentile Lowest Speed

The highest value of the four time periods calculation is defined as the TTI for that data point. The average TTI is calculated within each segment based on the number of data points collected. The value of the average TTI across each entry is used as the TTI for each respective segment within the corridor.

Multimodal Opportunities: Three multimodal opportunity indicators reflect the characteristics of the corridor that promote alternate modes to a single occupancy vehicle (SOV) for trips along the corridor. The three indicators include the percent bicycle accommodation, non-SOV trips, and transit dependency along the corridor.

Percent Bicycle Accommodation: For this secondary performance evaluation, outside shoulder widths are evaluated considering the roadway's context and conditions. This requires use of the roadway data that includes right shoulder widths, shoulder surface types, and speed limits, all of which are available in the following ADOT geographic information system (GIS) data sets:

- Right Shoulder Widths
- Left Shoulder Widths (for undivided roadways)
- Shoulder Surface Type (Both Left/Right)
- Speed Limit

Additionally, each segment's average AADT, estimated earlier in the Mobility performance area methodology, is used for the criteria to determine if the existing shoulder width meets the effective width.

The criteria for screening if a shoulder segment meets the recommended width criteria are as followed:

- (1) If AADT <= 1500 OR Speed Limit <= 25 miles per hour (mph): width required)
- Effective shoulder width required is 4 feet or greater
- (3) If AADT > 1500 AND Speed Limit >= 50 mph and Pavement Surface is Paved: Effective shoulder width required is 6 feet or greater

The summation of the length of the shoulder sections that meet the defined effective width criteria, based on criteria above, is divided by the segment's total length to estimate the percent of the segment that accommodates bicycles as illustrated at the end of this section. If shoulder data is not available or appears erroneous, field measurements can substitute for the shoulder data.

Percent Non-SOV Trips: The percentage of non-SOV trips over distances less than 50 miles gives an indication of travel patterns along a section of the corridor that could benefit from additional multimodal options in the future.

Thresholds that determine levels of good, fair, and poor are based on the percent non-SOV trips within each of the identified statewide significant corridors by ADOT. The thresholds shown at the end of this section represent statewide averages across those corridors.

The segment's general purpose lane can be shared with bicyclists (no effective shoulder

(2) If AADT > 1500 AND Speed Limit between (25 - 50 mph) AND Pavement Surface is Paved:

Percent Transit Dependency: 2008-2012 U.S. Census American Community Survey tract and state level geographic data and attributes from the tables B08201 (Number of Vehicles Available by Household Size) and B17001 (Population in Poverty within the Last 12 Months) were downloaded with margins of error included from the Census data retrieval application Data Ferret. Population ranges for each tract were determined by adding and subtracting the margin of error to each estimate in excel. The tract level attribute data was then joined to geographic tract data in GIS. Only tracts within a one mile buffer of each corridor are considered for this evaluation.

Tracts that have a statistically significantly larger number of either people in poverty or households with only one or no vehicles available than the state average are considered potentially transit dependent.

Example: The state average for zero or one vehicles households (HHs) is between 44.1% and 45.0%. Tracts which have the lower bound of their range above the upper bound of the state range have a greater percentage of zero/one vehicle HHs than the state average. Tracts that have their upper bound beneath the lower bound of the state range have a lesser percentage of zero/one vehicles HHs than the state average. All other tracts that have one of their bounds overlapping with the state average cannot be considered statistically significantly different because there is a chance the value is actually the same.

In addition to transit dependency, the following attributes are added to the Multimodal Opportunities map based on available data.

- Shoulder width throughout the corridor based on 'Shoulder Width' GIS dataset provided by ADOT
- Intercity bus routes
- Multiuse paths within the corridor right-of-way, if applicable

Scoring:

Volume-to-Capacity Ratios			
	Urban and Fringe Urban		
Good - LOS A-C	V/C ≤ 0.71	*Note - ADOT Roadway Design Standards indicate	
Fair - LOS D	V/C > 0.71 & ≤ 0.89	Urban and Fringe Urban roadways should be	
Poor - LOS E or less	V/C > 0.89	designed to level of service C or better	
Rural			
Good - LOS A-B	V/C ≤ 0.56	*Note - ADOT Roadway Design Standards indicate	
Fair - LOS C	V/C > 0.56 & ≤ 0.76	Rural roadways should be designed to level of	
Poor - LOS D or less	V/C > 0.76	service B or better	

Performance Level	Closure Extent
Good	<u><</u> 0.22
Fair	> 0.22 & ≤ 0.62
Poor	V/C > 0.62

Performance Level	TTI on Uninterrupted Flow Facilities
Good	< 1.15
Fair	<u>></u> 1.15 & < 1.33
Poor	<u>></u> 1.33

Performance Level	TTI on Interrupted Flow Facilit
Good	< 1.30
Fair	<u>></u> 1.30 & < 1.2.00
Poor	<u>></u> 2.00

Performance Level	PTI on Uninterrupted Flow Facilities
Good	< 1.30
Fair	<u>></u> 1.30 & < 1.50
Poor	<u>></u> 1.50

Performance Level	PTI Interrupted Flow Facilitie
Good	< 3.00
Fair	<u>></u> 3.00 & < 6.00
Poor	<u>></u> 6.00

Performance Level		Percent Bicycle Accommo
	Good	> 90%
	Fair	> 60% & ≤ 90%
	Poor	< 60%

Performance Level	Percent Non-SOV Trips
Good	<u>></u> 17%
Fair	> 11% & ≤ 17%
Poor	< 11%

Performance Level	Percent Transit Dependency	
Good Tracts with both zero and one veh household population in poverty percentages below the statewide a		
Fair	Tracts with either zero and one vehicle household or population in poverty percentages below the statewide average	
Poor	Tracts with both zero and one vehicle household and population in poverty percentages above the statewide average	

ies	

¢	s	

odation	

Safety Performance Area Calculation Methodologies

This section summarizes the approach for developing the primary and secondary performance measures in the Safety performance area as shown in the following graphic:

Primary Safety Index

The Safety Index is a safety performance measure based on the bi-directional (i.e., both directions combined) frequency and rate of fatal and incapacitating injury crashes, the relative cost of those types of crashes, and crash occurrences on similar roadways in Arizona. According to ADOT's 2010 Highway Safety Improvement Program Manual, fatal crashes have an estimated cost that is 14.5 times the estimated cost of incapacitating injury crashes (\$5.8 million compared to \$400,000).

The Combined Safety Score (CSS) is an interim measure that combines fatal and incapacitating injury crashes into a single value. The CSS is calculated using the following generalized formula:

CSS = 14.5 * (Normalized Fatal Crash Rate + Frequency) + (Normalized Incapacitating Injury Crash Rate + Frequency)

Because crashes vary depending on the operating environment of a particular roadway, statewide CSS values were developed for similar operating environments defined by functional classification, urban vs. rural setting, number of travel lanes, and traffic volumes. To determine the Safety Index of a particular segment, the segment CSS is compared to the average statewide CSS for the similar statewide operating environment.

The Safety Index is calculated using the following formula:

The average annual Safety Index for a segment is compared to the statewide similar operating environment annual average, with one standard deviation from the statewide average forming the scale break points.

The more a particular segment's Safety Index value is below the statewide similar operating environment average, the better the safety performance is for that particular segment as a lower value represents fewer crashes.

Scoring:

The scale for rating the Safety Index depends on the operating environments selected, as shown in the table below.

	Safety Index (Overall & Directional)	
Similar Operating Environment	Lower Limit of Average*	Upper Limit of Average*
2 or 3 Lane Undivided Highway	0.94	1.06
2 or 3 or 4 Lane Divided Highway	0.77	1.23
4 or 5 Lane Undivided Highway	0.80	1.20
6 Lane Highway	0.56	1.44
Rural 4 Lane Freeway with Daily Volume < 25,000	0.73	1.27
Rural 4 Lane Freeway with Daily Volume > 25,000	0.68	1.32
Urban 4 Lane Freeway	0.79	1.21
Urban or Rural 6 Lane Freeway	0.82	1.18
Urban > 6 Lane Freeway	0.80	1.20

* Lower/upper limit of Average calculated as one standard deviation below/above the Mean

Some corridor segments may have a very low number of total fatal and incapacitating injury crashes. Low crash frequencies (i.e., a small sample size) can translate into performance ratings that can be unstable. In some cases, a change in crash frequency of one crash (one additional crash or one less crash) could result in a change in segment performance of two levels. To avoid reliance on performance ratings where small changes in crash frequency result in large changes in performance, the following two criteria were developed to identify segments with "insufficient data" for assessing performance for the Safety Index. Both of these criteria must be met for a segment to have "insufficient data" to reliably rate the Safety Index performance:

- less than five crashes over the five-year analysis period; AND

Safety Index = Segment CSS / Statewide Similar Operating Environment CSS

• If the crash sample size (total fatal plus incapacitating injury crashes) for a given segment is

• If a change in one crash results in a change in segment performance by two levels (i.e., a change from below average to above average performance or a change from above average to below average frequency), the segment has "insufficient data" and Safety Index performance ratings are unreliable.

Secondary Safety Measures

The Safety performance area has four secondary measures related to fatal and incapacitating injury crashes:

- Directional Safety Index
- Strategic Highway Safety Plan (SHSP) Behavior Emphasis Areas
- Crash Unit Types
- Safety Hot Spots

Directional Safety Index: The Direction Safety Index shares the same calculation procedure and thresholds as the Safety Index. However, the measure is based on the directional frequency and rate of fatal and incapacitating injury crashes.

Similar to the Safety Index, the segment CSS is compared to the average statewide CSS for the similar statewide operating environment. The Directional Safety Index follows the lead of the Safety Index in terms of "insufficient data" status. If the Safety Index meets both criteria for "insufficient data", the Directional Safety Index should also be changed to "insufficient data". If the Safety Index does not meet both criteria for "insufficient data", the Directional Safety Index would also not change to say "insufficient data"

SHSP Behavior Emphasis Areas: ADOT's 2014 SHSP identifies several emphasis areas for reducing fatal and incapacitating injury crashes. The top five SHSP emphasis areas relate to the following driver behaviors:

- Speeding and aggressive driving
- Impaired driving
- Lack of restraint usage
- Lack of motorcycle helmet usage
- Distracted driving

To develop a performance measure that reflects these five emphasis areas, the percentage of total fatal and incapacitating injury crashes that involves at least one of the emphasis area driver behaviors on a particular segment is compared to the statewide average percentage of crashes involving at least one of the emphasis area driver behaviors on roads with similar operating environments in a process similar to how the Safety Index is developed.

To increase the crash sample size for this performance measure, the five behavior emphasis areas are combined to identify fatal and incapacitating injury crashes that exhibit one or more of the behavior emphasis areas.

The SHSP behavior emphasis areas performance is calculated using the following formula:

% Crashes Involving SHSP Behavior Emphasis Areas = Segment Crashes Involving SHSP Behavior Emphasis Areas / Total Segment Crashes

The percentage of total crashes involving SHSP behavior emphasis areas for a segment is compared to the statewide percentages on roads with similar operating environments. One standard deviation from the statewide average percentage forms the scale break points.

When assessing the performance of the SHSP behavior emphasis areas, the more the frequency of crashes involving SHSP behavior emphasis areas is below the statewide average implies better levels of segment performance. Thus, lower values are better, similar to the Safety Index.

Scoring:

The scale for rating the SHSP behavior emphasis areas performance depends on the crash history on similar statewide operating environments, as shown in the table below:

	Crashes in SHSP Top 5 Emphasis Areas		
Similar Operating Environment	Lower Limit of Average*	Upper Limit of Average*	
2 or 3 Lane Undivided Highway	51.2%	57.5%	
2 or 3 or 4 Lane Divided Highway	44.4%	54.4%	
4 or 5 Lane Undivided Highway	42.4%	51.1%	
6 Lane Highway	35.3%	46.5%	
Rural 4 Lane Freeway with Daily Volume < 25,000	42.8%	52.9%	
Rural 4 Lane Freeway with Daily Volume > 25,000	40.8%	57.1%	
Urban 4 Lane Freeway	49.1%	59.4%	
Urban or Rural 6 Lane Freeway	33.5%	57.2%	
Urban > 6 Lane Freeway	42.6%	54.8%	

* Lower/upper limit of Average calculated as one standard deviation below/above the Mean

The SHSP behavior emphasis areas secondary safety performance measure for the Safety performance area includes proportions of specific types of crashes within the total fatal and incapacitating injury crash frequencies. This more detailed categorization of fatal and incapacitating injury crashes can result in low crash frequencies (i.e., a small sample size) that translate into performance ratings that can be unstable. In some cases, a change in crash frequency of one crash (one additional crash or one less crash) could result in a change in segment performance of two levels. To avoid reliance on performance ratings where small changes in crash frequency result in large changes in performance, the following criteria were developed to identify segments with "insufficient data" for assessing performance for the SHSP behavior emphasis areas secondary safety performance measure. If any of these criteria are met for a segment, that segment has "insufficient data" to reliably rate the SHSP behavior emphasis areas performance:

- If the crash sample size (total fatal plus incapacitating injury crashes) for a given segment is less than five crashes over the five-year analysis period, the segment has "insufficient data" and performance ratings are unreliable. OR
- If a change in one crash results in a change in segment performance by two levels (i.e., a change from below average to above average performance or a change from above average to below average frequency), the segment has "insufficient data" and performance ratings are unreliable. OR
- If the corridor average segment crash frequency for the SHSP behavior emphasis areas performance measure is less than two crashes over the five-year analysis period, the entire SHSP behavior emphasis areas performance measure has "insufficient data" and performance ratings are unreliable.

Crash Unit Type Emphasis Areas: ADOT's SHSP also identifies emphasis areas that relate to the following "unit-involved" crashes:

- Heavy vehicle (trucks)-involved crashes
- Motorcycle-involved crashes
- Non-motorized traveler (pedestrians and bicyclists)-involved crashes

To develop a performance measure that reflects the aforementioned crash unit type emphasis areas, the percentage of total fatal and incapacitating injury crashes that involves a given crash unit type emphasis area on a particular segment is compared to the statewide average percentage of crashes involving that same crash unit type emphasis area on roads with similar operating environments in a process similar to how the Safety Index is developed.

The SHSP crash unit type emphasis areas performance is calculated using the following formula:

% Crashes Involving Crash Unit Type = Segment Crashes Involving Crash Unit Type / Total Segment Crashes

The percentage of total crashes involving crash unit types for a segment is compared to the statewide percentages on roads with similar operating environments. One standard deviation from the statewide average percentage forms the scale break points.

When assessing the performance of the crash unit types, the more the frequency of crashes involving crash unit types is below the statewide average implies better levels of segment performance. Thus, lower values are better, similar to the Safety Index. The scale for rating the unit-involved crash performance depends on the crash history on similar statewide operating environments, as shown in the following tables.

Scoring:

	Crashes Involving Trucks	
Similar Operating Environment	Lower Limit of Average*	Upper Limit of Average*
2 or 3 Lane Undivided Highway	5.2%	7.1%
2 or 3 or 4 Lane Divided Highway	3.5%	7.3%
4 or 5 Lane Undivided Highway	6.1%	9.6%
6 Lane Highway	0.3%	8.7%
Rural 4 Lane Freeway with Daily Volume < 25,000	13.2%	17.0%
Rural 4 Lane Freeway with Daily Volume > 25,000	7.2%	12.9%
Urban 4 Lane Freeway	6.8%	10.9%
Urban or Rural 6 Lane Freeway	6.2%	11.0%
Urban > 6 Lane Freeway	2.5%	6.0%

* Lower/upper limit of Average calculated as one standard deviation below/above the Mean

	Crashes Involvi	ng Motorcycles
Similar Operating Environment	Lower Limit of Average*	Upper Limit of Average*
2 or 3 Lane Undivided Highway	18.5%	26.5%
2 or 3 or 4 Lane Divided Highway	16.3%	26.3%
4 or 5 Lane Undivided Highway	6.4%	9.4%
6 Lane Highway	0.0%	20.0%
Rural 4 Lane Freeway with Daily Volume < 25,000	5.0%	8.5%
Rural 4 Lane Freeway with Daily Volume > 25,000	7.7%	17.1%
Urban 4 Lane Freeway	9.3%	11.5%
Urban or Rural 6 Lane Freeway	6.7%	12.9%
Urban > 6 Lane Freeway	12.6%	20.5%

* Lower/upper limit of Average calculated as one standard deviation below/above the Mean

		g Non-Motorized elers
Similar Operating Environment	Lower Limit of Average*	Upper Limit of Average*
2 or 3 Lane Undivided Highway	2.2%	4.2%
2 or 3 or 4 Lane Divided Highway	2.4%	4.5%
4 or 5 Lane Undivided Highway	4.7%	7.9%
6 Lane Highway	8.4%	17.4%
Rural 4 Lane Freeway with Daily Volume < 25,000	1.7%	2.5%
Rural 4 Lane Freeway with Daily Volume > 25,000	0.0%	0.0%
Urban 4 Lane Freeway	4.8%	10.3%
Urban or Rural 6 Lane Freeway	0.9%	6.7%
Urban > 6 Lane Freeway	0.5%	1.5%

* Lower/upper limit of Average calculated as one standard deviation below/above the Mean

The crash unit types have the same "insufficient data" criteria as the SHSP behavior emphasis areas.

Safety Hot Spots: A hot spot analysis was conducted that identified abnormally high concentrations of fatal and incapacitating injury crashes along the study corridor by direction of travel. The identification of crash concentrations involves a GIS-based function known as "kernel density analysis". This measure is mapped for graphical display purposes with the Directional Safety Index but is not included in the Safety performance area rating calculations.

Freight Performance Area Calculation Methodologies

This section summarizes the approach for developing the primary and secondary performance measures in the Freight performance area as shown in the following graphic:

Primary Freight Index

The Freight Index is a reliability performance measure based on the planning time index for truck travel. The industry standard definition for the Truck Planning Time Index (TPTI) is the ratio of total travel time needed for 95% on-time arrival to free-flow travel time. The TPTI reflects the extra buffer time needed for on-time delivery while accounting for non-recurring delay. Non-recurring delay refers to unexpected or abnormal delay due to closures or restrictions resulting from circumstances such as crashes, inclement weather, and construction activities.

The TPTI can be converted into a speed-based index by recognizing that speed is equal to distance traveled divided by travel time. The inverse relationship between travel time and speed means that the 95th percentile highest travel time corresponds to the 5th percentile lowest speed. The speedbased TPTI is calculated using the following formula:

TPTI = Free-Flow Truck Speed / Observed 5th Percentile Lowest Truck Speed

Observed 5th percentile lowest truck speeds are available in the 2014 American Digital Cartography, Inc. HERE (formerly NAVTEQ) database to which ADOT has access. The free-flow truck speed is assumed to be 65 miles per hour or the posted speed, whichever is less. This upper limit of 65 mph accounts for governors that trucks often have that restrict truck speeds to no more than 65 mph, even when the speed limit may be higher.

For each corridor segment, the TPTI is calculated for each direction of travel and then averaged to create a bi-directional TPTI. When assessing performance using TPTI, the higher the TPTI value is above 1.0, the more buffer time is needed to ensure on-time delivery.

The Freight Index is calculated using the following formula to invert the overall TPTI:

Freight Index = 1 / Bi-directional TPTI

Inversion of the TPTI allows the Freight Index to have a scale where the higher the value, the better the performance, which is similar to the directionality of the scales of most of the other primary measures. This Freight Index scale is based on inverted versions of TPTI scales created previously by ADOT. The scale for rating the Freight Index differs between uninterrupted and interrupted flow facilities.

Secondary Freight Measures

The Freight performance area includes five secondary measures that provide an in-depth evaluation of the different characteristics of freight performance:

- Recurring Delay (Directional TTTI)
- Non-Recurring Delay (Directional TPTI)
- **Closure Duration**
- Bridge Vertical Clearance
- Bridge Vertical Clearance Hot Spots

Recurring Delay (Directional TTTI): The performance measure for recurring delay is the Directional Truck Travel Time Index (TTTI). The industry standard definition for TTTI is the ratio of average peak period travel time to free-flow travel time. The TTTI reflects the extra time spent in traffic during peak times due to recurring delay. Recurring delay refers to expected or normal delay due to roadway capacity constraints or traffic control devices.

Similar to the TPTI, the TTTI can be converted into a speed-based index by recognizing that speed is equal to distance traveled divided by travel time. The speed-based TTTI can be calculated using the following formula:

Observed average peak period truck speeds are available in the 2014 American Digital Cartography, Inc. HERE (formerly NAVTEQ) database to which ADOT has access. The free-flow truck speed is assumed to be 65 mph or the posted speed, whichever is less.

TTTI = Free-Flow Truck Speed / Observed Average Peak Period Truck Speed

For each corridor segment, the TTTI is calculated for each direction of travel. With the TTTI, the higher the TTTI value is above 1.0, the more time is spent in traffic during peak times. TTTI values are generally lower than TPTI values. The Directional TTTI scale is based on TTTI scales created previously by ADOT.

Non-Recurring Delay (Directional TPTI): The performance measure for non-recurring delay is the Directional TPTI. Directional TPTI is calculated as described previously as an interim step in the development of the Freight Index.

For each corridor segment, the TPTI is calculated for each direction of travel. With the TPTI, the higher the TPTI value is above 1.0, the more buffer time is needed to ensure on-time delivery.

Closure Duration: This performance measure related to road closures is average roadway closure (i.e., full lane closure) duration time in minutes. There are three main components to full closures that affect reliability – frequency, duration, and extent. In the freight industry, closure duration is the most important component because trucks want to minimize travel time and delay.

Data on the frequency, duration, and extent of full roadway closures on the ADOT State Highway System is available for 2010-2014 in the HCRS database that is managed and updated by ADOT.

The average closure duration in a segment – in terms of the average time a milepost is closed per mile per year on a given segment – is calculated using the following formula:

Closure Duration = Sum of Segment (Closure Clearance Time * Closure Extent) / Segment Length

The segment closure duration time in minutes can then be compared to statewide averages for closure duration in minutes, with one-half standard deviation from the average forming the scale break points. The scale for rating closure duration in minutes is found at the end of this section.

Bridge Vertical Clearance: This performance measure uses the vertical clearance information from the ADOT Bridge Database to identify locations with low vertical clearance. The minimum vertical clearance for all underpass structures (i.e., structures under which mainline traffic passes) is determined for each segment.

Bridge Vertical Clearance Hot Spots: This performance measure related to truck restrictions is the locations, or hot spots, where bridge vertical clearance issues restrict truck travel. Sixteen feet three inches (16.25') is the minimum standard vertical clearance value for state highway bridges over travel lanes.

Locations with lower vertical clearance values than the minimum standard are categorized by the ADOT Intermodal Transportation Department Engineering Permits Section as either locations where ramps exist that allow the restriction to be avoided or locations where ramps do not exist and the restriction cannot be avoided. The locations with vertical clearances below the minimum standard that cannot be ramped around are considered hot spots. This measure is mapped for graphical display purposes with the bridge vertical clearance map but is not included in the Freight performance area rating calculations.

Scoring:

Derfermenes Level	Freight Index								
Performance Level	Uninterrupted Flow Facilities	Interrupted Flow Facilities							
Good	> 0.77	> 0.33							
Fair	0.67 – 0.77	0.17 – 0.33							
Poor	< 0.67	< 0.17							

Performance Level	TTT	1			
Performance Level	Uninterrupted Flow Facilities	Interrupted Flow Facilities			
Good	< 1.15	< 1.30			
Fair	1.15 – 1.33	1.30 – 2.00			
Poor	> 1.33	> 2.00			

Derformence Lovel	TP	ті
Performance Level	Uninterrupted Flow Facilities	Interrupted Flow Facilities
Good	< 1.30	< 3.00
Fair	1.30 – 1.50	3.00 - 6.00
Poor	> 1.50	> 6.00

Performance Level	Closure Duration (minutes)
Good	< 44.18
Fair	44.18 – 124.86
Poor	> 124.86

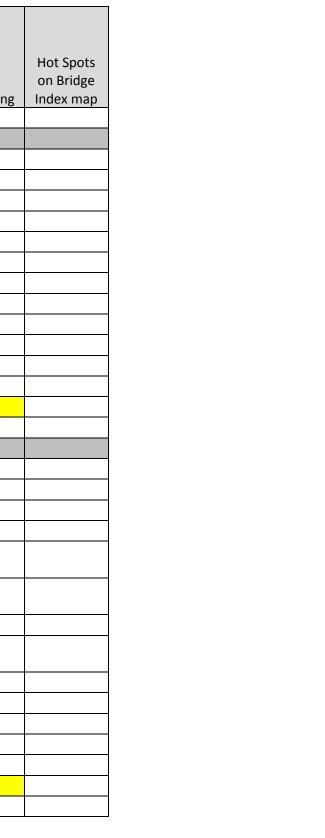
Performance Level	Bridge Vertical Clearance
Good	> 16.5'
Fair	16.0' – 16.5'
Poor	< 16.0'

Appendix C: Performance Area Data

Pavement Performance Area Data

				East	bound (N	В)	Wes	tbound (SB)	I	EB/NB	W	/B/SB	Comp	oosite	Pavement	% Paveme	ent Failure
			# of Lanes	IRI	Cracking	# of Lanes	IRI	Cracking	PSR	PDI	PSR	PDI	NB	SB	Index	NB	SB	
Segment 1	1	Inte	erstate?	Yes													-	
					142.7						2.9		4.0	2.91	3.67			
Mile 1	0	to	1	2	6	15	2	91.86	5	2.91		3.53				-	2	0
Mile 2	1	to	2	2	47.88	0	2	44.44	0	4.17	5.0	4.22	5.0	4.42	4.46	-	0	0
Mile 3	2	to	3	2	54.12	0	2	50.59	0	4.07	5.0	4.13	5.0	4.35	4.39		0	0
			Total	6			6							1	1	-		2
			Weighteo	d Average						3.72	4.31	3.96	4.67	3.89	4.17	-		
			Factor							1.00		1.00						
			Indicator	Score						3.72		3.96						16.7%
			Pavemen	nt Index												4.03		
Segment 2	2	Inte	erstate?	Yes					1							_	T	
Mile 1	3	to	4	2	37.32	0	2	45.12	0	4.34	5.0	4.21	5.0	4.54	4.45		0	0
Mile 2	4	to	5	2	40.63	0	2	51.61	0	4.28	5.0	4.11	5.0	4.50	4.38	_	0	0
Mile 3	5	to	6	2	39.62	0	2	39.89	1	4.30	5.0	4.30	4.7	4.51	4.40		0	0
Mile 4	6	to	7	2	36.88	2	2	34.72	0	4.35	4.5	4.38	5.0	4.38	4.57		0	0
Mile 5	7	to	8	2	39.80	0	2	39.08	0	4.30	5.0	4.31	5.0	4.51	4.52		0	0
Mile 6	8	to	9	2	37.35	0	2	33.80	0	4.34	5.0	4.40	5.0	4.54	4.58		0	0
Mile 7	9	to	10	2	38.11	0	2	28.95	0	4.33	5.0	4.48	5.0	4.53	4.64		0	0
Mile 8	10	to	11	2	36.73	0	2	39.40	0	4.35	5.0	4.30	5.0	4.54	4.51		0	0
Mile 9	11	to	12	2	32.78	0	2	34.15	0	4.41	5.0	4.39	5.0	4.59	4.57		0	0
Mile 10	12	to	13	2	36.64	0	2	34.68	0	4.35	5.0	4.38	5.0	4.55	4.57		0	0
Mile 11	13	to	14	2	50.14	0	2	40.63	0	4.13	5.0	4.28	5.0	4.39	4.50		0	0
Mile 12	14	to	15	2	32.52	0	2	40.12	0	4.42	5.0	4.29	5.0	4.59	4.51		0	0
Mile 13	15	to	16	2	30.68	0	2	38.18	0	4.45	5.0	4.32	5.0	4.61	4.53		0	0
Mile 14	16	to	17	2	61.25	3	2	63.40	1	3.96	4.3	3.93	4.7	4.06	4.15		0	0
Mile 15	17	to	18	2	70.82	20	2	72.45	10	3.82	2.5	3.80	3.4	2.51	3.54		2	0
			Total	30			30]		2
			Weighted	d Average						4.28	4.75	4.26	4.85	4.36	4.43]		
			Factor	-						1.00		1.00						
			Indicator	Score						4.28		4.26						3.3%
			Pavemen	nt Index												4.39		

				East	bound (N	B)	Wes	tbound (SB)	I	EB/NB	v	VB/SB	Com	oosite	Pavement	% Paveme	ent Failure
				# of Lanes	IRI	Cracking	# of Lanes	IRI	Cracking	PSR	PDI	PSR	PDI	NB	SB	Index	NB	SB
Segment	3	Inte	erstate?	Yes														
Mile 1	18	to	19	2	60.27	15	2	79.09	7	3.98	2.9	3.70	3.8	2.94	3.72		0	0
Mile 2	19	to	20	2	68.35	5	2	68.96	7	3.86	4.0	3.85	3.8	3.90	3.78		0	0
Mile 3	20	to	21	2	69.13	7	2	66.15	15	3.84	3.8	3.89	2.9	3.78	2.94		0	0
Mile 4	21	to	22	2	72.92	5	2	64.61	12	3.79	4.0	3.91	3.2	3.85	3.43		0	0
					104.9						3.9		3.6	3.51	3.76			
Mile 5	22	to	23	2	8	6	2	56.77	8	3.36		4.03					0	0
Mile 6	23	to	24	2	84.81	10	2	65.17	5	3.62	3.4	3.90	4.0	3.48	3.93		0	0
Mile 7	24	to	25	2	71.37	12	2	63.52	4	3.81	3.2	3.93	4.1	3.40	3.99		0	0
Mile 8	25	to	26	2	81.95	4	2	63.73	5	3.66	4.1	3.92	4.0	3.81	3.95		0	0
Mile 9	26	to	27	2	68.93	10	2	56.71	8	3.85	3.4	4.03	3.6	3.55	3.76		0	0
Mile 10	27	to	28	2	57.72	15	2	51.20	12	4.02	2.9	4.12	3.2	2.94	3.49		0	0
Mile 11	28	to	29	2	90.02	12	2	65.19	12	3.55	3.2	3.90	3.2	3.32	3.43		0	0
Mile 12	29	to	30	2	87.00	9	2	82.54	10	3.59	3.5	3.65	3.4	3.55	3.49		0	0
			Total	24			24							1	1			0
			Weighteo	d Average						3.74	3.54	3.90	3.58	3.50	3.64			
			Factor							1.00		1.00						
			Indicator							3.74		3.90						0.0%
		_	Pavemen	nt Index												3.57		
Segment		Inte	erstate?	Yes				-	-								-	Г
Mile 1	30	to	31	2	81.81	9	2	74.89	10	3.66	3.5	3.76	3.4	3.57	3.52		0	0
Mile 2	31	to	32	2	68.92	9	2	66.62	10	3.85	3.5	3.88	3.4	3.62	3.56		0	0
Mile 3	32	to	33	2	67.39	15	2	59.06	8	3.87	2.9	3.99	3.6	2.94	3.75		0	0
Mile 4	33	to	34	2	67.41	9	2	63.59	7	3.87	3.5	3.93	3.8	3.63	3.81		0	0
Mile 5	34	to	35	2	68.54	9	2	58.97	8	3.85	3.5	4.00	3.6	3.63	3.75		0	0
Mile 6	35	to	36	2	71.07	5	2	71.31	12	3.82	4.0	3.81	3.2	3.87	3.40		0	0
Mile 7	36	to	37	2	71.83	8	2	60.81	12	3.81	3.6	3.97	3.2	3.69	3.45		0	0
Mile 8	37	to	38	2	86.20	12	2	60.03	12	3.60	3.2	3.98	3.2	3.34	3.45		0	0
Mile 9	38	to	39	2	83.38	9	2	63.91	9	3.64	3.5	3.92	3.5	3.56	3.65		0	0
Mile 10	39	to	40	2	82.57	8	2	72.98	15	3.65	3.6	3.79	2.9	3.64	2.94		0	0
Total 20 20												- <u> </u>		1				0
				d Average						3.76	3.51	3.90	3.40	3.55	3.53			
			Factor							1.00		1.00						
			Indicator							3.76		3.90						0.0%
	Pavement Index															3.54		


				East	bound (N	B)	Wes	tbound (SB)	E	B/NB	V	VB/SB	Com	posite	Pavement	% Paveme	ent Failure
				# of Lanes	IRI	Cracking	# of Lanes	IRI	Cracking	PSR	PDI	PSR	PDI	NB	SB	Index	NB	SB
Segment !	5	Inte	rstate?	Yes														
Mile 1	40	to	41	2	88.69	6	2	69.12	10	3.57	3.9	3.85	3.4	3.66	3.55		0	0
Mile 2	41	to	42	2	74.40	5	2	66.89	4	3.77	4.0	3.88	4.1	3.84	3.96		0	0
Mile 3	42	to	43	2	62.22	4	2	60.27	9	3.95	4.1	3.98	3.5	4.00	3.66		0	0
Mile 4	43	to	44	2	65.09	5	2	68.88	2	3.90	4.0	3.85	4.5	3.93	4.03		0	0
Mile 5	44	to	45	2	49.86	1	2	52.11	2	4.14	4.7	4.10	4.5	4.29	4.21		0	0
Mile 6	45	to	46	2	62.84	1	2	72.29	1	3.94	4.7	3.80	4.7	4.15	4.06		0	0
Mile 7	46	to	47	2	46.55	1	2	52.25	1	4.19	4.7	4.10	4.7	4.33	4.27		0	0
Mile 8	47	to	48	2	57.36	1	2	49.20	0	4.02	4.7	4.15	5.0	4.21	4.40		0	0
Mile 9	48	to	49	2	65.12	0	2	56.07	4	3.90	5.0	4.04	4.1	4.23	4.07		0	0
Mile 10	49	to	50	2	88.70	12	2	68.68	1	3.57	3.2	3.85	4.7	3.33	4.09		0	0
Mile 11	50	to	51	2	48.05	2	2	42.78	2	4.17	4.5	4.25	4.5	4.25	4.31		0	0
Mile 12	51	to	52	2	33.71	1	2	35.40	2	4.40	4.7	4.37	4.5	4.48	4.40		0	0
Mile 13	52	to	53	2	36.45	0	2	34.20	3	4.35	5.0	4.39	4.3	4.55	4.32		0	0
Mile 14	53	to	54	2	36.02	1	2	43.46	0	4.36	4.7	4.24	5.0	4.45	4.47		0	0
Mile 15	54	to	55	2	65.50	3	2	61.20	4	3.90	4.3	3.96	4.1	4.02	4.02		0	0
Mile 16	55	to	56	2	66.20	5	2	59.44	7	3.89	4.0	3.99	3.8	3.92	3.82		0	0
Mile 17	56	to	57	2	97.97	3	2	87.59	3	3.45	4.3	3.58	4.3	3.70	3.80		0	0
			Total	34			34											0
			Weighted	d Average						3.97	4.36	4.02	4.32	4.08	4.08			
			Factor							1.00		1.00						
			Indicator							3.97		4.02						0.0%
			Pavemen													4.08		
Segment (rstate?	Yes		_	-										-	
Mile 1	57	to	58	2	77.45	5	2	69.06	3	3.73	4.0	3.85	4.3	3.81	3.98		0	0
Mile 2	58	to	59	2	84.90	6	2	73.25	4	3.62	3.9	3.79	4.1	3.70	3.89		0	0
Mile 3	59	to	60	2	84.89	8	2	69.30	4	3.62	3.6	3.84	4.1	3.63	3.93		0	0
Mile 4	60	to	61	2	93.90	5	2	83.75	10	3.50	4.0	3.64	3.4	3.65	3.49		0	0
Mile 5	61	to	62	2	83.32	4	2	84.68	4	3.64	4.1	3.62	4.1	3.79	3.78		0	0
	62	to	63	2	117.5 7	0.1	3	104.0 3	0.1	3.20	-	3.37	-	3.20	3.37		3	0
Mile 6	62	to	05	3	/	0.1	5	5 116.7	0.1	5.20		5.57				-	5	0
Mile 7	63	to	64	3	86.28	0.1	3	4	0.1	3.60	-	3.21	-	3.60	3.21		0	3
-			Total	16			16		- ·							1	-	6
				d Average	I			I		3.54	2.46	3.57	2.52	3.60	3.62	1		
	Factor											1.00		2.00	5.52	1		
			Indicator	Score						1.00 3.54		3.57						18.8%
			Pavemen											1	<u>I</u>	3.61		

Bridge Performance Area Data

				Bridge Sufficiency			Bridge Ind	ex		Functionally Obsolete Bridges		Hot
Structure Name (A209)	Structure # (N8)	Milepost (A232)	Area (A225)	Sufficiency Rating	Deck (N58)	Super (N59)	Sub (N60)	Eval (N67)	Lowest	Deck Area on Func Obsolete	Bridge Rating	on E Inde
Segment 1 0 - 3							μ					
Western Ave TI OP NB	1545	1.17	5,156	83.00	6	5	6	5	5.0	5,156		
Western Ave TI OP												
SB	1546	1.17	4,872	82.00	5	5	6	5	5.0	4,872		
Mariposa TI OP NB	2410	2.95	9,492	94.00	7	7	7	7	7.0	9,492		
Mariposa TI OP SB	2411	2.95	9,492	94.00	6	7	7	7	6.0	9,492		
Total			29,012									
Weighted	d Average			90.03					5.98	100.00%		
Factor				1.00					1.00	1.00		
Indicator	Score			90.03						100.00%	5	
Bridge In	dex								5.98			
Segment 2 3 - 18												
Pajarito Rd OP NB	1298	3.67	4,182	81.91	6	5	6	5	5.0	4,182		
Pajarito Rd OP SB	1299	3.67	4,750	81.91	6	5	7	5	5.0	4,750		
Country Club OP NB	1300	4.93	8,971	92.06	7	6	6	6	6.0	0		
Country Club OP SB	1301	4.93	8,971	94.07	7	6	6	6	6.0	0		
Potrero TI SB Ramp UP	1302	5.30	3,909	95.32	8	8	7	7	7.0	0		
Ruby Road TI UP	1240	7.70	19,298	95.00	6	6	7	6	6.0	19,298		
Rio Rico EB TI UP	933	10.96	7,862	85.46	5	5	6	5	5.0	0		
Rio Rico WB TI UP	2727	10.97	11,592	97.54	7	7	6	6	6.0	0		
Agua Fria Cyn Br NB	353	11.97	4,158	84.51	5	5	6	5	5.0	0		
Agua Fria Cyn Br SB	906	11.97	3,818	84.50	5	5	5	5	5.0	0		
Peck Canyon TI UP	935	13.96	8,366	86.88	6	5	6	5	5.0	0		
Peck Cyn Wash Br												
NB	907	14.37	3,800	96.58	6	6	6	6	6.0	0		
Peck Cyn Wash Br SB	354	14.37	4,158	96.58	6	6	6	6	6.0	0		
Palo Parado TI UP	937	15.65	8,366	83.99	5	5	6	5	5.0	8,366		
Arroyo Angulo Agudo NB	1735	17.75	8,965	96.48	7	7	6	6	6.0	0		
Arroyo Angulo Agudo SB	1736	17.75	9,065	96.44	7	7	7	7	7.0	0		
Tumacacori TI OP NB	1737	18.19	6,824	97.33	7	6	8	6	6.0	0		
Tumacacori TI OP SB	1738	18.19	6,824	97.33	7	6	7	6	6.0	0		
Total			133,879									
Weighted	d Average			92.24					5.79	27.34%		
Factor				1.00					1.00	1.00		
Indicator	Score			92.24						27.34%	5	

				Bridge Sufficiency			Bridge Inc	ex		Functionally Obsolete Bridges		Hot
Structure Name (A209)	Structure # (N8)	Milepost (A232)	Area (A225)	Sufficiency Rating	Deck (N58)	Super (N59)	Sub (N60)	Eval (N67)	Lowest	Deck Area on Func Obsolete	Bridge Rating	on l Inde
Bridge In	dex								5.79			
Segment 3 18 - 30												
Tubac TI OP NB	1875	21.64	5,976	96.48	7	6	7	6	6.0	0		
Tubac TI OP SB	1876	21.64	5,976	97.44	7	7	6	6	6.0	0		
Chavez TI OP NB	1877	24.82	5,976	96.48	6	6	6	6	6.0	0		
Chavez TI OP SB	1878	24.82	5,976	96.44	7	7	6	6	6.0	0		
Agua Linda TI UP	1739	26.54	8,231	98.94	6	6	7	7	6.0	0		
Sopori River Br NB	1743	29.70	14,625	77.17	7	6	7	6	6.0	14,625		
Sopori River Br SB	1744	29.70	14,250	96.35	6	6	7	6	6.0	0		
Arivaca TI OP NB	1746	30.00	6,556	97.00	7	7	7	7	7.0	0		
Arivaca TI OP SB	1747	30.00	6,556	97.00	7	7	7	7	7.0	0		
Total			74,122									
Weighted	d Average			93.08					6.18	19.73%		
Factor				1.00					1.00	1.00		
Indicator	Score			93.08						19.73%	6	
Bridge In	dex								6.18			
Segment 4 30 - 40												
Old Jct Wash Br NB	1740	30.70	5,753	96.25	7	6	7	7	6.0	0		
Old Jct Wash Br SB	1741	30.70	5,753	96.25	6	6	7	7	6.0	0		
Tinaja Wash Br NB	1748	31.03	5,753	96.25	7	7	7	7	7.0	0		
Tinaja Wash Br SB	1749	31.03	5,753	96.25	6	6	7	6	6.0	0		
Canoa Ranch TI OP												
NB	1752	34.85	4,817	93.00	7	7	7	7	7.0	4,817		
Canoa Ranch TI OP	4770			00.00	_	_	_	_				
SB	1753	34.85	4,817	93.00	7	7	7	7	7.0	4,817		
Esperanza Wash Br NB	397	35.92	8,264	96.36	7	7	7	7	7.0	0		
Esperanza Wash Br SB	1751	35.92	7,537	93.36	6	6	7	7	6.0	0		
Continental TI OP NB	1751	39.44	6,422	95.50	7	7	7	7	7.0	0		
Continental TI OP SB	1754	39.44	6,422	96.00	7	7	7	7	7.0	0		
Total	1/22	37.44	61,291	50.00	/	/	/	/	7.0	0		
	l Average		01,291	95.35					6.60	15.72%		
Factor	Average			1.00					1.00	1.00		
Indicator	Score			95.35					1.00	15.72%	6	
Bridge In				33.33					6.60	13.72%	0	

				Bridge Sufficiency			Bridge Inc	lex		Functionally Obsolete Bridges		Hot
Structure Name (A209)	Structure # (N8)	Milepost (A232)	Area (A225)	Sufficiency Rating	Deck (N58)	Super (N59)	Sub (N60)	Eval (N67)	Lowest	Deck Area on Func Obsolete	Bridge Rating	on Inde
Segment 5 40 - 57												
Esperanza Blvd TI NB	1354	40.65	6,577	92.72	7	6	7	6	6.0	6,577		
Esperanza Blvd TI SB	1355	40.65	6,577	92.72	7	6	7	7	6.0	6,577		
Duval Mine Rd TI UP	2800	43.10	34,086	81.65	7	8	7	7	7.0	0		
Anaconda Pipe OP												
NB	1568	43.80	3,026	90.17	7	6	7	6	6.0	3,026		
Anaconda Pipe OP												
SB	1569	43.80	3,033	90.17	6	6	7	6	6.0	3,033		
Quartz Wash Br NB	1570	45.15	4,507	95.71	6	6	7	7	6.0	0		<u> </u>
Quartz Wash Br SB	1571	45.15	4,507	95.71	6	6	7	6	6.0	0		
El Toro Rd OP NB	1572	45.80	10,028	90.63	4	8	7	7	4.0	0		
El Toro Rd OP SB	1573	45.80	10,028	91.64	4	7	7	7	4.0	0		
Helmet Peak TI UP	1356	46.81	14,515	96.32	5	6	7	6	5.0	0		
Pima Mine TI OP NB	1303	49.62	8,554	93.00	4	7	7	7	4.0	0		
Pima Mine TI OP SB	1304	49.62	10,659	91.00	4	7	6	7	4.0	0		
Pima OP NB	1305	53.10	2,795	95.15	6	6	7	6	6.0	0		
Pima OP SB	1306	53.10	2,795	95.15	6	6	7	6	6.0	0		
Papago Res TI OP NB	1307	54.40	4,982	96.61	6	6	7	6	6.0	0		
Papago Res TI OP SB	1308	54.40	4,982	96.61	6	6	7	6	6.0	0		
San Xavier OP NB	1241	55.78	2,801	90.21	7	7	7	7	7.0	2,801		
San Xavier OP SB	1242	55.78	2,801	90.21	7	7	7	7	7.0	2,801		
Santa Cruz Riv Br NB	1243	56.80	23,368	92.73	4	7	6	6	4.0	0		
Santa Cruz Riv Br SB	1244	56.80	18,577	92.73	4	6	6	6	4.0	0		
San Xavier TI OP NB	1245	56.95	8,570	90.89	6	7	7	7	6.0	8,570		
San Xavier TI OP SB	1246	56.95	8,483	90.89	6	7	7	7	6.0	8,483		
Total			196,251									
	d Average			90.92					5.30	21.33%		
Factor	5			1.00					1.00	1.00		
Indicato	or Score			90.92						21.33%	4	
Bridge I					1				5.30			

				Bridge Sufficiency			Bridge Inc	lex		Functionally Obsolete Bridges		Hot
Structure Name (A209)	Structure # (N8)	Milepost (A232)	Area (A225)	Sufficiency Rating	Deck (N58)	Super (N59)	Sub (N60)	Eval (N67)	Lowest	Deck Area on Func Obsolete	Bridge Rating	on I Inde
Segment 6 57 - 64												
Bridge SB	1248	57.82	4,404	96.52	7	6	6	6	6.0	0		
Bridge NB	1247	57.82	4,404	96.52	7	6	6	6	6.0	0		
Valencia Road TI UP	1943	58.82	55,774	69.00	7	8	7	7	7.0	0		
Drexel Road UP	1120	59.90	9,625	71.41	5	7	7	7	5.0	9,625		
Airport Wash Br NB	1121	60.32	6,350	83.34	5	5	6	5	5.0	0		
Airport Wash Br SB	1122	60.32	6,350	83.51	5	5	6	5	5.0	0		
Irvington Rd TI UP	1123	60.95	20,500	62.71	5	5	7	5	5.0	20,500		
Pedestrian UP	1124	61.40	2,002	-1.00	6	6	6	6	6.0	0		
Ajo Way UP	1125	61.90	18,147	83.00	5	6	6	6	5.0	0		
Julian Wash Bridge SB	2595	62.71	13,188	94.74	6	7	7	7	6.0	0		
Julian Wash Bridge NB	2596	62.72	14,280	94.59	7	7	7	7	7.0	0		
Total			155,024		-							
Weight	ted Average			77.36					6.06	19.43%		
Factor				1.00					1.00	1.00		
Indicat	or Score			77.36						19.43%	5	
Bridge	Index								6.06			

Mobility Performance Area Data

Segment	Begin MP	End MP	Length (mi)	Facility Type	Flow Type	Terrain	No. of Lanes	Capacity Environment Type	Lane Width (feet)	Posted Speed Limit (mph)	Divided or Undivided	Access Points (per mile)	% No- Passing Zone	Street Parking
1	0	3	3	Fringe Urban	Interrupted	Rolling	4	Freeway Segment	12.00	60	Divided	N/A	0%	N/A
2	3	18	15	Rural	Uninterrupted	Level	4	Freeway Segment	12.00	75	Divided	N/A	0%	N/A
3	18	30	12	Rural	Interrupted	Level	4	Freeway Segment	12.00	75	Divided	N/A	0%	N/A
4	30	40	10	Fringe Urban	Uninterrupted	Level	4	Freeway Segment	12.00	70	Divided	N/A	0%	N/A
5	40	57	17	Fringe Urban	Uninterrupted	Level	4	Freeway Segment	12.00	72	Divided	N/A	0%	N/A
6	57	64	7	Urban	Uninterrupted	Level	4	Freeway Segment	12.00	60	Divided	N/A	0%	N/A

All Vehicle TTI and PTI/Truck TTTI and TPTI – Southbound

								Assumed truck				
Segment	ТМС	timeperiod	week_type	road_direction	cars_mean	cars_P05	Speed limit	free-flow speed	Cars_TTI	Cars_PTI	Cars_PeakTTI	Cars_PeakPTI
1	115N04892	1 AM Peak	Weekday	Southbound	54.4125	47.5	45	45	1.00	1.00	1.00	1.00
1	115N04892	2 Mid Day	Weekday	Southbound	58.1204	52	45	45	1.00	1.00		
1	115N04892	3 PM Peak	Weekday	Southbound	57.7788	52	45	45	1.00	1.00		
1	115N04892	4 Off Peak	Weekday	Southbound	53.8617	49	45	45	1.00	1.00		
1	115N04893	1 AM Peak	Weekday	Southbound	64	59	65	65	1.01	1.10	1.04	1.12
1	115N04893	2 Mid Day	Weekday	Southbound	65	61	65	65	1.00	1.07		
1	115N04893	3 PM Peak	Weekday	Southbound	65	61	65	65	1.01	1.07		
1	115N04893	4 Off Peak	Weekday	Southbound	62	58	65	65	1.04	1.12		
1	115N11106	1 AM Peak	Weekday	Southbound	28	14	25	25	1.00	1.79	1.00	1.79
1	115N11106	2 Mid Day	Weekday	Southbound	31	17	25	25	1.00	1.47		
1	115N11106	3 PM Peak	Weekday	Southbound	28	14	25	25	1.00	1.79		
1	115N11106	4 Off Peak	Weekday	Southbound	27	15	25	25	1.00	1.67		
2	115N04894	1 AM Peak	Weekday	Southbound	64	58	75	65	1.17	1.29	1.21	1.34
2	115N04894	2 Mid Day	Weekday	Southbound	65	60	75	65	1.15	1.25		
2	115N04894	3 PM Peak	Weekday	Southbound	63	58	75	65	1.18	1.29		
2	115N04894	4 Off Peak	Weekday	Southbound	62	56	75	65	1.21	1.34		
2	115N04895	1 AM Peak	Weekday	Southbound	67	62	75	65	1.12	1.21	1.16	1.23
2	115N04895	2 Mid Day	Weekday	Southbound	66	63	75	65	1.13	1.19		
2	115N04895	3 PM Peak	Weekday	Southbound	65	62	75	65	1.15	1.21		
2	115N04895	4 Off Peak	Weekday	Southbound	65	61	75	65	1.16	1.23		
2	115N04896	1 AM Peak	Weekday	Southbound	68	63	75	65	1.11	1.19	1.11	1.19

I-19 Corridor Profile Study Final Report

								Assumed truck				
Segment	тмс	timeperiod	week_type	road_direction	cars_mean	cars P05	Speed limit	free-flow speed	Cars_TTI	Cars_PTI	Cars_PeakTTI	Cars_PeakPTI
2	115N04896	2 Mid Day	Weekday	Southbound	68	65	75	65	1.10	1.15		—
2	115N04896	3 PM Peak	Weekday	Southbound	68	65	75	65	1.10	1.15		
2	115N04896	4 Off Peak	Weekday	Southbound	67	63	75	65	1.11	1.19		
2	115N04897	1 AM Peak	Weekday	Southbound	68	63	75	65	1.11	1.19	1.11	1.19
2	115N04897	2 Mid Day	Weekday	Southbound	69	65	75	65	1.09	1.15		
2	115N04897	3 PM Peak	Weekday	Southbound	68	65	75	65	1.10	1.15		
2	115N04897	4 Off Peak	Weekday	Southbound	68	63	75	65	1.11	1.19		
2	115N04898	1 AM Peak	Weekday	Southbound	68	64	75	65	1.10	1.17	1.11	1.19
2	115N04898	2 Mid Day	Weekday	Southbound	69	65	75	65	1.09	1.15		
2	115N04898	3 PM Peak	Weekday	Southbound	68	65	75	65	1.10	1.15		
2	115N04898	4 Off Peak	Weekday	Southbound	68	63	75	65	1.11	1.19		
2	115N04899	1 AM Peak	Weekday	Southbound	68	64	75	65	1.10	1.17	1.11	1.19
2	115N04899	2 Mid Day	Weekday	Southbound	69	65	75	65	1.09	1.15		
2	115N04899	3 PM Peak	Weekday	Southbound	68	65	75	65	1.10	1.15		
2	115N04899	4 Off Peak	Weekday	Southbound	68	63	75	65	1.11	1.19		
3	115N04900	1 AM Peak	Weekday	Southbound	69	65	75	65	1.09	1.15	1.10	1.17
3	115N04900	2 Mid Day	Weekday	Southbound	69	65	75	65	1.09	1.15		
3	115N04900	3 PM Peak	Weekday	Southbound	69	65	75	65	1.09	1.15		
3	115N04900	4 Off Peak	Weekday	Southbound	68	64	75	65	1.10	1.17		
3	115N04901	1 AM Peak	Weekday	Southbound	68	64	75	65	1.10	1.17	1.11	1.17
3	115N04901	2 Mid Day	Weekday	Southbound	68	65	75	65	1.10	1.15		
3	115N04901	3 PM Peak	Weekday	Southbound	68	65	75	65	1.10	1.15		
3	115N04901	4 Off Peak	Weekday	Southbound	67	64	75	65	1.11	1.17		
3	115N04902	1 AM Peak	Weekday	Southbound	69	65	75	65	1.08	1.15	1.09	1.15
3	115N04902	2 Mid Day	Weekday	Southbound	69	65	75	65	1.08	1.15		
3	115N04902	3 PM Peak	Weekday	Southbound	69	65	75	65	1.09	1.15		
3	115N04902	4 Off Peak	Weekday	Southbound	69	65	75	65	1.09	1.15		
4	115N04742	1 AM Peak	Weekday	Southbound	68	64	75	65	1.10	1.17	1.12	1.19
4	115N04742	2 Mid Day	Weekday	Southbound	68	64	75	65	1.11	1.17		
4	115N04742	3 PM Peak	Weekday	Southbound	68	64	75	65	1.11	1.17		
4	115N04742	4 Off Peak	Weekday	Southbound	67	63	75	65	1.12	1.19		
4	115N04743	1 AM Peak	Weekday	Southbound	66	63	65	65	1.00	1.03	1.00	1.05
4	115N04743	2 Mid Day	Weekday	Southbound	65	63	65	65	1.00	1.03		
4	115N04743	3 PM Peak	Weekday	Southbound	65	63	65	65	1.00	1.03		
4	115N04743	4 Off Peak	Weekday	Southbound	65	62	65	65	1.00	1.05		
5	115N04332	1 AM Peak	Weekday	Southbound	68	64	75	65	1.10	1.17	1.13	1.19
5	115N04332	2 Mid Day	Weekday	Southbound	68	64	75	65	1.11	1.17		
5	115N04332	3 PM Peak	Weekday	Southbound	68	64	75	65	1.10	1.17		
5	115N04332	4 Off Peak	Weekday	Southbound	67	63	75		1.13	1.19		

								Assumed truck				
Segment	ТМС	timeperiod	week_type	road_direction	cars_mean	cars_P05	Speed limit	free-flow speed	Cars_TTI	Cars_PTI	Cars_PeakTTI	Cars_PeakPTI
5	115N04744	1 AM Peak	Weekday	Southbound	66	63	65	65	1.00	1.03	1.01	1.05
5	115N04744	2 Mid Day	Weekday	Southbound	65	63	65	65	1.00	1.03		
5	115N04744	3 PM Peak	Weekday	Southbound	65	63	65	65	1.00	1.03		
5	115N04744	4 Off Peak	Weekday	Southbound	65	62	65	65	1.01	1.05		
5	115N04746	1 AM Peak	Weekday	Southbound	70	66	75	65	1.07	1.14	1.10	1.17
5	115N04746	2 Mid Day	Weekday	Southbound	69	65	75	65	1.09	1.15		
5	115N04746	3 PM Peak	Weekday	Southbound	69	65	75	65	1.08	1.15		
5	115N04746	4 Off Peak	Weekday	Southbound	68	64	75	65	1.10	1.17		
5	115N04747	1 AM Peak	Weekday	Southbound	70	66	75	65	1.08	1.14	1.11	1.19
5	115N04747	2 Mid Day	Weekday	Southbound	69	65	75	65	1.09	1.15		
5	115N04747	3 PM Peak	Weekday	Southbound	69	65	75	65	1.08	1.15		
5	115N04747	4 Off Peak	Weekday	Southbound	68	63	75	65	1.11	1.19		
6	115N04334	1 AM Peak	Weekday	Southbound	63	59	65	65	1.04	1.10	1.06	1.14
6	115N04334	2 Mid Day	Weekday	Southbound	62	59	65	65	1.04	1.10		
6	115N04334	3 PM Peak	Weekday	Southbound	62	58	65	65	1.05	1.12		
6	115N04334	4 Off Peak	Weekday	Southbound	61	57	65	65	1.06	1.14		
6	115N04335	1 AM Peak	Weekday	Southbound	59	56	55	55	1.00	1.00	1.02	1.12
6	115N04335	2 Mid Day	Weekday	Southbound	58	56	55	55	1.00	1.00		
6	115N04335	3 PM Peak	Weekday	Southbound	54	49	55	55	1.02	1.12		
6	115N04335	4 Off Peak	Weekday	Southbound	56	53	55	55	1.00	1.04		
6	115N04336	1 AM Peak	Weekday	Southbound	59	55	55	55	1.00	1.00	1.08	1.22
6	115N04336	2 Mid Day	Weekday	Southbound	58	55	55	55	1.00	1.00		
6	115N04336	3 PM Peak	Weekday	Southbound	51	45	55	55	1.08	1.22		
6	115N04336	4 Off Peak	Weekday	Southbound	55	53	55	55	1.01	1.04		
6	115N04337	1 AM Peak	Weekday	Southbound	57.5721	54	55	55	1.00	1.02	1.01	1.08
6	115N04337	2 Mid Day	Weekday	Southbound	57.2454	54	55	55	1.00	1.02		
6	115N04337	3 PM Peak	Weekday	Southbound	54.6931	51	55	55	1.01	1.08		
6	115N04337	4 Off Peak	Weekday	Southbound	55.4243	52	55	55	1.00	1.06		

All Vehicle TTI and PTI/Truck TTTI and TPTI – Northbound

								Assumed truck				
Segment	TMC	timeperiod	week_type	road_direction	cars_mean	cars_P05	Speed limit	free-flow speed	Cars_TTI	Cars_PTI	Cars_PeakTTI	Cars_PeakPTI
1	115P04892	1 AM Peak	Weekday	Northbound	33	16.5	55		1.68	3.33	1.69	3.33
1	115P04892	2 Mid Day	Weekday	Northbound	33	17	55	55	1.66	3.24		
1	115P04892	3 PM Peak	Weekday	Northbound	37	20	55	55	1.49	2.75		
1	115P04892	4 Off Peak	Weekday	Northbound	33	19	55	55	1.69	2.89		
1	115P04893	1 AM Peak	Weekday	Northbound	61	53	65	65	1.07	1.23	1.11	1.23
1	115P04893	2 Mid Day	Weekday	Northbound	61	56	65	65	1.07	1.16		
1	115P04893	3 PM Peak	Weekday	Northbound	61	56	65	65	1.07	1.16		
1	115P04893	4 Off Peak	Weekday	Northbound	59	54	65	65	1.11	1.20		
2	115P04894	1 AM Peak	Weekday	Northbound	63	56	75	65	1.20	1.34	1.21	1.34
2	115P04894	2 Mid Day	Weekday	Northbound	64	58	75	65	1.17	1.29		
2	115P04894	3 PM Peak	Weekday	Northbound	64	58	75	65	1.17	1.29		
2	115P04894	4 Off Peak	Weekday	Northbound	62	56	75	65	1.21	1.34		
2	115P04895	1 AM Peak	Weekday	Northbound	66	62	75	65	1.14	1.21	1.18	1.29
2	115P04895	2 Mid Day	Weekday	Northbound	66	62	75	65	1.13	1.21		
2	115P04895	3 PM Peak	Weekday	Northbound	66	61	75	65	1.14	1.23		
2	115P04895	4 Off Peak	Weekday	Northbound	64	58	75	65	1.18	1.29		
2	115P04896	1 AM Peak	Weekday	Northbound	67	62	75	65	1.12	1.21	1.18	1.29
2	115P04896	2 Mid Day	Weekday	Northbound	67	63	75	65	1.12	1.19		
2	115P04896	3 PM Peak	Weekday	Northbound	66	61	75	65	1.14	1.23		
2	115P04896	4 Off Peak	Weekday	Northbound	63	58	75	65	1.18	1.29		
2	115P04897	1 AM Peak	Weekday	Northbound	70	64	75	65	1.08	1.17	1.13	1.21
2	115P04897	2 Mid Day	Weekday	Northbound	69	65	75	65	1.09	1.15		
2	115P04897	3 PM Peak	Weekday	Northbound	68	63	75	65	1.11	1.19		
2	115P04897	4 Off Peak	Weekday	Northbound	66	62	75	65	1.13	1.21		
2	115P04898	1 AM Peak	Weekday	Northbound	70	65	75	65	1.08	1.15	1.13	1.19
2	115P04898	2 Mid Day	Weekday	Northbound	68	65	75	65	1.10	1.15		
2	115P04898	3 PM Peak	Weekday	Northbound	68	63	75	65	1.11	1.19		
2	115P04898	4 Off Peak	Weekday	Northbound	67	63	75		1.13	1.19		
2	115P04899	1 AM Peak	Weekday	Northbound	69	64	75	65	1.09	1.17	1.13	1.19
2	115P04899	2 Mid Day	Weekday	Northbound	69	64	75	65	1.09	1.17		
2	115P04899	3 PM Peak	Weekday	Northbound	68	63	75	65	1.11	1.19		
2	115P04899	4 Off Peak	Weekday	Northbound	66	63	75	65	1.13	1.19		
3	115P04900	1 AM Peak	Weekday	Northbound	71	65	75		1.06	1.15	1.11	1.15
3	115P04900	2 Mid Day	Weekday	Northbound	70	65	75		1.08	1.15		
3	115P04900	3 PM Peak	Weekday	Northbound	69	65	75		1.09	1.15		
3	115P04900	4 Off Peak	Weekday	Northbound	68	65	75		1.11	1.15		
3	115P04901	1 AM Peak	Weekday	Northbound	64	58	75		1.17	1.29	1.26	1.42
3	115P04901	2 Mid Day	Weekday	Northbound	64	58	75		1.17	1.29	1.20	1.72

I-19 Corridor Profile Study Final Report

								Assumed truck				
Segment	тмс	timeperiod	week_type	road_direction	cars_mean	cars_P05	Speed limit	free-flow speed	Cars_TTI	Cars_PTI	Cars_PeakTTI	Cars_PeakPTI
3	115P04901	3 PM Peak	Weekday	Northbound	63	57	75	65	1.20	1.32		
3	115P04901	4 Off Peak	Weekday	Northbound	60	53	75	65	1.26	1.42		
3	115P04902	1 AM Peak	Weekday	Northbound	35	16	75	65	2.17	4.69	2.85	6.25
3	115P04902	2 Mid Day	Weekday	Northbound	31	14	75	65	2.43	5.36		
3	115P04902	3 PM Peak	Weekday	Northbound	29	13	75	65	2.58	5.77		
3	115P04902	4 Off Peak	Weekday	Northbound	26	12	75	65	2.85	6.25		
3	115P04903	1 AM Peak	Weekday	Northbound	71	65	75	65	1.06	1.15	1.12	1.17
3	115P04903	2 Mid Day	Weekday	Northbound	70	65	75	65	1.08	1.15		
3	115P04903	3 PM Peak	Weekday	Northbound	69	64	75	65	1.09	1.17		
3	115P04903	4 Off Peak	Weekday	Northbound	67	64	75	65	1.12	1.17		
4	115P04742	1 AM Peak	Weekday	Northbound	71	66	75	65	1.06	1.14	1.11	1.15
4	115P04742	2 Mid Day	Weekday	Northbound	70	65	75	65	1.08	1.15		
4	115P04742	3 PM Peak	Weekday	Northbound	69	65	75	65	1.08	1.15		
4	115P04742	4 Off Peak	Weekday	Northbound	68	65	75	65	1.11	1.15		
4	115P04743	1 AM Peak	Weekday	Northbound	69	65	65	65	1.00	1.00	1.00	1.02
4	115P04743	2 Mid Day	Weekday	Northbound	68	64	65	65	1.00	1.02		
4	115P04743	3 PM Peak	Weekday	Northbound	68	65	65	65	1.00	1.00		
4	115P04743	4 Off Peak	Weekday	Northbound	67	64	65	65	1.00	1.02		
5	115P04332	1 AM Peak	Weekday	Northbound	73	69	75	65	1.03	1.09	1.08	1.14
5	115P04332	2 Mid Day	Weekday	Northbound	71	67	75	65	1.05	1.12		
5	115P04332	3 PM Peak	Weekday	Northbound	71	68	75	65	1.06	1.10		
5	115P04332	4 Off Peak	Weekday	Northbound	69	66	75	65	1.08	1.14		
5	115P04744	1 AM Peak	Weekday	Northbound	66	63	65	65	1.00	1.03	1.00	1.05
5	115P04744	2 Mid Day	Weekday	Northbound	66	62	65	65	1.00	1.05		
5	115P04744	3 PM Peak	Weekday	Northbound	66	62	65	65	1.00	1.05		
5	115P04744	4 Off Peak	Weekday	Northbound	65	62	65	65	1.00	1.05		
5	115P04745	1 AM Peak	Weekday	Northbound	66	63	65	65	1.00	1.03	1.00	1.03
5	115P04745	2 Mid Day	Weekday	Northbound	66	63	65	65	1.00	1.03		
5	115P04745	3 PM Peak	Weekday	Northbound	66	63	65	65	1.00	1.03		
5	115P04745	4 Off Peak	Weekday	Northbound	65	63	65	65	1.00	1.03		
5	115P04746	1 AM Peak	Weekday	Northbound	70	65	75	65	1.08	1.15	1.12	1.19
5	115P04746	2 Mid Day	Weekday	Northbound	68	64	75	65	1.10	1.17		
5	115P04746	3 PM Peak	Weekday	Northbound	68	65	75	65	1.10	1.15		
5	115P04746	4 Off Peak	Weekday	Northbound	67	63	75	65	1.12	1.19		
5	115P04747	1 AM Peak	Weekday	Northbound	72	67	75	65	1.04	1.12	1.10	1.15
5	115P04747	2 Mid Day	Weekday	Northbound	70	66	75	65	1.07	1.14		
5	115P04747	3 PM Peak	Weekday	Northbound	70	66	75	65	1.07	1.14		
5	115P04747	4 Off Peak	Weekday	Northbound	68	65	75	65	1.10	1.15		
6	115P04333	1 AM Peak	Weekday	Northbound	70	66	65		1.00	1.00	1.00	1.02

								Assumed truck				
Segment	ТМС	timeperiod	week_type	road_direction	cars_mean	cars_P05	Speed limit	free-flow speed	Cars_TTI	Cars_PTI	Cars_PeakTTI	Cars_PeakPTI
6	115P04333	2 Mid Day	Weekday	Northbound	69	65	65	65	1.00	1.00		
6	115P04333	3 PM Peak	Weekday	Northbound	69	65	65	65	1.00	1.00		
6	115P04333	4 Off Peak	Weekday	Northbound	67	64	65	65	1.00	1.02		
6	115P04334	1 AM Peak	Weekday	Northbound	65	63	65	65	1.00	1.03	1.02	1.07
6	115P04334	2 Mid Day	Weekday	Northbound	65	62	65	65	1.00	1.05		
6	115P04334	3 PM Peak	Weekday	Northbound	65	62	65	65	1.00	1.05		
6	115P04334	4 Off Peak	Weekday	Northbound	64	61	65	65	1.02	1.07		
6	115P04335	1 AM Peak	Weekday	Northbound	59	56	55	55	1.00	1.00	1.00	1.00
6	115P04335	2 Mid Day	Weekday	Northbound	61	58	55	55	1.00	1.00		
6	115P04335	3 PM Peak	Weekday	Northbound	61	58	55	55	1.00	1.00		
6	115P04335	4 Off Peak	Weekday	Northbound	60	56	55	55	1.00	1.00		
6	115P04336	1 AM Peak	Weekday	Northbound	56	52	55	55	1.00	1.06	1.00	1.06
6	115P04336	2 Mid Day	Weekday	Northbound	58	55	55	55	1.00	1.00		
6	115P04336	3 PM Peak	Weekday	Northbound	57	54	55	55	1.00	1.02		
6	115P04336	4 Off Peak	Weekday	Northbound	57	55	55	55	1.00	1.00		
6	115P04337	1 AM Peak	Weekday	Northbound	58	55	55	55	1.00	1.00	1.00	1.02
6	115P04337	2 Mid Day	Weekday	Northbound	58	55	55	55	1.00	1.00		
6	115P04337	3 PM Peak	Weekday	Northbound	57	54	55	55	1.00	1.02		
6	115P04337	4 Off Peak	Weekday	Northbound	57	54	55	55	1.00	1.02		

<u>Closure Data</u>

					Мо	bility]		Fre	eight
			Total miles o	f closures	Avg Occura	nces/Mile/Year	Total minutes	of closures	Avg Mins	/Mile/Year
Segment	Length (miles)	# of closures	NB	SB	NB	SB	NB	SB	NB	SB
1	2.95	7	4.0	3.0	0.27	0.20	443.0	690.0	30.03	46.78
2	15.27	24	16.9	13.0	0.22	0.17	3442.7	2579.0	45.09	33.78
3	11.85	14	17.7	10.1	0.30	0.17	5208.1	3196.2	87.90	53.94
4	9.46	7	9.6	1.0	0.20	0.02	1079.4	348.0	22.82	7.36
5	17.66	35	22.0	13.0	0.25	0.15	3516.0	2097.0	39.82	23.75
6	6.51	14	12.5	2.0	0.38	0.06	2163.5	736.0	66.47	22.61

total 63.70

						ITIS Category De	scription					
	Clos	ures	Incidents	/Accidents	Incider	nts/Crashes		on Hazards	Win	ds	Winter Storr	n Codes
Segment	NB	SB	NB	SB	NB	SB	NB	SB	NB	SB	NB	SB
1	0	0	4	2	0	0	0	0	0	0	0	1
2	0	0	11	13	0	0	0	0	0	0	0	0
3	0	0	8	4	0	0	1	1	0	0	0	0
4	0	0	5	1	0	0	1	0	0	0	0	0
5	0	0	22	13	0	0	0	0	0	0	0	0
6	0	0	12	2	0	0	0	0	0	0	0	0

<u>HPMS Data</u>

SEGMENT	MP_FROM	MP_TO	WEIGHTED AVERAGE NB/EB AADT	WEIGHTED AVERAGE SB/WB AADT	WEIGHTED AVERAGE AADT	NB/EB AADT	SB/WB AADT	2014 AADT	K Factor	D-Factor	T-Factor
1	0	3	5837	5674	11512	5273	4742	10015	10	53	9
2	3	18	10822	11184	22006	10040	10555	20595	8	51	12
3	18	30	8142	8208	16350	7970	8100	16071	9	50	16
4	30	40	10696	10696	21392	10745	10745	21491	9	50	15
5	40	57	18299	18503	36801	18282	18574	36855	8	51	19
6	57	64	32963	32109	65071	34273	33165	67438	10	51	6

SEGMENT	Loc ID	BMP	EMP	Length	Pos Dir AADT	Neg Dir AADT	Corrected Pos Dir AADT	Corrected Neg Dir AADT	2014 AADT	K Factor	D-Factor	D-Factor Adjusted	T-Factor
1	100451	0.00	1.18	1.18	4349	4099	4349	4099	8448	10	53	51	9
•	100452	1.18	2.95	1.77	5889	5171	5889	5171	11060	10	60	53	9
	100453	2.95	5.31	2.36	8893	10963	8893	10963	19856	10	55	55	9
	100454	5.31	7.72	2.41	15255	14965	15255	14965	30220	9	55	50	9
2	100455	7.72	10.88	3.16	12045	13053	12045	13053	25098	8	55	52	9
2	100456	10.88	13.96	3.08	8266	8334	8266	8334	16600	8	57	50	16
	100457	13.96	15.63	1.67	7240	7265	7240	7265	14505	8	54	50	16
	100458	15.63	18.13	2.50	7615	7695	7615	7695	15310	8	51	50	16
	100459	18.13	21.62	3.49	7586	0	7586	7586	15172	9	52	50	16
3	100460	21.62	24.82	3.20	7449	7786	7449	7786	15236	9	53	51	16
5	100461	24.82	26.54	1.72	0	0	8600	8600	17200	9	53	50	16
	100462	26.54	29.99	3.45	8529	8662	8529	8662	17193	10	54	50	16
4	100463	29.99	34.88	4.89	0	0	9947	9947	19894	9	53	50	15
	100464	34.88	39.46	4.58	0	0	11598	11598	23196	8	53	50	16
	100465	39.46	40.76	1.30	13416	15600	13416	15600	29016	8	54	54	16
	100466	40.76	43.25	2.49	14741	16375	14741	16375	31116	8	52	53	16
5	100467	43.25	46.82	3.57	0	0	16611	16611	33222	8	52	50	18
5	100468	46.82	49.62	2.80	0	0	18901	18901	37802	8	53	50	20
	100469	49.62	54.39	4.77	21005	20625	21005	20625	41630	8	52	50	21
	100470	54.39	56.90	2.51	21001	20467	20824	20824	41648	9	53	50	21
	100471	56.90	58.82	1.92	21508	22612	21508	22612	44120	9	52	51	5
6	100472	58.82	60.85	2.03	33792	32176	33792	32176	65967	10	57	51	5
U	100473	60.85	61.85	1.00	43298	39667	43298	39667	82962	10	58	52	5
	100474	61.85	63.09	1.24	47548	45883	47548	45883	93432	11	52	51	13

Bicycle Accommodation Data

Segment	BMP	EMP	Divided or Non	NB/EB Right Shoulder Width	SB/WB Right Shoulder Width	NB/EB Left Shoulder Width	SB/WB Left Shoulder Width	NB/EB Effective Length of Shoulder	SB/WB Effective Length of Shoulder	% Bicycle Accommodation
1	0	3	Divided	8.9	9.0	3.6	3.6	2.7	2.7	90%
2	3	18	Divided	10.1	9.9	3.9	3.9	15.0	15.0	100%
3	18	30	Divided	9.7	9.7	3.7	3.7	12.0	12.0	100%
4	30	40	Divided	9.5	9.5	3.5	3.5	10.0	10.0	100%
5	40	57	Divided	9.9	9.9	3.9	3.9	17.0	17.0	100%
6	57	64	Divided	10.0	10.0	4.0	4.0	6.7	6.7	95%

AZTDM Data

SEGMENT	Growth Rate	% Non-SOV
1	2.13%	14.0%
2	2.06%	17.0%
3	2.19%	15.0%
4	2.05%	16.0%
5	1.65%	13.0%
6	1.96%	15.0%

HERS Capacity Calculation Data

Segment	Capacity Environment Type	Facility Type	Terrain	Lane Width (Rounded, feet)	NB/EB Rt. Shoulder	SB/WB Rt. Shoulder	Freeway	Multilane	Signalized / Urban Highway	Shoulder Index	Rural 2-Lane	F_{Iw} or f_{w} or f_{LS}	NB/EB FIc	SB/WB FIc	Total Ramp Density ¹	PHF	ET	f _{HV}	fw	fa	g/C ²	fg	f _{NP}	Nm	fp	NB/EB FFS	SB/WB FFS	NB/EB Peak-Hour Capacity	SB/WB Peak-Hour Capacity	Major Direction Peak- Hour Capacity	Daily Capacity ³
1	1	Fringe Urban	Rolling	12.00	8.88	9.02	0.0	0.0	1.0	4	0.0	0.0	0	0	1.4	0.94	1.5	0.957				N/A				71.13	71.13	4318	4318	N/A	82,242
2	1	Rural	Level	12.00	10.13	9.93	0.0	0.0	1.0	4	0.0	0.0	0	0	0	0.94	1.5	0.943				N/A				75.40	75.40	4257	4257	N/A	81,078
3	1	Rural	Level	12.00	9.68	9.68	0.0	0.0	1.0	4	0.0	0.0	0	0	0	0.94	1.5	0.926				N/A				75.40	75.40	4178	4178	N/A	79,577
4	1	Fringe Urban	Level	12.00	9.50	9.50	0.0	0.0	1.0	4	0.0	0.0	0	0	1.4	0.94	1.5	0.930				N/A				71.13	71.13	4197	4197	N/A	79,947
5	1	Fringe Urban	Level	12.00	9.92	9.92	0.0	0.0	1.0	4	0.0	0.0	0	0	1.4	0.94	1.5	0.913				N/A				71.13	71.13	4121	4121	N/A	78,487
6	1	Urban	Level	12.00	10.00	10.00	0.0	0.0	1.0	4	0.0	0.0	0	0	1.52	0.94	1.5	0.971				N/A				70.82	70.82	4381	4381	N/A	83,440

Safety Performance Area Data

Segment	Operating Environment	Segment Length (miles)	NB/EB Fatal Crashes 2010- 2014	SB/WB Fatal Crashes 2010-2014	NB/EB Incapacitating Injury Crashes	SB/WB Incapacitating Injury Crashes	Fatal + Incapacitating Injury Crashes Involving SHSP Top 5 Emphasis Areas Behaviors
1	Urban 4 Lane Freeway	3	1	1	1	0	2
2	Urban 4 Lane Freeway	15	5	5	6	6	13
3	Rural 4 Lane Freeway with Daily Volume < 25,000	12	3	2	3	4	4
4	Urban 4 Lane Freeway	9	1	1	6	1	4
5	Urban 4 Lane Freeway	18	13	5	6	7	12
6	Urban 4 Lane Freeway	7	2	6	7	4	10

Segment	Operating Environment	Fatal + Incapacitating Injury Crashes Involving Trucks	Fatal + Incapacitating Injury Crashes Involving Motorcycles	Fatal + Incapacitating Injury Crashes Involving Non-Motorized Travelers	Weighted 5-Year (2010- 2014) Average NB/EB AADT	Weighted 5-Year (2010- 2014) Average SB/WB AADT	Weighted 5-Year (2010- 2014) Average Total AADT
1	Urban 4 Lane Freeway	0	0	0	5837	5674	11512
2	Urban 4 Lane Freeway	4	0	1	10822	11184	22006
3	Rural 4 Lane Freeway with Daily Volume < 25,000	0	0	1	8142	8208	16350
4	Urban 4 Lane Freeway	1	0	1	10696	10696	21392
5	Urban 4 Lane Freeway	3	0	0	18299	18503	36801
6	Urban 4 Lane Freeway	1	2	4	32963	32109	65071

HPMS Data for Safety

		WEIG	HTED AVERA	GES for Safety			2014			2013			2012			2011			2010	
SEGMEN T	MP FRO M	MP TO	WEIGHTE D AVERAGE NB/EB AADT	WEIGHTED AVERAGE SB/WB AADT	WEIGHTED AVERAGE AADT	NB/EB AADT	SB/WB AADT	2014 AADT	NB/EB AADT	SB/WB AADT	2013 AADT	NB/EB AADT	SB/WB AADT	2012 AADT	NB/EB AADT	SB/WB AADT	2011 AADT	NB/EB AADT	SB/WB AADT	2010 AADT
1	0	3	5837	5674	11512	5273	4742	10015	5628	5319	10947	5164	5189	10353	6671	6671	13343	6450	6450	12900
2	3	18	10822	11184	22006	10040	10555	20595	10693	10927	21620	10818	11549	22367	11144	11264	22408	11417	11625	23042
3	18	30	8142	8208	16350	7970	8100	16071	8293	8327	16620	7855	7855	15710	8153	8317	16470	8440	8440	16879
4	30	40	10696	10696	21392	10745	10745	21491	11065	11065	22129	10552	10552	21104	10513	10513	21025	10605	10605	21209
5	40	57	18299	18503	36801	18282	18574	36855	19013	19455	38468	18303	18303	36607	17161	17161	34323	18734	19019	37753
6	57	64	32963	32109	65071	34273	33165	67438	34330	33486	67817	33046	32158	65205	31366	30835	62201	31797	30899	62696

Freight Performance Area Data

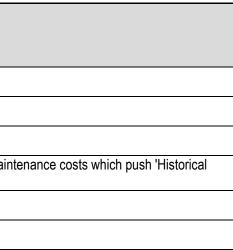
See Mobility Performance Area Data section for TTTI and TPTI Data

Bridge Vertical Clearance Data

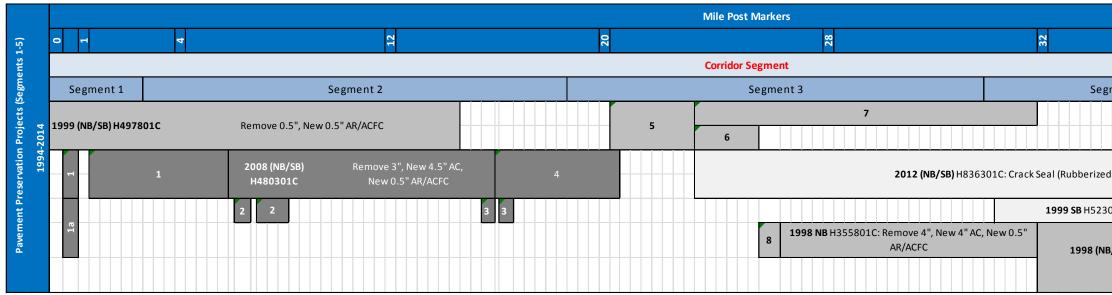
Structure Name (A209)	Structure # (N8)	Milepost (A232)	Туре	N10 or N10two	N54b	N54 only UP	N10 only UP	minimum
Segment 1								
Western Ave TI OP NB	1,545	1	OP	19.33	19.33	0.00	0.00	-
Western Ave TI OP SB	1,546	1	OP	18.13	17.95	0.00	0.00	-
Mariposa TI OP NB	2,410	3	OP	17.84	17.24	0.00	0.00	-
Mariposa TI OP SB	2,411	3	OP	17.17	16.59	0.00	0.00	-
								0.00
Segment 2								
Pajarito Rd OP NB	1,298	4	ор	15.61	15.60	0.00	0.00	-
Pajarito Rd OP SB	1,299	4	ор	19.10	19.05	0.00	0.00	-
Country Club OP NB	1,300	5	ор	15.20	14.57	0.00	0.00	-
Country Club OP SB	1,301	5	ор	17.31	16.79	0.00	0.00	-
Potrero TI SB Ramp UP	1,302	5	up	16.71	16.61	16.61	16.71	16.61
Ruby Road TI UP	1,240	8	up	18.48	16.36	16.36	18.48	16.36
Rio Rico EB TI UP	933	11	up	17.37	16.46	16.46	17.37	16.46
Rio Rico WB TI UP	2,727	11	up	17.66	16.46	16.46	17.66	16.46
Agua Fria Cyn Br NB	353	12	ор	0.00	0.00	0.00	0.00	-
Agua Fria Cyn Br SB	906	12	ор	0.00	0.00	0.00	0.00	-
Peck Canyon TI UP	935	14	up	16.42	16.15	16.15	16.42	16.15
Peck Cyn Wash Br NB	907	14	ор	0.00	0.00	0.00	0.00	-
Peck Cyn Wash Br SB	354	14	ор	0.00	0.00	0.00	0.00	-
Palo Parado TI UP	937	16	ир	17.72	16.35	16.35	17.72	16.35
Arroyo Angulo Agudo NB	1,735	18	ор	24.45	24.45	0.00	0.00	-
Arroyo Angulo Agudo SB	1,736	18	ор	23.56	23.56	0.00	0.00	-
Tumacacori TI OP NB	1,737	18	ор	21.25	20.74	0.00	0.00	-
Tumacacori TI OP SB	1,738	18	ор	16.45	16.30	0.00	0.00	-
								16.15

Structure Name (A209)	Structure # (N8)	Milepost (A232)	Туре	N10 or N10two	N54b	N54 only UP	N10 only UP	minimum
Segment 3								
Tubac TI OP NB	1,875	22	ор	17.65	17.63	0.00	0.00	-
Tubac TI OP SB	1,876	22	ор	17.34	17.25	0.00	0.00	-
Chavez TI OP NB	1,877	25	ор	17.84	17.74	0.00	0.00	-
Chavez TI OP SB	1,878	25	ор	17.65	17.58	0.00	0.00	-
Agua Linda TI UP	1,739	27	up	19.05	16.13	16.13	19.05	16.13
Sopori River Br NB	1,743	30	ор	0.00	0.00	0.00	0.00	-
Sopori River Br SB	1,744	30	ор	0.00	0.00	0.00	0.00	-
Arivaca TI OP NB	1,746	30	ор	17.95	17.94	0.00	0.00	-
Arivaca TI OP SB	1,747	30	ор	17.53	17.53	0.00	0.00	-
								16.13
Segment 4								
Old Jct Wash Br NB	1,740	31	ор	0.00	0.00	0.00	0.00	-
Old Jct Wash Br SB	1,741	31	ор	0.00	0.00	0.00	0.00	-
Tinaja Wash Br NB	1,748	31	ор	0.00	0.00	0.00	0.00	-
Tinaja Wash Br SB	1,749	31	ор	0.00	0.00	0.00	0.00	-
Canoa Ranch TI OP NB	1,752	35	ор	18.43	18.43	0.00	0.00	-
Canoa Ranch TI OP SB	1,753	35	ор	17.49	17.49	0.00	0.00	-
Esperanza Wash Br NB	397	36	ор	0.00	0.00	0.00	0.00	-
Esperanza Wash Br SB	1,751	36	ор	0.00	0.00	0.00	0.00	-
Continental TI OP NB	1,754	39	ор	18.68	17.94	0.00	0.00	-
Continental TI OP SB	1,755	39	ор	17.70	16.88	0.00	0.00	-
								0.00

Structure Name (A209)	St	ructure # (N8)	Milepost (A232)	Туре	N10 or N10two	N54b	N54 only UP	N10 only UP	minimum
Segment 5		. ,	, ,						
Esperanza Blvd TI NB		1,354	41	ор	17.39	17.17	0.00	0.00	-
Esperanza Blvd TI SB		1,355	41	ор	15.50	15.08	0.00	0.00	-
Duval Mine Rd TI UP		2,800	43	up	17.56	16.78	16.78	17.56	16.78
Anaconda Pipe OP NB		1,568	44	ор	10.72	10.92	0.00	0.00	-
Anaconda Pipe OP SB		1,569	44	ор	11.92	11.92	0.00	0.00	-
Quartz Wash Br NB		1,570	45	ор	0.00	0.00	0.00	0.00	-
Quartz Wash Br SB		1,571	45	ор	0.00	0.00	0.00	0.00	-
EI Toro Rd OP NB		1,572	46	ор	25.94	23.43	0.00	0.00	-
EI Toro Rd OP SB		1,573	46	ор	26.23	23.50	0.00	0.00	-
Helmet Peak TI UP		1,356	47	up	17.36	16.81	16.81	17.36	16.81
Pima Mine TI OP NB		1,303	50	ор	25.88	25.36	0.00	0.00	-
Pima Mine TI OP SB		1,304	50	ор	25.12	24.91	0.00	0.00	-
Pima OP NB		1,305	53	ор	0.00	0.00	0.00	0.00	-
Pima OP SB		1,306	53	ор	0.00	0.00	0.00	0.00	-
Papago Res TI OP NB		1,307	54	ор	15.38	15.38	0.00	0.00	-
Papago Res TI OP SB		1,308	54	ор	15.29	15.29	0.00	0.00	-
San Xavier OP NB		1,241	56	ор	14.46	14.46	0.00	0.00	-
San Xavier OP SB		1,242	56	ор	15.98	15.98	0.00	0.00	-
Santa Cruz Riv Br NB		1,243	57	ор	0.00	0.00	0.00	0.00	-
Santa Cruz Riv Br SB		1,244	57	ор	0.00	0.00	0.00	0.00	-
San Xavier TI OP NB		1,245	57	ор	15.65	15.34	0.00	0.00	-
San Xavier TI OP SB		1,246	57	ор	15.72	15.44	0.00	0.00	-
				•					16.78
Segment 6									
Bridge SB		1,248	58	ор	0.00	0.00	0.00	0.00	-
Bridge NB		1,247	58	ор	0.00	0.00	0.00	0.00	-
Valencia Road TI UP		1,943	59	up	18.83	17.75	17.75	18.83	17.75
Drexel Road UP		1,120	60	up	17.69	16.56	16.56	17.69	16.56
Airport Wash Br NB		1,121	60	ор	0.00	0.00	0.00	0.00	-
Airport Wash Br SB		1,122	60	ор	0.00	0.00	0.00	0.00	-
Irvington Rd TI UP		1,123	61	up	16.88	16.16	16.16	16.88	16.16
Pedestrian UP		1,124	61	up	17.16	17.10	17.10	17.16	17.10
Ajo Way UP		1,125	62	up	16.82	15.98	15.98	16.82	15.98
Julian Wash Bridge SB		2,595	63	ор	16.90	16.91	0.00	0.00	-
Julian Wash Bridge NB		2,596	63	ор	15.45	15.45	0.00	0.00	-
				•					15.98


Appendix D: Needs Analysis Contributing Factors and Scores

	Segment	Segment	Facility Type	Pavement Index				Directional PSR					% Pavement Failure			
Segment	Length	Mileposts		Performance	Performance	Level of Need	Perform	ance Score	Performance	formance Level of Need		Performance	Performance	Level of	Initial Need	
	(miles)	(MP)	Type	Score	Objective	Level of Need	NB	SB	Objective	NB	SB	Score	Objective	Need	Need	
19-1	3	0-3	Interstate	4.03	Fair or Better	None	3.72	3.96	Fair or Better	None	None	16.7%	Fair or Better	Medium	Low	
19-2	15	3-18	Interstate	4.39	Fair or Better	None	4.28	4.26	Fair or Better	None	None	3.3%	Fair or Better	None	Low	
19-3	12	18-36	Interstate	3.57	Fair or Better	None	3.74	3.90	Fair or Better	None	None	0.0%	Fair or Better	None	Low	
19-4	10	32-54	Interstate	3.54	Fair or Better	Low	3.76	3.90	Fair or Better	None	None	0.0%	Fair or Better	None	Low	
19-5	17	54-71	Interstate	4.08	Fair or Better	None	3.97	4.02	Fair or Better	None	None	0.0%	Fair or Better	None	None	
19-6	7	71-82	Interstate	3.61	Fair or Better	None	3.54	3.57	Fair or Better	Low	None	18.8%	Fair or Better	Medium	Low	


Pavement Performance Area - Needs Analysis Step 1

Pavement Performance Area – Needs Analysis Step 2

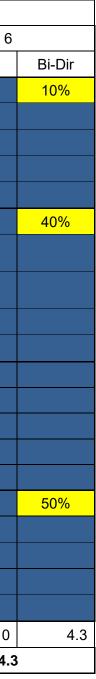
Segment	Segment Length (miles)	Segment Mileposts (MP)	Final Need	Historical Investment	Contributing Factors and Comments
1	3	0 - 3	Low	Medium	Failure hot spot NB (MP 0-1); Medium level of historical investment; Project is programmed in FY 15 should mitigate issues
2	15	3 - 18	Low	High	Failure hot spot NB (MP 17-18); High level of historical investment; Project is programmed in FY 15 should mitigate issues
3	12	18 - 30	None	Low	
4	9	30 - 40	Low	High	Failure hot spot NB (MP 32-33) and SB (MP 39-40); Medium level of previous investment; PECOS data shows high level of maint Investment Level' from 'Medium' to 'High'; Project is programmed in FY 19 should mitigate issues
5	18	40 - 57	None		
6	7	57 - 65	Low	High	Failure hot spot NB and SB (MP 62-63); High level of historical investment; No future projects currently programmed

I-19 Pavement History

Projects (segments 14		48	Mile Post I	Markers			60			64
Jects (Corridor S	egment						
		Segmer	nt 5					Segm	nent 6	
Preservatio 5- 1994-	9	1994 (NB/SB) H310201C: Remove 5", New 5" AC, New 0.5" AR/ACFC			1	3	14	15	16	
Pavement Preservation 5-6) 1994-20	10		11	12						

Legend	
New Paving or Reconstruction	 PCCP Pavement Border
Mill and Overlay (Adding Structural Thickness) Mill and Replace (No Change Structural Thickness)	AC Pavement Border
Fog Coat or Thin Overlay Treatments	

P	avement Treatment	Reference
1. 2007 (NB/SB) H636701C: .2627 Remove 3.5", New 3" AC New 2" AR - AC, New 0.5" AR/ACFC		9. 1994
1a. 2007 (NB/SB) H636701C: .2735 Remove 2", New 2" AR-AC New 0.5" AR/ACFC		10. 1994 New 0.5"
2. 2003 (SB) H625401C: 6-6.3 Remove 2", New 2" AC,		11.2001 0.5" AR/A
3. 1996 (NB) H322801C: Remove 4", 6.5" AC, New 0.5" AR?ACFC		12. 2001
4. 1996 (NB/SB) H322801C: Remove 3.25", New 5.75" AC, AR/ACFC	New 0.5"	13. 2002
5.1998 (NB/SB) H379801C: Remove 4", New 4" AC, New 0.5" AR/ACFC		14. 2006
6. 1998 (NB) H355801C: Remove 4", New 4" AC, New " AC/ARACFC		15. 2005 New 15.2
7. 1998 (SB) H355801C: Remove 4" New 4" AC, New 4" AR/ACFC		16. 2005 New 15.2
8. 1998 (NB) H355801C: Remove 6.5" , New 4" AC,		
New 0.5" AR/ACFC		


	40
gment 4	Segment 5
	9
d)	- 10
001C: 0.6" Seal Coat	
B/SB) H355701C: Remove 6", Ne New 0.5" AR/ACFC	ew 5.5"AC,

e Numbers

New

Pavement Historical Investment Levels

						Segment	Number					
Value	Level	1		2		3		4		5		6
		Uni-Dir	Bi-Dir	Uni-Dir								
1							70%	95%	100%		20%	
1												
1	L1											
1												
1												
3			100%		70%	70%		20%	20%		30%	
3						30%			80%		40%	
3	L2					25%	50%				20%	
3						5%					20%	
3											10%	
4			50%		30%						30%	
4			5%	25%	40%							
4	L3		5%	10%	30%							
4												
4												
6	_											
6	_											
6	L4											
6												
6												
	Total	0	5.4	1.4	6.1	3.9	2.2	1.55	4	0	5	0 4.3
То	otal	5.4	1	6.8		4.1	5	4.77	'5	5	5	

Pavement Historical Investment

Segment	Segment Length (miles)	Segment Mileposts (MP)	Pavement History Value (bid projects)	Pavement History Score (bid projects)	Bid History Investment	PeCos (\$/mile/yr)	PeCos Score	PeCos History Investment	Resulting Historical Investment
1	11	0-11	4.80	-0.52	Medium	\$46.86	-0.89	Low	Medium
2	32	11-43	6.80	0.49	High	\$2,331.74	-0.34	Medium	High
3	12	43-55	4.15	-0.84	Low	\$2,219.16	-0.37	Medium	Low
4	19	55-74	4.78	-0.53	Medium	\$21,684.40	4.33	High	High
5	6	74-80	5.00	-0.41	Medium	\$4,357.66	0.15	High	High
6	18	80-98	5.68	-0.07	Medium	\$7,994.26	1.03	High	High

Pavement Performance Area- Needs Analysis Step 3

Segment	Segment Length (miles)	Segment Mileposts (MP)	Final Need	Historical Investment	Contributing Factors and Comments
1	3	0 - 3	Low	Medium	Failure hot spot NB (MP 0-1); Medium level of historical investment; Project is programmed in FY 15 should mitiga
2	15	3 - 18	Low	High	Failure hot spot NB (MP 17-18); High level of historical investment; Project is programmed in FY 15 should mitigate
3	12	18 - 30	None	Low	
4	9	30 - 40	Low	High	Failure hot spot NB (MP 32-33) and SB (MP 39-40); Medium level of previous investment; PECOS data shows high 'Historical Investement Level' from 'Medium' to 'High'; Project is programmed in FY 19 should mitigate issues
5	18	40 - 57	None		
6	7	57 - 65	Low	Medium	Failure hot spot NB and SB (MP 62-63); Medium level of historical investment; No future projects currently progra

gate issues

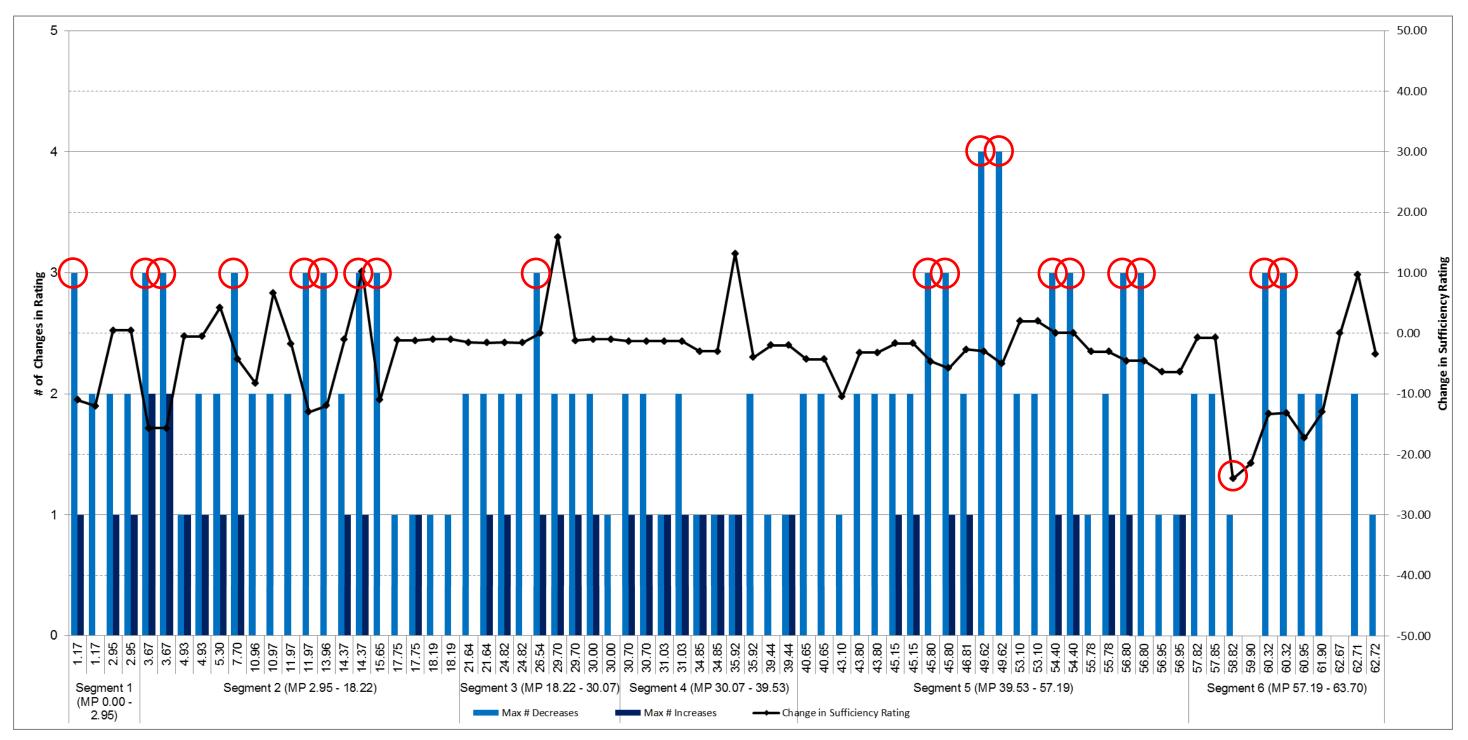
ate issues

n level of maintenance costs which push

rammed

	Segment	Segment	Number of		Bridge Index		Bridge Rating			Bridge Sufficiency			% Functionally Obsolete Bridges			
Segment	Length (miles)	Mileposts (MP)	Bridges in Segment	Performance Score	Performance Objective	Level of Need	Performance Score	Performance Objective	Level of Need	Performance Score	Performance Objective	Level of Need	Performance Score	Performance Objective	Level of Need	Initial Need
19-1	3	0-3	4	5.98	Fair or Better	Low	5	Fair or Better	Low	90.0	Fair or Better	None	100.0%	Fair or Better	High	Low
19-2	15	3-18	18	5.79	Fair or Better	Low	5	Fair or Better	Low	92.2	Fair or Better	None	27.3%	Fair or Better	Low	Low
19-3	12	18-30	9	6.18	Fair or Better	None	6	Fair or Better	None	93.1	Fair or Better	None	19.7%	Fair or Better	None	Low
19-4	9	30-40	10	6.60	Fair or Better	None	6	Fair or Better	None	95.4	Fair or Better	None	15.7%	Fair or Better	None	Low
19-5	18	40-57	22	5.30	Fair or Better	Medium	4	Fair or Better	Medium	90.9	Fair or Better	None	21.3%	Fair or Better	Low	Medium
19-6	7	57-64	11	6.06	Fair or Better	None	5	Fair or Better	Low	77.4	Fair or Better	None	19.4%	Fair or Better	None	Low

Bridge Performance Area - Needs Analysis Step 1


Bridge Performance Area – Needs Analysis Step 2

	Commont	Commont	Number of	#			Contributing Factors	
Segment	Segment Length (Miles)	Segment Mileposts (MP)	Number of Bridges in Segment	Functionally Obsolete Bridges	Final Need	Bridge	Current Ratings	Historical Rev
						Western Ave TI OP NB (#1545) (MP 1.17)	Superstructure Rating of 5	Could have a repetitive inse
19-1	3	0 - 3	4	4	Medium	Western Ave TI OP SB (#1546) (MP 1.17)	Deck and Superstructure Ratings of 5	This structure was not iden review
						Pajarito Rd OP NB (#1298) (MP 3.67)	Superstructure Rating of 5	Could have a repetitive inse
						Pajarito Rd OP SB (#1299) (MP 3.67)	Superstructure Rating of 5	Could have a repetitive inse
						Ruby Road TI UP (#1240) (MP 7.70)	No Current Ratings less than 6	Could have a repetitive inse
						Rio Rico EB TI UP (#933) (MP 10.96)	Deck and Superstructure Ratings of 5	This structure was not ident review
19-2	15	3 - 18	18	4	Low	Agua Fria Cyn Br NB (#353) (MP 11.97)	Deck and Superstructure Ratings of 5	This structure was not ident review
						Agua Fria Cyn Br SB (#906) (MP 11.97)	Deck, Superstructure, and Substructure Ratings of 5	Could have a repetitive inse
						Peck Canyon TI UP (#935) (MP 13.96)	Superstructure Rating of 5	Could have a repetitive inse
						Peck Cyn Wash Br SB (#354) (MP 14.37)	No Current Ratings less than 6	Could have a repetitive inse
						Palo Parado TI UP (#937) (MP 15.65)	Deck and Superstructure Ratings of 5	Could have a repetitive inse
19-3	12	18 - 30	9	1	None	Agua Linda TI UP (#1739) (MP 26.54)	No Current Ratings less than 6	Could have a repetitive inse
19-4	9	30 - 40	10	2	None	No bridges	with current ratings less than 6 and no his	torical issues

eview	Comments
nsevtment issue	
entified in historical	
nsevtment issue	
nsevtment issue	
nsevtment issue	
entified in historical	Listed for imporvement in the Unified Nogales Santa Cruz County Transportation Plan.
entified in historical	
nsevtment issue	
nsevtment issue	Listed for important in the Unified
nsevtment issue	Listed for imporvement in the Unified Nogales Santa Cruz County Transportation
isevtment issue	Plan.
nsevtment issue	

		a (#			Contributing Factors		
Segment	Segment Length (Miles)	Segment Mileposts (MP)	Number of Bridges in Segment	Functionally Obsolete Bridges	Final Need	Bridge	Current Ratings	Historical Review	Comments
						El Toro Rd OP NB (#1572) (MP 45.80)	Deck Rating of 4	Could have a repetitive insevtment issue	
						El Toro Rd OP SB (#1576) (MP 45.80)	Deck Rating of 4	Could have a repetitive insevtment issue	Programmed project FY 16
						Sahurita Rd TI UP (#1356) (MP 46.81)	Deck Rating of 5	This structure was not identified in historical review	Identified for reconstruction in PAG 2040 RTP
						Pima Mine TI OP NB (#1303) (MP 49.62)	Deck Rating of 4	Could have a repetitive insevtment issue	
19-5	18	40 - 57	22	8	High	Papago Res TI OP NB (#1307) (MP 54.40) No C	Deck Rating of 4	Could have a repetitive insevtment issue	Programmed project FY 16
						Papago Res TI OP NB (#1307) (MP 54.40)No CurPapago Res TI OP SB (#1308) (MP 54.40)No CurSanta Cruz River Br NB (#1243) (MP 56.80)Deck RSanta Cruz River Br SB (#1244) (MP	No Current Ratings less than 6	Could have a repetitive insevtment issue	Identified for reconstruction in
							No Current Ratings less than 6	Could have a repetitive insevtment issue	I-19 Corridor Study
							Deck Rating of 4	Could have a repetitive insevtment issue	Dreammed project FV 16
							Deck Rating of 4	Could have a repetitive insevtment issue	Programmed project FY 16
						Valencia Rd TI UP (#1943) (MP 58.82)	No Current Ratings less than 6	Could have a repetitive insevtment issue	
						Drexel Rd UP (#1120) (MP 59.90)	Deck Rating of 5	Could have a repetitive insevtment issue	Listed for reconstruction in I-19 San Xavier to I-10 DCR
10.0	7	E7 C4	11	2	Low	Airport Wash Br NB (#1121) (MP 60.32) Deck and S	Deck and Superstructure Ratings of 5	Could have a repetitive insevtment issue	
19-6		57 - 64	11	2	Low	Airport Wash Br SB (#1122) (MP 60.32)	Deck and Superstructure Ratings of 5	Could have a repetitive insevtment issue	
							Deck and Superstructure Ratings of 5	This structure was not identified in historical review	Listed for reconstruction in I-19 San Xavier to I-10 DCR
							Deck Rating of 5	This structure was not identified in historical review	Programmed project FY 18

I-19 Bridge History

Maximum # Decreases: Maximum # Increases: Change in Sufficiency Rating:

Maximum number of times that the Deck Rating, Substructure Rating, or Superstructure Rating decreased from 1997 to 2014. (Higher number could indicate a more dramatic decline in the performance of the bridge) Maximum number of times that the Deck Rating, Substructure Rating, or Superstructure Rating increased from 1997 to 2014. (Higher number could indicate a higher level of investment) Cumulative change in Sufficiency Rating from 1997 to 2014. (Bigger negative number could indicate a more dramatic decline in the performance of the bridge) Indicates the bridge is of concern from a historical rating perspective

March 2017

()

Bridge Performance Area – Needs Analysis Step 3

	Segment	Segment	Number of	#			Contributing Factors	
Segment	Length (Miles)	Mileposts (MP)	Bridges in Segment	Functionally Obsolete Bridges	Final Need	Bridge	Current Ratings	Historical Revie
10.1	2	0.2				Western Ave TI OP NB (#1545) (MP 1.17)	Superstructure Rating of 5	Could have a repetitive insevtr
19-1	3	0 - 3	4	4	Medium	Western Ave TI OP SB (#1546) (MP 1.17)	Deck and Superstructure Ratings of 5	This structure was not identifie review
						Pajarito Rd OP NB (#1298) (MP 3.67)	Superstructure Rating of 5	Could have a repetitive insevtr
						Pajarito Rd OP SB (#1299) (MP 3.67)	Superstructure Rating of 5	Could have a repetitive insevtr
						Ruby Road TI UP (#1240) (MP 7.70) No	No Current Ratings less than 6	Could have a repetitive insevtr
						Rio Rico EB TI UP (#933) (MP 10.96)	Deck and Superstructure Ratings of 5	This structure was not identifie review
19-2	15	3 - 18	18	4	Low	Agua Fria Cyn Br NB (#353) (MP 11.97)	Deck and Superstructure Ratings of 5	This structure was not identifie review
						Agua Fria Cyn Br SB (#906) (MP 11.97)	Deck, Superstructure, and Substructure Ratings of 5	Could have a repetitive insevtr
						Peck Canyon TI UP (#935) (MP 13.96)	Superstructure Rating of 5	Could have a repetitive insevtr
						Peck Cyn Wash Br SB (#354) (MP 14.37)	No Current Ratings less than 6	Could have a repetitive insevtr
						Palo Parado TI UP (#937) (MP 15.65)	Deck and Superstructure Ratings of 5	Could have a repetitive insevtr
19-3	12	18 - 30	9	1	None	Agua Linda TI UP (#1739) (MP 26.54)	No Current Ratings less than 6	Could have a repetitive insevtr
19-4	9	30 - 40	10	2	None	No bri	idges with current ratings less than 6 and r	no historical issues

iew	Comments
tment issue	
fied in historical	
tment issue	
tment issue	
tment issue	
fied in historical	Listed for imporvement in the Unified Nogales Santa Cruz County Transportation Plan.
fied in historical	
tment issue	
tment issue	Listed for importance in the Unified
tment issue	Listed for imporvement in the Unified Nogales Santa Cruz County Transportation Plan.
tment issue	
tment issue	

	Cogmont	Cogmont	Numberof	#			Contributing Factors		
Segment	Segment Length (Miles)	Segment Mileposts (MP)	Number of Bridges in Segment	Functionally Obsolete Bridges	Final Need	NeedBridgeIEl Toro Rd OP NB (#1572) (MP 45.80)DEl Toro Rd OP SB (#1576) (MP 45.80)DSahurita Rd TI UP (#1356) (MP 46.81)DPima Mine TI OP NB (#1303) (MP 49.62)DPima Mine TI OP SB (#1304) (MP 49.62)DPapago Res TI OP NB (#1307) (MP 54.40)NSanta Cruz River Br NB (#1243) (MP 56.80)NSanta Cruz River Br SB (#1244) (MP 56.80)DSanta Cruz River Br SB (#1244) (MP 56.80)DJrexel Rd UP (#1120) (MP 59.90)DAirport Wash Br NB (#1121) (MP 60.32)DIrvington Rd TI UP (#1123) (MP 60.32)DIrvington Rd TI UP (#1123) (MP 60.95)D	Current Ratings	Historical Review	Comments
					NeedBridgeEl Toro Rd OP NB (#1572) (MP 45.80)El Toro Rd OP SB (#1576) (MP 45.80)Sahurita Rd TI UP (#1356) (MP 46.81)Pima Mine TI OP NB (#1303) (MP 49.62)Pima Mine TI OP SB (#1304) (MP 49.62)Papago Res TI OP NB (#1307) (MP 54.40)Santa Cruz River Br NB (#1307) (MP 54.40)Santa Cruz River Br NB (#1243) (MP 56.80)Valencia Rd TI UP (#1943) (MP 58.82)LowAirport Wash Br NB (#1121) (MP 60.32)Airport Wash Br SB (#1122) (MP 60.32)Irvington Rd TI UP (#1123) (MP	Deck Rating of 4	Could have a repetitive insevtment issue		
							Deck Rating of 4	Could have a repetitive insevtment issue	 Programmed project FY 16
							Deck Rating of 5	This structure was not identified in historical review	Identified for reconstruction in PAG 2040 RTP
							Deck Rating of 4	Could have a repetitive insevtment issue	Dragrammad project EV 16
19-5	18	40 - 57	22	8	High		Deck Rating of 4	Could have a repetitive insevtment issue	 Programmed project FY 16
							No Current Ratings less than 6	Could have a repetitive insevtment issue	Identified for reconstruction in
							No Current Ratings less than 6	Could have a repetitive insevtment issue	I-19 Corridor Study
							Deck Rating of 4	Could have a repetitive insevtment issue	Drogrammed project EV 16
							Deck Rating of 4	Could have a repetitive insevtment issue	 Programmed project FY 16
							No Current Ratings less than 6	Could have a repetitive insevtment issue	
					Santa Cruz R 56.80) Santa Cruz R 56.80) Valencia Rd T 58.82) Drexel Rd UP Airport Wash 60.32)	Drexel Rd UP (#1120) (MP 59.90)	Deck Rating of 5	Could have a repetitive insevtment issue	Listed for reconstruction in I-19 San Xavier to I-10 DCR
10.6	7	57 64	11	2		• • • • • •	Deck and Superstructure Ratings of 5	Could have a repetitive insevtment issue	
19-6	/	57 - 64	11	2	LOW		Deck and Superstructure Ratings of 5	Could have a repetitive insevtment issue	
							Deck and Superstructure Ratings of 5	This structure was not identified in historical review	Listed for reconstruction in I-19 San Xavier to I-10 DCR
						Ajo Way UP (#1125) (MP 61.90)	Deck Rating of 5	This structure was not identified in historical review	Programmed project FY 18

Segment	Segment	Segment Length	Environment	Facility	Мо	bility Index		Fu	ture Daily V/C			Exi	isting Peak Hour	V/C		Clo	osure Ex	tent (occurrence	es/year/m	ile)
Segment	Mileposts	(miles)	Туре	Operation	Performance	Performance	Level of	Performance	Performance	Level of		rmance ore	Performance	Level	of Need	_	mance ore	Performance	Level	of Need
		3 Urban Interrupted		Score	Objective	Need	Score	Objective	Need	NB	SB	Objective	EB WB		NB	SB	Objective	NB	SB	
19-1	0-3	3	Urban	Interrupted	0.16	Fair or Better	None	0.19	Fair or Better	None	0.12	0.11	Fair or Better	None	None	0.27	0.20	Fair or Better	None	None
19-2	3-18	15	Rural	Uninterrupted	0.32	Fair or Better	None	0.39	Fair or Better	None	0.19	0.20	Fair or Better	None	None	0.22	0.17	Fair or Better	None	None
19-3	18-30	12	Rural	Interrupted	0.26	Fair or Better	None	0.32	Fair or Better	None	0.17	0.17	Fair or Better	None	None	0.30	0.17	Fair or Better	None	None
19-4	30-40	9	Urban	Uninterrupted	0.34	Fair or Better	None	0.41	Fair or Better	None	0.23	0.23	Fair or Better	None	None	0.20	0.02	Fair or Better	None	None
19-5	40-57	18	Urban	Uninterrupted	0.56	Fair or Better	None	0.66	Fair or Better	None	0.35	0.36	Fair or Better	None	None	0.25	0.15	Fair or Better	None	None
19-6	57-64	7	Urban	Uninterrupted	1.01	Fair or Better	High	1.21	Fair or Better	High	0.78	0.76	Fair or Better	Low	None	0.25	0.04	Fair or Better	None	None
	Emphasis rea	Yes	Weighte	d Average	0.45	Good	None													

		Segment				Dire	ctional TTI (all vehi	cles)			Dire	ctional PTI (all vehi	cles)		Bicycle	Accommodation		
Segment	Segment Mileposts	Segment Length (miles)	Environment Type	Facility Operation		mance ore	Performance	Level o	of Need	Perfor Sc	mance ore	Performance	Level o	of Need	Performance	Performance	Level of	Initial Need
		(miles)			NB	SB	Objective	EB	WB	NB SB		Objective	EB	WB	Score	Objective	Need	
19-1	0-3	3	Urban	Interrupted	1.40	1.01	Fair or Better	None	None	2.28	1.30	Fair or Better	None	None	90%	Fair or Better	None	Low
19-2	3-18	15	Rural	Uninterrupted	1.16	1.13	Fair or Better	None	None	1.25	1.22	Fair or Better	None	None	100%	Fair or Better	None	Low
19-3	18-30	12	Rural	Interrupted	1.58	1.10	Fair or Better	Low	None	2.50	1.17	Fair or Better	None	None	100%	Fair or Better	None	Low
19-4	30-40	9	Urban	Uninterrupted	1.06	1.06	Fair or Better	None	None	1.08	1.12	Fair or Better	None	None	100%	Fair or Better	None	Low
19-5	40-57	18	Urban	Uninterrupted	1.06	1.07	Fair or Better	None	None	1.11	1.12	Fair or Better	None	None	100%	Fair or Better	None	Low
19-6	57-64	7	Urban	Uninterrupted	1.00	1.04	Fair or Better	None	None	1.03	1.12	Fair or Better	None	None	95%	Fair or Better	None	High

							Roadw	ay Variables					Traf	fic Variabl	es		
Segment	Segment Mileposts (MP)	-	Refined Need	Functional Classification	Environmental Type (Urban/Rural)	Terrain	# of Lanes/ Direction	Speed Limit	Aux Lanes	Divided/ Non-Divided	% No Passing	Existing LOS	Future 2035 LOS	% Trucks	Buffer	SB Buffer Index (PTI- TTI)	
19-1	0-3	3	None	Interstate	FringeUrban	Rolling	2	25-65	None	Both	0%	A-C	A-C	7%	0.88	0.29	1/4 mile non-d
19-2	3-18	15	None	Interstate	Rural	Level	2	75	None	Divided	0%	A/B	A/B	8%	0.09	0.09	None
19-3	18-30	12	Low	Interstate	Rural	Level	2	75	None	Divided	0%	A/B	A/B	11%	0.92	0.06	None
19-4	30-40	9	None	Interstate	FringeUrban	Level	2	65-75	None	Divided	0%	A-C	A-C	13%	0.03	0.06	None
19-5	40-57	18	None	Interstate	FringeUrban	Level	2	65-75	None	Divided	0%	A-C	A-C	14%	0.05	0.07	None
19-6	57-64	7	High	Interstate	Urban	Level	2	55-65	None	Divided	0%	A-C	E/F	7%	0.03	0.10	3 lanes each di

Relevant Mobility Related Existing Infrastructure

on-divived in Nogales

h directon between Ajo (SR 86) TI and I-19/I-10 Interchange

	Segment	Segment	Refined					Closure Exter	nt	-			Non-Actionable	
Segment	Mileposts	U U	Need	Total Number	# of Closures	% Closures	# Incidents/	% Incidents/	-	% Obstructions/			Conditions	
	(MP)	(miles)		of Closures			Accidents	Accidents	Hazards	Hazards	Related	Related		
19-1	0-3	3	None	6	0	0%	5	83%	0	0%	1		1/4 mile of Non- freeway urban section	 Urban portion of I-19 within Nogalia higher-speed controlled access 4-I Existing and future traffic LOS is go accident and weather-related closur High deficiencies in northbound Tradivided section.
19-2	3-18	15	None	30	0	0%	29	97%	1	3%	0	0%	None	• Elevated incident/accident-related periodic congestion at I-19/US 189 T
19-3	18-30	12	Low	9	0	0%	7	78%	2	22%	0	0%	Border Checkpoint in NB direction	 Elevated northbound TTI/PTI Need and slower average speeds for lengt 78% of closures related to incident
19-4	30-40	9	None	12	1	8%	10	83%	1	8%	0	0%	None	 No reported performance deficient 83% of closures incidents/accident
19-5	40-57	18	None	42	0	0%	42	100%	0	0%	0	0%	None	 Elevated number of closures 100% Multiple TI and ramp improvemen and reduce accidents.
19-6	57-64	7	High	21	7	33%	14	67%	0	0%	0	0%	None	 High Mobility Index performance N Congested levels existing peak hor The number of weekdays vs. week There is no spike in traffic that can b 67% of closures incidents/accident in urban area.

Mobility Performance Area – Needs Analysis Step 2

Mobility Performance Area – Needs Analysis Step 3

							Roadw	ay Variables				Traffic Variables					
Segment	Segment Mileposts (MP)	Segment Length (miles)	Refined Need	Functional Classification	Environmental Type (Urban/Rural)	Terrain	# of Lanes/ Direction	Speed Limit	Aux Lanes	Divided/ Non-Divided	% No Passing	Existing LOS	Future 2035 LOS	% Trucks	NB Buffer Index (PTI- TTI)	SB Buffer Index (PTI-TTI)	
19-1	0-3	3	None	Interstate	FringeUrban	Rolling	2	25-65	None	Both	0%	A-C	A-C	7%	0.88	0.29	
19-2	3-18	15	None	Interstate	Rural	Level	2	75	None	Divided	0%	A/B	A/B	8%	0.09	0.09	
19-3	18-30	12	Low	Interstate	Rural	Level	2	75	None	Divided	0%	A/B	A/B	11%	0.92	0.06	
19-4	30-40	9	None	Interstate	FringeUrban	Level	2	65-75	None	Divided	0%	A-C	A-C	13%	0.03	0.06	
19-5	40-57	18	None	Interstate	FringeUrban	Level	2	65-75	None	Divided	0%	A-C	A-C	14%	0.05	0.07	
19-6	57-64	7	High	Interstate	Urban	Level	2	55-65	None	Divided	0%	A-C	E/F	7%	0.03	0.10	
XX-7	0	0	0												0.00	0.00	

Contributing Factors

ales, beginning as a low-speed non-divided cross-section and transitioning to 4-lane interstate.

good, but the urban environment and rolling terrain may contribute to sures.

TTI and PTI are likely related to lower posted speed limits on the non-

ted closures not sufficient to lower the TTI/PTI, but may be associated with 9 TI.

eed related to Border Patrol checkpoint near Tubac causes temporary delays ngth of segment. Non-actionable condition.

ents/accidents.

encies.

ents-related.

0% incident/accident-related

ent projects planned for near-term expected to help maintain acceptable LOS

e Need, based on heavy northbound flows entering Tucson urban area. nour V/C and future daily V/C.

ekend days in which traffic volumes exceed acceptable LOS are nearly equal. h be attributed to work-related (week day) or recreational (weekend) traffic. ents-related, with 33% unidentified. May be related to increased congestion

								Closure Ex	tent					
Segment	Segment Mileposts (MP)	Segment Length (miles)	Refined Need	Total Number of Closures	# of Closures	% Closures	# Incidents/ Accidents	% Incidents/ Accidents	# Obstructions/ Hazards	% Obstructions/ Hazards	# Weather Related	% Weather Related	Non- Actionable Conditions	
19-1	0-3	3	None	6	0	0%	5	83%	0	0%	1	17%	1/4 mile of Non- freeway urban section	• n c • a c c l c l c
19-2	3-18	15	None	30	0	0%	29	97%	1	3%	0	0%	None	• th 19
19-3	18-30	12	Low	9	0	0%	7	78%	2	22%	0	0%	Border Checkpoint in NB direction	• cl si
19-4	30-40	9	None	12	1	8%	10	83%	1	8%	0	0%	None	•
19-5	40-57	18	None	42	0	0%	42	100%	0	0%	0	0%	None	• • ex
19-6	57-64	7	High	21	7	33%	14	67%	0	0%	0	0%	None	• • • vo tr re • ui

Contributing Factors

• Urban portion of I-19 within Nogales, beginning as a low-speed non-divided cross-section and transitioning to a higher-speed controlled access 4-lane interstate.

• Existing and future traffic LOS is good, but the urban environment and rolling terrain may contribute to accident and weather-related closures.

• High deficiencies in northbound TTI and PTI are likely related to lower posted speed limits on the non-divided section.

• Elevated incident/accident-related closures not sufficient to lower the TTI/PTI, but may be associated with periodic congestion at I-19/US 189 TI.

• Elevated northbound TTI/PTI Need related to Border Patrol checkpoint near Tubac causes temporary delays and slower average speeds for length of segment. Non-actionable condition.

• 78% of closures related to incidents/accidents.

- No reported performance deficiencies.
- 83% of closures incidents/accidents-related.
- Elevated number of closures 100% incident/accident-related
- Multiple TI and ramp improvement projects planned for near-term expected to help maintain acceptable LOS and reduce accidents.

• High Mobility Index performance Need, based on heavy northbound flows entering Tucson urban area.

- Congested levels existing peak hour V/C and future daily V/C.
- The number of weekdays vs. weekend days in which traffic volumes exceed acceptable LOS are nearly equal. There is no spike in traffic that can be attributed to work-related (week day) or recreational (weekend) traffic.

• 67% of closures incidents/accidents-related, with 33% unidentified. May be related to increased congestion in urban area.

Safety Performance Area – Needs Analysis Step 1

		Segment	Segment	Safety Index				Index	Scale	Directional Safety Index					% of Fatal + Incapacitating Injury Crashes Involving SHSP Top 5 Emphasis Areas Behaviors		
Segment	Operating Environment Lenge (miles)		Milepost s (MP)	Performance Score	Performance Objective	Level of Need	None <=	Low <=	High >=	NB Performanc e Score	SB Performanc e Score	Performance Objective	NB/WB Level of Need	SB/EB Level of Need	Performance Score	Performance Objective	Level of Need
19-1	Urban 4 Lane Freeway	3	0-3	1.94	Average or Better	High	0.93	1.07	1.35	1.99	1.90	Average or Better	High	High	Insufficient Data	Average or Better	N/A
19-2	Urban 4 Lane Freeway	15	3-18	1.33	Average or Better	Medium	0.93	1.07	1.35	1.34	1.32	Average or Better	Medium	Medium	59%	Average or Better	Medium
19-3	Rural 4 Lane Freeway with Daily Volume < 25,000	12	18-30	1.36	Average or Better	Medium	0.91	1.09	1.45	1.59	1.12	Average or Better	High	Medium	33%	Average or Better	None
19-4	Urban 4 Lane Freeway	9	30-40	0.52	Average or Better	None	0.93	1.07	1.35	0.59	0.44	Average or Better	None	None	44%	Average or Better	None
19-5	Urban 4 Lane Freeway	18	40-57	1.48	Average or Better	High	0.93	1.07	1.35	2.11	0.86	Average or Better	High	None	39%	Average or Better	None
19-6	Urban 4 Lane Freeway	7	57-65	1.42	Average or Better	High	0.93	1.07	1.35	0.80	2.04	Average or Better	None	High	53%	Average or Better	Low
	Safety Emphasis Area?	Yes	Weighted Corridor Average	1.30	Above Average	High											

Segment	Operating Environment	Segment Length	Segment Mileposts		apacitating Injury olving Trucks	Crashes	Incapa Crash	of Fatal citating les Invo lcks Sca	Injury Iving		pacitating Injury (ng Motorcycles	Crashes		pacitating Injury (n-Motorized Trave		Initial Need
		(miles)	(MP)	Performance Score	Performance Objective	Level of Need	None <=	Low <=	High >=	Performance Score	Performance Objective	Level of Need	Performance Score	Performance Objective	Level of Need	Need
19-1	Urban 4 Lane Freeway	3	0-3	8%	Average or Better	None	8%	9%	12%		Average or Better			Average or Better		High
19-2	Urban 4 Lane Freeway	15	3-18	Insufficient Data	Average or Better	N/A	8%	9%	12%		Average or Better			Average or Better		High
19-3	Rural 4 Lane Freeway with Daily Volume < 25,000	12	18-30	15%	Average or Better	Low	14%	15%	18%		Average or Better			Average or Better		High
19-4	Urban 4 Lane Freeway	9	30-40	11%	Average or Better	Medium	8%	9%	12%		Average or Better			Average or Better		Low
19-5	Urban 4 Lane Freeway	18	40-57	35%	Average or Better	High	8%	9%	12%		Average or Better			Average or Better		N/A
19-6	Urban 4 Lane Freeway	7	57-65	17%	Average or Better	High	8%	9%	12%		Average or Better			Average or Better		N/A

Safety Performance Area – Needs Analysis Step 2

Segment	Segment Length (miles)	Segment Mileposts (MP)	Initial Need	Hot Spots	Relevant Recently Completed or Under Construction Projects (which supersede performance data)*	Final Need	Comments (may include tentatively programmed projects with potential to address need or other relevant issues identified in previous reports)
1	3	0 - 3	High	None	None	High	<u>Planned</u> I-19, I-19B Terminus to West Street - Roadway Improvements for Future Capacity
2	15	3 - 18	High	SB MP 9	None	High	 I-19 and Mariposa TI reconfiguration <u>Planned</u> I-19, SR 189/Mariposa Road TI to Tumacocori TI – Roadway Improvements for Future Capacity I-19, Exit 22 (Peck Canyon Rd) to Exit 48 (Arivaca Road) – Interchange Improvements I-19 Safety Corridor Improvements MP 8.4 - 9.4
3	12	18 - 30	High	None	None	High	Programmed (FY 2015) Canoa Shooulders - Construct Shoulder Widening
4	10	30 - 40	None	NB MP 31, 33, 39	Ongoing Pavement Preservation MP 31.8-42.5	Low	Nothing planned or programmed in this segment
5	17	40 - 57	High	NB MP 43, 45, 53, 56 SB MP 47, 54	None	High	PlannedEsperanza, Duval Mine Rd, Helmet Peak, PimaMine Rd, Papago TI reconstruction projects listedin various planning documentsWiden to six lanes MP 39 - 58 in PAG 2040 RTP
6	7	57 - 64	High	NB MP 58, 59, 61 SB MP 61	None	High	ProgrammedAjo Way TI - Reconstruct TI and Mainline (2015, 2018)Irvington Road and I-19 – Design and reconstruct new TI (SPUI)Planned Capacity expansion planned entire segment listed in various planning documentsReconstruct I-19 to four lanes in each direction between San Xavier Road and I-10 (I-19 DCR)All interchanges planned for upgrade

Safety Performance Area – Needs Analysis Step 3

Segment Number Segment Length (miles) Segment Milepost (MP) Final Need	3	2 15	3	4	5	6	
egment Milepost (MP)	•		12	10	17	7	
• • • •	0-3	3 - 18	18 - 30	30 - 40	40 - 57	57 - 64	Corridor-Wide Crash Characteristics
	High	High	High	Low	High	High	
egment Crash Overview	2 Crashes were fatal1 Crashes had incapacitating injuries	 Crashes were fatal Crashes had incapacitating injuries 	5 Crashes were fatal7 Crashes had incapacitating injuries	 2 Crashes were fatal 7 Crashes had incapacitating injuries 	 18 Crashes were fatal 13 Crashes had incapacitating injuries 	8 Crashes were fatal11 Crashes had incapacitating injuries	45 Crashes were fatal 51 Crashes had incapacitating injuries
	0 Crashes involve trucks	4 Crashes involve trucks	0 Crashes involve trucks	1 Crashes involve trucks	3 Crashes involve trucks	1 Crashes involve trucks	9 Crashes involve trucks
	33% Involve Collision with Motor Vehicle	55% Involve Overturning	33% Involve Collision with Motor Vehicle	60% Involve Overturning	40% Involve Overturning	38% Involve Collision with Motor Vehicle	33% Involve Overturning
First Harmful Event Type	33% Involve Collision with Motor Vehicle	18% Involve Collision with Motor Vehicle	33% Involve Collision with Motor Vehicle	40% Involve Collision with Pedestrian	35% Involve Collision with Motor Vehicle	31% Involve Collision with Fixed Object	32% Involve Collision with Motor Vehicle
	33% Involve Collision with Motor Vehicle	18% Involve Collision with Motor Vehicle	17% Involve Collision with Fixed Object	0% Involve Collision with Motor Vehicle	20% Involve Collision with Fixed Object	19% Involve Collision with Pedestrian	20% Involve Collision with Fixed Object
Collision Type	67% Involve Single Vehicle 33% Involve Rear End	77% Involve Single Vehicle 5% Involve Angle	50% Involve Single Vehicle 17% Involve Rear End	60% Involve Single Vehicle 40% Involve Other	65% Involve Single Vehicle 15% Involve Rear End	38% Involve Single Vehicle31% Involve Rear End50% Involve Other	57% Involve Single Vehicle 18% Involve Rear End
	<u> </u>						10% Involve Other
Violation or Debusics						•	25% Involve Speed too Fast for Conditions 21% Involve No Improper Action
Violation or Benavior							14% Involve Unknown
							58% Occur in Daylight Conditions
Lighting Conditions		, 0	, i i i i i i i i i i i i i i i i i i i	, .		, .	35% Occur in Dark-Unlighted Conditions
Lighting conditions		•	, ,			, •	5% Occur in Dark-Lighted Conditions
							88% Involve Dry Conditions
Surface Conditions	33% Involve Wet Conditions	18% Involve Wet Conditions	25% Involve Wet Conditions	0% Involve Wet Conditions	0% Involve Wet Conditions	13% Involve Wet Conditions	11% Involve Wet Conditions
	0% Involve Snow Conditions	5% Involve Water (standing or moving) Conditions	0% Involve Snow Conditions	0% Involve Wet Conditions	0% Involve Wet Conditions	0% Involve Snow Conditions	1% Involve Water (standing or moving) Conditions
	67% Involve a first unit event of Ran Off the Road (Left)	27% Involve a first unit event of Ran Off the Road (Left)	42% Involve a first unit event of Motor Vehicle in Transport	80% Involve a first unit event of Motor Vehicle in Transport	30% Involve a first unit event of Ran Off the Road (Left)	50% Involve a first unit event of Motor Vehicle in Transport	34% Involve a first unit event of Motor Vehicle in Transport
First Unit Event	33% Involve a first unit event of Motor Vehicle in Transport	27% Involve a first unit event of Ran Off the Road (Left)	33% Involve a first unit event of Equipment Failure	20% Involve a first unit event of Collision with Pedestrian	25% Involve a first unit event of Motor Vehicle in Transport	13% Involve a first unit event of Ran Off the Road (Left)	23% Involve a first unit event of Ran Off the Road (Left)
	0% Involve a first unit event of Collision with Animal	18% Involve a first unit event of Motor Vehicle in Transport	8% Involve a first unit event of Ran Off the Road (Left)	0% Involve a first unit event of Collision with Animal	25% Involve a first unit event of Motor Vehicle in Transport	13% Involve a first unit event of Ran Off the Road (Left)	17% Involve a first unit event of Equipment Failure
	33% Under the Influence of Drugs or Alcohol	45% No Apparent Influence	50% No Apparent Influence	60% Unknown	75% No Apparent Influence	44% No Apparent Influence	52% No Apparent Influence
Driver Physical Condition	33% Under the Influence of Drugs or Alcohol	32% Unknown	33% Unknown	40% No Apparent Influence	15% Under the Influence of Drugs or Alcohol	31% Under the Influence of Drugs or Alcohol	26% Unknown
	33% Under the Influence of Drugs or Alcohol	14% Under the Influence of Drugs or Alcohol	17% Under the Influence of Drugs or Alcohol	0% Under the Influence of Drugs or Alcohol	10% Unknown	25% Unknown	18% Under the Influence of Drugs or Alcohol
	67% Shoulder And Lap Belt Used	41% None Used	58% Shoulder And Lap Belt Used	40% Shoulder And Lap Belt Used	75% Shoulder And Lap Belt Used	44% Shoulder And Lap Belt Used	53% Shoulder And Lap Belt Used
Safety Device Usage	33% None Used	36% Shoulder And Lap Belt Used	17% None Used	20% None Used	15% None Used	19% None Used	24% None Used
	0% Child Restraint System Used	9% Air Bag Deployed/Shoulder-Lap Belt	8% Air Bag Deployed	20% None Used	10% Air Bag Deployed/Shoulder-Lap Belt	19% None Used	7% Unknown
ot Spot Crash Summaries	None	NB MP 9	None	NB MP 30, 33, 38, 39			
viously Completed Safety- Related Projects	None	None	None	Pavement Preservation MP 31-42	None	None	
rict Interviews/Discussions		Elevated number of crashes due to demographics and age of vehicles	Elevated number of crashes due to demorgraphics and age of vehicles		High number of fatal crashes near Green Valley; increased nubmer of crashes due to alcohol		
Contributing Factors	Insufficent data to determine trends	Single vehicle crashes Vehicle in transport	Single vehicle Traffic control device refelctivity	Traffic control device reflectivity Vehicle in transport Comment: Conoa Shoulders project may help safety	Higher traffic volumes Urban operating conditions Comment: Five planned intersection improvements as well as planed added capacity may help safety	Improper lane changes Higher traffic volumes Urban operating conditions Comment: Planned and programmed added	
ri	Violation or Behavior Lighting Conditions Surface Conditions First Unit Event Driver Physical Condition Safety Device Usage t Spot Crash Summaries iously Completed Safety- Related Projects ict Interviews/Discussions	Collision Type 67% Involve Single Vehicle 33% Involve Angle Violation or Behavior 33% Involve Speed too Fast for Conditions 0% Occur in Daylight Conditions 0% Occur in Dawn Conditions 0% Occur in Dawn Conditions 33% Involve Snow Conditions 33% Involve Snow Conditions 33% Involve Snow Conditions 33% Involve Snow Conditions 33% Involve a first unit event of Motor Vehicle in Transport 0% Involve a first unit event of Collision with Animal 33% Under the Influence of Drugs or Alcohol 33% Under the Influence of Drugs or Alcohol 33% Involve Angle 33% Under the Influence of Drugs or Alcohol 33% None iously	Collision Type 67% Involve Single Vehicle 77% Involve Angle Involve Angle 33% Involve Angle 5% Involve Angle 5% Involve Angle 33% Involve Angle 3% Involve Angle 5% Involve Speed to Fast for Conditions 33% Involve Speed to Fast for Conditions 18% Involve No Improper Action 33% Involve Speed to Fast for Conditions 18% Involve No Improper Action 33% Involve Speed to Fast for Conditions 5% Occur in Dark-Unlighted Conditions 33% Involve Speed to Fast for Conditions 5% Occur in Dark-Unlighted Conditions 33% Involve Speed to Fast for Conditions 5% Occur in Dark-Unlighted Conditions 33% Involve Speed to Fast for Conditions 5% Occur in Dark-Unlighted Conditions 33% Involve Speed Top Conditions 5% Occur in Dark-Unlighted Conditions 33% Involve A first unit event of Ran Off the Road (Left) 27% Involve A first unit event of Ran Off the Road (Left) 33% Under the Influence of Drugs or Alcohol 27% Nove A first unit event of Ran Off the Road (Left)<	Collision Type 57% Involve Single Vehicle 57% Involve Range 57% Violation or Behavior 33% Involve Speed too Fast for Conditions 23% Involve Speed too Fast for Conditions 25% Involve No Improper Action 25% Involve Speed too Fast for Conditions 25% Occur in Davin Conditions 25% Involve Speed too Fast for Conditions	Califian Type OPS Involve Single Vehicle SPS SPS Involve Single Vehicle SPS SPS Involve Single Vehicle SPS SPS	Optimization report Dist include stage value Dist include value value <thdis include="" th="" value="" value<=""> <thdist include="" th="" va<=""><th>Califies Type Ph. Inspect Single Value Ph. Inspect Single</th></thdist></thdis>	Califies Type Ph. Inspect Single Value Ph. Inspect Single

	Facility	Segment	Segment		Freight Index			Directio	onal TTI (trucks on	ly)			Dire	ectional PTI (truc	ks only)	
Segment	Operations	Mileposts (MP)	Length (miles)	Performance	Performance	Level of	Performa	nce Score	Performance	Level	of Need	Performance Score		Performanc	e Level d	of Need
			(/	Score	Objective	Need	NB	SB	Objective	NB	SB	NB	SB	Objective	NB	SB
19-1	Interrupted	0-3	3	0.46	Fair or Better	None	1.54	1.08	Fair or Better	Low	None	2.37	1.96	Fair or Bette	r None	None
19-2	Uninterrupted	3-18	15	0.92	Fair or Better	None	1.04	1.04	Fair or Better	None	None	1.09	1.08	Fair or Bette	r None	None
19-3	Interrupted	18-30	12	0.34	Fair or Better	None	1.43	1.03	Fair or Better	None	None	4.91	1.06	Fair or Bette	r Low	None
19-4	Uninterrupted	30-40	10	0.95	Fair or Better	None	1.02	1.03	Fair or Better	None	None	1.05	1.06	Fair or Bette	r None	None
19-5	Uninterrupted	40-57	17	0.94	Fair or Better	None	1.03	1.03	Fair or Better	None	None	1.05	1.06	Fair or Bette	r None	None
19-6	Uninterrupted	57-64	7	0.88	Fair or Better	None	1.02	1.08	Fair or Better	None	None	1.06	1.20	Fair or Bette	r None	None
Emphasis Area?	Yes	Weighte	ed Average	0.80	Good	None										_
	Fac	Facility		0	Closure Duration (minutes/mile/year)					B	Bridge Clearance (feet)					
Segment	Opera	inty	Mileposts	Segment Length (miles)	Performance	ce Score Performance		Level of Need			Performance		Performance		Initial Need	
	Opere		(MP)	(111100)	NB	SB	Objective	NB	SB		Score	Obje	ective	Level of Need		
19-1	Interro	upted	0-3	3	30.03	46.78 F	air or Better	None	Non	е	18.00	Fair o	r Better	None	Low	
19-2	Uninter	rupted	3-18	15	45.09	33.78 F	air or Better	None	Non	e	16.15	Fair o	r Better	Medium	Low	
19-3	Interro	upted	18-30	12	87.90	53.94 F	air or Better	Low	Non	e	16.13	Fair o	r Better	Medium	Low	
19-4	Uninter	rupted	30-40	10	22.82	7.36 F	air or Better	None	Non	е	18.00	Fair o	r Better	None	Low	
19-5	Uninter	rupted	40-57	17	39.82	23.75 F	air or Better	None	Non	e	16.78	Fair o	r Better	None	Low	
19-6	Uninter	rupted	57-64	7	66.47	22.61 F	air or Better	None	Non	e	15.98	Fair o	r Better	Medium	Low	

Freight Performance Area – Needs Analysis 1

Freight Performance Area – Needs Analysis 2

Segment	Segment Length (miles)	Segment Mileposts (MP)	Initial Need	Truck Height Restriction Hot Spots (Clearance < 16')	Relevant Recently Completed or Under Construction Projects (which supersede performance data)*	Final Need
1	3	0-3	Low	None	None	Low
2	15	3-18	Low	None	None	Low
3	12	18-30	Low	None	None	Low
4	10	30-40	None	None	None	None
5	17	40-57	None	None	None	None
6	7	57-64	Low	None	None	Low

Freight Performance Area – Needs Analysis 3

						Roady	way Variable	es					Т	raffic Va	iables		
Segment	Segment Mileposts (MP)	Segment Length (miles)	Final Need	Functional Classification	Environmental Type (Urban/Rural)	Terrai n	# of Lanes/ Direction	Speed Limit	Aux Lanes	Divided/ Non- Divided	% No Passing	Existing LOS	Future 2035 LOS	% Trucks	NB/EB Buffer Index (TPTI- TTTI)	SB/WB Buffer Index (TPTI- TTTI)	Relevant Freight Related Existing Infrastructure
1	0-3	3	Low	Interstate	Fringe Urban	Rollin g	2	25-65	No	Divided	0%	A-C	A-C	7%	0.83	0.88	Mariposa Land Port of Entry in Nogales on SR 189 MP 0.12 DMS
2	3-18	15	Low	Interstate	Rural	Level	2	75	No	Divided	0%	A-C	A-C	8%	0.05	0.04	None
3	18-30	12	Low	Interstate	Rural	Level	2	75	No	Divided	0%	A-C	A-C	11%	3.48	0.03	None
4	30-40	10	None	Interstate	Fringe Urban	Level	2	65-75	No	Divided	0%	A-C	A-C	13%	0.03	0.03	None
5	40-57	17	None	Interstate	Fringe Urban	Level	2	65-75	No	Divided	0%	A-C	A-C	14%	0.02	0.03	None
6	57-64	7	Low	Interstate	Urban	Level	2	55-65	No	Divided	0%	A-C	E/F	7%	0.04	0.12	MP 58.10 DMS

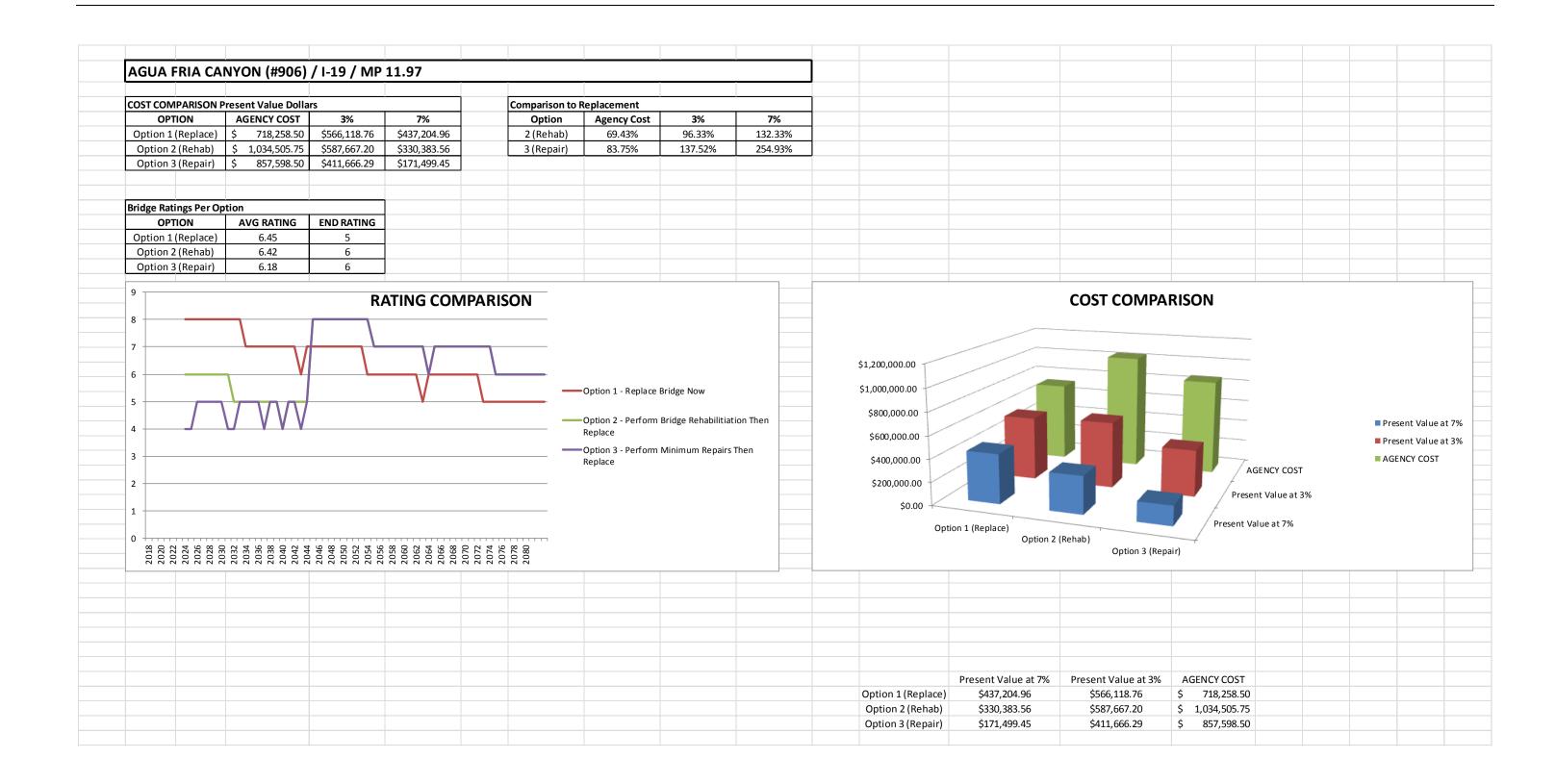
Appendix E: Life-Cycle Cost Analysis

ridge Information			Deterioration Slope					
Bridge Deck Area (A225)	3754 SF		·	Deterioration	Line Equation		Year	
Year Built (N27)	1967		Item	Slope =	Days	Years	Drop	
Exp Service Life	75 YR		Substr	y =	-0.000480x	-0.175x	5.71	
Total Bridge Length (N49)	92 LF		Superstr	y =	-0.000410x	-0.150x	6.68	
Number of Spans (N45+N46)	4		Deck	y =	-0.000481x	-0.176x	5.70	
Skew Angle (N34)	0 DEG							
Average Elevation	3413 FT							
Max Pier Height	12 FT					Notes:		
* Amount of Widening for Bridge	4 FT		*Input 0 if no widening. Inpu	ut should include widening on both sides of		1. Widenin	g is intended only to cor	rect lane and/o
Revised Deck Area (Bridge Replace)	4122 FT		bridge if applicable.			shoulder w	idth deficiencies. It is no	t intended for
**Scour Critical Rating (N113)	7			or lower, Option 2 should consider the		adding traff	fic capacity (i.e. adding ge	eneral purpose
			implementation of scour co	untermeasures.		lanes).		
ost Multipliers				L to # Span Multiplier			Skew Multiplier	
ost Multipliers Elevation > 4000ft	3413	1.00		L to # Span Multiplier L/ # Span Ratio	Multiplier		Skew Multiplier Skew Multiplier	
Elevation > 4000ft	3413 12	1.00 1.00			Multiplier 1.00		· · · · · · · · · · · · · · · · · · ·	
Elevation > 4000ft Pier Height > 30ft				L/ # Span Ratio	•		Skew Multiplier	
Elevation > 4000ft	12	1.00		L/ # Span Ratio =>100	1.00		SkewMultiplier<30	
Elevation > 4000ft Pier Height > 30ft Length to # span ratio Skew > 30degrees	12 23.00	1.00 1.25	Elevation Multiplier	L/ # Span Ratio =>100 =>60	1.00 1.10	Pier H Mult	Skew Multiplier <30	
Elevation > 4000ftPier Height > 30ftLength to # span ratioSkew > 30degreesdjusted Bridge Replace Cost	12 23.00 0.00	1.00 1.25	Elevation Multiplier Elev	L/ # Span Ratio =>100 =>60	1.00 1.10	Pier H Mult Pier H	Skew Multiplier <30	
Elevation > 4000ft Pier Height > 30ft Length to # span ratio Skew > 30degrees djusted Bridge Replace Cost	12 23.00	1.00 1.25		L/ # Span Ratio =>100 =>60 <60	1.00 1.10		Skew Multiplier <30	
Elevation > 4000ft Pier Height > 30ft Length to # span ratio Skew > 30degrees djusted Bridge Replace Cost Base Bridge Replacement Cost (Per SF) ridge Replacement Cost w/ Multipliers	12 23.00 0.00	1.00 1.25	Elev	L/ # Span Ratio =>100 =>60 <60 Multiplier	1.00 1.10	Pier H	Skew Multiplier <30	
Pier Height > 30ft Length to # span ratio	12 23.00 0.00 \$125.00	1.00 1.25	Elev <4000	L/ # Span Ratio =>100 =>60 <60 Multiplier 1.00 1.25	1.00 1.10	Pier H <30	Skew Multiplier <30	

				Bridge	History (Inspection	s/As-builts)	
				Description			
Bridge was	originally built in 19	67 (I-19-1(22)).					
Additional l	bank protection was	added in 1969 (I-1	9-1-905).				
Flood dama	age repair was perfo	rmed on the banks	in 1983. (19-1	(90))			
A scour pro	otection slab was add	ded in 1984. (19-1-	916 RD).				
The barrier	s were replaced in 19	987. (19-1(89)).					
Current ins	pection notes AC we	aring surface looks	ok, but soffit a	rea has multiple c	racks (transverse/lor	gitudinal/random hair	line). South
abutment h	has narrow to mediu	m sized vertical/ho	rizontal cracks	with heavy water	stains. North abutme	ent exhibits cracking as	s well with a
patched are	ea. Localized scour v	was aboserved at w	est end of nort	h abutment.			

Category	Year
	1967
Rehab (Substr - Scour)	1969
Repair (Substr - Scour)	1983
Rehab (Substr - Scour)	1984
Repair (Deck)	1987

RIDGE DECK	1			
ITEM	DESCRIPTION	UNIT COST (Per SF)	LIFE (YRS)	RATING BENEFIT
Replace (Deck)	Full Deck Replacement	\$78.13	25	Rating = 8
Rehab (Deck Concrete Overlay)	Overlay (Concrete)	\$10.00	15	+2
Rehab (Deck Epoxy Overlay)	Overlay (Epoxy)	\$5.00	10	+1
Repair (Deck)	Patch Spalls / Seal Cracks	\$3.00	See Deterioration Slope	+ 0
Replace (Bridge)	Full Bridge Replacement	\$156.25	75	Rating = 8
Repair (After Bridge Replace)	Patch Spalls / Seal Cracks	\$3.00	20	+ 0
Repair (After Rehab)	Patch Spalls / Seal Cracks	\$3.00	10	+ 0
UPERSTRUCTURE - STEEL	· · · · · ·			
ITEM	DESCRIPTION	UNIT COST (Per SF)	LIFE (YRS)	RATING BENEFIT
Replace (Supr - Stl)	Full SuperStr Replacement	\$78.13	50	Rating = 8
Rehab (Supr - Stl)	Weld New Structural Components	\$39.06	15	+ 2
Repair (Supr - Stl)	Weld Repair / Crack Relief	\$5.00	See Deterioration Slope	+ 1
UPERSTRUCTURE - CONCRETE				
ITEM	DESCRIPTION	UNIT COST (Per SF)	LIFE (YRS)	RATING BENEFIT
Replace (Supr - Conc)	Full SuperStr Replacement	\$78.13	50	Rating = 8
Rehab (Supr - Conc)	Replace Structural Component	\$39.06	15	+ 2
Repair (Supr - Conc)	Patch Spalls / Seal Cracks	\$5.00	See Deterioration Slope	+ 1
Replace (Bridge)	Full Bridge Replacement	\$156.25	75	Rating = 8
Repair (After Bridge Replace)	Patch Spalls / Seal Cracks	\$3.00	20	+1
Repair (After Rehab)	Patch Spalls / Seal Cracks	\$3.00	10	+1
UBSTRUCTURE - STRUCTURAL				
ITEM	DESCRIPTION	UNIT COST (Per SF)	LIFE (YRS)	RATING BENEFIT
Replace (Substr)	Full SubStr Replacement	\$78.13	75	Rating = 8
Rehab (Substr)	Replace Structural Component	\$39.06	50	+ 2
Repair (Substr)	Patch Spalls / Seal Cracks	\$5.00	See Deterioration Slope	+1
			· · · · · ·	
UBSTRUCTURE - SCOUR	· · · · · · · · · · · · · · · · · · ·			·
ITEM	DESCRIPTION	UNIT COST (Per SF)	LIFE (YRS)	RATING BENEFIT
Rehab (Substr - Scour)	Add scour protection slabs	\$39.06	50	+ 2
Repair (Substr - Scour)	Patch Spalls / Seal Cracks	\$5.00	See Deterioration Slope	+ 1
Replace (Bridge)	Full Bridge Replacement	\$156.25	75	Rating = 8
Repair (After Bridge Replace)	Patch Spalls / Seal Cracks	\$3.00	20	+1
Repair (After Rehab)	Patch Spalls / Seal Cracks	\$3.00	10	+ 1
otes:				
Individual replacements assume 50%	of total bridge replacement costs			
Individual rehabs (in cells that are not	t highlighted) assume 25% of total bridge repl	acement costs		


A		YON (#906) / I-19 / MP	11.9/							1							
Option 2	L - Replace	Bridge Now		Notes:											Dete	rioration Line E	
Bridg	e Deck Area =	3754 SF			ear" column m	eans current	bridge is n	earing the end of its expected ser	vice life.					Item	Slope =	Days	quar
Wide	n Deck Area =							k replacement should be selected	d as well.					Substr	y =	-0.000480x	
Evn	Year Built = Service Life =			3. Deck Rehab 4. Widened de				ng during replacement.						Superstr Deck	y = y =	-0.000410x -0.000481x	—
Exp		73 11						a deck deterioration of 1 point ev	ery 20 years.					Deck	y –	0.000401	_
	C. b. day and						C						Death				
Year	<u>Substructu</u> Rating	Item	Cost (Per SF)	Cost (Total)	Service Life	Rating Increase	<u>Superstru</u> Rating	Item	Cost (Per SF)	Cost (Total)	Service Life	Rating Increase	<u>Deck</u> Rating	Item	Cost (Per SF)	Cost (Total)	S
2015	5		517			mercuse	5		517			mercuse	5		31)		
2016 2017	5						5						5				
2018	5	No Rehab/Repair W	ork Can Be I	Done. Not Yet In 5	5-Year Program	1.	5	No Rehab/Repair W	/ork Can Be [Done. Not Yet In	5-Year Program	•	5	No Rehab/Repair W	ork Can Be D	one. Not Yet In	5-Y
2019	5						5						5				
2020 2021	4	Replace (Bridge)	\$156.25	\$644,062.50	75	Rating = 8	5	Replace (Bridge)		1	75	Rating = 8	5	Replace (Bridge)			
2021	8	neplace (bridge)	¥130.23	ço 11 ,002.30	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		8	heplace (blidge)			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		8	heplace (blidge)			
2023	8						8						8				
2024	8						8						8				+
2025 2026	8						8						8				+
2020	8						8						8				
2028	8						8						8				_
2029 2030	8						8						8				-
2030	7						8						8				+
2032	7						7						7				
2033	7						7						7				_
2034 2035	7						7						7				-
2035	7						7						7				
2037	7						7						7				-
2038	7						7						7				
2039	7						7						7				_
2040 2041	6 7	Repair (After Bridge Replace)	\$3.00	\$12,366.00	20	+ 1	6 7	Repair (After Bridge Replace)	\$3.00	\$12,366.00	20	+ 1	6	Repair (After Bridge Replace)	\$3.00	\$12,366.00	-
2042	7			+,			7			+,			7	······································		,,.	
2043	7						7						7				
2044 2045	7						7						7				_
2045	7						7						7				-
2047	7						7						7				+
2048	7						7						7				
2049	7						7						7				_
2050 2051	7						7						- 7				-
2051	6						6						6				+
2053	6						6						6				
2054	6						6						6				_
2055 2056	6						6						6				+
2050	6						6						6				+
2058	6						6						6				
2059	6						6						6				+
2060 2061	5	Repair (After Bridge Replace)	\$3.00	\$12,366.00	20	+ 1	5	Repair (After Bridge Replace)	\$3.00	\$12,366.00	20	+ 1	5	Repair (After Bridge Replace)	\$3.00	\$12,366.00	+
2061	6	(ter bridge hepiate)	25.00	÷==,555.00			6	ingen (inter bridge hepidte)	25.00	÷==,550.00			6	(inter bridge hepidte)	-5.00	+,550.00	\pm
2063	6						6						6				1
2064 2065	6 6						6 6						6 6				+
2065	6						6						6				+
2067	6						6						6				
2068	6						6						6				_
2069 2070	6 5						6 5						6 5				+
2070	5						5						5				+
2072	5						5						5				
2073	5						5						5				+
	5						5						5				+
2074	5						5						5				+
2074 2075 2076	5						5						5				
2075 2076 2077							5						5				+
2075 2076 2077 2078	5						5 5	1					5 5				
2075 2076 2077		1								1	1						_
2075 2076 2077 2078 2079	5 5																-
2075 2076 2077 2078 2079 2080	5 5 5																
2075 2076 2077 2078 2079 2080	5 5 5																
2075 2076 2077 2078 2079	5 5 5																

on	Year Drop			
Years				
-0.175x -0.150x	5.71 6.68			
-0.176x	5.70			
			<u>Summary</u>	
rvice Life	Rating	Minimum	Total Cost Per Year	Present Value at 3%
	Increase	Rating		
r Program	•			
75	Rating = 8	8	\$644,062.50	\$539,392.20
		8		
		8		
		8		
		8		
		8		
		8		
		8		
		7 7		
		7		
		7		
		7		
		7		
		7		
		7		
20	+ 0	6 7	\$37,098.00	\$17,202.15
		7		
		7		
		7		
		7		
		7		
		7 7		
		7		
		6		
		6 6		
		6		
		6		
		6		
		6 6		
		6		
20		5	627 000 CC	40 50
20	+ 0	6 6	\$37,098.00	\$9,524.41
		6		
		6		
		6 6		
		6		
		6		
		6 5		
		5		
		5		
		5		
		5 5		
		5		
		5		
		5		
		5		
		Total Cost =	\$718,258.50	\$566,118.76
	Ave	erage Rating =	6.45	
		End Rating =	5	

			YON (#906) / I-19 / MP n Bridge Rehabilitiation Th		e													
					Notes:										Item		erioration Line E	quatio
		Deck Area = Deck Area =							earing the end of its expected ser k replacement should be selected						Substr	Slope = y =	Days -0.000480x	-
		Year Built =							ig during replacement.						Superstr	y =		-1
	Exp S	ervice Life =	= 75 YR		4. Widened de										Deck	y =	-0.000481x	-(
									a deck deterioration of 1 point even point (i.e., if the rating would dro									_
									be applied to improve the bridge					,				
		Substruct	ure					Superstru	cture					Deck				
				Cost (Per			Rating			Cost (Per			Rating			Cost (Per		
	Year	Rating	Item	SF)	Cost (Total)	Service Life	Increase	Rating	Item	SF)	Cost (Total)	Service Life	Increase	Rating	Item	SF)	Cost (Total)	Ser
) 1	2015 2016	5						5						5				
1 2	2018	5						5		and Can Da I		- X	_	5	No Dohok (Domoin M	and Care Dat		F ¥
	2018	5	No Rehab/Repair W	ork can be D	one. Not fet in 5	- Year Program	1.	5	No Rehab/Repair W	ork can be L	Jone. Not fet in :	5-Year Program	л.	5	No Rehab/Repair W	ork can be i	Jone. Not yet in	5-rea
	2019 2020	5 4						5						5				
	2021	6	Rehab (Substr)	\$39.06	\$146,640.63	50	+ 2	6	Rehab (Supr - Conc)	\$39.06	\$146,640.63	15	+ 2	6	Rehab (Deck Concrete Overlay)	\$10.00	\$37,540.00	
	2022	6						6						6				
	2023 2024	6 6						6 6						6 6				
	2025	6						6						6				
	2026	6						6						6				
	2027 2028	6						6						6				_
	2028	6						5						5				
	2030	6						5						5				
	2031 2032	6 6						5						5				_
	2032	6						5						5			1	-
	2034	6						5						5				
	2035	6						5						5				_
	2036 2037	6 6						5 4						5 4				
	2038	6						5	Repair (After Rehab)	\$3.00	\$11,262.00	10	+ 1	5	Repair (After Rehab)	\$3.00	\$11,262.00	
	2039	6						5						5				_
	2040 2041	6 6						5						5				
	2042	8	Replace (Bridge)	\$156.25	\$644,062.50	75	Rating = 8	8	Replace (Bridge)			75	Rating = 8	8	Replace (Bridge)			_
	2043	8						8						8				
	2044 2045	8						8						8				_
	2045	8						8						8				
	2047	8						8						8				
	2048 2049	8						8						8				
	2049	8						8						8				-
	2051	8						8						8				
	2052 2053	7						7						7				
	2053	7						7						7			-	
	2055	7						7						7				
	2056	7						7						7				
	2057 2058	7						7						7				
	2059	7						7						7				
	2060	7						7						7				_
	2061 2062	6 7	Repair (After Bridge Replace)	\$3.00	\$12,366.00	20	+ 1	6 7	Repair (After Bridge Replace)	\$3.00	\$12,366.00	20	+ 1	6 7	Repair (After Bridge Replace)	\$3.00	\$12,366.00	
	2062	7	-p (er bridge heplace)	25.00	÷==,555.00			7	epine (inter bridge hepinee)	25.50	÷=2,550.00			7	-part (inter bridge hepiate)	25.00	÷=2,550.00	
	2064	7						7						7				
	2065 2066	7 7						7						7				
	2068	7						7						7				
	2068	7						7						7				
	2069	7						7						7				
	2070 2071	7 7						7						7				
	2072	6						6						6				_
	2073	6						6						6				_
	2074 2075	6 6						6 6					-	6				
	2076	6						6						6				
	2077	6						6						6				_
	2078 2079	6 6						6 6						6 6			+	
	2079	6						6						6				
	Comments:																	-
																		_
																		_

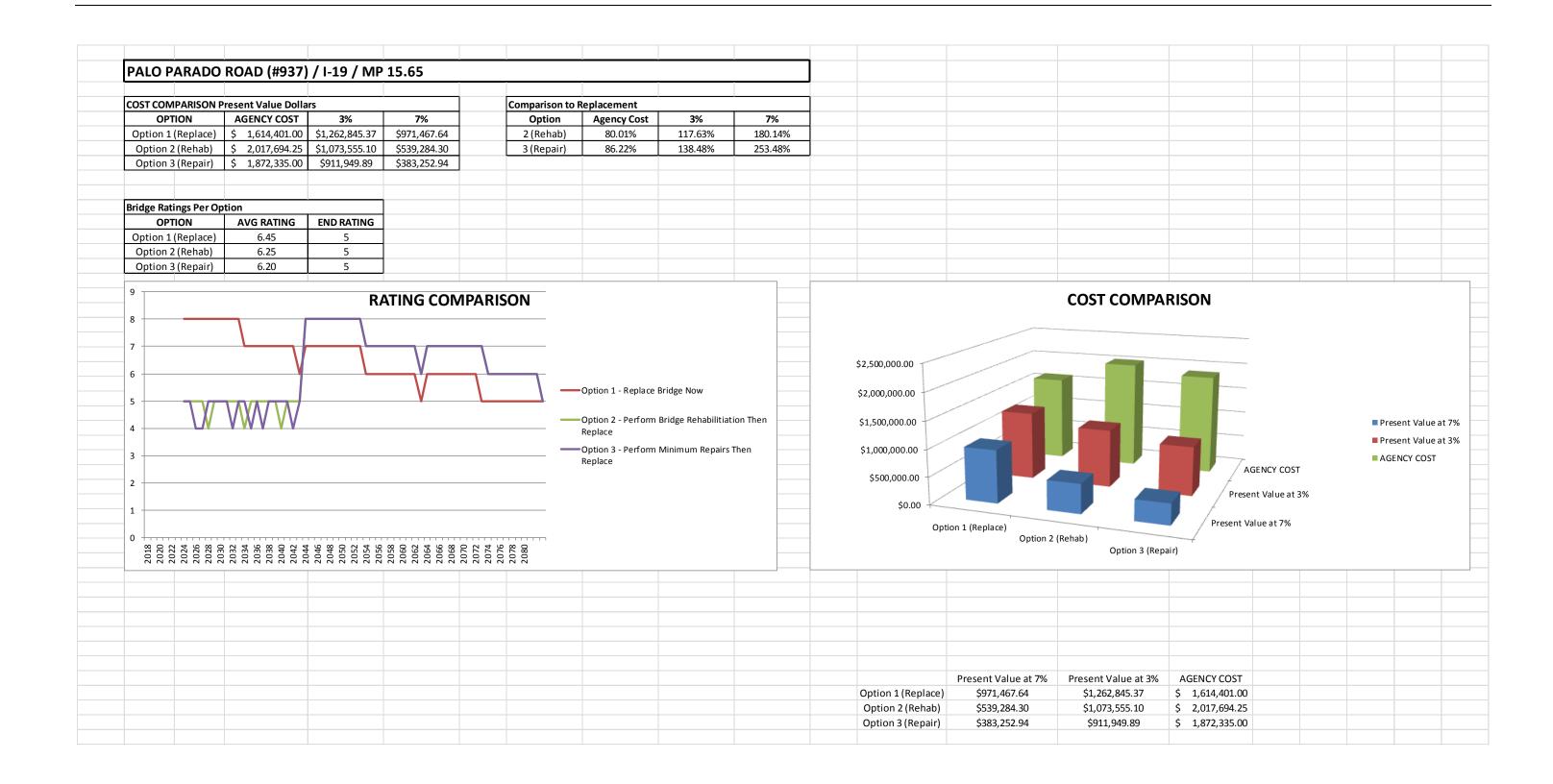
1	*			
uation]		
Years	Year Drop			
-0.175x	5.71			
-0.150x	6.68			
-0.176x	5.70]		
			<u>Summary</u>	
	Rating	Minimum		
Service Life	Increase	Rating	Total Cost Per Year	Present Value at 3%
-Year Program				
15	+ 2	6	\$330,821.25	\$277,057.59
15	72	6	\$550,821.25	\$211,031.35
		6	1	
		6	1	
		6	1	
		6		
		6		
		6		
		5		
		5		
		5		
		5		
		5		
		5		
		5		
		5		
		4		
10	+ 0	5	\$22,524.00	\$11,412.72
		5		
		5		
		5		
75	Rating = 8	8	\$644,062.50	\$289,949.89
		8		
		8		
		8		
		8		
		8		
		8		
		8		
		8		
		8		
		7		
		7		
		7		
		7		
		7		
		7		
		7		
		7		
		6		
20	+ 0	7	\$37,098.00	\$9,247.00
		7		
		7		
		7		
		7		
		7		
		7		
		7		
		7		
		7	1	
		6	1	
		6	1	
		6	1	
		6	1	
		6		
		6		
		6		
		6		
		Total Cost =	\$1,034,505.75	\$587,667.20
	Av	erage Rating =	6.42	
		End Rating =	6	

Option 3 -	Perform	Minimum Repairs Then R		Notes:											Deta	rioration Line Eq	uation				
	eck Area =			1. Red fill in "Ye				earing the end of its expected serv						Item	Slope =	Days	Years	Year Drop			
	eck Area = Year Built =	4122 SF 1967						k replacement should be selected g during replacement.	as well.					Substr Superstr	y = y =	-0.000480x -0.000410x	-0.175x -0.150x	5.71 6.68			_
Exp Ser	rvice Life =	75 YR		4. Widened de	ck area applie	s to bridge re	placement	only.		/				Deck	y =	-0.000481x	-0.176x	5.70			
				life of repai	r, if the rating	would otherv	vise drop a j	a deck deterioration of 1 point even point (i.e., if the rating would dro be applied to improve the bridge r	p from a "5'	' to a "4", Repair 🛙											
<u> </u>	Substructur	<u>re</u>					Superstruc	<u>cture</u>					<u>Deck</u>						2	<u>Summary</u>	
Year	Rating	Item	Cost (Per SF)	Cost (Total)	Service Life	Rating Increase	Rating	Item	Cost (Per SF)	Cost (Total)	Service Life	Rating Increase	Rating	Item	Cost (Per SF)	Cost (Total)	Service Life	Rating Increase	Minimum Rating	Total Cost Per Year	Present Valu
2015 2016 2017 2018 2019	5 5 5 5 5	No Rehab/Repair W		Done. Not Yet In 5	5-Year Program		5 5 5 5 5 5	No Rehab/Repair W		Done. Not Yet In S	i-Year Program		5 5 5 5 5	No Rehab/Repair W	- ,	one. Not Yet In 5	-Year Program				
2020 2021	4			[5					1	5	Repair (Deck)	\$3.00	\$11,262.00	6	+ 0	4	\$11,262.00	\$9,431
2022	4		Á5 00	640 770 00	-		4		Á5 00	640 770 00	-		5						4	627 5 40 00	
2023 2024	5	Repair (Substr)	\$5.00	\$18,770.00	6	+ 1	5 5	Repair (Supr - Conc)	\$5.00	\$18,770.00	7	+ 1	5						5 5	\$37,540.00	\$29,634
2025 2026	5						5						5						5 5		
2027	5						5						5	Repair (Deck)	\$3.00	\$11,262.00	6	+ 0	5	\$11,262.00	\$7,898.
2028 2029	4	Repair (Substr)	\$5.00	\$18,770.00	6	+ 1	5 4						5						4	\$18,770.00	\$12,409
2030	5		-5.00		Ŭ		5	Repair (Supr - Conc)	\$5.00	\$18,770.00	7	+ 1	5						5	\$18,770.00	\$12,403
2031 2032	5 5						5						5						5		-
2033	5						5						5	Repair (Deck)	\$3.00	\$11,262.00	6	+ 0	5	\$11,262.00	\$6,615
2034 2035	4 5	Repair (Substr)	\$5.00	\$18,770.00	6	+ 1	5						5						4 5	\$18,770.00	\$10,392
2036 2037	5						5 4	Repair (Supr - Conc)	\$5.00	\$18,770.00	7	+ 1	5						5 4	\$18,770.00	\$9,795.
2038	5						5		Ş5.00	÷10,770.00	,	• 4	5						5		
2039 2040	5 4						5						5	Repair (Deck)	\$3.00	\$11,262.00	6	+ 0	5 4	\$11,262.00	\$5,540.
2041	5	Repair (Substr)	\$5.00	\$18,770.00	6	+1	5						5						5	\$18,770.00	\$8,703
2042 2043	8 8	Replace (Bridge)	\$156.25	\$644,062.50	75	Rating = 8	8 8	Replace (Bridge)			75	Rating = 8	8	Replace (Bridge)			75	Rating = 8	8 8	\$644,062.50	\$289,949
2044	8						8						8						8		
2045 2046	8						8						8						8		_
2047 2048	8						8						8						8		
2049	8						8						8						8		_
2050 2051	8						8						8						8		_
2052	7						7						7						7		
2053 2054	7 7						7 7						7						7 7		
2055	7						7						7						7 7		
2056 2057	7						7						7						7		_
2058 2059	7						7						7						7		
2060	7						7						7						7		
2061 2062	6 7	Repair (After Bridge Replace)	\$3.00	\$12,366.00	20	+ 1	6 7	Repair (After Bridge Replace)	\$3.00	\$12,366.00	20	+ 1	6 7	Repair (After Bridge Replace)	\$3.00	\$12,366.00	20	+ 0	6 7	\$37,098.00	\$9,247.
2063	7						7						7						7 7		
2064 2065	7						7 7						7						7		_
2066 2067	7						7						7						7 7		
2068	7						7						7						7		
2069 2070	7 7						7						7						7 7		_
2071	7						7						7						7		
2072 2073	6						6 6						6						6 6		
2074 2075	6						6						6						6		
2076	6						6						6						6		
2077 2078	6						6						6						6 6		_
2079	6						6						6						6		
2080	6						6						6						6 Total Cost =	\$857,598.50	\$411,666
																		Δ	rage Rating =	6.18	
Comments:																			End Rating =	6]
						-							-								

PALO PARADO ROAD (#937) / I-1	9 / MP 15.65				·				
	•								
Bridge Information			Deterioration Slope						
Bridge Deck Area (A225)	8366 SF		ltem	Deterioration	n Line Equation		Year		
Year Built (N27)	1966		item	Slope =	Days	Years	Drop		
Exp Service Life	75 YR		Substr	y =	-0.000557x	-0.203x	4.92		
Total Bridge Length (N49)	252 LF		Superstr	y =	-0.000293x	-0.107x	9.35		
Number of Spans (N45+N46)	4		Deck	y =	-0.000515x	-0.188x	5.32		
Skew Angle (N34)	0 DEG								
Average Elevation	3372 FT								
Max Pier Height	22 FT					Notes:			
* Amount of Widening for Bridge	8 FT		*Input 0 if no widening. Inp	out should include widening on both sides of		1. Widenin	g is intend	ed only to co	rrect lane and/o
Revised Deck Area (Bridge Replace)	10382 FT		bridge if applicable.			shoulder wi	idth defici	encies. It is n	ot intended for
**Scour Critical Rating (N113)	N/A		**If scour critical rating is 3	or lower, Option 2 should consider the		adding traff	ic capacity	(i.e. adding g	general purpose
			implementation of scour co	ountermeasures.		lanes).			
Cost Multipliers				L to # Span Multiplier			Skew Mi	ultiplier	
Elevation > 4000ft	3372	1.00		L/ # Span Ratio	Multiplier			Multiplier	
Pier Height > 30ft	22	1.00		=>100	1.00		<30	1.00	
Length to # span ratio	63.00	1.1		=>60	1.10		=>30	1.10	
Skew > 30degrees	0.00	1.00		<60	1.25				
Adjusted Bridge Replace Cost]	Elevation Multiplier			Pier H Multi	iplier		
	44 95 55		Elev	Multiplier		Pier H	Multiplie	r	
Base Bridge Replacement Cost (Per SF)	\$125.00		<4000	1.00		<30	1.00		
Bridge Replacement Cost w/ Multipliers (Per SF)	\$137.50		=>4000	1.25		=>30	1.10		
					User input cell				
					Only manipulate cell val	ue after consulti	ng with te	am	

					Bridge His	story (Inspect	tions/As-bui	ilts)						
				Dagen									Yea	
				Descr	iption						C	ategory		<u>11</u>
Bridge has I	had no work perforn	ned to it since o	riginal constru	ction.										
Current ins	pection records note	e deck surface h	as extensive n	arrow to med	ium size tra	insverse and m	nap cracks wi	th pop outs a	nd delaminati	ons.				
Soffit area a	also has hairline size	d transverse/lor	ngitudinal/rand	dom cracks w	ith exposed	l tips of steel st	tirrups at ove	rhangs.						
Repair reco	mmendations currer	ntly only state "I	monitor transv	verse and maj	p cracks on [.]	the top deck."								

Replace / Rehab / Repair Inform	nation			
RIDGE DECK				
ITEM	DESCRIPTION	UNIT COST (Per SF)	LIFE (YRS)	RATING BENEFIT
Replace (Deck)	Full Deck Replacement	\$68.75	25	Rating = 8
Rehab (Deck Concrete Overlay)	Overlay (Concrete)	\$10.00	15	+2
Rehab (Deck Epoxy Overlay)	Overlay (Epoxy)	\$5.00	10	+1
Repair (Deck)	Patch Spalls / Seal Cracks	\$3.00	See Deterioration Slope	+0
Replace (Bridge)	Full Bridge Replacement	\$137.50	75	Rating = 8
Repair (After Bridge Replace)	Patch Spalls / Seal Cracks	\$3.00	20	+0
Repair (After Bruge Replace)	Patch Spalls / Seal Cracks	\$3.00	10	+0
	Fatti Spans / Sear Cratks	\$3.00	10	+0
UPERSTRUCTURE - STEEL				
	DESCRIPTION	UNIT COST (Per SF)	LIFE (YRS)	RATING BENEFIT
Replace (Supr - Stl)	Full SuperStr Replacement	\$68.75	50	Rating = 8
Rehab (Supr - Stl)	Weld New Structural Components	\$34.38	15	+2
Repair (Supr - Stl)	Weld Repair / Crack Relief	\$5.00	See Deterioration Slope	+1
		çoloc		
UPERSTRUCTURE - CONCRETE	ļ			
ITEM	DESCRIPTION	UNIT COST (Per SF)	LIFE (YRS)	RATING BENEFI
Replace (Supr - Conc)	Full SuperStr Replacement	\$68.75	50	Rating = 8
Rehab (Supr - Conc)	Replace Structural Component	\$34.38	15	+ 2
Repair (Supr - Conc)	Patch Spalls / Seal Cracks	\$5.00	See Deterioration Slope	+1
Replace (Bridge)	Full Bridge Replacement	\$137.50	75	Rating = 8
Repair (After Bridge Replace)	Patch Spalls / Seal Cracks	\$3.00	20	+1
Repair (After Rehab)	Patch Spalls / Seal Cracks	\$3.00	10	+1
UBSTRUCTURE - STRUCTURAL		ļ		
ITEM	DESCRIPTION	UNIT COST (Per SF)	LIFE (YRS)	RATING BENEFI
Replace (Substr)	Full SubStr Replacement	\$68.75	75	Rating = 8
Rehab (Substr)	Replace Structural Component	\$34.38	50	+2
Repair (Substr)	Patch Spalls / Seal Cracks	\$5.00	See Deterioration Slope	+1
			p-	
UBSTRUCTURE - SCOUR				l
ITEM	DESCRIPTION	UNIT COST (Per SF)	LIFE (YRS)	RATING BENEFI
Rehab (Substr - Scour)	Add scour protection slabs	\$34.38	50	+ 2
Repair (Substr - Scour)	Patch Spalls / Seal Cracks	\$5.00	See Deterioration Slope	+1
Replace (Bridge)	Full Bridge Replacement	\$137.50	75	Rating = 8
Repair (After Bridge Replace)	Patch Spalls / Seal Cracks	\$3.00	20	+1
Repair (After Rehab)	Patch Spalls / Seal Cracks	\$3.00	10	+1
lotes:				
. Individual replacements assume 50%	of total bridge replacement costs			
-	t highlighted) assume 25% of total bridge repl			



0	Option 1 -	- Replace	Bridge Now															
		_ · ·	Bridge from		Notes:											Det	erioration Line E	
	Bridge [Deck Area =	8366 SF	1		ar" column m	eans current	bridge is n	learing the end of its expected ser	vice life.				-	Item	Slope =	Days	T
		Deck Area =	10382 SF						ck replacement should be selected	d as well.					Substr	y =	-0.000557x	T
+		Year Built = rvice Life =	1966 75 YR		 Deck Rehab of 4. Widened de 				ng during replacement.						Superstr Deck	y = y =	-0.000293x -0.000515x	+
	Lxp 3e		75 11						a deck deterioration of 1 point ev	ery 20 years.					Deck	y –	-0.000515X	
-																		+
F		<u>Substructur</u>	<u>re</u>	0.10				Superstru	<u>icture</u>	0.10				<u>Deck</u>		0.10		Т
	Year	Rating	Item	Cost (Per SF)	Cost (Total)	Service Life	Rating Increase	Rating	Item	Cost (Per SF)	Cost (Total)	Service Life	Rating Increase	Rating	Item	Cost (Per SF)	Cost (Total)	:
	2015	6		1			1	5						5		1		Ż
-	2016 2017	6 6						5						5				
_	2018	6	No Rehab/Repair W	ork can be i	Jone. Not fet in 5	• rear Program		5	No Rehab/Repair W	ork Can Be L	Done. Not fet in s	s-rear Program	•	5	No Rehab/Repair W	ork can be L	one. Not ret in	-
	2019 2020	6 5						5						5				
	2021	8	Replace (Bridge)	\$137.50	\$1,427,525.00	75	Rating = 8	8	Replace (Bridge)			75	Rating = 8	8	Replace (Bridge)			Ţ
	2022 2023	8						8						8				+
	2023	8						8						8				t
	2025	8						8						8				Ţ
_	2026 2027	8						8						8				+
-	2027	8						8						8				t
	2029	8						8						8				1
	2030	8						8						8				+
	2031 2032	7						7						7				+
	2033	7						7						7				t
	2034	7						7						7				+
-	2035 2036	7						7						7				+
	2037	7						7						7				t
	2038	7						7						7				1
_	2039 2040	7						7						7				+
	2040	7	Repair (After Bridge Replace)	\$3.00	\$31,146.00	20	+ 1	7	Repair (After Bridge Replace)	\$3.00	\$31,146.00	20	+ 1	7	Repair (After Bridge Replace)	\$3.00	\$31,146.00	t
	2042	7						7						7				1
_	2043 2044	7						7						7				+
-	2044	7						7						7				+
	2046	7						7						7				1
_	2047	7						7						7				+
-	2048 2049	7						7						7				+
	2050	7						7						7				t
_	2051	6						6						6				1
-	2052 2053	6						6						6				+
	2053	6						6						6				t
	2055	6						6						6				Ţ
-	2056	6						6						6				+
\vdash	2057 2058	6						6						6				t
	2059	6						6						6				1
	2060	5	Poppie (After Dride D	62.00	631.146.00	20		5	Bonoir (After Drid D. J.	63.00	624.446.00	20		5	Roppin (After Drid D. J.)	62.00	634.445.05	4
-	2061 2062	6 6	Repair (After Bridge Replace)	\$3.00	\$31,146.00	20	+ 1	6 6	Repair (After Bridge Replace)	\$3.00	\$31,146.00	20	+ 1	6 6	Repair (After Bridge Replace)	\$3.00	\$31,146.00	+
	2063	6						6						6				1
	2064	6						6						6				Ţ
+	2065 2066	6 6						6						6				+
	2068	6						6						6				t
	2068	6						6						6				1
	2069	6						6						6				+
	2070 2071	5						5						5				t
	2072	5						5						5				1
	2073	5						5						5				-
+	2074 2075	5 5						5						5				╉
	2075	5						5						5				t
	2077	5						5						5				1
	2078 2079	5						5						5				+
L	2079	5						5						5				ţ
+																		+
																		ł
6	omments:																	+
Cc	omments:																	+
Cı	omments:																	

tion	Year Drop			
Years				
-0.203x -0.107x	4.92 9.35			
-0.188x	5.32			
			<u>Summary</u>	
	Rating	Minimum		
ervice Life	Increase	Rating	Total Cost Per Year	Present Value at 3%
ear Program				
75	Rating = 8	8	\$1,427,525.00	\$1,195,529.71
		8		
		8		
		8		
		8		
		8		
		8		
		8		
		7		
		7		
		7		
		7		
		7		
		7		
		7		
20	+ 0	6 7	¢02,428,00	\$43,326.71
20	+0	7	\$93,438.00	\$45,520.71
		7		
		7		
		7		
		7		
		7		
		7 7		
		6		
		6		
		6		
		6 6		
		6		
		6		
		6		
		6 5		
20	+ 0	6	\$93,438.00	\$23,988.95
		6		
		6 6		
		6		
		6		
		6		
		6 6		
		5		
		5		
		5		
		5		
		5		
		5		
		5		
		5		
		5	£1 C14 505 00	ć1 262 017 07
		Total Cost =	\$1,614,401.00	\$1,262,845.37
	Ave	erage Rating =	6.45	
		End Rating =		

		Bridge Rehabilitiation		Notes:										Item		rioration Line Eq		Year Drop			
	Deck Area =	8366 SF						ring the end of its expected ser							Slope =	Days	Years	-			
	Deck Area = Year Built =	10382 SF 1966						replacement should be selected during replacement.	a as well.					Substr Superstr	y = y =	-0.000557x -0.000293x	-0.203x -0.107x	4.92 9.35			
	ervice Life =	75 YR		4. Widened de	ck area applie	s to bridge re	placement o	nly.						Deck	y =	-0.000515x	-0.188x	5.32			
								leck deterioration of 1 point even pint (i.e., if the rating would dro													
								applied to improve the bridge													
	Substructure	e					Superstruct	ure				Ľ	Deck							<u>Summary</u>	
			Cost (Per			Rating			Cost (Per			Rating			Cost (Per			Rating	Minimum		
Year	Rating	Item	SF)	Cost (Total)	Service Life	Increase	Rating	Item	SF)	Cost (Total)	Service Life	Increase	Rating	Item	SF)	Cost (Total)	Service Life	Increase	Rating	Total Cost Per Year	Present Valu
2015 2016	6						5						5		·						
2017	6	No Rehab/Repair	Work Can Be D	one Not Vet In 5	Vear Program		5	No Rehab/Repair W	/ork Can Be	Done Not Vet In 5	-Vear Program		5	No Rehab/Repair W	ork Can Be Dr	one Not Vet In 5	-Vear Program				
2018 2019	6	No Kellab/Kepali	Work can be b	one. Not ret in 3	-real riogram		5 5		fork can be	bone. Not ret in 5	- Tear Flogram		5		ork can be bo	one. Not ret in 5	- Tear Flogram	•			
2019	6 5						5						5								
2021	5						7	Rehab (Supr - Conc)	\$34.38	\$287,581.25	15	+ 2	7	Rehab (Deck Concrete Overlay)	\$10.00	\$83,660.00	15	+ 2	5	\$371,241.25	\$310,908
2022 2023	5 5						7 7						7						5 5		
2024	5						7						7						5		
2025 2026	4	Repair (Substr)	\$5.00	\$41,830.00	5	+ 1	7 7						7						4 5	\$41,830.00	\$30,218.
2027	5						7						7						5		
2028 2029	5						7						7 7						5		1
2030	5						6						6						5		
2031 2032	4 5	Repair (Substr)	\$5.00	\$41,830.00	5	+ 1	6						6 6						4	\$41,830.00	\$25,307
2033	5			. ,			6						6						5	. ,	+==,507
2034 2035	5						6						6						5		
2036	5						6						6						5		
2037 2038	4	Repair (Substr)	\$5.00	\$41,830.00	5	+ 1	6						6						4	\$41,830.00	\$21,194
2039	5	Repair (Substr)	.JO.	,000.00	5	+1	5						5						5	,++,030.00	\$21,194
2040 2041	5	Replace (Bridge)	\$137.50	\$1,427,525.00	75	Rating = 8	5	Replace (Bridge)			75	Rating = 8	5 8	Replace (Bridge)			75	Rating = 8	5 8	\$1,427,525.00	\$661,935
2042	8	Replace (Blidge)	<i>2137.30</i>	,525.0U	15	Nacing - 0	8	heprace (bridge)			,5	Nating - o	8	heprace (bridge)			,5	noting - o	8	φ <u>τ</u> ,τ <u>τ</u> ,323.00	,9001,95
2043 2044	8						8						8						8		
2045	8						8						8						8		
2046 2047	8						8						8						8		
2048	8						8						8						8		
2049 2050	8						8						8						8		
2051	7						8 7						7						7		
2052 2053	7						7						7						7		
2054	7						7						7						7		
2055 2056	7						7						7						7 7		
2057	7						7						7						7		
2058 2059	7						7						7						7		
2060	6						6						6						6		
2061 2062	7	Repair (After Bridge Replace)	\$3.00	\$31,146.00	20	+ 1	7	Repair (After Bridge Replace)	\$3.00	\$31,146.00	20	+ 1	7	Repair (After Bridge Replace)	\$3.00	\$31,146.00	20	+ 0	7	\$93,438.00	\$23,988
2063	7						7						7						7		
2064 2065	7						7						7						7 7		
2066	7						7						7						7		
2067 2068	7						7						7						7		
2069	7						7						7						7		
2070 2071	7						7						7						7		
2072	6						6						6						6		
2073 2074	6						6						6 6						6		
2075	6						6						6						6		
2076 2077	6						6						6						6		1
2078	6						6						6						6		
2079 2080	6 5						6 5						6 5						6 5		
																			Total Cost =	\$2,017,694.25	\$1,073,55
																		Ave	rage Rating =	6.25	
omments:																			End Rating =	5	1

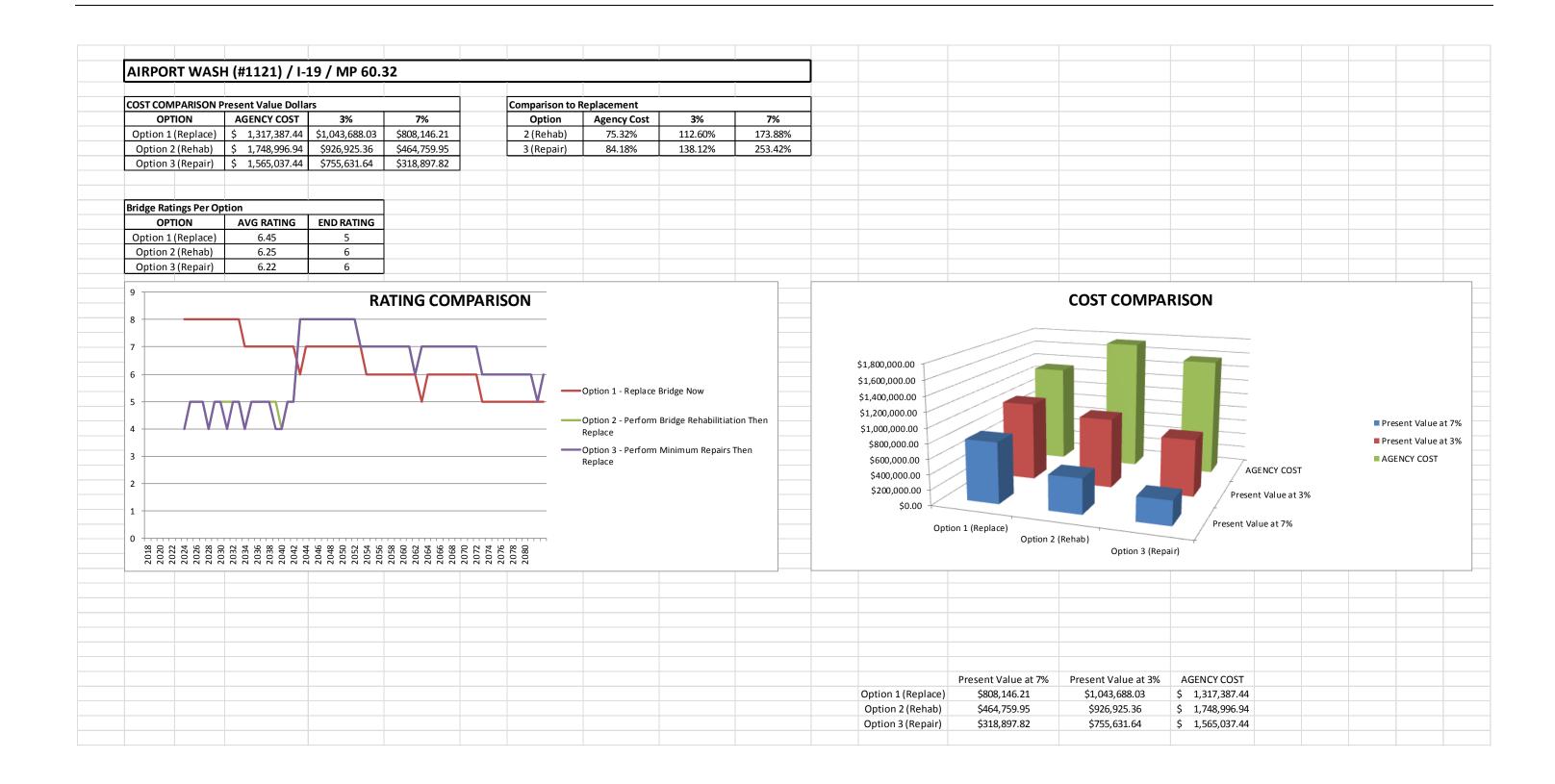
		Ainimum Repairs Then		Notes:					1	1				Item		rioration Line Eq		Year Drop			
	eck Area = eck Area =	8366 SF 10382 SF						aring the end of its expected se replacement should be selecte						Substr	Slope =	Days -0.000557x	Years -0.203x	4.92			
Ye	ear Built =	1966		3. Deck Rehab	does not accou	unt for any de	eck widening	during replacement.						Superstr	y = y =	-0.000293x	-0.107x	9.35			
Exp Serv	vice Life =	75 YR	_	4. Widened de				only. deck deterioration of 1 point ev	very 20 vears	Renair (Deck) sh	ould maintain	deck rating for	-	Deck	y =	-0.000515x	-0.188x	5.32			
				life of repai	r, if the rating	would other	wise drop a p	oint (i.e., if the rating would dr	rop from a "5'	" to a "4", Repair I											
				6. For other rep	pair items, the	"+" value rat	ing should be	e applied to improve the bridge	e rating's valu	e for that year.											
<u>s</u>	Substructure						Superstruct	ture				<u>[</u>	<u>Deck</u>						-	<u>Summary</u>	
Year	Rating	Item	Cost (Per	Cost (Total)	Service Life	Rating	Rating	Item	Cost (Per	Cost (Total)	Service Life	Rating	Rating	Item	Cost (Per	Cost (Total)	Service Life	Rating	Minimum	Total Cost Per Year	Present Valu
			SF)	,		Increase	_		SF)	,		Increase			SF)			Increase	Rating		
2015 2016 2017 2018	6 6 6	No Rehab/Repair	Work Can Be [Done. Not Yet In 5	5-Year Program	n.	5 5 5 5	No Rehab/Repair V	Work Can Be I	Done. Not Yet In !	5-Year Program		5 5 5 5	No Rehab/Repair W	ork Can Be D	one. Not Yet in 5	-Year Program		-		
2019 2020	6						5						5								
2021	5						5						5	Repair (Deck)	\$3.00	\$25,098.00	5	+ 0	5	\$25,098.00	\$21,019.
2022 2023	5						5 4						5						5 4		
2024	4						5	Repair (Supr - Conc)	\$5.00	\$41,830.00	9	+ 1	5						4	\$41,830.00	\$32,059.
2025 2026	5	Repair (Substr)	\$5.00	\$41,830.00	5	+ 1	5						5	Repair (Deck)	\$3.00	\$25,098.00	5	+ 0	5	\$41,830.00 \$25,098.00	\$31,125. \$18,131.
2027	5						5						5		,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-		5	,,	210,131
2028 2029	5 4						5						5 5						5 4		
2030	5	Repair (Substr)	\$5.00	\$41,830.00	5	+ 1	5						5						5	\$41,830.00	\$26,849
2031 2032	5					-	5						5	Repair (Deck)	\$3.00	\$25,098.00	5	+ 0	5	\$25,098.00	\$15,640
2033	5						5	Repair (Supr - Conc)	\$5.00	\$41,830.00	9	+ 1	5						5	\$41,830.00	\$24,570
2034 2035	4	Repair (Substr)	\$5.00	\$41,830.00	5	+ 1	5						5						4	\$41,830.00	\$23,160
2036	5	(Substr)		÷ .1,050.00	5	• 1	5						5	Repair (Deck)	\$3.00	\$25,098.00	5	+ 0	5	\$25,098.00	\$13,491.
2037 2038	5						5						5						5		
2039	4						5						5						4		
2040 2041	5	Repair (Substr) Replace (Bridge)	\$5.00 \$137.50	\$41,830.00 \$1,427,525.00	5 75	+ 1 Rating = 8	5 8	Replace (Bridge)			75	Rating = 8	5	Replace (Bridge)			75	Rating = 8	5 8	\$41,830.00 \$1,427,525.00	\$19,978. \$661,935
2041 2042	8	Replace (Blidge)	\$157.50	\$1,427,525.00	/5	Rating – o	8	Replace (Blidge)			75	Nating – o	8	Replace (Bridge)			/5	Kating – o	8	\$1,427,525.00	\$001,955
2043 2044	8						8						8						8		
2044 2045	8 8						8						8						8		
2046	8						8						8						8		
2047 2048	8						8						8						8 8		
2049 2050	8						8						8						8		
2050	8 7						8 7						° 7						8 7		
2052 2053	7						7						7						7		
2053	7						7						7						7		
2055	7						7 7						7						7		
2056 2057	7						7						7						7 7		
2058	7						7						7						7		
2059 2060	6						6						6						6		
2061	7	Repair (After Bridge Replace)	\$3.00	\$31,146.00	20	+ 1		Repair (After Bridge Replace)	\$3.00	\$31,146.00	20	+1	7	Repair (After Bridge Replace)	\$3.00	\$31,146.00	20	+ 0	7	\$93,438.00	\$23,988
2062 2063	7						7 7						7						7 7		
2064 2065	7						7 7						7						7 7		
2065	7						7						7						7		
2067 2068	7						7						7						7		
2069	7						7						7						7		
2070 2071	7						7						7						7		
2072	6						6						6						6		
2073 2074	6						6						6						6		
2075	6						6						6						6		
2076 2077	6						6						6						6		
2078	6						6						6						6		
2079 2080	6						6						6						6		
2060	5						5						5						5 Total Cost =	\$1,872,335.00	\$911,949
																		A	rage Rating =	6.20	1
omments:																			End Rating =	6.20 5	1

Bridge Information			Deterioration Slope	· · · · · · · · · · · · · · · · · · ·					
Bridge Deck Area (A225)	6350 SF			Deterioratio	n Line Equation		Year		
Year Built (N27)	1965		Item	Slope =	Days	Years	Drop		
Exp Service Life	75 YR		Substr	y =	-0.000550x	-0.201x	4.98		
Total Bridge Length (N49)	147 LF		Superstr	y =	-0.000380x	-0.139x	7.21		
Number of Spans (N45+N46)	4		Deck	y =	-0.000380x	-0.139x	7.21		
Skew Angle (N34)	34 DEG								
Average Elevation	2454 FT								
Max Pier Height	16 FT					Notes:			
* Amount of Widening for Bridge	4 FT		*Input 0 if no widening. Inp	out should include widening on both sides of		1. Widening	g is intend	ded only to co	rrect lane and/o
Revised Deck Area (Bridge Replace)	6938 FT		bridge if applicable.			shoulder wi	dth defici	encies. It is n	ot intended for
**Scour Critical Rating (N113)	7		**If scour critical rating is 3	or lower, Option 2 should consider the		adding traff	ic capacity	y (i.e. adding g	eneral purpose
			implementation of scour co	ountermeasures.		lanes).			
Cost Multipliers				L to # Span Multiplier			Skew M	ultiplier	
Elevation > 4000ft	2454	1.00		L/ # Span Ratio	Multiplier		Skew	Multiplier	
Pier Height > 30ft	16	1.00		=>100	1.00		<30	1.00	
Length to # span ratio	36.75	1.25		=>60	1.10		=>30	1.10	
Skew > 30degrees	34.00	1.10		<60	1.25				
Adjusted Bridge Replace Cost			Elevation Multiplier			Pier H Multi	iplier		
	A 4 9 5 9 9		Elev	Multiplier		Pier H	Multipli	er	
Base Bridge Replacement Cost (Per SF)	\$125.00		<4000	1.00		<30	1.00		
Bridge Replacement Cost w/ Multipliers (Per SF)	\$171.88		=>4000	1.25		=>30	1.10		
(,					User input cell				
					iuser indul cell				

Bridge History (Inspections/As-builts)		
Description	Category	Year
Bridge was originally constructed in 1965 (19-1(5)RD).		1965
Scour slab was added in 2003 (I-019-A-504).	Rehab (Substr - Scour)	2003
Inspection notes wide sized transverse, diagonal, longitudinal and map cracks in deck.		
Soffit has narrow to medium sized longitudinal and random clockseast edge of deck has minor spall.		
Abutments/piers have few narrow/medium sized vertical cracks.		
Inspection only recommends rehab of top deck surface.		

RIDGE DECK				-
ITEM	DESCRIPTION	UNIT COST (Per SF)	LIFE (YRS)	RATING BENEFIT
Replace (Deck)	Full Deck Replacement	\$85.94	25	Rating = 8
Rehab (Deck Concrete Overlay)	Overlay (Concrete)	\$10.00	15	+ 2
Rehab (Deck Epoxy Overlay)	Overlay (Epoxy)	\$5.00	10	+1
Repair (Deck)	Patch Spalls / Seal Cracks	\$3.00	See Deterioration Slope	+ 0
Replace (Bridge)	Full Bridge Replacement	\$171.88	75	Rating = 8
Repair (After Bridge Replace)	Patch Spalls / Seal Cracks	\$3.00	20	+ 0
Repair (After Rehab)	Patch Spalls / Seal Cracks	\$3.00	10	+ 0
UPERSTRUCTURE - STEEL				. <u>.</u>
ITEM	DESCRIPTION	UNIT COST (Per SF)	LIFE (YRS)	RATING BENEFIT
Replace (Supr - Stl)	Full SuperStr Replacement	\$85.94	50	Rating = 8
Rehab (Supr - Stl)	Weld New Structural Components	\$42.97	15	+ 2
Repair (Supr - Stl)	Weld Repair / Crack Relief	\$5.00	See Deterioration Slope	+1
UPERSTRUCTURE - CONCRETE				- F
ITEM	DESCRIPTION	UNIT COST (Per SF)	LIFE (YRS)	RATING BENEFIT
Replace (Supr - Conc)	Full SuperStr Replacement	\$85.94	50	Rating = 8
Rehab (Supr - Conc)	Replace Structural Component	\$42.97	15	+ 2
Repair (Supr - Conc)	Patch Spalls / Seal Cracks	\$5.00	See Deterioration Slope	+ 1
Replace (Bridge)	Full Bridge Replacement	\$171.88	75	Rating = 8
Repair (After Bridge Replace)	Patch Spalls / Seal Cracks	\$3.00	20	+ 1
Repair (After Rehab)	Patch Spalls / Seal Cracks	\$3.00	10	+ 1
UBSTRUCTURE - STRUCTURAL				
ITEM	DESCRIPTION	UNIT COST (Per SF)	LIFE (YRS)	RATING BENEFIT
Replace (Substr)	Full SubStr Replacement	\$85.94	75	Rating = 8
Rehab (Substr)	Replace Structural Component	\$42.97	50	+ 2
Repair (Substr)	Patch Spalls / Seal Cracks	\$5.00	See Deterioration Slope	+1
UBSTRUCTURE - SCOUR				
ITEM	DESCRIPTION	UNIT COST (Per SF)	LIFE (YRS)	RATING BENEFIT
Rehab (Substr - Scour)	Add scour protection slabs	\$42.97	50	+ 2
Repair (Substr - Scour)	Patch Spalls / Seal Cracks	\$5.00	See Deterioration Slope	+1
Replace (Bridge)	Full Bridge Replacement	\$171.88	75	Rating = 8
Repair (After Bridge Replace)	Patch Spalls / Seal Cracks	\$3.00	20	+1
Repair (After Rehab)	Patch Spalls / Seal Cracks	\$3.00	10	+1
lotes:				

			(#1121) / I-19 / MP 60.	52							1	1		1		1		-
-	Option 1 -	Replace	Bridge Now		Notes:											Det	erioration Line Eq	
	Bridge D	Deck Area =	6350 SF	1		ar" column m	eans current b	oridge is no	earing the end of its expected ser	vice life.					Item	Slope =	Days	
_		Deck Area =							k replacement should be selected	l as well.					Substr	y =	-0.000550x	L
		Year Built = rvice Life =			 Deck Rehab d Widened dec 				g during replacement.						Superstr Deck	y = y =		┢
	Exp Sc		,5 m						a deck deterioration of 1 point eve	ery 20 years.					Deck	y –	0.000300x	
																		F
		Substructu	re					Superstru	cture					<u>Deck</u>				
	Year	Rating	Item	Cost (Per	Cost (Total)	Service Life	Rating	Rating	Item	Cost (Per	Cost (Total)	Service Life	Rating	Rating	Item	Cost (Per	Cost (Total)	5
	2015	6		SF)	cost (rotal)	Service Life	Increase	5		SF)	cost (rotal)	Service Life	Increase	5		SF)	cost (rotal)	
	2016 2017	6						5						5				
	2018	6	No Rehab/Repair W	ork Can Be D	one. Not Yet In 5-	Year Program	ı.	5	No Rehab/Repair W	ork Can Be D	Done. Not Yet In 5	5-Year Program	ı .	5	No Rehab/Repair W	/ork Can Be I	Done. Not Yet In 5	-Y
	2019 2020	6 5						5						5				
	2021	8	Replace (Bridge)	\$171.88	\$1,192,503.44	75	Rating = 8	8	Replace (Bridge)		[75	Rating = 8	8	Replace (Bridge)			Γ
l	2022 2023	8						8						8				+
1	2024	8						8						8				
	2025 2026	8 8						8						8 8				+
1	2027	8						8						8				t
	2028	8						8						8				F
ŀ	2029 2030	8 8						8						8				┝
	2031	7						7						7				F
	2032 2033	7						7						7				┝
1	2034	7						7						7				E
	2035 2036	7						7						7				+
ŀ	2036	7						7						7				+
I	2038	7						7						7				F
	2039 2040	7 6						6						76				⊢
1	2041	7	Repair (After Bridge Replace)	\$3.00	\$20,814.00	20	+ 1	7	Repair (After Bridge Replace)	\$3.00	\$20,814.00	20	+ 1	7	Repair (After Bridge Replace)	\$3.00	\$20,814.00	F
	2042 2043	7						7						7				-
	2044	7						7						7				
+	2045 2046	7						7						7				-
	2047	7						7						7				
	2048 2049	7						7						7				-
	2049	7						7						7				t
I	2051	6						6						6				F
	2052 2053	6 6						6						6 6				
	2054	6						6						6				F
ł	2055 2056	6						6						6 6				┝
ſ	2057	6						6						6				F
	2058 2059	6 6						6 6						6 6				┝
l	2060	5						5						5				L
	2061 2062	6 6	Repair (After Bridge Replace)	\$3.00	\$20,814.00	20	+ 1	6 6	Repair (After Bridge Replace)	\$3.00	\$20,814.00	20	+ 1	6 6	Repair (After Bridge Replace)	\$3.00	\$20,814.00	H
ł	2062	6						6						6				t
	2064	6						6						6 6				F
ŀ	2065 2066	6						6						6				t
	2067	6						6						6				F
	2068 2069	6						6 6						6 6				⊢
l	2070	5						5						5				F
	2071 2072	5						5						5 5				┝
	2073	5						5						5				t
	2074	5						5						5				F
	2075 2076	5 5						5						5 5				t
	2077	5						5						5				F
	2078 2079	5						5						5				┝
	2080	5						5						5				-
+																		F
¢	Comments:																	Ĺ
+																		┢
t																		F
_																		


ion Years	Year Drop			
-0.201x	4.98			
-0.139x -0.139x	7.21			
-0.1598	7.21			
			<u>Summary</u>	
ervice Life	Rating	Minimum	Total Cost Per Year	Present Value at 3%
	Increase	Rating		
ar Program				
ii Flogram	•			
75	Rating = 8	8	\$1,192,503.44	\$998,702.86
		8		
		8		
		8		
		8		
		8		
		8		
		8		
		7		
		7		
		7		
		7		
		7		
		7		
		6		
20	+ 0	7	\$62,442.00	\$28,954.03
		7		
		7		
		7		
		7		
		7		
		7		
		6		
		6		
		6		
		6		
		6		
		6		
		6		
20	+0	5	\$62,442,00	\$16.001.14
20	+ 0	6	\$62,442.00	\$16,031.14
		6		
		6		
		6		
		6		
		6		
		5		
		5		
		5		
		5		
		5		
		5		
		5		
		5		
		5 Total Cost =	\$1,317,387.44	\$1,043,688.03
	Ave	erage Rating =	6.45	
		End Rating =	5	

			(#1121) / I-19 / MP 60. Bridge Rehabilitiation Th		ce					1								
	-				Notes:										Item		erioration Line E	quatio
		eck Area = eck Area =							ring the end of its expected ser eplacement should be selected						Substr	Slope = y =	Days -0.000550x	
	Ŷ	Year Built =	1965		3. Deck Rehab	does not accou	nt for any de	ck widening o	during replacement.						Superstr	y =	-0.000380x	
	Exp Se	rvice Life =	75 YR		4. Widened de				nly. leck deterioration of 1 point eve	erv 20 vears.	Repair (Deck) sh	ould maintain	deck rating fo	or	Deck	y =	= -0.000380x	-(
					life of repair	r, if the rating v	would other	vise drop a po	pint (i.e., if the rating would dro	p from a "5"	to a "4", Repair D							
					6. For other rep	bair items, the	"+" value rat	ng should be	applied to improve the bridge	rating's value	e for that year.							
		Substructu	<u>ire</u>					Superstruct	ure					<u>Deck</u>				
	Year	Rating	Item	Cost (Per SF)	Cost (Total)	Service Life	Rating Increase	Rating	Item	Cost (Per SF)	Cost (Total)	Service Life	Rating Increase	Rating	Item	Cost (Per SF)	Cost (Total)	Ser
0 1	2015 2016	6 6						5						5 5				
2	2010	6	No Rehab/Repair W	/ork Can Bo [Dono Not Yot In F	Voar Brogram		5	No Rehab/Repair W	ork Con Bo F	one Not Vet In F	Voor Brogram		5	No Rehab/Repair W	ork Can Bo I	Dono Not Vot In	E Voa
3 4	2018 2019	6 6		fork can be i	bolle. Not ret ll 5	- Tear Trogram	•	5		one can be b		- Tear Trogram	•	5		ork can be i	Jone: Not ret III.	J-TCu
+ 5	2019	5						5						5				
5 7	2021	5						5					-	4	· · · · · · · · · · · · · · · · · · ·			
	2022 2023	5 5						6 6	Rehab (Supr - Conc)	\$42.97	\$272,859.50	15	+ 2	6 6	Rehab (Deck Concrete Overlay)	\$10.00	\$63,500.00	-
,	2024	5						6						6				
) 1	2025 2026	4 5	Repair (Substr)	\$5.00	\$31,750.00	5	+ 1	6 6						6				_
	2020	5	Repair (Substr)	\$5.00	\$31,730.00	5	+1	6						6				-
	2028	5						6						6				
	2029 2030	5						6						6			+	
	2031	4						5						5				
	2032 2033	5 5	Repair (Substr)	\$5.00	\$31,750.00	5	+ 1	5						5				
	2033	5						5						5				
) 1	2035	5						5						5				_
	2036 2037	5 4						5						5				-
	2038	5	Repair (Substr)	\$5.00	\$31,750.00	5	+ 1	5						5				
	2039 2040	5 8	Replace (Bridge)	\$171.88	\$1,192,503.44	75	Rating = 8	5 8	Replace (Bridge)			75	Rating = 8	5	Replace (Bridge)			
	2041	8	hepiace (bhage)	<i>Q1/100</i>	\$1,152,505.11		Huting 0	8	hepidde (birdge)				induning 0	8	heplace (bhage)			
	2042 2043	8 8						8						8				
	2043	8						8						8				
	2045	8						8						8				
	2046 2047	8						8						8				-
	2048	8						8						8				_
	2049 2050	8 7						8						8				
	2051	7						7						7				
	2052	7 7						7						7				_
	2053 2054	7						7						7				
	2055	7						7						7				
	2056 2057	7						7						7				-
	2058	7						7						7				
	2059	6 7	Repair (After Pridge Benlass)	¢2.00	\$20,814.00	20	+ 1	6 7	Repair (After Pridge Benlace)	¢2.00	\$20,814.00	20	+1	6	Renair (After Pridge Benjam)	62.00	\$20,814.00	_
	2060 2061	7	Repair (After Bridge Replace)	\$3.00	ب∠0,014.00	20	+ 1	7	Repair (After Bridge Replace)	\$3.00	0,014.00 يد	20	+ 1	7	Repair (After Bridge Replace)	\$3.00	÷≥0,614.00	
	2062	7						7						7				_
-	2063 2064	7 7						7 7						7				
	2065	7						7						7				_
	2066 2067	7 7						7						7				-
	2067	7						7						7				
	2069	7						7						7				_
	2070 2071	6 6						6 6						6				-
	2072	6						6						6				
	2073 2074	6 6						6						6				
	2074	6						6						6				
	2076	6						6						6				_
	2077 2078	6 6						6 6						6				-
	2079	5						5						5			<u> </u>	
	2080	6	Repair (After Bridge Replace)	\$3.00	\$20,814.00	20	+1	6	Repair (After Bridge Replace)	\$3.00	\$20,814.00	20	+ 1	6	Repair (After Bridge Replace)	\$3.00	\$20,814.00	
	Comments:																	_
				-														-
				-		-		-				-	-				1	+
																		_

		1		
uation	Year Drop]		
Years				
-0.201x	4.98			
-0.139x	7.21			
-0.139x	7.21			
			<u>Summary</u>	
	- ··			
Service Life	Rating Increase	Minimum Rating	Total Cost Per Year	Present Value at 3%
	Increase	Kating		
-Year Program				
		4		
15	+ 2	5	\$336,359.50	\$273,491.05
		5		
		5		
		4		
		5	\$31,750.00	\$22,936.88
		5		
		5		
		5		
		4		
		5	\$31,750.00	\$19,209.27
		5	÷==,: 50.00	÷==,=0512,
		5		
		5		
		5		
		4		
		5	\$31,750.00	\$16,087.46
		5	64,402,502,44	45 CO 5 4 C 20
75	Rating = 8	8	\$1,192,503.44	\$569,546.28
		8		
		8		
		8		
		8		
		8		
		8		
		8		
		8		
		7		
		7		
		7		
		7		
		7		
		7		
		7		
		7		
		6		
20	+ 0	7	\$62,442.00	\$16,512.08
		7		
		7		
		7		
		7		
		7		
		7		
		7		
		7		
		6		
		6 6		
		6		
		6		
		6		
		6		
		6		
		6		
20		5	652 442 55	ćo 110 0 1
20	+ 0	6 Total Cast -	\$62,442.00	\$9,142.34
		Total Cost =	\$1,748,996.94	\$926,925.36
	Δ.,	erage Rating =	6.25	
	AV	End Rating =		

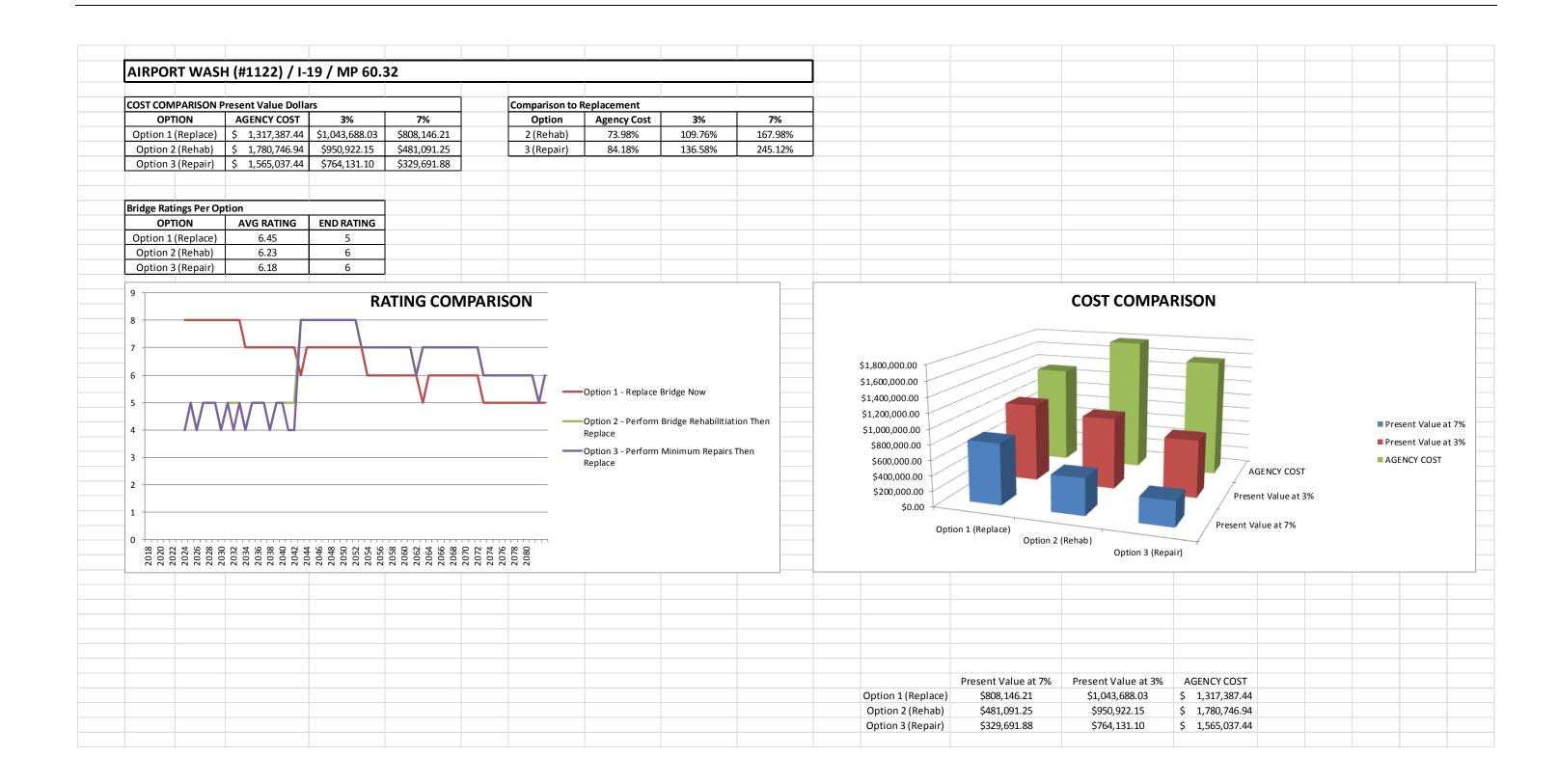
			(#1121) / I-19 / MP 60. Minimum Repairs Then F															
					Notes:										Item	Det	erioration Line E	quati
_		Deck Area =							earing the end of its expected service							Slope =	Days	_
-		Deck Area = Year Built =							k replacement should be selected g during replacement.	i as well.					Substr Superstr	y = y =	-0.000550x -0.000380x	-
		rvice Life =			4. Widened de	ck area applie	s to bridge re	placement	only.						Deck	ý =		-
					life of repai	r, if the rating	would otherv	vise drop a	a deck deterioration of 1 point eve point (i.e., if the rating would dro	p from a "5"	to a "4", Repair 🛙							_
					6. For other rep	pair items, the	"+" value rati		be applied to improve the bridge i	rating's value	e for that year.							_
		Substructu	<u>re</u>	Cost (Per			Rating	Superstrue	<u>cture</u>	Cost (Per			Rating	<u>Deck</u>		Cost (Per		
	Year	Rating	Item	SF)	Cost (Total)	Service Life	Increase	Rating	Item	SF)	Cost (Total)	Service Life	Increase	Rating	Item	SF)	Cost (Total)	Sei
	2015 2016	6 6						5 5						5 5				
-	2017 2018	6	No Rehab/Repair W	/ork Can Be [Done. Not Yet In 5	5-Year Program	ı .	5	No Rehab/Repair W	ork Can Be D	one. Not Yet In !	5-Year Program	•	5	No Rehab/Repair W	/ork Can Be I	Done. Not Yet In	5-Yea
	2019	6						5						5				
_	2020 2021	5		1	i	1	1	5			1	1		5			i	_
	2021	5						5	Repair (Supr - Conc)	\$5.00	\$31,750.00	7	+ 1	5	Repair (Deck)	\$3.00	\$19,050.00	
	2023	5						5						5				
ł	2024 2025	5						5						5				
	2026	5	Repair (Substr)	\$5.00	\$31,750.00	5	+ 1	5						5				
ł	2027 2028	5						5 4						5				_
l	2029	5						5	Repair (Supr - Conc)	\$5.00	\$31,750.00	7	+ 1	5	Repair (Deck)	\$3.00	\$19,050.00	
	2030 2031	5						5						5				_
	2031	5	Repair (Substr)	\$5.00	\$31,750.00	5	+ 1	5						5				_
ļ	2033 2034	5						5						5				
	2034	5						5						5				
	2036	5						4	Repair (Supr - Conc)	\$5.00	\$31,750.00	7	+ 1	5	Repair (Deck)	\$3.00	\$19,050.00	
	2037 2038	4	Repair (Substr)	\$5.00	\$31,750.00	5	+ 1	5						5				
	2039	5						5						5				
	2040 2041	8	Replace (Bridge)	\$171.88	\$1,192,503.44	75	Rating = 8	8	Replace (Bridge)			75	Rating = 8	8	Replace (Bridge)			
	2042	8						8						8				
	2043 2044	8						8						8				
	2044	8						8						8				
	2046	8						8						8				
ŀ	2047 2048	8						8						8				
	2049	8						8						8				
	2050 2051	7						7						7				
	2052	7						7						7				
	2053 2054	7						7						7				_
	2055	7						7						7				_
ŀ	2056	7						7						7				_
	2057 2058	7						7						7				-
	2059	6		án	620.011.01			6		da	400 511 51			6		45.55	600	
ŀ	2060 2061	7	Repair (After Bridge Replace)	\$3.00	\$20,814.00	20	+ 1	7 7	Repair (After Bridge Replace)	\$3.00	\$20,814.00	20	+ 1	7	Repair (After Bridge Replace)	\$3.00	\$20,814.00	-
	2062	7						7						7				
	2063 2064	7						7						7				
1	2065	7						7						7				
+	2066 2067	7						7						7				_
	2067	7						7						7				-
	2069	7						7						7				
1	2070 2071	6						6 6						6 6				
	2072	6						6						6				
	2073 2074	6						6						6				-
1	2075	6						6						6				
+	2076 2077	6						6 6						6 6				_
	2078	6						6						6				
	2079 2080	5 6	Repair (After Bridge Replace)	\$3.00	\$20,814.00	20	+ 1	5 6	Repair (After Bridge Replace)	\$3.00	\$20,814.00	20	+ 1	5 6	Repair (After Bridge Replace)	\$3.00	\$20,814.00	_
ŀ				+0.00	+==,51.005					+0.00	+==,51 100					÷3.00	+==;01 1100	-
4	Comments:							-										_
																-		_
-																		

tion				
Years	Year Drop			
-0.201x	4.98			
-0.139x -0.139x	7.21 7.21			
0.135%	7.21			
			<u>Summary</u>	
			Summary	
ervice Life	Rating Increase	Minimum Rating	Total Cost Per Year	Present Value at 3%
	mereuse	nating		
· D				
ear Program	-			
	1	4		
7	+ 0	5	\$50,800.00	\$41,305.05
		5		
		5		
		4 5	\$31,750.00	\$22,936.88
		5	÷51,750.00	÷22,330.00
		4		
7	+ 0	5	\$50,800.00	\$33,584.78
		5		
		5	\$31,750.00	\$19,209.27
		5		
		5		
7	+ 0	5	\$50,800.00	\$27,307.50
/	+0	4	\$50,800.00	\$27,307.30
		5	\$31,750.00	\$16,087.46
		5		4
75	Rating = 8	8	\$1,192,503.44	\$569,546.28
		8		
		8		
		8		
		8		
		8		
		8		
		8		
		7		
		7		
		7		
		7		
		7 7		
		7		
		7		
20	. 0	6	¢62,442,00	¢16 512 08
20	+ 0	7 7	\$62,442.00	\$16,512.08
		7		
		7		
		7 7		
		7		
		7		
		7		
		7		
		6		
		6		
		6		
		6 6		
		6		
		6		
		6		
20	+ 0	5	\$62,442.00	\$9,142.34
20		Total Cost =	\$1,565,037.44	\$755,631.64
	Av	erage Rating =		
	L	End Rating =	6	

Bridge Information			Deterioration Slope	I	1				
Bridge Deck Area (A225)	6350 SF		•	Deterioration	n Line Equation		Year		
Year Built (N27)	1965		ltem	Slope =	Days	Years	Drop		
Exp Service Life	75 YR		Substr	y =	-0.000594x	-0.217x	4.61		
Total Bridge Length (N49)	147 LF		Superstr	y =	-0.000300x	-0.110x	9.13		
Number of Spans (N45+N46)	4		Deck	y =	-0.000436x	-0.159x	6.28		
Skew Angle (N34)	34 DEG			· · · · ·					
Average Elevation	2454 FT								
Max Pier Height	16 FT					Notes:			
* Amount of Widening for Bridge	4 FT		*Input 0 if no widening. In	put should include widening on both sides of		1. Widenin	g is intend	led only to corr	ect lane and/o
Revised Deck Area (Bridge Replace)	6938 FT		bridge if applicable.	_		shoulder wi	- dth defici	encies. It is no	t intended for
**Scour Critical Rating (N113)	7			or lower, Option 2 should consider the		adding traff	ic capacity	(i.e. adding ge	eneral purpose
			implementation of scour c	ountermeasures.		lanes).			
Cost Multipliers				L to # Span Multiplier			Skew M	ultiplier	
Elevation > 4000ft	2454	1.00		L/ # Span Ratio	Multiplier		Skew	Multiplier	
Pier Height > 30ft	16	1.00		=>100	1.00		<30	1.00	
Length to # span ratio	36.75	1.25		=>60	1.10		=>30	1.10	
Skew > 30degrees	34.00	1.10		<60	1.25				
Adjusted Bridge Replace Cost			Elevation Multiplier			Pier H Multi	plier		
	4.000.00		Elev	Multiplier		Pier H	Multiplie	er	
Base Bridge Replacement Cost (Per SF)	\$125.00		<4000	1.00		<30	1.00		
Bridge Replacement Cost w/ Multipliers (Per SF)	\$171.88		=>4000	1.25		=>30	1.10		
(1 0 0)					User input cell				

Bridge History (Inspections/As-builts)		
Description	Category	Year
Bridge was originally constructed in 1965 (19-1(5)RD).		1965
Scour slab was added in 2003 (I-019-A-504).	Rehab (Substr - Scour)	2003
Inspection notes wide sized transverse, diagonal, longitudinal and map cracks in deck.		
Soffit has narrow to medium sized longitudinal and random clockseast edge of deck has minor spall.		
Abutments/piers have few narrow/medium sized vertical cracks.		
Inspection only recommends rehab of top deck surface.		

RIDGE DECK				-
ITEM	DESCRIPTION	UNIT COST (Per SF)	LIFE (YRS)	RATING BENEFIT
Replace (Deck)	Full Deck Replacement	\$85.94	25	Rating = 8
Rehab (Deck Concrete Overlay)	Overlay (Concrete)	\$10.00	15	+ 2
Rehab (Deck Epoxy Overlay)	Overlay (Epoxy)	\$5.00	10	+1
Repair (Deck)	Patch Spalls / Seal Cracks	\$3.00	See Deterioration Slope	+ 0
Replace (Bridge)	Full Bridge Replacement	\$171.88	75	Rating = 8
Repair (After Bridge Replace)	Patch Spalls / Seal Cracks	\$3.00	20	+ 0
Repair (After Rehab)	Patch Spalls / Seal Cracks	\$3.00	10	+ 0
UPERSTRUCTURE - STEEL				. <u>.</u>
ITEM	DESCRIPTION	UNIT COST (Per SF)	LIFE (YRS)	RATING BENEFIT
Replace (Supr - Stl)	Full SuperStr Replacement	\$85.94	50	Rating = 8
Rehab (Supr - Stl)	Weld New Structural Components	\$42.97	15	+ 2
Repair (Supr - Stl)	Weld Repair / Crack Relief	\$5.00	See Deterioration Slope	+1
UPERSTRUCTURE - CONCRETE				- F
ITEM	DESCRIPTION	UNIT COST (Per SF)	LIFE (YRS)	RATING BENEFIT
Replace (Supr - Conc)	Full SuperStr Replacement	\$85.94	50	Rating = 8
Rehab (Supr - Conc)	Replace Structural Component	\$42.97	15	+ 2
Repair (Supr - Conc)	Patch Spalls / Seal Cracks	\$5.00	See Deterioration Slope	+ 1
Replace (Bridge)	Full Bridge Replacement	\$171.88	75	Rating = 8
Repair (After Bridge Replace)	Patch Spalls / Seal Cracks	\$3.00	20	+ 1
Repair (After Rehab)	Patch Spalls / Seal Cracks	\$3.00	10	+ 1
UBSTRUCTURE - STRUCTURAL				
ITEM	DESCRIPTION	UNIT COST (Per SF)	LIFE (YRS)	RATING BENEFIT
Replace (Substr)	Full SubStr Replacement	\$85.94	75	Rating = 8
Rehab (Substr)	Replace Structural Component	\$42.97	50	+ 2
Repair (Substr)	Patch Spalls / Seal Cracks	\$5.00	See Deterioration Slope	+1
UBSTRUCTURE - SCOUR				
ITEM	DESCRIPTION	UNIT COST (Per SF)	LIFE (YRS)	RATING BENEFIT
Rehab (Substr - Scour)	Add scour protection slabs	\$42.97	50	+ 2
Repair (Substr - Scour)	Patch Spalls / Seal Cracks	\$5.00	See Deterioration Slope	+1
Replace (Bridge)	Full Bridge Replacement	\$171.88	75	Rating = 8
Repair (After Bridge Replace)	Patch Spalls / Seal Cracks	\$3.00	20	+1
Repair (After Rehab)	Patch Spalls / Seal Cracks	\$3.00	10	+1
lotes:				



Option		5H (#1122) / I-19 / MP 60 ace Bridge Now														
-				Notes:										Item		erioration Line E
	ge Deck Are en Deck Are							aring the end of its expected ser replacement should be selected						Substr	Slope = y =	Days -0.000594x
wiu	Year Bu		_					during replacement.	i as well.					Superstr	y =	
Exp	Service Li			4. Widened de										Deck	y =	
				5. Repair deck	(after bridge r	eplace) shou	ld provide a	deck deterioration of 1 point eve	ery 20 years.							
	Substr	ucture					Superstruct	ture					<u>Deck</u>			
Year	Ratir		Cost (Per	Cost (Total)	Service Life	Rating	Rating	Item	Cost (Per	Cost (Total)	Service Life	Rating	Rating	Item	Cost (Per	Cost (Total)
2015	6		SF)	cost (rotal)	Service Life	Increase	5	item	SF)	cost (rotal)	Service Life	Increase	5		SF)	
2016	6						5						5			
2017 2018	6	No Rehab/Repair \	Vork Can Be I	Done. Not Yet In 5	-Year Program	ı.	5 5	No Rehab/Repair W	ork Can Be D	Done. Not Yet In 5	5-Year Program	ı.	5	No Rehab/Repair W	/ork Can Be [one. Not Yet Ir
2019	6						5						5			
2020 2021	5		\$171.88	\$1,192,503.44	75	Rating = 8	5	Replace (Bridge)		1	75	Rating = 8	5	Replace (Bridge)	_	
2022	8						8						8			
2023 2024	8						8						8			
2024	8						8						8			
2026	8						8						8			
2027	8						8						8			
2028 2029	8						8						8			
2029	8						8						8			
2031	7						7						7			
2032 2033	7						7						7			
2033	7						7						7			
2035	7						7						7			
2036	7						7						7			
2037 2038	7						7						7			
2030	7						7						7			
2040	6						6						6			
2041 2042	7		\$3.00	\$20,814.00	20	+ 1	7	Repair (After Bridge Replace)	\$3.00	\$20,814.00	20	+ 1	7	Repair (After Bridge Replace)	\$3.00	\$20,814.00
2042	7						7						7			
2044	7						7						7			
2045	7						7						7			
2046 2047	7						7						7			
2048	7						7						7			
2049	7						7						7			
2050 2051	7						7						7			
2051	6						6						6			
2053	6						6						6			
2054	6						6						6			
2055 2056	6						6						6 6			
2057	6						6						6			
2058	6						6						6			
2059 2060	6 5						6 5						6 5			
2061	6		\$3.00	\$20,814.00	20	+ 1	6	Repair (After Bridge Replace)	\$3.00	\$20,814.00	20	+ 1	6	Repair (After Bridge Replace)	\$3.00	\$20,814.00
2062	6						6						6			
2063	6						6						6 6			
2064 2065	6						6						6			
2066	6						6						6			
2067	6						6						6			
2068 2069	6						6						6 6			
2009	5						5						5			
2071	5						5						5			
2072 2073	5						5						5 5			
2073	5						5						5			
2075	5						5						5			
2076 2077	5						5						5			
2077	5						5						5			
2079	5						5						5			
2080	5						5						5		<u> </u>	
Commen	ts:															
				1												
															-	

ion Years	Year Drop			
-0.217x	4.61			
-0.110x	9.13			
-0.159x	6.28			
			<u>Summary</u>	
	Rating	Minimum		
ervice Life	Increase	Rating	Total Cost Per Year	Present Value at 3%
ar Program	ı .			
75	Rating = 8	8	\$1,192,503.44	\$998,702.86
75	Nating - 8	8	\$1,152,503.44	\$558,702.80
		8		
		8		
		8		
		8		
		8		
		8		
		7		
		7		
		7 7		
		7		
		7		
		7		
		7		
		6		
20	+ 0	7	\$62,442.00	\$28,954.03
		7		
		7		
		7		
		7		
		7		
		7		
		7		
		6		
		6		
		6		
		6		
		6		
		6		
		5		
20	+ 0	6	\$62,442.00	\$16,031.14
		6		
		6		
		6		
		6		
		6		
		6		
		5		
		5		
		5		
		5		
		5		
		5		
		5		
		5		
		Total Cost =	\$1,317,387.44	\$1,043,688.03
	Ave	erage Rating = End Rating =	6.45 5	1
		ating =		

		#1122) / I-19 / MP 60.				1		1	1			1									
-	- Perform Deck Area =	Bridge Rehabilitiation Th		Notes:	ear" column m	eans current	hridge is pr	earing the end of its expected set	vice life				_	Item	Dete Slope =	erioration Line Eq Days	uation Years	Year Drop			
Widen D	Deck Area =	6938 SF		2. When super	structure repla	icement is sel	lected, dec	k replacement should be selected						Substr	y =	-0.000594x	-0.217x	4.61			
	Year Built = ervice Life =	1965 75 YR		 Deck Rehab Widened de 				g during replacement. only.						Superstr Deck	y = y =	-0.000300x -0.000436x	-0.110x -0.159x	9.13 6.28			
1.1				5. Repair deck	(after bridge r	eplace) shoul	ld provide a	a deck deterioration of 1 point ev							,			-			
								point (i.e., if the rating would dro be applied to improve the bridge			eck would ma	intain a "5" a	t that year.)								
	Substant	70											<u>Deck</u>							Summan	
	Substructu		Cost (Per			Rating	Superstru		Cost (Per			Rating			Cost (Per			Rating	Minimum	<u>Summary</u>	
Year	Rating	Item	SF)	Cost (Total)	Service Life	Increase	Rating	Item	SF)	Cost (Total)	Service Life	Increase	Rating	Item	SF)	Cost (Total)	Service Life	Increase	Rating	Total Cost Per Year	Present Value
2015 2016	6						5						5								
2017 2018	6 6	No Rehab/Repair W	/ork Can Be D	one. Not Yet In	5-Year Program	۱.	5	No Rehab/Repair W	/ork Can Be E	one. Not Yet In 5	-Year Program		5 5	No Rehab/Repair W	ork Can Be D	one. Not Yet In 5	5-Year Program	n.			
2019 2020	6						5						5								
2021	5						5						4						4	1 /2	
2022 2023	5 4						6 6	Rehab (Supr - Conc)	\$42.97	\$272,859.50	15	+ 2	6 6	Rehab (Deck Concrete Overlay)	\$10.00	\$63,500.00	15	+ 2	5	\$336,359.50	\$273,491
2024 2025	5	Repair (Substr)	\$5.00	\$31,750.00	5	+ 1	6						6						5	\$31,750.00	\$24,333.
2026	5						6						6						5		
2027 2028	4	Repair (Substr)	\$5.00	\$31,750.00	5	+ 1	6						6						4	\$31,750.00	\$21,620.
2029	5	nepan (Substr)	Ç3.00	ç31,730.00			6						6						5	÷51,750.00	Ş21,020.
2030 2031	5 4						6 5						6 5						5		
2032	5	Repair (Substr)	\$5.00	\$31,750.00	5	+ 1	5						5						5	\$31,750.00	\$19,209
2033 2034	5						5						5						5		
2035 2036	4	Repair (Substr)	\$5.00	\$31,750.00	5	+ 1	5						5						4	\$31,750.00	\$17,067
2037	5		25.50			. 1	5						5						5	<i>231, 30.00</i>	Ş17,007
2038 2039	5						5						5						5		
2040	8	Replace (Bridge)	\$171.88	\$1,192,503.44	75	Rating = 8	8	Replace (Bridge)			75	Rating = 8	8	Replace (Bridge)			75	Rating = 8	8	\$1,192,503.44	\$569,546
2041 2042	8						8 8						8						8		
2043 2044	8						8						8						8		
2045	8						8						8						8		
2046 2047	8 8						8 8						8 8						8		
2048 2049	8						8						8						8		
2050	7						7						7						7		
2051 2052	7 7						7 7						7						7		
2053	7						7						7						7		
2054 2055	7						7						7						7		
2056 2057	7						7						7						7		
2058	7						7						7						7		
2059 2060	6 7	Repair (After Bridge Replace)	\$3.00	\$20,814.00	20	+ 1	6 7	Repair (After Bridge Replace)	\$3.00	\$20,814.00	20	+ 1	6 7	Repair (After Bridge Replace)	\$3.00	\$20,814.00	20	+ 0	6 7	\$62,442.00	\$16,512
2061 2062	7						7						7						7		
2063	7						7						7						7		
2064 2065	7 7						7 7						7 7						7		
2066	7						7						7						7		
2067 2068	7						7						7						7		
2069 2070	7						7						7						7		
2071	6						6						6						6		
2072 2073	6						6						6						6 6		
2074 2075	6						6						6						6		
2076	6						6						6						6		
2077 2078	6 6						6						6 6						6		
2079	5		62.00	620.011.05			5	Densis (Affrage 1) Densis	62.00	630.011.02			5		ća 00	620.011.02			5	¢c2 + 2 02	
2080	6	Repair (After Bridge Replace)	\$3.00	\$20,814.00	20	+1	6	Repair (After Bridge Replace)	\$3.00	\$20,814.00	20	+ 1	6	Repair (After Bridge Replace)	\$3.00	\$20,814.00	20	+ 0	6 Total Cost =	\$62,442.00 \$1,780,746.94	\$9,142.3 \$950,922
																		Ave	erage Rating =	6.23	
omments:																			End Rating =	6]

			(#1122) / I-19 / MP 60. Minimum Repairs Then	Replace	Notes:											Dete	erioration Line Eq	quation		[
																	Days	Years	-			
Image: 1 Section (1) Section (2)										d as well.						y = v =						
Image: Problem in the interview of]	4. Widened de	eck area applie	s to bridge re	placement o	only.					1		, y =						
VI VI VI VI VI VI V					life of repai	r, if the rating	would otherw	vise drop a p	point (i.e., if the rating would dro	op from a "5'	' to a "4", Repair [
M M M M M M M M M M M M M M M M M M M		Substructu	<u>re</u>					Superstruc	<u>ture</u>		1	1		<u>Deck</u>							<u>Summary</u>	
1000 10000 100000 100000 1000000 1000000 10000	Year	Rating	Item		Cost (Total)	Service Life		Rating	Item		Cost (Total)	Service Life		Rating	Item		Cost (Total)	Service Life			Total Cost Per Year	Present Valu
N N	2016 2017 2018 2019	6 6 6	No Rehab/Repair W	/ork Can Be D	one. Not Yet in 5	5-Year Progran	ı.	5 5 5 5	No Rehab/Repair W	/ork Can Be I	Done. Not Yet In S	-Year Program		5	No Rehab/Repair W	ork Can Be D	one. Not Yet In 5	5-Year Program	ı.			
33 3	2021	5						4		65.00	624 750 00			5	Repair (Deck)	\$3.00	\$19,050.00	6	+ 0			\$15,954
1 1 <td>2023</td> <td>4</td> <td></td> <td>Á5 00</td> <td>624 750 00</td> <td>_</td> <td></td> <td>5</td> <td>Repair (Supr - Conc)</td> <td>\$5.00</td> <td>\$31,750.00</td> <td>9</td> <td>+1</td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td></td> <td></td>	2023	4		Á5 00	624 750 00	_		5	Repair (Supr - Conc)	\$5.00	\$31,750.00	9	+1	5						4		
3 3 3 3 3 3 3 4 5 4 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6	2025	5	Repair (Substr)	\$5.00	\$31,750.00	5	+1	5						5						5	\$31,750.00	\$24,333
1 1 <td>2027</td> <td>5 4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5 5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5 5</td> <td>Repair (Deck)</td> <td>\$3.00</td> <td>\$19,050.00</td> <td>6</td> <td>+ 0</td> <td>4</td> <td>\$19,050.00</td> <td>\$13,361</td>	2027	5 4						5 5						5 5	Repair (Deck)	\$3.00	\$19,050.00	6	+ 0	4	\$19,050.00	\$13,361
add base family base family <t< td=""><td></td><td>5 5</td><td>Repair (Substr)</td><td>\$5.00</td><td>\$31,750.00</td><td>5</td><td>+ 1</td><td>5 4</td><td></td><td></td><td></td><td></td><td></td><td>5 5</td><td></td><td></td><td></td><td></td><td></td><td></td><td>\$31,750.00</td><td>\$21,620</td></t<>		5 5	Repair (Substr)	\$5.00	\$31,750.00	5	+ 1	5 4						5 5							\$31,750.00	\$21,620
333 5 Asys Asys <th< td=""><td></td><td>5 4</td><td></td><td></td><td></td><td></td><td></td><td>5 5</td><td>Repair (Supr - Conc)</td><td>\$5.00</td><td>\$31,750.00</td><td>9</td><td>+ 1</td><td>5 5</td><td></td><td></td><td></td><td></td><td></td><td>3</td><td>\$31,750.00</td><td>\$20,379</td></th<>		5 4						5 5	Repair (Supr - Conc)	\$5.00	\$31,750.00	9	+ 1	5 5						3	\$31,750.00	\$20,379
36 5 Repart (shore) 50 9 0		5 5	Repair (Substr)	\$5.00	\$31,750.00	5	+ 1	5 5						5 5	Repair (Deck)	\$3.00	\$19,050.00	6	+ 0			
Append Spect Math		5 4						5						5								
1000 1000	2036	5 5	Repair (Substr)	\$5.00	\$31,750.00	5	+ 1	5 5						5						-	\$31,750.00	\$17,067
nm nm< nm< nm< nm<		5 5						4						5 4								
NM N </td <td>2040</td> <td>8</td> <td>Replace (Bridge)</td> <td>\$171.88</td> <td>\$1,192,503.44</td> <td>75</td> <td>Rating = 8</td> <td>8</td> <td>Replace (Bridge)</td> <td></td> <td></td> <td>75</td> <td>Rating = 8</td> <td>8 8</td> <td>Replace (Bridge)</td> <td></td> <td></td> <td>75</td> <td>Rating = 8</td> <td>-</td> <td>\$1,192,503.44</td> <td>\$569,54</td>	2040	8	Replace (Bridge)	\$171.88	\$1,192,503.44	75	Rating = 8	8	Replace (Bridge)			75	Rating = 8	8 8	Replace (Bridge)			75	Rating = 8	-	\$1,192,503.44	\$569,54
	2042	8						8						8						8		
MAME N	2044	8						8						8								
Abs B No <	2046	8						8						8						8		
Some 7 Number of the state	2048	8						8						8						8		
ADD ADD <td>2050</td> <td>8</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>7</td> <td></td> <td></td>	2050	8						7						7						7		
Obs 7 1 1 1 1 7 1 1 7 1 <th1< th=""> 1 1 1</th1<>	2052	7						7						7						7		
ADDS 7 1 1 1 1 1 1 7 1 1 7 1 1 1 2058 7 <t< td=""><td>2054</td><td>7 7</td><td></td><td></td><td></td><td></td><td></td><td>7 7</td><td></td><td></td><td></td><td></td><td></td><td>7 7</td><td></td><td></td><td></td><td></td><td></td><td>7</td><td></td><td></td></t<>	2054	7 7						7 7						7 7						7		
1000 1000		7 7						7 7						7 7						-		
2000 7 Repair (After Bridge Replace) 5.00 5.00 5.00 7.000 7.00000 7.00000 7.0000 7.		7 7						7 7						7 7								
2052 7 5 6 6 6 7 6 7 6 7 7 7 7 2053 7 5 6 6 6 6 7 6 7 7 7 7 2054 7 6 6 6 6 6 6 7 6 6 7 6 2056 7 6 6 6 7 6 6 7 6 6 7 2056 7 6 6 6 6 7 6 6 7 6 6 2056 7 6 6 6 6 6 6 6 6 7 7 7 2057 7 7 6 6 7 7 7 7 7 7 2057 7 7 7 7 7 7 7 7 7 7 7 2057 7 7 7 7 7 7 7 7 7 7 7 7 2057 7 7 7 7 7 7 <th7< th=""> 7 7 7 7<td></td><td>6 7</td><td>Repair (After Bridge Replace)</td><td>\$3.00</td><td>\$20.814.00</td><td>20</td><td>+1</td><td>6 7</td><td>Repair (After Bridge Replace)</td><td>\$3.00</td><td>\$20.814.00</td><td>20</td><td>+1</td><td>6 7</td><td>Repair (After Bridge Replace)</td><td>\$3.00</td><td>\$20.814.00</td><td>20</td><td>+ 0</td><td></td><td>\$62.442.00</td><td>\$16.512</td></th7<>		6 7	Repair (After Bridge Replace)	\$3.00	\$20.814.00	20	+1	6 7	Repair (After Bridge Replace)	\$3.00	\$20.814.00	20	+1	6 7	Repair (After Bridge Replace)	\$3.00	\$20.814.00	20	+ 0		\$62.442.00	\$16.512
2064 7 Image 1mage 1	2061	7	·····					7	·····					7			,			7		
2060 7 Image: state sta	2063	7						7						7						7		
206 7 Image: state stat	2065	7						7						7						7		
2069 7 Image: sector s	2067	7						-						7						7		
2071 6 Image: section of the sectin of the section of the section of the section	2069	7						7						7						7		
2073 6	2071	6 6						6 6						6 6						6		
2075 6 Image: second seco	2073	6 6						6 6						6 6						6		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2075	6 6						6 6						6 6						6		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		6 6						6 6						6 6								
2080 6 Repair (After Bridge Replace) \$3.00 \$20,814.00 20 +1 6 Repair (After Bridge Replace) \$3.00 \$20,814.00 20 +1 6 Repair (After Bridge Replace) \$3.00 \$20,814.00 20 +1 6 Repair (After Bridge Replace) \$3.00 \$20,814.00 20 +1 6 Repair (After Bridge Replace) \$3.00 \$20,814.00 20 +1 6 Repair (After Bridge Replace) \$3.00 \$20,814.00		6 5						6 5						6 5								
		6	Repair (After Bridge Replace)	\$3.00	\$20,814.00	20	+1	6	Repair (After Bridge Replace)	\$3.00	\$20,814.00	20	+1	6	Repair (After Bridge Replace)	\$3.00	\$20,814.00	20				\$9,142. \$764,13 1
Comments: Image:																			Ave			1
	comments:																			End Rating =	6]

Appendix F: Crash Modification Factors and Factored Unit Construction Costs

SOLUTION	CONSTRUCTION UNIT COST	UNIT	FACTOR^	FACTORED CONSTRUCTION UNIT COST	DESCRIPTION	CMF FOR CORRIDOR PROFILE STUDIES	CMF NOTES
REHABILITATION							
Rehabilitate Pavement (AC)	\$276,500	Mile	2.20	\$610,000	Mill and replace 1"-3" AC pvmt; accounts for 38' width; for one direction of travel on two lane roadway; includes pavement, striping, delineators, RPMs, rumble strips	0.70	Combination of rehabilitate pavement (0.92), striping, delineators, RPMs (0.77 for combination), and rumble strips $(0.89) = 0.70$
Rehabilitate Bridge	\$65	SF	2.20	\$140	Based on deck area; bridge only - no other costs included	0.95	Assumed - should have a minor effect on crashes at the bridge
GEOMETRIC IMPROVEMENT							
Re-profile Roadway	\$974,500	Mile	2.20	\$2,140,000	Includes excavation of approximately 3", pavement replacement (AC), striping, delineators, RPMs, rumble strips, for one direction of travel of 2- lane roadway (38' width)	0.70	Assumed - this is similar to rehab pavement. This solution is intended to address vertical clearance at bridge, not profile issue; factor the cost as a ratio of needed depth to 3".
Realign Roadway	\$2,960,000	Mile	2.20	\$6,510,000	All costs per direction except bridges; applicable to areas with small or moderate fills and cuts, minimal retaining walls	0.50	Based on CalTrans and NC DOT
Improve Skid Resistance	\$675,000	Mile	2.20	\$1,490,000	Average cost of pvmt replacement and variable depth paving to increase super-elevation; for one direction of travel on two lane roadway; includes pavement, striping, delineators, RPMs, rumble strips	0.66	Combination of avg of 5 values from clearinghouse (0.77) and calculated value from HSM (0.87) for skid resistance; striping, delineators, RPMs (0.77 for combination), and rumble strips (0.89) = 0.66
INFRASTRUCTURE IMPROVEMENT							
Reconstruct to Urban Section	\$1,000,000	Mile	2.20	\$2,200,000	Includes widening by 16' total (AC = 12'+2'+2') to provide median, curb & gutter along both side of roadway, single curb for median, striping (doesn't include widening for additional travel lane).	0.88	From HSM
Construct Auxiliary Lanes (AC)	\$914,000	Mile	2.20	\$2,011,000	For addition of aux lane (AC) in one direction of travel; includes all costs except bridges; for generally at-grade facility with minimal walls and no major drainage improvements	0.78	Average of 4 values from clearinghouse
Construct Climbing Lane (High)	\$3,000,000	Mile	2.20	\$6,600,000	In one direction; all costs except bridges; applicable to areas with large fills and cuts, retaining walls, rock blasting, steep slopes on both sides of road	0.75	From HSM
Construct Climbing Lane (Medium)	\$2,250,000	Mile	2.20	\$4,950,000	In one direction; all costs except bridges; applicable to areas with medium or large fills and cuts, retaining walls, rock blasting, steep slopes on one side of road	0.75	From HSM
Construct Climbing Lane (Low)	\$1,500,000	Mile	2.20	\$3,300,000	In one direction; all costs except bridges; applicable to areas with small or moderate fills and cuts, minimal retaining walls	0.75	From HSM
Construct Reversible Lane (Low)	\$2,400,000	Lane-Mile	2.20	\$5,280,000	All costs except bridges; applicable to areas with small or moderate fills and cuts, minimal retaining walls	0.73 for uphill and 0.88 for downhill	Based on proposed conditions on I-17 with 2 reversible lanes and a conc barrier

SOLUTION	CONSTRUCTION UNIT COST	UNIT	FACTOR^	FACTORED CONSTRUCTION UNIT COST	DESCRIPTION	CMF FOR CORRIDOR PROFILE STUDIES	CMF NOTES
Construct Reversible Lane (High)	\$4,800,000	Lane-Mile	2.20	\$10,560,000	All costs except bridges; applicable to areas with large fills and cuts, retaining walls, rock blasting, mountainous terrain	0.73 for uphill and 0.88 for downhill	Based on proposed conditions on I-17 with 2 reversible lanes and a conc barrier
Construct Passing Lane	\$1,500,000	Mile	2.20	\$3,300,000	In one direction; all costs except bridges; applicable to areas with small or moderate fills and cuts, minimal retaining walls	0.63	Average of 3 values from clearinghouse
Construct Entry/Exit Ramp	\$730,000	Each	2.20	\$1,610,000	Cost per ramp; includes pavement, striping, signing, RPMs, lighting, typical earthwork & drainage; does not include any major structures or improvements on crossroad	1.09	Average of 16 values on clearinghouse; for adding a ramp not reconstructing. CMF applied to crashes 0.25 miles upstream/downstream from the gore.
Relocate Entry/Exit Ramp	\$765,000	Each	2.20	\$1,680,000	Cost per ramp; includes pavement, striping, signing, RPMs, lighting, typical earthwork , drainage and demolition of existing ramp; does not include any major structures or improvements on crossroad	1.00	Assumed to not add any crashes since the ramp is simply moving and not being added. CMF applied to crashes 0.25 miles upstream/downstream from the gore.
Construct Turn Lanes	\$42,500	Each	2.20	\$93,500	Includes 14' roadway widening (AC) for one additional turn lane (250' long) on one leg of an intersection; includes AC pavement, curb & gutter, sidewalk, ramps, striping, and minor signal modifications	0.81	Avg of 7 values from HSM; CMF applied to intersection related crashes; this solution also applies when installing a deceleration lane
Modify Entry/Exit Ramp	\$445,000	Each	2.20	\$979,000	Cost per ramp; includes pavement, striping, signing, RPMs, lighting, minor earthwork, & drainage; For converting existing ramp to parallel-type configuration	0.21	Average of 4 values from clearinghouse (for exit ramps) and equation from HSM (for entrance ramp). CMF applied to crashes within 1/8 mile upstream/downstream from the gore.
Widen & Modify Entry/Exit Ramp	\$619,000	Each	2.20	\$1,361,800	Cost per ramp; includes pavement, striping, signing, RPMs, lighting, minor earthwork, & drainage; For converting 1-lane ramp to 2-lane ramp and converting to parallel-type ramp	0.21	Will be same as "Modify Ramp"
Replace Pavement (AC) (with overexcavation)	\$1,446,500	Mile	2.20	\$3,180,000	Accounts for 38' width; for one direction of travel on two lane roadway; includes pavement, overexcavation, striping, delineators, RPMs, rumble strips	0.70	Same as rehab
Replace Pavement (PCCP) (with overexcavation)	\$1,736,500	Mile	2.20	\$3,820,000	Accounts for 38' width; for one direction of travel on two lane roadway; includes pavement, overexcavation, striping, delineators, RPMs, rumble strips	0.70	Same as rehab
Replace Bridge (Short)	\$125	SF	2.20	\$280	Based on deck area; bridge only - no other costs included; cost developed generally applies to bridges crossing small washes	0.95	Assumed - should have a minor effect on crashes at the bridge
Replace Bridge (Medium)	\$160	SF	2.20	\$350	Based on deck area; bridge only - no other costs included; cost developed generally applies to bridges crossing over the mainline freeway, crossroads, or large washes	0.95	Assumed - should have a minor effect on crashes at the bridge
Replace Bridge (Long)	\$180	SF	2.20	\$400	Based on deck area; bridge only - no other costs included; cost developed generally applies to bridges crossing large rivers or canyons	0.95	Assumed - should have a minor effect on crashes at the bridge

SOLUTION	CONSTRUCTION UNIT COST	UNIT	FACTOR^	FACTORED CONSTRUCTION UNIT COST	DESCRIPTION	CMF FOR CORRIDOR PROFILE STUDIES	CMF NOTES
Widen Bridge	\$175	SF	2.20	\$390	Based on deck area; bridge only - no other costs included	0.90	Assumed - should have a minor effect on crashes at the bridge
Install Pedestrian Bridge	\$135	SF	2.20	\$300	Includes cost to construct bridge based on linear feet of the bridge. This costs includes and assumes ramps and sidewalks leading to the structure.	0.1 (ped only)	Assumed direct access on both sides of structure
Implement Automated Bridge De-icing	\$115	SF	2.20	\$250	Includes cost to replace bridge deck and install system	0.72 (snow/ice)	Average of 3 values on clearinghouse for snow/ice
Install Wildlife Crossing Under Roadway	\$650,000	Each	2.20	\$1,430,000	Includes cost of structure for wildlife crossing under roadway and 1 mile of fencing in each direction that is centered on the wildlife crossing	0.25 (wildlife)	Assumed; CMF applies to wildlife-related crashes within 0.5 miles both upstream and downstream of the wildlife crossing in both directions
Install Wildlife Crossing Over Roadway	\$1,140,000	Each	2.20	\$2,508,000	Includes cost of structure for wildlife crossing over roadway and 1 mile of fencing in each direction that is centered on the wildlife crossing	0.25 (wildlife)	Assumed; CMF applies to wildlife-related crashes within 0.5 miles both upstream and downstream of the wildlife crossing in both directions
Construct Drainage Structure - Minor	\$280,000	Each	2.20	\$616,000	Includes 3-36" pipes and roadway reconstruction (approx. 1,000 ft) to install pipes	0.70	Same as rehab; CMF applied to crashes 1/8 mile upstream/downstream of the structure
Construct Drainage Structure - Intermediate	\$540,000	Each	2.20	\$1,188,000	Includes 5 barrel 8'x6' RCBC and roadway reconstruction (approx. 1,000 ft) to install RCBC	0.70	Same as rehab; CMF applied to crashes 1/8 mile upstream/downstream of the structure
Construct Drainage Structure - Major	\$8,000	LF	2.20	\$17,600	Includes bridge that is 40' wide and reconstruction of approx. 500' on each approach	0.70	Same as rehab; CMF applied to crashes 1/8 mile upstream/downstream of the structure
Install Acceleration Lane	\$127,500	Each	2.20	\$280,500	For addition of an acceleration lane (AC) on one leg of an intersection that is 1,000' long plus a taper; includes all costs except bridges; for generally at-grade facility with minimal walls and no major drainage improvements	0.85	Average of 6 values from the FHWA Desktop Reference for Crash Reduction Factors
OPERATIONAL IMPROVEMENT							
Implement Variable Speed Limits (Wireless, Overhead)	\$718,900	Mile	2.20	\$1,580,000	In one direction; includes 1 sign assembly per mile (foundation and structure), wireless communication, detectors	0.92	From 1 value from clearinghouse
Implement Variable Speed Limits (Wireless, Ground-mount)	\$169,700	Mile	2.20	\$373,300	In one direction; includes 2 signs per mile (foundations and posts), wireless communication, detectors	0.92	From 1 value from clearinghouse
Implement Variable Speed Limits (Wireless, Solar, Overhead)	\$502,300	Mile	2.20	\$1,110,000	In one direction; includes 1 sign assembly per mile (foundation and structure), wireless communication, detectors, solar power	0.92	From 1 value from clearinghouse
Implement Variable Speed Limits (Wireless, Solar, Ground-mount)	\$88,400	Mile	2.20	\$194,500	In one direction; includes 2 signs per mile (foundations and posts), wireless communication, detectors, solar power	0.92	From 1 value from clearinghouse
Implement Ramp Metering (Low)	\$25,000	Each	2.20	\$55,000	For each entry ramp location; urban area with existing ITS backbone infrastructure; includes signals, poles, cabinet, detectors, pull boxes, etc	0.64	From 1 value from clearinghouse; CMF applied to crashes 0.25 miles after gore
Implement Ramp Metering (High)	\$150,000	Mile	2.20	\$330,000	Area without existing ITS backbone infrastructure; in addition to ramp meters, also includes conduit, fiber optic lines, and power	0.64	From 1 value from clearinghouse
Implement Signal Coordination	\$140,000	Mile	2.20	\$308,000	Includes conduit, conductors, and controllers for 4 intersections that span a total of approximately 2 miles	0.90	Assumed

SOLUTION	CONSTRUCTION UNIT COST	UNIT	FACTOR^	FACTORED CONSTRUCTION UNIT COST	DESCRIPTION	CMF FOR CORRIDOR PROFILE STUDIES	CMF NOTES
Implement Left-Turn Phasing	\$7,500	Each	2.20	\$16,500	Includes four new signal heads (two in each direction) and associated conductors for one intersection	0.88 (protected) 0.98 (perm/prot or prot/perm)	From HSM; CMF = 0.94 for each protected approach and 0.99 for each perm/prot or prot/perm approach. CMFs of different approaches should be multiplied together. CMF applied to crashes within intersection
ROADSIDE DESIGN							
Install Guardrail	\$130,000	Mile	2.20	\$286,000	One side of road	0.62 (ROR)	0.62 is avg of 2 values from clearinghouse
Install Cable Barrier	\$80,000	Mile	2.20	\$176,000	In median	0.81	0.81 is average of 5 values from clearinghouse
Widen Shoulder (AC)	\$256,000	Mile	2.20	\$563,000	Assumes 10' of existing shoulder (combined left and right), includes widening shoulder by a total of 4'; new pavement for 4' width and mill and replace existing 10' width; includes pavement, minor earthwork, striping edge lines, RPMs, high-visibility delineators, safety edge, and rumble strips	0.68 (1-4') 0.64 (>= 4')	0.86 is avg of 5 values from clearing house for widening shoulder 1-4'. 0.76 is calculated from HSM for widening shoulder >= 4'. (Cost needs to be updated if dimension of existing and widened shoulder differ from Description.)
Rehabilitate Shoulder (AC)	\$113,000	Mile	2.20	\$249,000	One direction of travel (14' total shldr width-4' left and 10' right); includes paving (mill and replace), striping, high-visibility delineators, RPMs, safety edge, and rumble strips for both shoulders	0.72	0.98 is average of 34 values on clearinghouse for shldr rehab/replace; include striping, delineators, RPMs (0.77 combined CMF), and rumble strips (0.89). (Cost needs to be updated if dimension of existing shoulder differs from Description.)
Replace Shoulder (AC)	\$364,000	Mile	2.20	\$801,000	One direction of travel (14' total shldr width-4' left and 10' right); includes paving (full reconstruction), striping, high-visibility delineators, RPMs, safety edge, and rumble strips for both shoulders	0.72	0.98 is average of 34 values on clearinghouse for shldr rehab/replace; include striping, delineators, RPMs (0.77 combined CMF), and rumble strips (0.89). (Cost needs to be updated if dimension of existing shoulder differs from Description.)
Install Rumble Strip	\$5,500	Mile	2.20	\$12,000	Both edges - one direction of travel; includes only rumble strip; no shoulder rehab or paving or striping	0.89	Average of 75 values on clearinghouse and consistent with HSM
Install Centerline Rumble Strip	\$2,800	Mile	2.20	\$6,000	Includes rumble strip only; no pavement rehab or striping	0.85	From HSM
Install Wildlife Fencing	\$340,000	Mile	2.20	\$748,000	Fencing only plus jump outs for 1 mile (both directions)	0.50 (wildlife)	Assumed
Remove Tree/Vegetation	\$200,000	Mile	2.20	\$440,000	Intended for removing trees that shade the roadway to allow sunlight to help melt snow and ice (see Increase Clear Zone CMF for general tree/vegetation removal in clear zone)	0.72 (snow/ice)	Average of 3 values on clearinghouse for snow/ice
Increase Clear Zone	\$59,000	Mile	2.20	\$130,000	In one direction; includes widening the clear zone by 10' to a depth of 3'	0.71	Median of 14 values from FHWA Desktop Reference for Crash Reduction Values
Install Access Barrier Fence	\$15	LF	2.20	\$33	8' fencing along residential section of roadway	0.10 (ped only)	Equal to ped overpass
Install Rock-Fall Mitigation - Wire Mesh	\$1,320,000	Mile	2.20	\$2,904,000	Includes wire mesh and rock stabilization (one direction)	0.75 (debris)	Assumed

SOLUTION	CONSTRUCTION UNIT COST	UNIT	FACTOR ^A	FACTORED CONSTRUCTION UNIT COST	DESCRIPTION	CMF FOR CORRIDOR PROFILE STUDIES	CMF NOTES
Install Rock-Fall Mitigation - Containment Fence & Barrier	\$2,112,000	Mile	2.20	\$4,646,000	Includes containment fencing, concrete barrier, and rock stabilization (one direction)	0.75 (debris)	Assumed
Install Raised Concrete Barrier in Median	\$650,000	Mile	2.20	\$1,430,000	Includes concrete barrier with associated striping and reflective markings; excludes lighting in barrier (one direction)	0.90 (Cross- median and head on crashes eliminated completely)	All cross median and head-on fatal or incapacitating injury crashes are eliminated completely; all remaining crashes have 0.90 applied
Formalize Pullout (Small)	\$7,500	Each	2.20	\$17,000	Includes paving and signage (signs, posts, and foundations) - approximately 4,200 sf	0.97	Assumed - similar to Install Other General Warning Signs; CMF applied to crashes within 0.25 miles after sign
Formalize Pullout (Medium)	\$27,500	Each	2.20	\$61,000	Includes paving and signage (signs, posts, and foundations) - approximately 22,500 sf	0.97	Assumed - similar to Install Other General Warning Signs; CMF applied to crashes within 0.25 miles after sign
Formalize Pullout (Large)	\$80,500	Each	2.20	\$177,100	Includes paving and signage (signs, posts, and foundations) - approximately 70,000 sf	0.97	Assumed - similar to Install Other General Warning Signs; CMF applied to crashes within 0.25 miles after sign
INTERSECTION IMPROVEMENTS							
Construct Traffic Signal	\$150,000	Each	2.20	\$330,000	4-legged intersection; includes poles, foundations, conduit, controller, heads, luminaires, mast arms, etc.	0.95	From HSM; CMF applied to crashes within intersection only
Improve Signal Visibility	\$35,000	Each	2.20	\$77,000	4-legged intersection; signal head size upgrade, installation of new back- plates, and installation of additional signal heads on new poles.	0.85	Avg of 7 values from clearinghouse; CMF applied to crashes within intersection only
Install Raised Median	\$360,000	Mile	2.20	\$792,000	Includes removal of 14' wide pavement and construction of curb & gutter; does not include cost to widen roadway to accommodate the median; if the roadway needs to be widened, include cost from New General Purpose Lane	0.83	Avg from HSM
Install Transverse Rumble Strip/Pavement Markings	\$3,000	Each	2.20	\$7,000	Includes ped markings and rumble strips only across a 30' wide travelway; no pavement rehab or other striping	0.95	Avg of 17 values from clearinghouse; CMF applied to crashes within 0.5 miles after the rumble strips and markings
Construct Single-Lane Roundabout	\$1,500,000	Each	2.20	\$3,300,000	Removal of signal at 4-legged intersection; realignment of each leg for approx. 800 feet including paving, curbs, sidewalk, striping, lighting, signing	0.22	From HSM; CMF applied to crashes within intersection only
Construct Double-Lane Roundabout	\$1,800,000	Each	2.20	\$3,960,000	Removal of signal at 4-legged intersection; realignment of each leg for approx. 800 feet including paving, curbs, sidewalk, striping, lighting, signing	0.40	From HSM; CMF applied to crashes within intersection only
ROADWAY DELINEATION							

SOLUTION	CONSTRUCTION UNIT COST	UNIT	FACTOR^	FACTORED CONSTRUCTION UNIT COST	DESCRIPTION	CMF FOR CORRIDOR PROFILE STUDIES	CMF NOTES
Install High-Visibility Edge Line Striping	\$10,800	Mile	2.20	\$23,800	2 edge lines and lane line - one direction of travel		Avg of 3 values from clearinghouse. Assumes package of striping, delineators, and RPMs. (If implemented separately, CMF will be higher.)
Install High-Visibility Delineators	\$6,500	Mile	2.20	\$14,300	Both edges - one direction of travel	0.77	Avg of 3 values from clearinghouse. Assumes package of striping, delineators, and RPMs. (If implemented separately, CMF will be higher.)
Install Raised Pavement Markers	\$2,000	Mile	2.20	\$4,400	Both edges - one direction of travel		Avg of 3 values from clearinghouse. Assumes package of striping, delineators, and RPMs. (If implemented separately, CMF will be higher.)
Install In-Lane Route Markings	\$6,000	Each	2.20	\$13,200	Installation of a series of three in-lane route markings in one lane	0.95	Assumed; CMF applied to crashes within 1.0 mile before the gore
IMPROVED VISIBILITY							
Cut Side Slopes	\$80	LF	2.20	\$200	For small grading to correct sight distance issues; not major grading	0.85	Intent of this solution is to improve sight distance. Most CMF's are associated with vehicles traveling on slope. Recommended CMF is based on FDOT and NCDOT but is more conservative.
Install Lighting (connect to existing power)	\$270,000	Mile	2.20	\$594,000	One side of road only; offset lighting, not high-mast; does not include power supply; includes poles, luminaire, pull boxes, conduit, conductor	0.75 (night)	Average of 3 values on clearinghouse & consistent with HSM
Install Lighting (solar powered LED)	\$10,000	Pole	2.20	\$22,000	Offset lighting, not high-mast; solar power LED; includes poles, luminaire, solar panel	0.75 (night)	Average of 3 values on clearinghouse & consistent with HSM
DRIVER INFORMATION/WARNING			I				
Install Dynamic Message Sign (DMS)	\$250,000	Each	2.20	\$550,000	Includes sign, overhead structure, and foundations; wireless communication; does not include power supply	1.00	Not expected to reduce crashes
Install Dynamic Weather Warning Beacons	\$40,000	Each	2.20	\$88,000	Assumes solar operation and wireless communication or connection to existing power and communication; ground mounted; includes posts, foundations, solar panel, and dynamic sign	0.80 (weather related)	Avg of 3 values from FHWA Desktop Reference for Crash Reduction Factors; CMF applies to crashes within 0.25 miles after a sign
Install Dynamic Speed Feedback Signs	\$25,000	Each	2.20	\$55,000	Assumes solar operation and no communication; ground mounted; includes regulatory sign, posts, foundations, solar panel, and dynamic sign	0.94	Average of 2 clearinghouse values; CMF applies to crashes within 0.50 miles after a sign
Install Chevrons	\$18,400	Mile	2.20	\$40,500	On one side of road - includes signs, posts, and foundations	0.79	Average of 11 clearinghouse values
Install Curve Warning Signs	\$2,500	Each	2.20	\$5,500	Includes 2 signs, posts, and foundations	0.83	Average of 4 clearinghouse values; CMF applies to crashes within 0.25 miles after a sign

SOLUTION	CONSTRUCTION UNIT COST	UNIT	FACTOR^	FACTORED CONSTRUCTION UNIT COST	DESCRIPTION	CMF FOR CORRIDOR PROFILE STUDIES	CMF NOTES
Install Traffic Control Device Warning Signs (e.g., stop sign ahead, signal ahead, etc.)	\$2,500	Each	2.20	\$5,500	Includes 2 signs, posts, and foundations	0.85	FHWA Desktop Reference for Crash Reduction Factors; CMF applies to crashes within 0.25 miles after a sign
Install Other General Warning Signs (e.g., intersection ahead, wildlife in area, slow vehicles, etc.)	\$2,500	Each	2.20	\$5,500	Includes 2 signs, posts, and foundations	0.97	Assumed; CMF applies to crashes within 0.25 miles after a sign
Install Wildlife Warning System	\$162,000	Each	2.20	\$356,400	Includes wildlife detection system at a designated wildlife crossing, flashing warning signs (assumes solar power), advance signing, CCTV (solar and wireless), game fencing for approximately 0.25 miles in each direction - centered on the wildlife crossing, and regular fencing for 1.0 mile in each direction - centered on the wildlife crossing.	0.50 (wildlife)	Assumed; CMF applies to wildlife-related crashes within 0.5 miles both upstream and downstream of the wildlife crossing in both directions
Install Warning Sign with Beacons	\$15,000	Each	2.20	\$33,000	In both directions; includes warning sign, post, and foundation, and flashing beacons (assumes solar power) at one location	0.75	FHWA Desktop Reference for Crash Reduction Factors for Installing Flashing Beacons as Advance Warning; CMF applies to crashes within 0.25 miles after a sign
Install Larger Stop Sign with Beacons	\$10,000	Each	2.20	\$22,000	In one direction; includes large stop sign, post, and foundation, and flashing beacons (assumes solar power) at one location	0.85/0.81	Use 0.85 for adding beacons to an existing sign; 0.81 for installing a larger sign with flashing beacons; CMF applies to intersection related crashes
DATA COLLECTION			•				·
Install Roadside Weather Information System (RWIS)	\$60,000	Each	2.20	\$132,000	Assumes wireless communication and solar power, or connection to existing power and communications	1.00	Not expected to reduce crashes
Install Closed Circuit Television (CCTV) Camera	\$25,000	Each	2.20	\$55,000	Assumes connection to existing ITS backbone or wireless communication; does not include fiber-optic backbone infrastructure; includes pole, camera, etc	1.00	Not expected to reduce crashes
Install Vehicle Detection Stations	\$15,000	Each	2.20	\$33,000	Assumes wireless communication and solar power, or connection to existing power and communications	1.00	Not expected to reduce crashes
Install Flood Sensors (Activation)	\$15,000	Each	2.20	\$33,000	Sensors with activation cabinet to alert through texting (agency)	1.00	Not expected to reduce crashes
Install Flood Sensors (Gates)	\$100,000	Each	2.20	\$220,000	Sensors with activation cabinet to alert through texting (agency) and beacons (public) plus gates	1.00	Not expected to reduce crashes
Construct New General Purpose Lane (PCCP)	\$1,740,000	Mile	2.20	\$3,830,000	For addition of 1 GP lane (PCCP) in one direction; includes all costs except bridges; for generally at-grade facility with minimal walls and no major drainage improvements	0.90	North Carolina DOT uses 0.90 and Florida DOT uses 0.87
Construct New General Purpose Lane (AC)	\$1,200,000	Mile	2.20	\$2,640,000	For addition of 1 GP lane (AC) in one direction; includes all costs except bridges; for generally at-grade facility with minimal walls and no major drainage improvements	nage improvements on of 1 GP lane (AC) in one direction; includes all costs except or generally at-grade facility with minimal walls and no major 0.90 0.88	

.00	Not expected to reduce crashes
.00	Not expected to reduce crashes
.00	Not expected to reduce crashes
.00	Not expected to reduce crashes
.00	Not expected to reduce crashes

SOLUTION	CONSTRUCTION UNIT COST	UNIT	FACTOR^	FACTORED CONSTRUCTION UNIT COST	DESCRIPTION	CMF FOR CORRIDOR PROFILE STUDIES	CMF NOTES
Convert a 2-Lane undivided highway to a 5- Lane highway	\$1,576,000	Mile	2.20	\$3,467,200	For expanding a 2-lane undivided highway to a 5-lane highway (4 through lanes with TWLTL), includes standard shoulder widths but no curb, gutter, or sidewalks	0.60	Assumed to be slightly lower than converting from a 4- lane to a 5-lane highway
Install Center Turn Lane	\$1,053,000	Mile	2.20	\$2,316,600	For adding a center turn lane (i.e., TWLTL); assumes symmetrical widening on both sides of the road; includes standard shoulder widths but no curb, gutter, or sidewalk	0.75	From FHWA Desktop Reference for Crash Reduction Factors, CMF Clearinghouse, and SR 87 CPS comparison
Construct 4-Lane Divided Highway (Using Existing 2-Lane Road for one direction)	\$3,000,000	Mile	2.20	\$6,600,000	In both directions; one direction uses existing 2-lane road; other direction assumes addition of 2 new lanes (AC) with standard shoulders; includes all costs except bridges	0.67	Assumed
Construct 4-Lane Divided Highway (No Use of Existing Roads)	\$6,000,000	Mile	2.20	\$13,200,000	In both directions; assumes addition of 2 new lanes (AC) with standard shoulders in each direction; includes all costs except bridges	0.67	Assumed
Construct Bridge over At-Grade Railroad Crossing	\$10,000,000	Each	2.20	\$22,000,000	Assumes bridge width of 4 lanes (AC) with standard shoulders; includes abutments and bridge approaches; assumes vertical clearance of 23'4" + 6'8" superstructure	0.72 (All train-related crashes eliminated)	Removes all train-related crashes at at-grade crossing; all other crashes CMF = 0.72
Construct Underpass at At-Grade Railroad Crossing	\$15,000,000	Each	2.20	\$33,000,000	Assumes underpass width of 4 lanes (AC) with standard shoulders; includes railroad bridge with abutments and underpass approaches; assumes vertical clearance of 16'6" + 6'6" superstructure	0.72 (All train-related crashes eliminated)	Removes all train-related crashes at at-grade crossing; all other crashes CMF = 0.72
Construct High-Occupancy Vehicle (HOV) Lane	\$900,000	Mile	2.20	\$1,980,000	For addition of 1 HOV lane (AC) in one direction with associated signage and markings; includes all costs except bridges; for generally at-grade facility with minimal walls and no major drainage improvements	0.95	Similar to general purpose lane
ALTERNATE ROUTE							
Construct Frontage Roads	\$2,400,000	Mile	2.20	\$5,280,000	For 2-lane AC frontage road; includes all costs except bridges; for generally at-grade facility with minimal walls	0.90	Assumed - similar to new general purpose lane
Construct 2-Lane Undivided Highway	\$3,000,000	Mile	2.20	\$6,600,000	In both directions; assumes addition of 2 new lanes (AC) with standard shoulders in each direction; includes all costs except bridges	0.90	Assuming new alignment for a bypass

^ Factor accounts for traffic control, erosion control, construction surveying and quality control, mobilization, construction engineering, contingencies, indirect cost allocation, and miscellaneous work

Appendix G: Performance Area Risk Factors

Pavement Performance Area

- Elevation
- Mainline Daily Traffic Volume
- Mainline Daily Truck Volume

Elevation

Variance above 4000' divided by 1000; (Elev-4000)/1000

Score Condition

- 0 < 4000'
- 0-5 4000'- 9000'
- 5 > 9000'

Mainline Daily Traffic Volume

Exponential equation; score = $5-(5*e^{(ADT*-0.000039)})$

- Score Condition
- 0 < 6,000
- 0-5 6,000 160,000
- 5 >160,000

Mainline Daily Truck Volume

Exponential equation; score = $5-(5*e^{(ADT*-0.00025)})$

- Score Condition
- 0 <900
- 0-5 900-25,000
- 5 >25,000

Bridge Performance Area

- Mainline Daily Traffic Volume
- Elevation
- Carries Mainline Traffic

Mainline Daily Traffic Volume

-	
Exponenti	ial equation; score = 5-(5*e ^(ADT*-0.000039))
Score	Condition
0	<6,000
0-5	6,000-160,000
5	>160,000
Elevation	
Variance	above 4000' divided by 1000; (Elev-4000
Score	Condition
0	< 4000'
0-5	4000'- 9000'
5	> 9000'
Carries M	ainline Traffic
Score	Condition
0	Does not carry mainline traffic
5	Carries mainline traffic
Detour Le	ngth
Divides de	etour length by 10 and multiplies by 2.5
Score	Condition
0	0 miles
0-5	0-20 miles
5	> 20 miles
Scour Crit	tical Rating
Variance	below 8
Score	Condition
0	Rating > 8
0-5	Rating 8 - 3
5	Rating < 3
Vertical C	learance
Variance	below 16' x 2.5; (16 –Clearance) x 2.5
Score	Condition
0	>16'
0-5	16'-14'
5	<14'

- Detour Length
- Scour Critical Rating
- Vertical Clearance

000)/1000

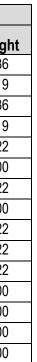
Mobility Per	rformance Area	Safety F	Performance Area	Freight F	<u>'erforr</u>	
Mainli	ne VMT	• N	lainline Daily Traffic Volume	• Ma	ainline [
 Buffer 	⁻ Index (PTI-TTI)	• Ir	nterrupted Flow	• De	etour Le	
 Detou 	r Length	• E	levation	• Tru	uck Buf	
Outsic	de Shoulder Width	• 0	outside Shoulder Width	• Ou	utside S	
		• V	ertical Grade			
Mainline VMT		Mainline	Daily Traffic Volume	Mainline Daily		
	- quation; score = 5-(5*e(ADT*-0.0000139))	Exponen	tial equation; score = 5-(5*e ^(ADT*-0.000039))	Exponenti	al equat	
Score	Condition	Score	Condition	Score	Con	
0	<16,000	0	<6,000	0	<900	
0-5	16,000-400,000	0-5	6,000-160,000	0-5	900-	
5	>400,000	5	>160,000	5	>25,	
Buffer Index		Interrupte	ed Flow			
Buffer Index x	< 10	Score	Condition	Detour Le	<u>ngth</u>	
Score	Condition	0	Not interrupted flow	Score	Con	
0	Buffer Index = 0.00	5	Interrupted Flow	0	Deto	
0-5	Buffer Index 0.00-0.50			5	Deto	
5	Buffer Index > 0.50	<u>Elevation</u>	-			
			above 4000' divided by 1000; (Elev-4000)/1000	Truck Buff		
Detour Length	-	Score	Condition	Truck Buff		
Score	Condition	0	< 4000'	Score	Con	
0	Detour < 10 miles	0-5 5	4000'- 9000' > 9000'	0	Buff	
5	Detour > 10 miles	5	> 9000	0-5 5	Buff Buff	
Outside Shou	lder Width	<u>Outside</u>	Shoulder Width	5	Duii	
	w 10', if only 1 lane in each direction	Variance	below 10'	Outside Sl	houlder	
	Condition	Score	Condition	Variance b	celow 10	
0	10' or above or >1 lane in each direction	0	10' or above	Score	Co	
0-5	10'-5' and 1 lane in each direction	0-5	10' - 5'	0	10'	
5	5' or less and 1 lane in each direction	5	5' or less	0-5	10'	
0		Grade		5	5' c	
			above 3% x 1.5			
		Score	Condition			
		0	< 3%			
		0-5	3% - 6.33%			
		5	>6.33%			

ormance Area

e Daily Truck Volume Length Buffer Index (TPTI-TTTI) e Shoulder Width

<u>Truck Volume</u> uation; score = 5-(5*e^(ADT*-0.00025)) condition 900 00-25,000 25,000

condition Detour < 10 miles Detour > 10 miles


ndex x 10 Condition Buffer Index = 0.00 Buffer Index 0.00-0.50 Buffer Index > 0.50

<u>der Width</u> v 10', if only 1 lane in each direction Condition 10' or above or >1 lane in each direction 10'-5' and 1 lane in each direction 5' or less and 1 lane in each direction

Performance Area Risk Factors

Solution Number	Mainline Traffic Vol (vpd) (2-way)	Solution Length (miles)	Bridge Detour Length (miles) (N19)	Elevation (ft)	Scour Critical Rating (0-9)	Carries Mainline Traffic (Y/N)	Bridge Vert. Clear (ft)	Mainline Truck Vol (vpd) (2-way)	Detour Length > 10 miles (Y/N)	Truck Buffer Index	Non-Truck Buffer Index	Grade (%)	Interrupted Flow (Y/N)	Outside/ Right Shoulder Width (ft)
19.1-1	20,595	15		3,390				2,471	n	0.04	0.09	0.5	n	10
19.1-2	16,071	12		3,150				2,571	n	0.00	0.00	0.6	У	9.6
19.3-1	20,595	15		3,390				2,471	n	0.04	0.09	0.5	n	10
19.3-2	16,071	12		3,150				2,571	n	0.00	0.00	0.6	У	9.6
19.5-1	36,855	17.5		2,850				7,002	n	0.03	0.05	0.3	n	9.92
19.5-2	67,438	3		2,460				4,046	n	0.08	0.06	0.5	n	10
19.6-1	36,855	17.5		2,850				7,002	n	0.03	0.05	0.3	n	9.92
19.6-2	67,438	7		2,460				4,046	n	0.08	0.06	0.5	n	10
19.9	36,855	0.5		2,850				7,002	n	0.03	0.05	0.3	n	9.92
19.10	36,855	0.5	0	2,850	8	У	16.00	7,002	n	0.03	0.05	0.3	n	9.92
19.11	36,855	0.5		2,850				7,002	n	0.03	0.05	0.3	n	9.92
19.12	67,438	1	1	2,450	7	У	16.00	4,046	n	0.08	0.06	1.5	n	10
19.13	67,438	7		2,450				4,046	n	0.08	0.06	0.7	n	10
19.14	67,438	5	1	2,450	7	У	16.00	4,046	n	0.08	0.06	0.7	n	10
19.15	67,438	2		1,450				4,046	n	0.08	0.06	0.7	n	10

Calution							Risk	Score (0 to 1	0)	
Solution Number	Bridge	Pavement	Mobility	Safety	Freight	Bridge	Pavement	Mobility	Safety	Freigh
19.1-1	n	n	у	У	у	0.00	0.00	2.92	1.10	1.36
19.1-2	n	n	у	у	у	0.00	0.00	2.33	3.09	1.19
19.3-1	n	n	у	у	у	0.00	0.00	2.92	1.10	1.36
19.3-2	n	n	у	у	у	0.00	0.00	2.33	3.09	1.19
19.5-1	n	n	у	у	у	0.00	0.00	2.75	1.55	2.22
19.5-2	n	n	у	у	у	0.00	0.00	2.65	1.85	2.00
19.6-1	n	n	у	у	у	0.00	0.00	2.75	1.55	2.22
19.6-2	n	n	у	у	у	0.00	0.00	2.80	1.85	2.00
19.9	n	n	у	у	у	0.00	0.00	0.81	1.55	2.22
19.10	у	n	у	у	у	2.93	0.00	0.81	1.55	2.22
19.11	n	n	у	у	у	0.00	0.00	0.81	1.55	2.22
19.12	у	у	у	у	у	3.71	5.21	1.82	1.85	2.00
19.13	n	n	у	у	у	0.00	0.00	2.80	1.85	2.00
19.14	у	у	у	у	У	3.71	5.21	2.78	1.85	2.00
19.15	n	n	у	у	у	0.00	0.00	2.42	1.85	2.00

Appendix H: Candidate Solution Cost Estimates

Candidate Solution #	Candidate Project Name	Scope	BMP	EMP	Length	Sq Ft	Unit	Factored Construction Unit Cost	Preliminary Engineering Cost (0.03)	Design Cost (0.10)	Right-of- Way Cost	Construction Cost	Total
		Rehabilitate Shoulder (AC) (NB)	3	30	27	na	mile	\$249,000	\$202,000	\$672,000	\$-	\$6,723,000	\$7,597,000
19.1	Nogales to Tubac Shoulder	Rehabilitate Shoulder (AC) (SB)	3	30	27	na	mile	\$249,000	\$202,000	\$672,000	\$-	\$6,723,000	\$7,597,000
	Improvements						1	Solution Total	\$404,000	\$1,344,000	\$-	\$13,446,000	\$15,194,000
		Install Lighting NB	3	30	27	na	mile	\$594,000	\$481,000	\$1,604,000		\$16,038,000	\$18,123,000
19.3	Nogales to Tubac Lighting	Install Lighting SB	3	30	27	na	mile	\$594,000	\$481,000	\$1,604,000		\$16,038,000	\$18,123,000
							-	Solution Total	\$962,000	\$3,208,000	\$-	\$32,076,000	\$36,246,000
		Install Lighting NB	39.5	60	20.5	na	mile	\$594,000	\$365,000	\$1,218,000		\$12,177,000	\$13,760,000
19.5	Sahuarita to Tucson Lighting	Install Lighting SB	39.5	60	20.5	na	mile	\$594,000	\$365,000	\$1,218,000		\$12,177,000	\$13,760,000
								Solution Total	\$730,000	\$2,436,000	\$-	\$24,354,000	\$27,520,000
	Sahuarita to Tucson	Rehabilitate Shoulder (AC) NB	39.5	64	24.5	na	mile	\$249,000	183,000	\$610,000	\$-	\$6,101,000	\$6,894,000
19.6	Shoulder Improvements	Rehabilitate Shoulder (AC) SB	39.5	64	24.5	na	mile	\$249,000	183,000	\$610,000	\$-	\$6,101,000	\$6,894,000
		Madify Entry/Exit Daran to narallal	[[Ι	Solution Total	\$366,000	\$1,220,000	\$-	\$12,202,000	\$13,788,000
19.9	Sahuarita TI Ramp Improvements	Modify Entry/Exit Ramp to parallel confirguration	46.8	46.8	< 1.0 m	na	each (4)	\$979,000	\$117,000	\$392,000	\$-	\$3,916,000	\$4,425,000
					1	[Τ	Solution Total	\$117,000	\$392,000	\$-	\$3,916,000	\$ 4,425,000
	Pima Mine TI Ramp	Modify Entry/Exit Ramp to parallel configuration	49.6	49.6	< 1.0 m	na	each (4)	\$979,000	\$117,000	\$392,000	\$-	\$3,916,000	\$4,425,000
19.10	Improvements	Widen Pima Mine TI OP (NB off-ramp)				2664	sf	\$390	\$31,000	\$104,000		\$1,038,960	\$1,173,960
								Solution Total	\$148,000	\$496,000	\$-	\$4,954,960	\$ 5,598,960
19.11	Papago TI Ramp	Modify entry/exit ramps to parallel configuration	54.4	54.4	< 1.0 m	4	each (4)	\$979,000	\$117,000	\$392,000	\$-	\$3,916,000	\$4,425,000
	Improvements							Solution Total	\$117,000	\$392,000	\$-	\$3,916,000	\$ 4,425,000
		Modify entry/exit ramps to parallel configuration Irvington Rd SB	57.0	61.0	4.0	2	each	\$979,000	\$59,000	\$196,000	\$-	\$1,958,000	\$2,213,000
		Modify entry/exit ramps to parallel configuration Valencia NB				2	each	\$979,000	\$59,000	\$196,000	\$-	\$1,958,000	\$2,213,000
		Modify entry/exit ramps to parallel configuration Valencia SB				2	each	\$979,000	\$59,000	\$196,000	\$-	\$1,958,000	\$2,213,000
		Modify entry/exit ramps to parallel configuration San Xavier NB				2	each	\$979,000	\$59,000	\$196,000	\$-	\$1,958,000	\$2,213,000
19.12	Tucson Area Parallel Ramps	Rehab Airport Wash Bridge NB				6350	sq ft	\$140	\$27,000	\$89,000	\$-	\$889,000	\$1,005,000
		Rehab Airport Wash Bridge SB				6350	sq ft	\$140	\$27,000	\$89,000	\$-	\$889,000	\$1,005,000
		Widen Airport Wash Bridge NB				1800	sq ft	\$390	\$21,000	\$70,000	\$-	\$702,000	\$793,000
		Widen Airport Wash Bridge SB				1800	sq ft	\$390	\$21,000	\$70,000	\$-	\$702,000	\$793,000
		Irvington Rd SBImplement Ramp Meters (High)				1	each (x1)	\$330,000	\$10,000	\$33,000	\$-	\$330,000	\$373,000
		Valencia Rd NB/SB Implement				2	each (x2)	\$330,000	\$20,000	\$66,000	\$-	\$660,000	\$746,000

Candidate Solution #	Candidate Project Name	Scope	BMP	EMP	Length	Sq Ft	Unit	Factored Construction Unit Cost	Preliminary Engineering Cost (0.03)	Design Cost (0.10)	Right-of- Way Cost	Construction Cost	Total
		Ramp Meters (High)											
		San Xavier Rd NBImplement Ramp Meters (High)				1	each (x1)	\$330,000	\$10,000	\$33,000	\$-	\$330,000	\$373,000
								Solution Total	\$372,000	\$1,234,000	\$-	\$12,334,000	\$13,940,000
	T	Implement Variable Speed Limits, wireless, overhead - NB	57	64	7	na	mile	\$1,580,000	\$332,000	\$1,106,000	\$-	\$11,060,000	\$12,498,000
19.13	Tucson Variable Speed Limits	Implement Variable Speed Limits, wireless, overhead - SB	64	57	7	na	mile	\$1,580,000	\$332,000	\$1,106,000	\$-	\$11,060,000	\$12,498,000
								Solution Total	\$664,000	\$2,212,000	\$-	\$22,120,000	\$24,996,000
		Construct New General Purpose Lanes (AC) NB	57.0	62	5.0	na	lane mile	\$2,640,000	\$396,000	\$1,320,000	\$-	\$13,200,000	\$14,916,000
		Construct New General Purpose Lanes (AC) SB	57.0	62	5.0	na	lane mile	\$2,640,000	\$396,000	\$1,320,000	\$-	\$13,200,000	\$14,916,000
		Widen Airport Wash Bridge NB				1800	sq ft	\$390	\$21,000	\$70,000	\$-	\$702,000	\$793,000
19.14	Tucson Area GP Widening	Widen Airport Wash Bridge SB				1800	sq ft	\$390	\$21,000	\$70,000	\$-	\$702,000	\$793,000
		Rehab Airport Wash Bridge SB				6350	sq ft	\$140	\$27,000	\$89,000	\$-	\$889,000	\$1,005,000
		Rehab Airport Wash Bridge NB				6350	sq ft	\$140	\$27,000	\$89,000	\$-	\$889,000	\$1,005,000
			•		•	•	•	Solution Total	\$888,000	\$2,958,000	\$-	\$29,582,000	\$33,428,000
		Construct pedestrian overpass	59.5	61.5	2	4900	sf	\$300	\$44,000	\$147,000	\$-	\$1,470,000	\$1,661,000
19.15	Drexel/Irvington Ped	Barrier Fencing SB Drexel to Irvington			5280	na	lf	\$ 33	\$5,000	\$17,000	\$-	\$174,000	\$196,000
19.10	Overpass	Barrier Fencing NB 1/2 mi N of Valencia to 1/2 mi N of Irvington			10560	na	lf	\$ 33	\$10,000	\$35,000		\$348,000	\$393,000
								Solution Total	\$59,000	\$199,000		\$1,992,000	\$ 2,250,000

Appendix I: Performance Effectiveness Scores

I-19 Candidate Solution Need Benefit Scoring

			Solution #	19.1-1	19.1-2	19.3-1	19.3-2	19.5-1	19.5-2	19.6-1	19.6-2	19.9	19.10	19.11	19.12	19.13	19.14	19.15
			Description	Nogales to Tubac Shoulder Rehab	Nogales to Tubac Shoulder Rehab	Nogales to Tubac Lighting	Nogales to Tubac Lighting	Sahuarita to Tucson Lighting	Sahuarita to Tucson Lighting	Sahuarita to Tucson Shldr Improvements	Sahuarita to Tucson Shldr Improvements	Sahuartia TI Ramp Improvements	Pima Mine TI Ramp Improvements	Papago TI Ramp Improvements	Tucson Area Parallel Ramps	Tucson Area Variable Speed Limits	Tucson Area GP Widening	Drexel/Irvington Pedestrian Overpass
	LEGEND:		Project Beg MP	2.95	18.24	2.95	18.24	39.53	57.19	39.53	57.19	46.8	49.6	54.4	57.19	57.19	57.19	59.5
		- user entered value	Project End MP	18.24	30.09	18.24	30.09	57.19	60	57.19	63.7	47.05	49.85	54.65	61.9	63.7	61.9	62
		- calculated value for reference only	Project Length (miles)	15.29	11.85	15.29	11.85	17.66	2.81	17.66	6.51	0.25	0.25	0.25	4.71	6.51	4.71	2.5
		- calculated value for entry/use in other spreadsheet	Segment Beg MP	2.95	18.24	2.95	18.24	39.53	57.19	39.53	57.19	39.53	39.53	39.53	57.19	57.19	57.19	57.19
		- for input into Performance Effectiveness Score spreadsheet	Segment End MP	18.24	30.09	18.24	30.09	57.19	63.7	57.19	63.7	57.19	57.19	57.19	63.7	63.7	63.7	63.7
		- assumed values (do not modify)	Segment Length (miles)	15.29	11.85	15.29	11.85	17.66	6.51	17.66	6.51	17.66	17.66	17.66	6.51	6.51	6.51	6.51
			Segment #	2	3	2	3	5	6	5	6	5	5	5	6	6	6	6
			Current # of Lanes (both directions)	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
				two-	two-	two-	two-	two-	two-	two-	two-	two-	two-	two-	two-	two-	two-	two-
			Project Type (one-way or two-way)	way	way	way 0	way	way 0	way	way	way 0	way	way	way 0	way 0	way 0	way	way
			Additional Lanes (one-way) Pro-Rated # of Lanes	0 4.00	4.00	4.00	4.00	4.00	4.00	0 4.00	4.00	4.00	0 4.00	4.00	4.00	4.00	5.45	4.00
			Pro-Rated # of Lanes	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	5.45	4.00
		Notes and Directions	Description															
		Input current value from performance system (direction 1)	Orig Segment Directional Safety Index (NB)	1.340	1.590	1.340	1.590	2.110	0.800	2.110	0.800	2.110	2.110	2.110	0.800	0.800	0.800	0.800
		Input current value from performance system (direction 1)	Orig Segment Directional Fatal Crashes (NB)	5	3	5	3	13	2	13	2	13	13	13	2	2	2	2
		Input current value from performance system (direction 1)	Orig Segment Directional Incap Crashes (NB)	6	3	6	3	6	7	6	7	6	6	6	7	7	7	7
		Input current value from performance system (direction 1)	Original Fatal Crashes in project limits (NB)	5	3	2	1	4	1	13	2	0	2	0	0	2	1	1
		Input current value from performance system (direction 1)	Original Incap Crashes in project limits (NB)	6	3	3	1	0	3	6	7	0	0	0	4	7	7	0
		Input CMF value (direction 1) - If no CMF enter 1.0	CMF 1 (NB)(lowest CMF)	0.72	0.72	0.75	0.75	0.75	0.75	0.72	0.72	0.21	0.21	0.21	0.21	0.92	0.9	0.1
		Input CMF value (direction 1) - If no CMF enter 1.0	CMF 2 (NB)	1	1	1	1	1	1	1	1	1	1	1	0.64	1	1	1
	ЕТΥ	Input CMF value (direction 1) - If no CMF enter 1.1	CMF 3 (NB)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	SAFI	Input CMF value (direction 1) - If no CMF enter 1.2	CMF 4 (NB)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
SAFETY	-	Input CMF value (direction 1) - If no CMF enter 1.0	CMF 5 (NB)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
SAF	DIRECTIONAL	Calculated Value (direction 1)	Total CMF (NB)	0.720	0.720	0.750	0.750	0.750	0.750	0.720	0.720	0.210	0.210	0.210	0.172	0.920	0.900	0.100
•••	ECT	Calculated Value (direction 1)	Fatal Crash reduction (NB)	1.400	0.840	0.500	0.250	1.000	0.250	3.640	0.560	0.000	1.580	0.000	0.000	0.160	0.100	0.900
	DIRI	Calculated Value (direction 1)	Incap Crash reduction (NB)	1.680	0.840	0.750	0.250	0.000	0.750	1.680	1.960	0.000	0.000	0.000	3.311	0.560	0.700	0.000
		Enter in Safety Index spreadsheet to calculate new Safety Index (direction 1)	Post-Project Segment Directional Fatal Crashes (NB)	3.600	2.160	4.500	2.750	12.000	1.750	9.360	1.440	13.000	11.420	13.000	2.000	1.840	1.900	1.100
		Enter in Safety Index spreadsheet to calculate new Safety Index (direction 1)	Post-Project Segment Directional Incap Crashes (NB)	4.320	2.160	5.250	2.750	6.000	6.250	4.320	5.040	6.000	6.000	6.000	3.689	6.440	6.300	7.000
		Input value from updated Safety Index spreadsheet (direction 1)	Post-Project Segment Directional Safety Index (NB)	0.95	1.14	1.21	1.46	1.95	0.7	1.52	0.58	2.11	1.86	2.11	0.73	0.74	0.75	0.51
		Enter in Safety Needs spreadsheet to calculate new segment level Safety Need (direction 1)	Post-Project Segment Directional Safety Index (NB)	0.950	1.140	1.210	1.460	1.950	0.700	1.520	0.580	2.110	1.860	2.110	0.730	0.740	0.750	0.510

			Solution #	19.1-1	19.1-2	19.3-1	19.3-2	19.5-1	19.5-2	19.6-1	19.6-2	19.9	19.10	19.11	19.12	19.13	19.14	19.15
		Input current value from performance system (direction 2)	Orig Segment Directional Safety Index (SB)	1.320	1.120	1.320	1.120	0.860	2.040	0.860	2.040	0.860	0.860	0.860	2.040	2.040	2.040	2.040
		Input current value from performance system (direction 2)	Orig Segment Directional Fatal Crashes (SB)	5	2	5	2	5	6	5	6	5	5	5	6	6	6	6
		Input current value from performance system (direction 2)	Orig Segment Directional Incap Crashes (SB)	6	4	6	4	7	4	7	4	7	7	7	4	4	4	4
		Input current value from performance system (direction 2)	Original Fatal Crashes in project limits (SB)	5	2	1	2	3	3	5	6	0	0	1	1	6	4	4
		Input current value from performance system (direction 2)	Original Incap Crashes in project limits (SB)	6	4	3	3	1	0	7	4	1	0	2	1	4	4	0
		Input CMF value (direction 2) - If no CMF enter 1.0	CMF 1 (SB)(lowest CMF)	0.72	0.72	0.75	0.75	0.75	0.75	0.72	0.72	0.21	0.21	0.21	0.21	0.92	0.9	0.1
		Input CMF value (direction 2) - If no CMF enter 1.0	CMF 2 (SB)	1	1	1	1	1	1	1	1	1	1	1	0.64	1	1	1
		Input CMF value (direction 2) - If no CMF enter 1.1	CMF 3 (SB)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
		Input CMF value (direction 2) - If no CMF enter 1.2	CMF 4 (SB)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
		Input CMF value (direction 2) - If no CMF enter 1.0	CMF 5 (SB)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
		Calculated Value (direction 2)	Total CMF (SB)	0.720	0.720	0.750	0.750	0.750	0.750	0.720	0.720	0.210	0.210	0.210	0.172	0.920	0.900	0.100
		Calculated Value (direction 2)	Fatal Crash reduction (SB)	1.400	0.560	0.250	0.500	0.750	0.750	1.400	1.680	0.000	0.000	0.790	0.828	0.480	0.400	3.600
		Calculated Value (direction 2)	Incap Crash reduction (SB)	1.680	1.120	0.750	0.750	0.250	0.000	1.960	1.120	0.790	0.000	1.580	0.828	0.320	0.400	0.000
		Enter in Safety Index spreadsheet to calculate new Safety Index (direction 2)	Post-Project Segment Directional Fatal Crashes (SB)	3.600	1.440	4.750	1.500	4.250	5.250	3.600	4.320	5.000	5.000	4.210	5.172	5.520	5.600	2.400
		Enter in Safety Index spreadsheet to calculate new Safety Index (direction 2)	Post-Project Segment Directional Incap Crashes (SB)	4.320	2.880	5.250	3.250	6.750	4.000	5.040	2.880	6.210	7.000	5.420	3.172	3.680	3.600	4.000
		Input value from updated Safety Index spreadsheet (direction 2)	Post-Project Segment Directional Safety Index (SB)	1.12	0.81	1.24	0.85	0.74	1.8	0.62	1.47	0.85	0.86	0.72	1.75	1.88	1.9	0.87
		Enter in Safety Needs spreadsheet to calculate new segment level Safety Need (direction 2)	Post-Project Segment Directional Safety Index (SB)	1.120	0.810	1.240	0.850	0.740	1.800	0.620	1.470	0.850	0.860	0.720	1.750	1.880	1.900	0.870
	EX	Calculated Value - verify that it matches current performance system	Current Safety Index	1.330	1.355	1.330	1.355	1.485	1.420	1.485	1.420	1.485	1.485	1.485	1.420	1.420	1.420	1.420
	SAFETY INDEX	Enter in Safety Needs spreadsheet to calculate new segment level Safety Need	Post-Project Safety Index	1.0350 0	0.9750 00	1.225	1.155	1.345	1.250	1.070	1.025	1.480	1.360	1.415	1.240	1.310	1.325	0.690
		User entered value from Safety Needs spreadsheet and for use in Performance Effectiveness spreadsheet	Original Segment Safety Need	3.214	2.803	3.214	2.803	3.951	3.835	3.951	3.835	3.951	3.951	3.951	3.835	3.835	3.835	3.835
	Needs	User entered value from Safety Needs spreadsheet and for use in Performance Effectiveness spreadsheet	Post-Project Segment Safety Need	1.907	1.489	2.764	2.067	3.449	3.213	2.447	2.370	3.935	3.49	3.721	3.167	3.431	3.486	1.075
		Input current value from performance system	Original Segment Mobility Index	0.320	0.260	0.320	0.260	0.560	1.010	0.560	1.010	0.560	0.560	0.560	1.010	1.010	1.010	1.010
	MOBILITY INDEX	Enter in Mobility Index Spreadsheet to determine new segment level Mobility Index	Post-Project # of Lanes (both directions)	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	5.45	4.00
~	OBILI	Input value from updated Mobility Index spreadsheet	Post-Project Segment Mobility Index	0.32	0.26	0.32	0.26	0.56	1.01	0.56	1.01	0.51	0.51	0.51	0.92	0.92	0.74	1.01
MOBILITY	Σ	Enter in Mobility Needs spreadsheet to update segment level Mobility Need	Post-Project Segment Mobility Index	0.320	0.260	0.320	0.260	0.560	1.010	0.560	1.010	0.510	0.510	0.510	0.920	0.920	0.740	1.010
Σ	ų	Input current value from performance system	Original Segment Future V/C	0.390	0.320	0.390	0.320	0.660	1.210	0.660	1.210	0.660	0.660	0.660	1.210	1.210	1.210	1.210
	FUT V/C	Input value from updated Mobility Index spreadsheet	Post-Project Segment Future V/C	0.390	0.320	0.390	0.320	0.660	1.210	0.660	1.210	0.600	0.600	0.600	1.100	1.100	0.890	1.210
		Enter in Mobility Needs spreadsheet to update segment level Mobility Need	Post-Project Segment Future V/C	0.390	0.320	0.390	0.320	0.660	1.210	0.660	1.210	0.600	0.600	0.600	1.100	1.100	0.890	1.210
	PEAK HOUR V/C	Input current value from performance system (direction 1)	Original Segment Peak Hour V/C (NB)	0.190	0.170	0.190	0.170	0.350	0.780	0.350	0.780	0.350	0.350	0.350	0.780	0.780	0.780	0.780
	ΞΞ,	Input current value from performance system (direction 2)	Original Segment Peak Hour V/C (SB)	0.200	0.170	0.200	0.170	0.360	0.760	0.360	0.760	0.360	0.360	0.360	0.760	0.760	0.760	0.760

	*If One-Way project, enter in Mobility Index Spreadsheet to	Solution #	19.1-1	19.1-2	19.3-1	19.3-2	19.5-1	19.5-2	19.6-1	19.6-2	19.9	19.10	19.11	19.12	19.13	19.14	
	determine new segment level Peak Hour V/C. If Two-Way project, disregard	Adjusted total # of Lanes for use in directional peak hr	N/A	N/A	N/A	N/A											
	Input value from updated Mobility Index spreadsheet (direction 1)	Post-Project Segement Peak Hr V/C (NB)	0.190	0.170	0.19	0.17	0.35	0.78	0.35	0.78	0.32	0.32	0.32	0.68	0.68	0.57	
	Input value from updated Mobility Index spreadsheet (direction 2)	Post-Project Segement Peak Hr V/C (SB)	0.200	0.170	0.20	0.17	0.36	0.76	0.36	0.76	0.33	0.33	0.33	0.66	0.66	0.56	
	Enter in Mobility Needs spreadsheet to update segment level Mobility Need	Post-Project Segment Peak Hr V/C (NB)	0.190	0.170	0.190	0.170	0.350	0.780	0.350	0.780	0.320	0.320	0.320	0.680	0.680	0.570	
	Enter in Mobility Needs spreadsheet to update segment level Mobility Need	Post-Project Segment Peak Hr V/C (SB)	0.200	0.170	0.200	0.170	0.360	0.760	0.360	0.760	0.330	0.330	0.330	0.660	0.660	0.560	
	Calculated Value (both directions)	Safety Reduction Factor	0.778	0.720	0.921	0.852	0.906	0.880	0.721	0.722	0.997	0.916	0.953	0.873	0.923	0.933	
	Calculated Value (both directions)	Safety Reduction	0.222	0.280	0.079	0.148	0.094	0.120	0.279	0.278	0.003	0.084	0.047	0.127	0.077	0.067	
	Calculated Value (both directions)	Mobility Reduction Factor	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.911	0.911	0.911	0.911	0.911	0.733	
	Calculated Value (both directions)	Mobility Reduction	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.089	0.089	0.089	0.089	0.089	0.267	
	Input current value from performance system (direction 1)	Original Directional Segment TTI (NB)	1.160	1.580	1.160	1.580	1.060	1.000	1.060	1.000	1.060	1.060	1.060	1.000	1.000	1.000	
	Input current value from performance system (direction 1)	Original Directional Segment PTI (NB)	1.250	2.500	1.250	2.500	1.110	1.030	1.110	1.030	1.110	1.110	1.110	1.030	1.030	1.030	
	Input current value from performance system (direction 2)	Original Directional Segment TTI (SB)	1.130	1.100	1.130	1.100	1.070	1.040	1.070	1.040	1.070	1.070	1.070	1.040	1.040	1.040	
Π	Input current value from performance system (direction 2)	Original Directional Segment PTI (SB)	1.220	1.170	1.220	1.170	1.120	1.120	1.120	1.120	1.120	1.120	1.120	1.120	1.120	1.120	
AND	Calculated Value (both directions)	Reduction Factor for Segment TTI	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.027	0.027	0.027	0.027	0.027	0.080	
ΠA	Calculated Value (both directions)	Reduction Factor for Segment PTI	0.067	0.084	0.024	0.044	0.028	0.036	0.084	0.083	0.019	0.043	0.032	0.056	0.041	0.074	_
F	Enter in Mobility Needs spreadsheet to update segment level Mobility Need (direction 1)	Post-Project Directional Segment TTI (NB)	1.160	1.580	1.160	1.580	1.060	1.000	1.060	1.000	1.032	1.032	1.032	1.000	1.000	1.000	
	Enter in Mobility Needs spreadsheet to update segment level Mobility Need (direction 1)	Post-Project Directional Segment PTI (NB)	1.167	2.500	1.220	2.500	1.079	1.015	1.017	1.015	1.089	1.062	1.074	1.015	1.015	1.015	
	Enter in Mobility Needs spreadsheet to update segment level Mobility Need (direction 2)	Post-Project Directional Segment TTTI (SB)	1.130	1.100	1.130	1.100	1.070	1.040	1.070	1.040	1.041	1.041	1.041	1.012	1.012	1.020	
	Enter in Mobility Needs spreadsheet to update segment level Mobility Need (direction 2)	Post-Project Directional Segment TPTI (SB)	1.139	1.170	1.191	1.170	1.088	1.080	1.026	1.027	1.099	1.072	1.084	1.06	1.07	1.038	
	Input current value from performance system (direction 1)	Orig Segment Directional Closure Extent (NB)	0.220	0.300	0.220	0.300	0.250	0.380	0.250	0.380	0.250	0.250	0.250	0.380	0.380	0.380	T
	Input current value from performance system (direction 2)	Orig Segment Directional Closure Extent (SB)	0.170	0.170	0.170	0.170	0.150	0.060	0.150	0.060	0.150	0.150	0.150	0.060	0.060	0.060	
	Input value from HCRS	Segment Closures with fatalities/injuries	20	7	20	7	28	9	28	9	28	28	28	9	9	9	
INT	Input value from HCRS	Total Segment Closures	24	14	24	14	35	14	35	14	35	35	35	14	14	14	
EXTEN	Calculated Value (both directions)	% Closures with Fatality/Injury	0.83	0.50	0.83	0.50	0.80	0.64	0.80	0.64	0.80	0.80	0.80	0.64	0.64	0.64	T
ШШ	Calculated Value (both directions)	Closure Reduction	0.185	0.140	0.066	0.074	0.075	0.077	0.224	0.179	0.003	0.067	0.038	0.081	0.050	0.043	
OSURE	Calculated Value (both directions)	Closure Reduction Factor	0.815	0.860	0.934	0.926	0.925	0.923	0.776	0.821	0.997	0.933	0.962	0.919	0.950	0.957	
СГО	Enter in Mobility Needs spreadsheet to update segment level Mobility Need (direction 1)	Post-Project Segment Directional Closure Extent (NB)	0.179	0.2579	0.206	0.278	0.231	0.351	0.194	0.312	0.249	0.233	0.241	0.349	0.361	0.364	
	Enter in Mobility Needs spreadsheet to update segment level Mobility Need (direction 2)	Post-Project Segment Directional Closure Extent (SB)	0.139	0.146	0.159	0.157	0.139	0.055	0.116	0.049	0.150	0.140	0.144	0.055	0.057	0.057	
~	Input current value from performance system	Orig Segment Bicycle Accomodation %	100.0 %	95.0%	95.0%	95.0%											
CON	Input current value from performance system	Orig Segment Outside Shoulder width	10	10	10	10	10	10	10	10	10	10	10	10	10	10	
ACCOM	Input value from updated Mobility Index spreadsheet	Post-Project Segment Outside Shoulder width	10	10	10	10	10	10	10	10	10	10	10	10	10	10	
BICYCLE	Input value from updated Mobility Index spreadsheet	Post-Project Segment Bicycle Accomodation (%)	100.0 %	100.0 %	100.0 %	100.0	100.0 %	95.0%	95.0%	100.0 %							
BIC	Enter in Mobility Needs spreadsheet to calculate new segment level Mobility Need	Post-Project Segment Bicycle Accomodation (%)	100.0 %	100.0	100.0 %	100.0	100.0 %	100.0 %	100.0 %	100.0	100.0 %	100.0 %	100.0	95.0%	95.0%	100.0 %	

		Solution #	19.1-1	19.1-2	19.3-1	19.3-2	19.5-1	19.5-2	19.6-1	19.6-2	19.9	19.10	19.11	19.12	19.13	19.14	19.15
Needs	User entered value from Mobility Needs spreadsheet and for use in Performance Effectiveness spreadsheet	Original Segment Mobility Need	0.589	0.504	0.589	0.5039	0.722	4.316	0.722	4.316	0.722	0.722	0.722	4.316	4.316	4.316	4.316
neeus	User entered value from Mobility Needs spreadsheet and for use in Performance Effectiveness spreadsheet	Post-Project Segment Mobility Need	0.573	0.495	0.583	0.4989	0.715	4.268	0.702	4.259	0.673	0.668	0.670	3.328	3.335	1.179	4.276
	Input current value from performance system (direction 1)	Original Directional Segment TTTI (NB)	1.040	1.430	1.040	1.430	1.030	1.020	1.030	1.020	1.030	1.030	1.030	1.020	1.020	1.020	1.020
	Input current value from performance system (direction 1)	Original Directional Segment TPTI (NB)	1.090	4.910	1.090	4.910	1.050	1.060	1.050	1.060	1.050	1.050	1.050	1.060	1.060	1.060	1.060
	Input current value from performance system (direction 2)	Original Directional Segment TTTI (SB)	1.040	1.030	1.040	1.030	1.030	1.080	1.030	1.080	1.030	1.030	1.030	1.080	1.080	1.080	1.080
	Input current value from performance system (direction 2)	Original Directional Segment TPTI (SB)	1.080	1.060	1.080	1.060	1.060	1.200	1.060	1.200	1.060	1.060	1.060	1.200	1.200	1.200	1.200
TPTI	Calculated Value (both directions)	Reduction Factor for Segment TTTI (both directions) Reduction Factor for Segment TPTI (both	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.013	0.013	0.013	0.013	0.013	0.040	0.000
	Calculated Value (both directions)	directions)	0.033	0.042	0.012	0.022	0.014	0.018	0.042	0.042	0.009	0.022	0.016	0.028	0.021	0.037	0.077
TTI AND	Enter in Freight Needs spreadsheet to update segment level Freight Need (direction 1)	Post-Project Directional Segment TTTI (NB)	1.040	1.4300 0	1.040	1.430	1.030	1.020	1.030	1.020	1.016	1.016	1.016	1.006	1.006	1.000	1.020
	Enter in Freight Needs spreadsheet to update segment level Freight Need (direction 1)	Post-Project Directional Segment TPTI (NB)	1.054	4.9100 0	1.077	4.910	1.035	1.041	1.006	1.016	1.040	1.027	1.033	1.030	1.038	1.021	1.019
	Enter in Freight Needs spreadsheet to update segment level Freight Need (direction 2)	Post-Project Directional Segment TTTI (SB)	1.040	1.0300 0	1.040	1.030	1.030	1.080	1.030	1.080	1.016	1.016	1.016	1.066	1.066	1.037	1.080
	Enter in Freight Needs spreadsheet to update segment level Freight Need (direction 2)	Post-Project Directional Segment TPTI (SB)	1.044	1.0600 0	1.067	1.060	1.045	1.178	1.016	1.150	1.050	1.037	1.043	1.166	1.175	1.156	1.107
	Value from above	Original Segment TPTI (NB)	1.090	4.910	1.090	4.910	1.050	1.060	1.050	1.060	1.050	1.050	1.050	1.060	1.060	1.060	1.060
Ш	Value from above	Original Segment TPTI (SB)	1.080	1.060	1.080	1.060	1.060	1.200	1.060	1.200	1.060	1.060	1.060	1.200	1.200	1.200	1.200
INDEX	Calculated Value	Original Segment Freight Index	0.9217	0.3350	0.922	0.335	0.948	0.885	0.948	0.885	0.948	0.948	0.948	0.885	0.885	0.885	0.885
FREIGHT	Calculated Value	Post-Project Segment TPTI (NB)	1.054	4.910	1.077	4.910	1.035	1.041	1.006	1.016	1.040	1.027	1.033	1.030	1.038	1.021	1.019
FREIGHT	Calculated Value	Post-Project Segment TPTI (SB)	1.044	1.060	1.067	1.060	1.045	1.178	1.016	1.150	1.050	1.037	1.043	1.166	1.175	1.156	1.107
	Enter in Freight Needs spreadsheet to update segment level Freight Need	Post-Project Segment Freight Index	0.9533 79	0.3350 1	0.933	0.335	0.961	0.901	0.989	0.923	0.957	0.969	0.963	0.910	0.904	0.919	0.940
	Input current value from performance system (direction 1)	Orig Segment Directional Closure Duration (dir 1)	45.090	87.900	45.090	87.900	39.820	66.470	39.820	66.470	39.820	39.820	39.820	66.470	66.470	66.470	66.470
	Input current value from performance system (direction 2)	Orig Segment Directional Closure Duration (dir 2)	33.780	53.940	33.780	53.940	23.750	22.610	23.750	22.610	23.750	23.750	23.750	22.610	22.610	22.610	22.610
z	Calculated Value	Segment Closures with fatalities	20	7	20	7	28	9	28	9	28	28	28	9	9	9	9
ATIC	Calculated Value	Total Segment Closures	24	14	24	14	35	14	35	14	35	35	35	14	14	14	14
DURATION	Calculated Value	% Closures with Fatality	0.83	0.50	0.83	0.50	0.80	0.64	0.80	0.64	0.80	0.80	0.80	0.64	0.64	0.64	0.64
SE D	Calculated Value	Closure Reduction	0.185	0.140	0.066	0.074	0.075	0.077	0.224	0.179	0.003	0.067	0.038	0.081	0.050	0.043	0.330
OSURE	Calculated Value	Closure Reduction Factor	0.815	0.860	0.934	0.926	0.925	0.923	0.776	0.821	0.997	0.933	0.962	0.919	0.950	0.957	0.670
CLO	Enter in Freight Needs spreadsheet to update segment level Freight Need (direction 1)	Post-Project Segment Directional Closure Duration (NB)	36.756	75.575	42.124	81.413	36.817	61.354	30.917	54.584	39.713	37.139	38.318	61.053	63.160	63.611	44.503
	Enter in Freight Needs spreadsheet to update segment level Freight Need (direction 2)	Post-Project Segment Directional Closure Duration (SB)	27.536	46.376	31.558	49.959	21.959	20.870	18.440	18.567	23.686	22.151	22.854	20.768	21.484	21.638	15.138
	Input current value from performance system	Original Segment Vertical Clearance	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Input current value from performance system	Original vertical clearance for specific bridge	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
VERT CLR	Input post-project value (depends on solution)	Post-Project vertical clearance for specific bridge	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Input post-project value (depends on solution)(force segment							NIA	NIA	NIA	NIA	NIA	NIA		NIA	NIA	NA
50	clearance to equal this specific bridge)	Post-Project Segment Vertical Clearance	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

		Solution #	19.1-1	19.1-2	19.3-1	19.3-2	19.5-1	19.5-2	19.6-1	19.6-2	19.9	19.10	19.11	19.12	19.13	19.14	19.15
	Freight Need																
Needs	User entered value from Freight Needs spreadsheet and for use in Performance Effectiveness spreadsheet	Original Segment Freight Need	0.531	0.91	0.531	0.91	0.207	0.644	0.207	0.644	0.207	0.207	0.207	0.644	0.644	0.644	0.644
	User entered value from Freight Needs spreadsheet and for use in Performance Effectiveness spreadsheet	Post-Project Segment Freight Need	0.518	0.882	0.528	0.907	0.203	0.638	0.194	0.629	0.205	0.201	0.203	0.636	0.638	0.636	0.619
	Input current value from performance system	Original Segment Bridge Index	NA	NA	5.30	NA	6.06	NA	6.06	NA							
	Input current value from performance system	Original lowest rating for specific bridge	NA	NA	4	NA	5	NA	5	NA							
Ж×	Input post-project value (For repair +1, rehab +2, replace=8)	Post-Project lowest rating for specific bridge	NA	NA	6	NA	7	NA	7	NA							
Bridge Index	Enter in Bridge Index spreadsheet to calculate new Bridge Index	Post-Project lowest rating for specific bridge	NA	NA	6	NA	7	NA	7	NA							
HB T	Input updated segment value from updated Bridge Index spreadsheet	Post-Project Segment Bridge Index	NA	NA	5.50	NA	6.14	NA	6.14	NA							
	Enter in Bridge Needs spreadsheet to update segment level Bridge Need	Post-Project Segment Bridge Index	NA	NA	5.50	NA	6.14	NA	6.14	NA							
	Input current value from performance system	Original Segment Sufficiency Rating	NA	NA	90.92	NA	77.40	NA	77.40	NA							
	Input current value from performance system	Original Sufficiency Rating for specific bridge	NA	NA	91.00	NA	83.43	NA	83.43	NA							
(7)	Input post-project value (For repair +10, rehab +20, replace=98)	Post-Project Sufficiency Rating for specific bridge	NA	NA	100.00	NA	100.00	NA	100.00	NA							
SUFF RATING	Enter in Bridge Index spreadsheet to calculate new Bridge Index	Post-Project Sufficiency Rating for specific bridge	NA	NA	100.00	NA	100.00	NA	100.00	NA							
SI RA	Input updated segment value from updated Bridge Index spreadsheet	Post-Project Segment Sufficiency Rating	NA	NA	91.71	NA	78.73	NA	78.73	NA							
	Enter in Bridge Needs spreadsheet to update segment level Bridge Need	Post-Project Segment Sufficiency Rating	NA	NA	91.71	NA	78.73	NA	78.73	NA							
	Input current value from performance system	Original Segment Bridge Rating	NA	NA	4	NA	5	NA	5	NA							
BR RTNG	Input updated segment value from updated Bridge Index spreadsheet	Post-Project Segment Bridge Rating	NA	NA	4	NA	5	NA	5	NA							
Ľ	Enter in Bridge Needs spreadsheet to update segment level Bridge Need	Post-Project Segment Bridge Rating	NA	NA	4	NA	5	NA	5	NA							
	Input current value from performance system	Original Segment % Functionally Obsolete	NA	NA	21.33 %	NA	19.43 %	NA	19.43 %	NA							
% FUN OB	Input updated value from updated Bridge Index spreadsheet (only remove bridge from FO if replace or rehab)	Post-Project Segment % Functionally Obsolete	NA	NA	21.33	NA	19.43 %	NA	19.43 %	NA							
6.	Enter in Bridge Needs spreadsheet to update segment level Bridge Need	Post-Project Segment % Functionally Obsolete	NA	NA	21.33 %	NA	19.43 %	NA	19.43 %	NA							
Needs	User entered value from Bridge Needs spreadsheet and for use in Performance Effectiveness spreadsheet	Original Segment Bridge Need	1.133	0.367	1.133	0.367	2.053	0.612	2.053	0.612	2.053	2.053	2.053	0.612	0.612	0.612	0.612
neeus	User entered value from Bridge Needs spreadsheet and for use in Performance Effectiveness spreadsheet	Post-Project Segment Bridge Need	1.133	0.367	1.133	0.367	2.053	0.612	2.053	0.612	2.053	1.853	2.053	0.519	0.612	0.519	0.612
	Input current value from performance system	Original Segment Pavement Index														3.61	
	Input current value from performance system	Original Segment IRI in project limits														118	
LU X	Input current value from performance system	Original Segment Cracking in project limits														0	
PAVEMENT INDEX	Input post-project value (For rehab, increase to 45; for replace increase to 30)	Post-Project IRI in project limits														45	
4	Enter in Pavement Index spreadsheet to calculate new Pavement Index	Post-Project IRI in project limits	0	0	0	0	0	0	0	0	0	0	0	0	0	45	0

		Solution #	19.1-1	19.1-2	19.3-1	19.3-2	19.5-1	19.5-2	19.6-1	19.6-2	19.9	19.10	19.11	19.12	19.13	19.14	19.15
	Input post-project value (Lower to 0 for rehab or replace)	Post-Project Cracking in project limits														0	
	Enter in Pavement Index spreadsheet to calculate new Pavement Index	Post-Project Cracking in project limits	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Input updated segment value from updated Pavement Index spreadsheet	Post-Project Segment Pavement Index														3.78	
	Enter in Pavement Needs spreadsheet to update segment level Pavement Need	Post-Project Segment Pavement Index	0	0	0	0	0	0	0	0	0	0	0	0	0	3.78	0
	Input current value from performance system (direction 1)	Original Segment Directional PSR (NB)														3.54	
	Input current value from performance system (direction 2)	Original Segment Directional PSR (SB)														3.57	
	Value from above	Original Segment IRI in project limits	0	0	0	0	0	0	0	0	0	0	0	0	0	118	0
	Value from above	Post-Project directional IRI in project limits	0	0	0	0	0	0	0	0	0	0	0	0	0	45	0
DIRECTION PSR	Input updated segment value from updated Pavement Index spreadsheet (direction 1)	Post-Project Segment Directional PSR (NB)														3.73	
DIRE	Input updated segment value from updated Pavement Index spreadsheet (direction 2)	Post-Project Segment Directional PSR (SB)														3.73	
	Enter in Pavement Needs spreadsheet to update segment level Pavement Need	Post-Project Segment Directional PSR (NB)	0	0	0	0	0	0	0	0	0	0	0	0	0	3.73	0
	Enter in Pavement Needs spreadsheet to update segment level Pavement Need	Post-Project Segment Directional PSR (SB)	0	0	0	0	0	0	0	0	0	0	0	0	0	3.73	0
	Input current value from performance system	Original Segment % Failure														18.8%	
% FAIL	Input value from updated Pavement Index spreadsheet	Post-Project Segment % Failure														9.4%	
С С	Enter in Pavement Needs spreadsheet to update segment level Pavement Need	Post-Project Segment % Failure	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	9.4%	0.0%
Needs	User entered value from Pavement Needs spreadsheet and for use in Performance Effectiveness spreadsheet	Original Segment Pavement Need	0.033	0.505	0.033	0.505	0	0.887	0	0.887	0	0	0	0.887	0.887	0.887	0.88
NECUS	User entered value from Pavement Needs spreadsheet and for use in Performance Effectiveness spreadsheet	Post-Project Segment Pavement Need	0.033	0.505	0.033	0.505	0	0.887	0	0.887	0	0	0	0.887	0.887	0.110	0.88

Performance Area Scoring

			Estimated		F	Pavement	:				Bridge					Safety					Mobility					Freight		
Candidate Solution #	Candidate Solution Name	Milepost Location	Cost (\$millions)	Existing Need	Post- Solution Need	Raw Score	Risk Factor	Factored Score	Existing Need	Post- Solution Need	Raw Score	Risk Factor	Factored Score	Existing Need	Post- Solution Need	Raw Score	Risk Factor	Factored Score	Existing Need	Post- Solution Need	Raw Score	Risk Factor	Factored Score	Existing Need	Post- Solution Need	Raw Score	Risk Factor	Factored Score
19.1	Nogales to Tubac Shoulder Improvements	3 to 30	15.194	0.538	0.538	0.000		0.000	1.500	1.500	0.000		0.000	6.017	3.396	2.621		5.498	1.093	1.068	0.025		0.068	1.441	1.400	0.041		0.051
19.1-1	Nogales to Tubac Shoulder Improvements	3 to 18	7.597	0.033	0.033	0.000	0.00	0.000	1.133	1.133	0.000	0.00	0.000	3.214	1.907	1.307	1.10	1.438	0.589	0.573	0.016	2.92	0.047	0.531	0.518	0.013	1.36	0.018
19.1-2	Nogales to Tubac Shoulder Improvements	18 to 30	7.597	0.505	0.505	0.000	0.00	0.000	0.367	0.367	0.000	0.00	0.000	2.803	1.489	1.314	3.09	4.060	0.504	0.495	0.009	2.33	0.021	0.910	0.882	0.028	1.19	0.033
19.3	Nogales to Tubac Lighting	3 to 30	36.246	0.538	0.538	0.000		0.000	1.500	1.500	0.000		0.000	6.017	4.831	1.186		2.769	1.093	1.082	0.011		0.029	1.441	1.435	0.006		0.008
19.3-1	Nogales to Tubac Lighting	3 to 18	18.123	0.033	0.033	0.000	0.00	0.000	1.133	1.133	0.000	0.00	0.000	3.214	2.764	0.450	1.10	0.495	0.589	0.583	0.006	2.92	0.018	0.531	0.528	0.003	1.36	0.004
19.3-2	Nogales to Tubac Lighting	18 to30	18.123	0.505	0.505	0.000	0.00	0.000	0.367	0.367	0.000	0.00	0.000	2.803	2.067	0.736	3.09	2.274	0.504	0.499	0.005	2.33	0.012	0.910	0.907	0.003	1.19	0.004
19.5	Sahuarita to Tucson Lighting	39.5 to 60	27.52	0.000	0.000	0.000		0.000	3.115	3.115	0.000		0.000	7.786	6.662	1.124		1.929	5.038	4.983	0.055		0.146	0.851	0.841	0.010		0.021
19.5-1	Sahuarita to Tucson Lighting	39.5 to 57	13.76	0.000	0.000	0.000	0.00	0.000	2.503	2.503	0.000	0.00	0.000	3.951	3.449	0.502	1.55	0.778	0.722	0.715	0.007	2.75	0.019	0.207	0.203	0.004	2.22	0.009
19.5-2	Sahuarita to Tucson Lighting	57 to 60	13.76	0.000	0.000	0.000	0.00	0.000	0.612	0.612	0.000	0.00	0.000	3.835	3.213	0.622	1.85	1.151	4.316	4.268	0.048	2.65	0.127	0.644	0.638	0.006	2.00	0.012
19.6	Sahuarita to Tucson Shoulder Rehab	39.5 to 64	13.788	0.887	0.887	0.000		0.000	2.665	2.665	0.000		0.000	7.786	4.817	2.969		5.452	5.038	4.961	0.077		0.359	0.851	0.823	0.028		0.064
19.6-1	Sahuarita to Tucson Shoulder Rehab	39.5 to 57	6.89	0.000	0.000	0.000	0.00	0.000	2.053	2.053	0.000	0.00	0.000	3.951	2.447	1.504	1.55	2.738	0.722	0.702	0.020	2.75	0.200	0.207	0.194	0.013	2.22	0.034
19.6-2	Sahuarita to Tucson Shoulder Rehab	57 to 64	6.89	0.887	0.887	0.000	0.00	0.000	0.612	0.612	0.000	0.00	0.000	3.835	2.370	1.465	1.85	2.714	4.316	4.259	0.057	2.80	0.160	0.644	0.629	0.015	2.00	0.030
19.9	Sahuarita TI	46.8	4.43	0.000	0.000	0.000	0.00	0.000	2.053	2.053	0.000	0.00	0.000	3.951	3.935	0.016	1.55	0.025	0.722	0.673	0.049	0.81	0.040	0.207	0.205	0.002	2.22	0.004
19.10	Pima Mine TI	49.6	5.60	0.000	0.000	0.000	0.00	0.000	2.053	1.853	0.200	2.93	0.586	3.951	3.490	0.461	1.55	0.715	0.722	0.668	0.054	0.81	0.044	0.207	0.201	0.006	2.22	0.013
19.11	Papago TI	54.4	4.425	0.000	0.000	0.000	0.00	0.000	2.053	2.053	0.000	0.00	0.000	3.951	3.721	0.230	1.55	0.357	0.722	0.670	0.052	0.81	0.042	0.207	0.203	0.004	2.22	0.009

			Estimated			Pavement	t				Bridge					Safety					Mobility					Freight		
Candidate Solution #	Candidate Solution Name	Milepost Location	Cost (\$millions)	Existing Need	Post- Solution Need	Raw Score	Risk Factor	Factored Score	Existing Need	Post- Solution Need	Raw Score	Risk Factor	Factored Score	Existing Need	Post- Solution Need	Raw Score	Risk Factor	Factored Score	Existing Need	Post- Solution Need	Raw Score	Risk Factor	Factored Score	Existing Need	Post- Solution Need	Raw Score	Risk Factor	Factored Score
19.12	Tucson Area Ramps	57 to 62	13.94	0.887	0.887	0.000	5.21	0.000	0.612	0.519	0.093	3.71	0.345	3.835	3.167	0.668	1.85	1.237	4.316	3.328	0.988	1.82	1.798	0.644	0.636	0.008	2.00	0.016
19.13	Tucson Area Variable Speed Limits	57 to 64	24.996	0.887	0.887	0.000	0.00	0.000	0.612	0.612	0.000	0.00	0.000	3.835	3.431	0.404	1.85	0.748	4.316	3.335	0.981	2.80	2.743	0.644	0.638	0.006	2.00	0.012
19.14	Tucson Area GP Widening	57 to 62	33.428	0.887	0.110	0.777	5.21	4.052	0.612	0.519	0.093	3.71	0.345	3.835	3.486	0.349	1.85	0.646	4.316	1.179	3.137	2.78	8.721	0.644	0.636	0.008	2.00	0.016
19.15	Drexel/Irvington Ped Overpass	59.5 to 61.5	2.25	0.887	0.887	0.000	0.00	0.000	0.612	0.612	0.000	0.00	0.000	3.835	1.075	2.760	1.85	5.112	4.316	4.276	0.040	2.42	0.097	0.644	0.619	0.025	2.00	0.050

Performance Area Scoring- Emphasis Areas

						Safety Em	nphasis Ai	rea			Μ	obility Em	iphasis Ar	ea				Freight F	mphasis A	rea	
Candidate Solution #	Candidate Solution Name	Milepost Location	Estimated Cost (\$ millions)	Existing Corridor Need	Post- Solution Corridor Need	Raw Score	Risk Factor	Emphasis Factor	Factored Score	Existing Corridor Need	Post- Solution Corridor Need	Raw Score	Risk Factor	Emphasis Factor	Factored Score	Existing Corridor Need	Post- Solution Corridor Need	Raw Score	Risk Factor	Emphasis Factor	Factored Score
19.1	Nogales to Tubac Shoulder Improveme nts	3 to 30	15.3055	5.206	4.778	0.428		1.50	1.345	0.766	0.766	0.000		1.50	0.000	0.000	0.000	0.000		1.50	0.000
19.1-1	Nogales to Tubac Shoulder Improvemen ts	3 to 30	7.6525	2.603	2.389	0.214	1.10	1.50	0.353	0.383	0.383	0.000	2.92	1.50	0.000	0.000	0.000	0.000	1.36	1.50	0.000
19.1-2	Nogales to Tubac Shoulder Improvemen ts	3 to 30	7.653	2.603	2.389	0.214	3.09	1.50	0.992	0.383	0.383	0.000	2.51	1.50	0.000	0.000	0.000	0.000	1.86	1.50	0.000
19.3	Nogales to Tubac Lighting	3 to 30	36.434	5.206	5.005	0.201		1.50	0.699	0.766	0.766	0.000		1.50	0.000	0.000	0.000	0.000		1.50	0.000
19.3-1	Nogales to Tubac Lighting	3 to 30	18.217	2.603	2.525	0.078	1.10	1.50	0.129	0.383	0.383	0.000	2.92	1.50	0.000	0.000	0.000	0.000	1.36	1.50	0.000
19.3-2	Nogales to Tubac Lighting	3 to 30	18.217	2.603	2.480	0.123	3.09	1.50	0.570	0.383	0.383	0.000	2.51	1.50	0.000	0.000	0.000	0.000	1.86	1.50	0.000
19.5	Sahuarita to Tucson Lighting	39.5 to 60	27.52	5.206	5.024	0.182		1.50	0.450	0.766	0.766	0.000		1.50	0.000	0.000	0.000	0.000		1.50	0.000
19.5-1	Sahuarita to Tucson Lighting	39.5 to 60	13.76	2.603	2.480	0.123	1.55	1.50	0.286	0.383	0.383	0.000	2.75	1.50	0.000	0.000	0.000	0.000	2.22	1.50	0.000
19.5-2	Sahuarita to Tucson Lighting	39.5 to 60	13.76	2.603	2.544	0.059	1.85	1.50	0.164	0.383	0.383	0.000	2.77	1.50	0.000	0.000	0.000	0.000	2.00	1.50	0.000

						Safety Em	nphasis Ar	ea			м	obility Em	phasis Ar	ea				Freight E	mphasis A	rea	
Candidate Solution #	Candidate Solution Name	Milepost Location	Estimated Cost (\$ millions)	Existing Corridor Need	Post- Solution Corridor Need	Raw Score	Risk Factor	Emphasis Factor	Factored Score	Existing Corridor Need	Post- Solution Corridor Need	Raw Score	Risk Factor	Emphasis Factor	Factored Score	Existing Corridor Need	Post- Solution Corridor Need	Raw Score	Risk Factor	Emphasis Factor	Factored Score
19.6	Sahuarita to Tucson Shoulder Rehab	39.5 to 60	12.606	5.206	4.738	0.468		1.50	0.762	0.766	0.766	0.000		1.50	0.015	0.000	0.000	0.000		1.50	0.000
19.6-1	Sahuarita to Tucson Shoulder Rehab	39.5 to 60	6.303	2.603	2.270	0.333	1.55	1.50	0.387	0.383	0.383	0.000	2.75	1.50	0.015	0.000	0.000	0.000	2.22	1.50	0.000
19.6-2	Sahuarita to Tucson Shoulder Rehab	39.5 to 60	6.303	2.603	2.468	0.135	1.85	1.50	0.375	0.383	0.383	0.000	2.77	1.50	0.000	0.000	0.000	0.000	2.00	1.50	0.000
19.9	Sahuarita TI	46.8	4.643	2.603	2.598	0.005	1.55	1.50	0.012	0.383	0.371	0.012	0.81	1.50	0.015	0.000	0.000	0.000	2.22	1.50	0.000
19.1	Pima Mine TI	49.6	5.599	2.603	2.496	0.107	1.55	1.50	0.249	0.383	0.371	0.012	0.81	1.50	0.015	0.000	0.000	0.000	2.22	1.50	0.000
19.11	Papago TI	54.4	4.643	2.603	2.540	0.063	1.55	1.50	0.147	0.383	0.371	0.012	0.81	1.50	0.015	0.000	0.000	0.000	2.22	1.50	0.000
19.12	Tucson Area Ramps	57 to 62	18.955	2.603	2.540	0.063	1.85	1.50	0.175	0.383	0.374	0.009	1.82	1.50	0.025	0.000	0.000	0.000	2.00	1.50	0.000
19.13	Tucson Area Variable Speed Limits	57 to 64	24.996	2.603	2.565	0.038	1.85	1.50	0.106	0.383	0.374	0.009	2.80	1.50	0.038	0.000	0.000	0.000	2.00	1.50	0.000
19.14	Tucson Area GP Widening	57 to 62	34.324	2.603	2.570	0.033	1.85	1.50	0.092	0.383	0.358	0.025	2.77	1.50	0.104	0.000	0.000	0.000	2.00	1.50	0.000
19.15	Drexel/Irvin gton Ped Overpass	59.5 to 62	2.154	2.603	2.368	0.235	1.85	1.50	0.653	0.383	0.383	0.000	0.82	1.50	0.000	0.000	0.000	0.000	2.00	1.50	0.000

I-19 Performance Effectiveness Scoring Results

			Estimated		Risk	Factored Benef	it Score		Risk Fact	ored Emphasis /	Area Score	Total			Performance
Candidate Solution #	Candidate Solution Name	Milepost Location	Cost (\$millions)	Pavement	Bridge	Mobility	Safety	Freight	Safety	Mobility	Freight	Factored Benefit Score	Fvмт	FNPV	Effectiveness Score
19.1	Nogales to Tubac Shoulder Improvements	3 to 30	15.194	0.000	0.000	0.068	5.498	0.051	1.345	0.000	0.000	6.962	5.00	15.3	35.0
19.1-1	Nogales to Tubac Shoulder Improvements	3 to 18	7.597	0.000	0.000	0.047	1.438	0.018	0.353	0.000	0.000	1.855	4.93	15.3	18.4
19.1-2	Nogales to Tubac Shoulder Improvements	18 to 30	7.597	0.000	0.000	0.021	4.060	0.033	0.992	0.000	0.000	5.106	4.66	15.3	47.9
19.3	Nogales to Tubac Lighting	3 to 30	36.246	0.000	0.000	0.029	2.769	0.008	0.699	0.000	0.000	3.505	5.00	15.3	7.4
19.3-1	Nogales to Tubac Lighting	3 to 18	18.123	0.000	0.000	0.018	0.495	0.004	0.129	0.000	0.000	0.645	4.93	15.3	2.7
19.3-2	Nogales to Tubac Lighting	18 to30	18.123	0.000	0.000	0.012	2.274	0.004	0.570	0.000	0.000	2.860	4.66	15.3	11.2
19.5	Sahuarita to Tucson Lighting	39.5 to 60	27.52	0.000	0.000	0.146	1.929	0.021	0.450	0.000	0.000	2.546	5.00	15.3	7.1
19.5-1	Sahuarita to Tucson Lighting	39.5 to 57	13.76	0.000	0.000	0.019	0.778	0.009	0.286	0.000	0.000	1.092	5.00	15.3	6.1
19.5-2	Sahuarita to Tucson Lighting	57 to 60	13.76	0.000	0.000	0.127	1.151	0.012	0.164	0.000	0.000	1.454	4.70	15.3	7.6
19.6	Sahuarita to Tucson Shoulder Rehab	39.5 to 64	13.788	0.000	0.000	0.359	5.452	0.064	0.762	0.015	0.000	6.652	5.00	15.3	36.9
19.6-1	Sahuarita to Tucson Shoulder Rehab	39.5 to 57	6.894	0.000	0.000	0.200	2.738	0.034	0.387	0.015	0.000	3.374	5.00	15.3	37.4
19.6-2	Sahuarita to Tucson Shoulder Rehab	57 to 64	6.894	0.000	0.000	0.160	2.714	0.030	0.375	0.000	0.000	3.278	4.99	15.3	36.3
19.9	Sahuarita TI	46.8	4.425	0.000	0.000	0.040	0.025	0.004	0.012	0.015	0.000	0.095	1.13	20.2	0.5
19.10	Pima Mine TI	49.6	5.599	0.000	0.586	0.044	0.715	0.013	0.249	0.015	0.000	1.622	1.13	20.2	6.6
19.11	Papago TI	54.4	4.425	0.000	0.000	0.042	0.357	0.009	0.147	0.015	0.000	0.569	1.13	20.2	2.9
19.12	Tucson Area Ramps	57 to 62	13.94	0.000	0.345	1.798	1.237	0.016	0.175	0.025	0.000	3.596	3.04	20.2	15.9
19.13	Tucson Area Variable Speed Limits	57 to 64	24.996	0.000	0.000	2.743	0.748	0.012	0.106	0.038	0.000	3.646	4.99	15.3	11.1
19.14	Tucson Area GP Widening	57 to 62	33.428	4.052	0.345	8.721	0.646	0.016	0.092	0.104	0.000	13.976	4.95	20.2	41.8
19.15	Drexel/Irvington Ped Overpass	59.5 to 61.5	2.25	0.000	0.000	0.097	5.112	0.050	0.653	0.000	0.000	5.912	1.04	20.2	55.4

Appendix J: Solution Prioritization Scores

Performance Evaluation Risk Factors and Prioritization

Candidata	Candidate	Mileneet	Estimated	Pave	ement	Brie	dge	Sa	fety	Mol	bility	Fre	ight	Total		F	Risk Factors	;		Weighted	Commont	Performance	Duiouitination
Candidate Solution #	Solution Name	Milepost Location	Cost (\$millions)	Score	%	Score	%	Score	%	Score	%	Score	%	Factored Score	Pavement	Bridge	Safety	Mobility	Freight	Risk Factor	Segment Need	Effectiveness Score	Prioritization Score
19.1	Nogales to Tubac Shoulder Improvements	3 to 30	15.194	0.000	0.0%	0.000	0.0%	6.843	98.3%	0.068	1.0%	0.051	0.7%	6.962	1.14	1.51	1.78	1.36	1.36	1.773	1.19	35.0	74
19.1-1	Nogales to Tubac Shoulder Improvements	3 to 18	7.597	0.000	0.0%	0.000	0.0%	1.791	96.5%	0.047	2.5%	0.018	1.0%	1.855	1.14	1.51	1.78	1.36	1.36	1.765	1.23	18.4	40
19.1-2	Nogales to Tubac Shoulder Improvements	18 to 30	7.597	0.000	0.0%	0.000	0.0%	5.052	98.9%	0.021	0.4%	0.033	0.7%	5.106	1.14	1.51	1.78	1.36	1.36	1.776	1.15	47.9	98
19.3	Nogales to Tubac Lighting	3 to 30	36.246	0.000	0.0%	0.000	0.0%	3.468	98.9%	0.029	0.8%	0.008	0.2%	3.505	1.14	1.51	1.78	1.36	1.36	1.776	1.19	7.4	16
19.3-1	Nogales to Tubac Lighting	3 to 18	18.123	0.000	0.0%	0.000	0.0%	0.624	96.7%	0.018	2.7%	0.004	0.6%	0.645	1.14	1.51	1.78	1.36	1.36	1.766	1.23	2.7	6
19.3-2	Nogales to Tubac Lighting	18 to30	18.123	0.000	0.0%	0.000	0.0%	2.844	99.5%	0.012	0.4%	0.004	0.1%	2.860	1.14	1.51	1.78	1.36	1.36	1.778	1.15	11.2	23
19.5	Sahuarita to Tucson Lighting	39.5 to 60	27.52	0.000	0.0%	0.000	0.0%	2.379	93.4%	0.146	5.8%	0.021	0.8%	2.546	1.14	1.51	1.78	1.36	1.36	1.752	1.26	7.1	16
19.5-1	Sahuarita to Tucson Lighting	39.5 to 57	13.76	0.000	0.0%	0.000	0.0%	1.064	97.4%	0.019	1.8%	0.009	0.8%	1.092	1.14	1.51	1.78	1.36	1.36	1.769	1.15	6.1	12
19.5-2	Sahuarita to Tucson Lighting	57 to 60	13.76	0.000	0.0%	0.000	0.0%	1.314	90.4%	0.127	8.8%	0.012	0.8%	1.454	1.14	1.51	1.78	1.36	1.36	1.740	1.92	7.6	25
19.6	Sahuarita to Tucson Shoulder Rehab	39.5 to 64	13.788	0.000	0.0%	0.000	0.0%	6.214	93.4%	0.374	5.6%	0.064	1.0%	6.652	1.14	1.51	1.78	1.36	1.36	1.752	1.37	36.9	89
19.6-1	Sahuarita to Tucson Shoulder Rehab	39.5 to 57	6.894	0.000	0.0%	0.000	0.0%	3.125	92.6%	0.214	6.3%	0.034	1.0%	3.374	1.14	1.51	1.78	1.36	1.36	1.749	1.15	37.4	75
19.6-2	Sahuarita to Tucson Shoulder Rehab	57 to 64	6.894	0.000	0.0%	0.000	0.0%	3.089	94.2%	0.160	4.9%	0.030	0.9%	3.278	1.14	1.51	1.78	1.36	1.36	1.756	1.92	36.3	122
19.9	Sahuarita TI	46.8	4.425	0.000	0.0%	0.000	0.0%	0.036	38.2%	0.055	57.2%	0.004	4.7%	0.095	1.14	1.51	1.78	1.36	1.36	1.520	1.15	0.5	1
19.10	Pima Mine TI	49.6	5.599	0.000	0.0%	0.586	36.2%	0.964	59.4%	0.059	3.6%	0.013	0.8%	1.622	1.14	1.51	1.78	1.36	1.36	1.664	1.15	6.6	13
19.11	Papago TI	54.4	4.425	0.000	0.0%	0.000	0.0%	0.503	88.4%	0.057	10.0%	0.009	1.6%	0.569	1.14	1.51	1.78	1.36	1.36	1.731	1.15	2.9	6
19.12	Tucson Area Ramps	57 to 62	13.94	0.000	0.0%	0.345	9.6%	1.412	39.3%	1.823	50.7%	0.016	0.4%	3.596	1.14	1.51	1.78	1.36	1.36	1.539	1.92	15.9	47
19.13	Tucson Area Variable Speed Limits	57 to 64	24.996	0.000	0.0%	0.000	0.0%	0.854	23.4%	2.780	76.3%	0.012	0.3%	3.646	1.14	1.51	1.78	1.36	1.36	1.458	1.92	11.1	31
19.14	Tucson Area GP Widening	57 to 62	33.428	4.052	29.0%	0.345	2.5%	0.738	5.3%	8.825	63.1%	0.016	0.1%	13.976	1.14	1.51	1.78	1.36	1.36	1.322	1.92	41.8	106
19.15	Drexel/Irvington Ped Overpass	59.5 to 61.5	2.25	0.000	0.0%	0.000	0.0%	5.765	97.5%	0.097	1.6%	0.050	0.8%	5.912	1.14	1.51	1.78	1.36	1.36	1.770	1.92	55.4	188

Appendix K: Preliminary Scoping Reports for Prioritized Solutions

PRELIMINARY SCOPING REPORT

GENERAL PROJECT INFORMATION		
Date: March 3, 2017 ADOT Project Manager: n/a		
Project Name: Nogales to Tubac Shoulder Improvements		
City/Town Name: Tucson	County: Santa Cruz	
Primary Route/Street: I-19		
Beginning Limit: 3		
End Limit: 30		
Project Length: 27 miles		
Right-of-Way Ownership(s) (where proposed project construction would occur): (Check all that apply)		
City/Town; County; ADOT; Private; Federal; Tribal; Other:		
Adjacent Land Ownership(s): (Check all that apply)		
City/Town; County; ADOT; Private; Federal; Tribal; Other:		
http://gis.azland.gov/webapps/parcel/		

LOCAL PUBLIC AGENCY (LPA) or TRIBAL GOVERNMENT INFORMATION		
(If applicable)		
LPA/Tribal Name:		
LPA/Tribal Contact:		
Email Address:	Phone Nu	mber:
Administration: ADOT Administered	Self-Administered	Certification Acceptance

PROJECT NEED A high rate of crashes with fatalities and serious injuries are reported by the Tucson District and confirmed by the Corridor Profile Study. Segments 19-2 and 19-3 show increased levels of safety need. Prevalent crash types include single vehicle crashes, overturning, rear-end, collision with fixed object, and failure to keep in lane. Contributing factors include excess speeds, improper lane changes, and higher traffic volumes.

	PROJECT PURPOSE		
What is the Primary Purpose of the Project?	Preservation 🛛	Modernization	Expansion 🗌
			<u> </u>

The project will rehabilitate shoulders; improve striping, edge of pavement delineation, and signage from the Mariposa Rd TI (Nogales) to the Aravaca Rd TI (Tubac). The project will assist drivers' awareness of lane and edge of road markings in an effort to reduce associated types of crashes.

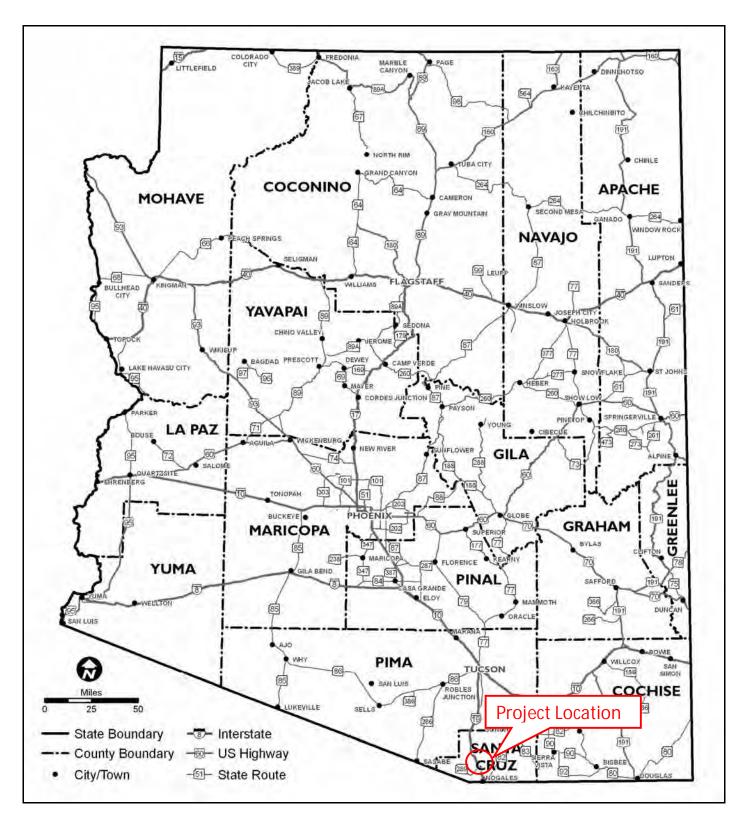
way Wide		
e Replace		
Other 🖂 : Roadside safety improvements		

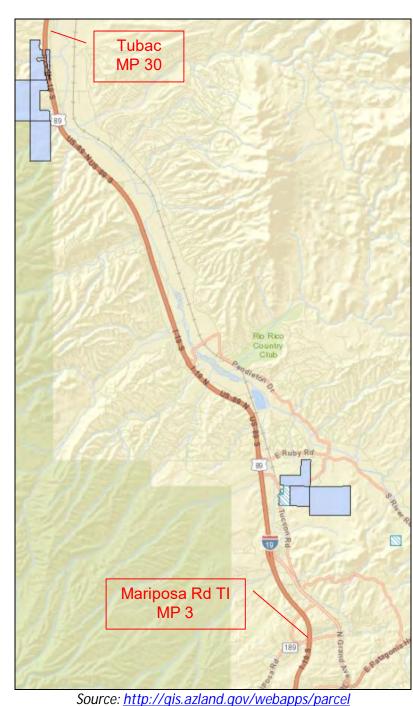
PROJECT RISKS		
Check any risks identified that may impact the project	i's scope, schedule, or budget:	
Access / Traffic Control / Detour Issues	Right-of-Way	
Constructability / Construction Window Issues	Environmental	
Stakeholder Issues	Utilities	
Structures & Geotech	Other: Serious crashes	
Risk Description: (If a box is checked above, briefly explain the risk) Temporary traffic controls must be implemented during the construction period. The project is expected to mitigate the risks of continued higher rates of serious crashes.		
FUNDING SOURCE(S)		
Anticipated Project Design/Construction Funding Type: (Check all that apply)	□ STP □ TAP □ HSIP ⊠ State	

		COS
Preliminary Eng \$404,000	Design \$1,344,000	Ri

PROJECT DELIVERY			
Delivery: Design-Bid-Build	Design-Build	Other:	
Design Program Year: FY			
Construction Program Year: FY			

		AT
1)	State Location Map X	
2)	Project Vicinity Map X	
3)	Project Scope of Work	
4)	Project Schedule	
5)	Itemized Cost Estimate	
6)	15% Design Plan Sheets (as needed)	


PRELIMINARY SCOPING REPORT


ROJECT TYPE	
lening 🗌	System Enhancement
cement 🗌	Sign Replacement

DING SOURCE	(S)		
STP	TAP	HSIP	🖂 State
Local	Private	Other:	

ST ESTIMATE		
Right-of-Way	Construction	Total
\$0	\$13,446,000	\$15,194,000

TACHMENTS

ATTACHMENT 2 – PROJECT VICINITY MAP

SCOPE OF WORK

(Provide a detailed breakdown of the project's scope of work using bullet format)

- Rehabilitate inside and outside shoulder including mill and replace pavement, rumble strip install, raised pavement markers, and necessary striping in both NB and SB direction
 Install high-visibility edge line striping including edge line and lane lines in both NB and SB direction
 Install high-visibility delineators on both inside and outside edges in both NB and SB direction

PRELIMINARY SCOPING REPORT

GENERAL PROJECT INFORMATION		
Date: March 3, 2017	ADOT Project Manager: n/a	
Project Name: Nogales to Tubac Lighting		
City/Town Name: Tucson	County: Santa Cruz	
Primary Route/Street: I-19		
Beginning Limit: 3		
End Limit: 30		
Project Length: 27 miles		
Right-of-Way Ownership(s) (where proposed project construction would occur): (Check all that apply)		
City/Town; County; ADOT; Private; Federal; Tribal; Other:		
Adjacent Land Ownership(s): (Check all that apply)		
City/Town; County; ADOT; Private; Federal; Tribal; Other:		
http://gis.azland.gov/webapps/parcel/		
I OCAL PLIBLIC AGENICY (I PA) or TRIBAL GOVERNMENT INFORMATION		

LOCAL PUBLIC AGENCY (LPA) or TRIBAL GOVERNMENT INFORMATION		
	(If applicable)
LPA/Tribal Name:		
LPA/Tribal Contact:		
Email Address:	Phone	e Number:
Administration: ADOT Administered	Self-Administered	Certification Acceptance

PROJECT NEED A high rate of crashes with fatalities and serious injuries are reported by the Tucson District and confirmed by the Corridor Profile Study. Segments 19-2 and 19-3 show increased levels of safety need. Prevalent crash types include a large majority occurring in dark conditions.

	PROJECT PURPOSE		
What is the Primary Purpose of the Project?	Preservation 🛛	Modernization	Expansion 🗌
The project will install lighting from the Mariposa Rd TI (Nogales) to the Aravaca Rd TI (Tubac). The project will improve the visibility of the corridor in an effort to reduce associated types of crashes.			

	PR
Pavement Preservation	Roadway Wide
Bridge Scour/Rehab	Bridge Replac
Other 🛛 : Improve lighting	

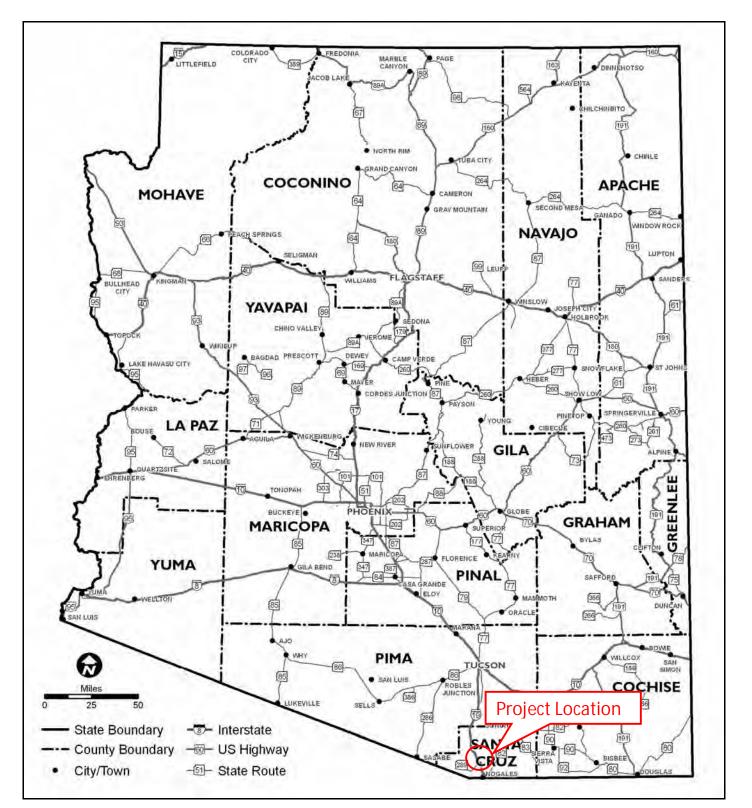
	DJECT RISKS	
Check any risks identified that may impact the project's	scope, schedule, or budget:	
🔀 Access / Traffic Control / Detour Issues	Right-of-Way	
Constructability / Construction Window Issues	Environmental	
Stakeholder Issues	Utilities	
Structures & Geotech	Other: Serious crashes	
Risk Description: (If a box is checked above, briefly explain the risk)		
Temporary traffic controls must be implemented during the construction period.		
The project is expected to mitigate the risks of continued	d higher rates of serious crashes.	
	<u> </u>	

Anticipated Project Design/Construction Funding
Type: (Check all that apply)

		COS
Preliminary Eng \$962,000	Design \$3,208,000	Ri

PROJECT DELIVERY				
Delivery: 🗌 Design-Bid-Build	Design-Build	Other:		
Design Program Year: FY				
Construction Program Year: FY				

		AT
1)	State Location Map X	
2)	Project Vicinity Map X	
3)	Project Scope of Work	
4)	Project Schedule	
5)	Itemized Cost Estimate	
6)	15% Design Plan Sheets (as needed)	


PRELIMINARY SCOPING REPORT


ROJECT TYPE	
lening 🗌	System Enhancement
cement 🗌	Sign Replacement

FUNDING SOURCE(S)				
ng	STP	🗌 TAP	HSIP	🖂 State
	Local	Private	Other:	

ST ESTIMATE		
Right-of-Way	Construction	Total
\$0	\$32,076,000	\$36,246,000

TACHMENTS

ATTACHMENT 2 – PROJECT VICINITY MAP

(Provide a detailed breakdown of the project's scope of work using bullet format)
Install lighting NB from Maricopa Rd TI to Tubac at MP 30
Install lighting SB from Tubac at MP 30 to Maricopa Rd TI

GENERAL PROJECT INFORMATION			
Date: March 3, 2017	ADOT Project Manager: n/a		
Project Name: Sahuarita to Tucson Lighting			
City/Town Name: Tucson	County: Santa Cruz		
Primary Route/Street: I-19			
Beginning Limit: MP 39.5			
End Limit: MP 60			
Project Length: 20.5 miles			
Right-of-Way Ownership(s) (where proposed project construction would occur): (Check all that apply)			
City/Town; County; ADOT; Private; Federal; Tribal; Other:			
Adjacent Land Ownership(s): (Check all that apply)			
🔀 City/Town; 🔲 County; 🛄 ADOT; 🔀 Private; 🛄 Federal; 🛄 Tribal; 🛄 Other:			
http://gis.azland.gov/webapps/parcel/			

LOCAL PUBLIC AGENCY (LPA) or TRIBAL GOVERNMENT INFORMATION			
	(If applicable)		
LPA/Tribal Name:			
LPA/Tribal Contact:			
Email Address:	Phone Nu	umber:	
Administration: ADOT Administered	Self-Administered	Certification Acceptance	

PROJECT NEED A high rate of crashes with fatalities and serious injuries are reported by the Tucson District and confirmed by the Corridor Profile Study. Segments 19-5 and 19-6 show increased levels of safety need. Prevalent crash types include a large majority occurring in dark conditions.

	PROJECT PURPOSE		
What is the Primary Purpose of the Project?	Preservation 🛛	Modernization	Expansion 🗌
The project will install lighting from Sahuarita at MP 39.5 to Tucson near MP 60. The project will improve the visibility of the corridor in an effort to reduce associated types of crashes.			

	PR
Pavement Preservation	Roadway Wide
Bridge Scour/Rehab	Bridge Replac
Other 🖂 : Improve lighting	

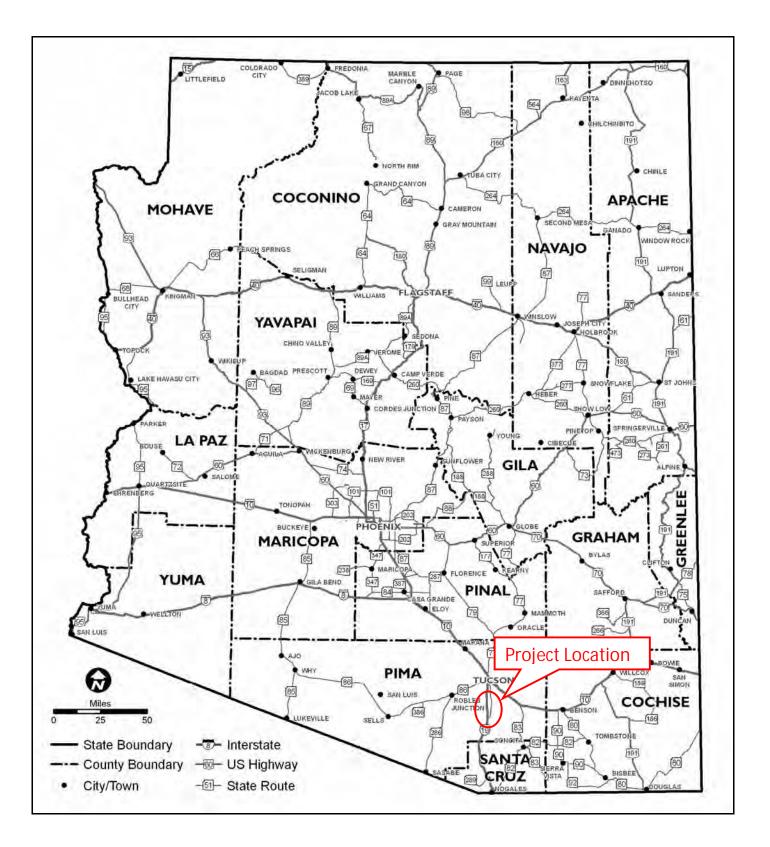
PRI	OJECT RISKS	
Check any risks identified that may impact the project's	scope, schedule, or budget:	
🛛 Access / Traffic Control / Detour Issues	Right-of-Way	
Constructability / Construction Window Issues	Environmental	
Stakeholder Issues	Utilities	
Structures & Geotech	Other: Serious crashes	
Risk Description: (If a box is checked above, briefly explain the risk)		
Temporary traffic controls must be implemented during the construction period.		
The project is expected to mitigate the risks of continue	d higher rates of serious crashes.	
The project is expected to mitigate the risks of continue	d higher rates of serious crashes.	

Anticipated Project Design/Construction Funding Type: (Check all that apply)

		COS
Preliminary Eng \$730,000	Design \$2,436,000	Ri

PROJECT DELIVERY				
Delivery: 🗌 Design-Bid-Build	Design-Build	Other:		
Design Program Year: FY				
Construction Program Year: FY				

		AT
1)	State Location Map X	
2)	Project Vicinity Map X	
3)	Project Scope of Work	
4)	Project Schedule	
5)	Itemized Cost Estimate	
6)	15% Design Plan Sheets (as needed)	


PRELIMINARY SCOPING REPORT

ROJECT TYPE	
lening 🗌	System Enhancement
cement 🗌	Sign Replacement

FUNDING SOURCE(S)				
ng	STP	TAP	HSIP	🖂 State
	Local	Private	Other:	

ST ESTIMATE		
Right-of-Way	Construction	Total
\$0	\$24,354,000	\$27,520,000

TACHMENTS

Source: http://gis.azland.gov/webapps/parcel

(Provide a detailed breakdown of the project's scope of work using bullet format)
Install lighting NB from Sahuarita to Tucson MP 39.5 to MP 60
Install lighting SB from Tucson to Sahuarita MP 60 to MP 39.5

	Т	

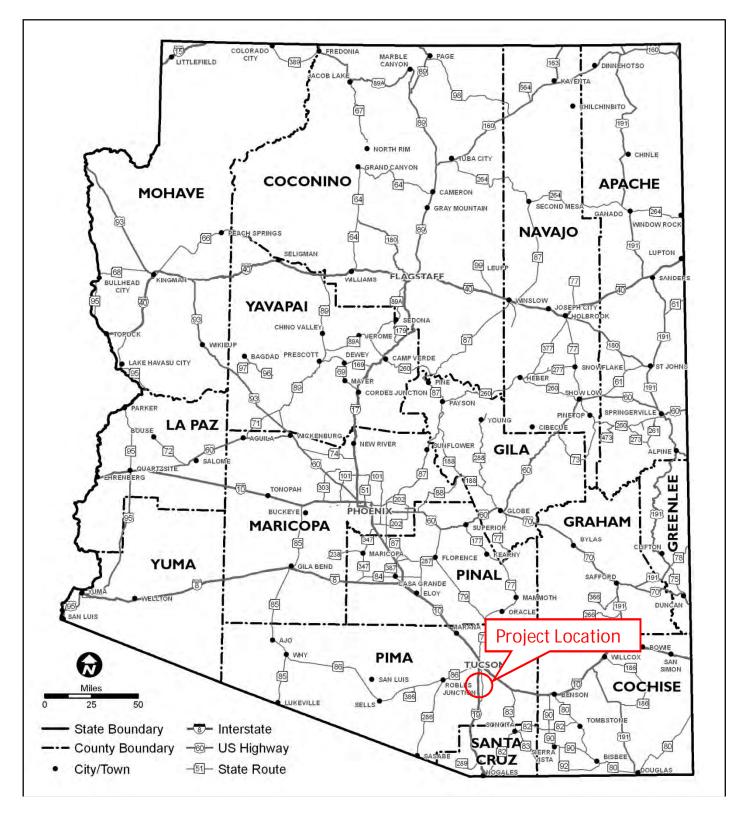
	PROJECT RISKS					
Check any risks identified that may impact the project's scope, schedule, or budget:						
Access / Traffic Contro	Access / Traffic Control / Detour Issues			Right-of-Way		
Constructability / Cons	struction Window Issue	es	Environ	mental		
Stakeholder Issues			Utilities	;		
Structures & Geotech			Other: S	Serious crash	ies	
Risk Description: Tempora	ary traffic controls will r	need to be in	n place durin	g the constr	uction period	d. The project is
					·	
				1 740		
					=	🔀 State
Type. (Check all that apply	//] Private		
		COSTES	TIMATE			
Proliminary Eng	Dosign			Constr	ruction	Total
	5	0	5			\$13,788,000
				. ,		
		PROJECT	DELIVERY			
Delivery: 🗌 Design-Bid-E	Build 🗌 Desigr	n-Build	Othe	r:		
Design Program Year: FY						
Construction Program Yea	ar: FY					
		ATTACH	IMENTS			
	VUIK					
-						
,						
	· /					
	Access / Traffic Control Constructability / Cons Stakeholder Issues Structures & Geotech Risk Description: Tempora expected to mitigate the r Anticipated Project Design Type: <i>(Check all that apply</i> Preliminary Eng \$366,000 Delivery: Design-Bid-E Design Program Year: FY Construction Program Year 1) State Location Ma 2) Project Vicinity M 3) Project Scope of V 4) Project Schedule 5) Itemized Cost Esti	Access / Traffic Control / Detour Issues Constructability / Construction Window Issue Stakeholder Issues Structures & Geotech Risk Description: Temporary traffic controls will I expected to mitigate the risks of continued highe Anticipated Project Design/Construction Funding Type: (Check all that apply) Preliminary Eng \$366,000 Preliminary Eng Design \$366,000 Delivery: Design-Bid-Build Design Design Program Year: FY Construction Program Year: FY 1) State Location Map X 2) Project Vicinity Map X 3) Project Scope of Work 4) Project Schedule 5) Itemized Cost Estimate	Check any risks identified that may impact the project's scope Access / Traffic Control / Detour Issues Constructability / Construction Window Issues Stakeholder Issues Structures & Geotech Risk Description: Temporary traffic controls will need to be in expected to mitigate the risks of continued higher rates of se FUNDING : Anticipated Project Design/Construction Funding Type: (Check all that apply) COST ES Preliminary Eng Design \$366,000 \$1,220,000 \$366,000 \$1,220,000 PROJECT Delivery: Design-Bid-Build Design Program Year: FY Construction Program Year: FY Construction Program Year: FY Onstruction Program Year: FY I) State Location Map X 2) Project Vicinity Map X 3) Project Scope of Work 4) Project Schedule 5) Itemized Cost Estimate	Check any risks identified that may impact the project's scope, schedule, (Access / Traffic Control / Detour Issues Right-od Constructability / Construction Window Issues Environ Stakeholder Issues Utilities Structures & Geotech Other: S Risk Description: Temporary traffic controls will need to be in place durin expected to mitigate the risks of continued higher rates of serious crashes FUNDING SOURCE(S) Anticipated Project Design/Construction Funding Type: (Check all that apply) Local COST ESTIMATE Preliminary Eng Design Right-of-Way \$366,000 \$1,220,000 \$0 State Location Map X 2) Project Vicinity Map X 3) Project Scope of Work 4) Project Schedule 5) Itemized Cost Estimate	Check any risks identified that may impact the project's scope, schedule, or budget: Access / Traffic Control / Detour Issues Right-of-Way Constructability / Construction Window Issues Environmental Stakeholder Issues Utilities Structures & Geotech Other: Serious crash Risk Description: Temporary traffic controls will need to be in place during the construction mitigate the risks of continued higher rates of serious crashes. FUNDING SOURCE(S) Anticipated Project Design/Construction Funding Type: (Check all that apply) Local Preliminary Eng Stace,000 \$1,220,000 \$0 \$1,220,000 \$0 \$12,21 PROJECT DELIVERY Delivery: Design-Bid-Build Design-Pogram Year: FY Construction Program Year: FY Construction Program Year: FY Construction Map X Project Vicinity Map X Project Schedule So therized Cost Estimate	Check any risks identified that may impact the project's scope, schedule, or budget: Access / Traffic Control / Detour Issues Right-of-Way Constructability / Construction Window Issues Environmental Stakeholder Issues Utilities Structures & Geotech Other: Serious crashes Risk Description: Temporary traffic controls will need to be in place during the construction period expected to mitigate the risks of continued higher rates of serious crashes. FUNDING SOURCE(S) Anticipated Project Design/Construction Funding TAP Type: (Check all that apply) Local Private COST ESTIMATE Preliminary Eng Design Right-of-Way \$366,000 \$1,220,000 \$0 \$12,202,000 \$366,000 \$1,220,000 \$0 \$12,202,000 Preliminary Eng Design Right-of-Way Construction \$366,000 \$1,220,000 \$0 \$12,202,000 Project Design-Bid-Build Design-Build Other: Design Program Year: FY Construction Program Year: FY Construction Program Year: FY ATTACHMENTS 1) State Location Map X 2) Project Schedule 5) Itemized Cost Est

GENERAL PROJECT INFORMATION				
Date: March 3, 2017 ADOT Project Manager: n/a				
Project Name: Sahuarita to Tucson Shoulder and Roadside Imp	rovements			
City/Town Name: n/a	County: Pima			
Primary Route/Street: I-19				
Beginning Limit: MP 39.5				
End Limit: MP 64				
Project Length: 24.5 m				
Right-of-Way Ownership(s) (where proposed project construction would occur): <i>(Check all that apply)</i>				
Adjacent Land Ownership(s): (Check all that apply)				
🔀 City/Town; 🔀 County; 🖾 ADOT; 🖾 Private; 🗔 Federal; 🖾 Tribal; 🔲 Other:				
http://gis.azland.gov/webapps/parcel/				

	(If applicable)	
LPA/Tribal Name:		
LPA/Tribal Contact:		
Email Address:	Phone Nu	imber:
Administration: ADOT Administered	Self-Administered	Certification Acceptance

PROJECT NEED

A high rate of crashes with fatalities and serious injuries are reported by the Tucson District and confirm Corridor Profile Study. Segments 19-5 and 19-6 show increased levels of safety need. Prevalent crash type and the second seco vehicle crashes, overturning, rear-end, collision with fixed object, and failure to keep in lane. Contributin excess speeds, improper lane changes, and higher traffic volumes. Some of the crashes appear to be all potentially associated with nearby casinos.


	PROJECT PURPOSE			
What is the Primary Purpose of the Project?	Preservation	Modernization 🖂	Expansion 🗌	
The project will rehabilitate shoulders; improve striping, edge of pavement delineation, and signage from the Continental				

RD TI (Green Valley) to the Irvington Rd TI in Tucson. The project will assist drivers' awareness of lane ar markings in an effort to reduce associated types of crashes.

PROJECT TYPE				
Pavement Preservation	Roadway Widening	System Enhancement		
Bridge Scour/Rehab	Bridge Replacement 🗌	Sign Replacement		
Other 🛛 : Roadside safety improvements				

PRELIMINARY SCOPING REPORT

ROJECT RISKS
s scope, schedule, or budget:
Right-of-Way
Environmental
Utilities
Other: Serious crashes
o be in place during the construction period. The project is

- Rehabilitate inside and outside shoulder including mill and replace pavement, rumble strip install, raised pavement markers, and necessary striping in both NB and SB direction .
- Install high-visibility edge line striping including edge line and lane lines in both NB and SB direction Install high-visibility delineators on both inside and outside edges in both NB and SB direction •
- .

GENERAL PROJECT INFORMATION				
Date: March 3, 2017	ADOT Project Manager: n/a			
Project Name: Sahuarita TI Ramp Improvements				
City/Town Name: Sahuarita	County: Pima			
Primary Route/Street: I-19				
Beginning Limit: (46.8 / Sahuarita Rd)				
End Limit: (46.8 / Sahuarita Rd)				
Project Length: < 1 mile				
Right-of-Way Ownership(s) (where proposed project construction would occur): (Check all that apply)				
City/Town; County; ADOT; Private; Federal; Tribal; Other:				
Adjacent Land Ownership(s): (Check all that apply)				
City/Town; County; ADOT; Private; Federal; Tribal; Other:				
http://gis.azland.gov/webapps/parcel/				
LOCAL PUBLIC AGENCY (LPA) or TRIBAL GOVERNMENT INFORMATION				
(If applicable)				
LPA/Tribal Name:				

LPA/Tribal Contact:			
Email Address:	Phone Nu	imber:	
Administration: ADOT Administered	Self-Administered	Certification Acceptance	

PROJECT NEED

A high rate of crashes with fatalities and serious injuries are reported by the Tucson District and confirmed by the Corridor Profile Study. Some crashes appear to be correlated with merging movements from on ramps to the travel lane. Congestion is projected to migrate south from Tucson and the volume to capacity ratio is anticipated to fall from Good to Fair, as measured by the Corridor Profile Study.

	PROJECT PURPOSE			
What is the Primary Purpose of the Project?	Preservation	Modernization 🛛	Expansion 🗌	
The project will improve the optry and exit associated with the interchange, including the construction of parallel				

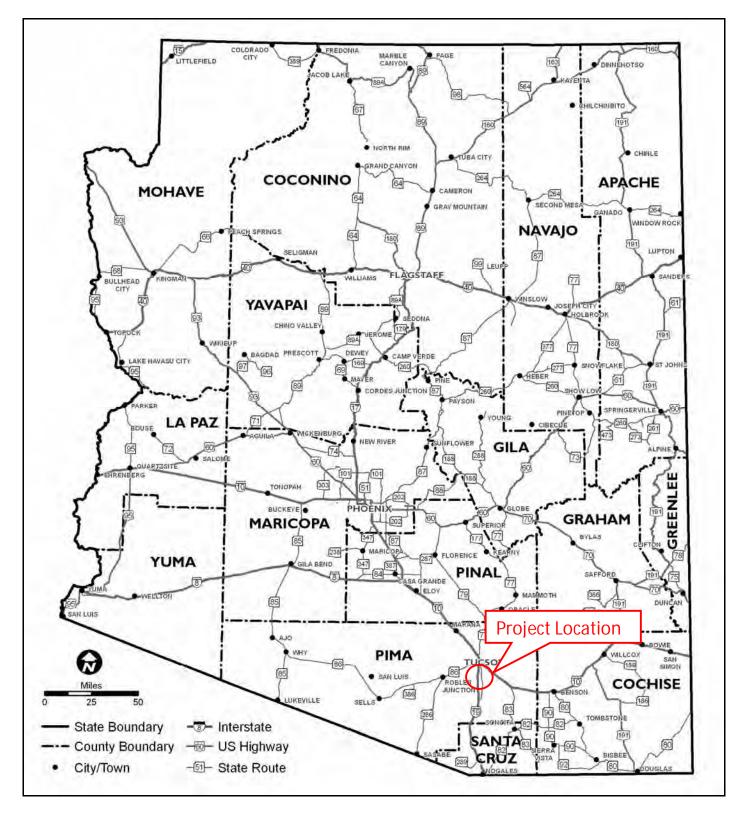
The project will improve the entry and exit associated with the interchange, including the construction of parallel entrance ramps, striping, edge of pavement delineation, and signage. The project will assist drivers in safely merging with high speed traffic, especially as volumes are increase significantly within the next ten years.

PROJECT TYPE				
Pavement Preservation	Roadway Widening	System Enhancement		
Bridge Scour/Rehab	Bridge Replacement 🗌	Sign Replacement		
Other 🖂 : Safety related ramp improvements				

		PRC
Check any risks identifie	ed that may impact the	project's s
Access / Traffic Con	trol / Detour Issues	
Constructability / Co	onstruction Window Iss	ues
Stakeholder Issues		
Structures & Geote	ch	
Risk Description: Temp	orary traffic controls wi	ll need to
expected to mitigate the	5	
		FUNDI
Anticipated Project Des		ng [
Type: (Check all that ap	ply)	[
		COS
Preliminary Eng	Design	Rig
\$117,000	\$392,000	
		PROJE
Delivery: 🗌 Design-Bi	d-Build 🗌 Desi	gn-Build
Design Program Year: F	Y	
Construction Program	/ear: FY	
		ATT
1) State Location		
Project Vicinity		
 Project Scope of Project School 		
4) Project Schedul		
 5) Itemized Cost E 6) 15% Design Pla 	stimate n Sheets (as needed)	
	וו שוופרוש (משוופרטכט)	

PRELIMINARY SCOPING REPORT

ROJEC	OJECT RISKS	
s scop	e, schedule, or budget:	
	Right-of-Way	
	Environmental	
	Utilities	
	Other:	


be in place during the construction period. The project is of serious crashes.

DING SOURCE(S)					
STP	🗌 TAP	HSIP	State		
Local	Private	Other:			

ST ESTIMATE		
Right-of-Way	Construction	Total
\$0	\$3,916,000	\$4,425,000

JECT DELIVERY	
I Other:	

ACHMENTS

- Modify the existing NB and SB entry and exit ramps to a parallel configuration
- Replace pavement, striping, signing, raised pavement markings, lighting, and earthwork as necessary.

6) 15% Design Plan Sheets (as needed)

GE	NERAL PROJECT INFORMATION		
Date: March 3, 2017	ADOT Project Manager: n/a		
Project Name: Pima Mine TI Ramp Improvem	nents		
City/Town Name: County: Pima			
Primary Route/Street: I-19			
Beginning Limit: 49.6			
End Limit: 49.6			
Project Length: <1.0 m			
	d project construction would occur): (Check all that apply)		
🛛 💭 City/Town; 🗌 County; 🔀 ADOT ; 🗌 Pri	vate ; 🔄 Federal; 🔄 Tribal; 🔄 Other:		
Adjacent Land Ownership(s): (Check all that			
City/Town; County; ADOT; Pr	ivate; 🔲 Federal; 🔀 Tribal; 🔲 Other:		
http://gis.azland.gov/webapps/parcel/			
LOCAL PUBLIC AGEN	CY (LPA) or TRIBAL GOVERNMENT INFORMATION		
	(If applicable)		
LPA/Tribal Name: Tohono O'odham Nation -	San Xavier District		
LPA/Tribal Contact: Mark Pugh, Principal Pla	nner		
Email Address:	Phone Number:		
Administration: ADOT Administered	Self-Administered Certification Acceptance		

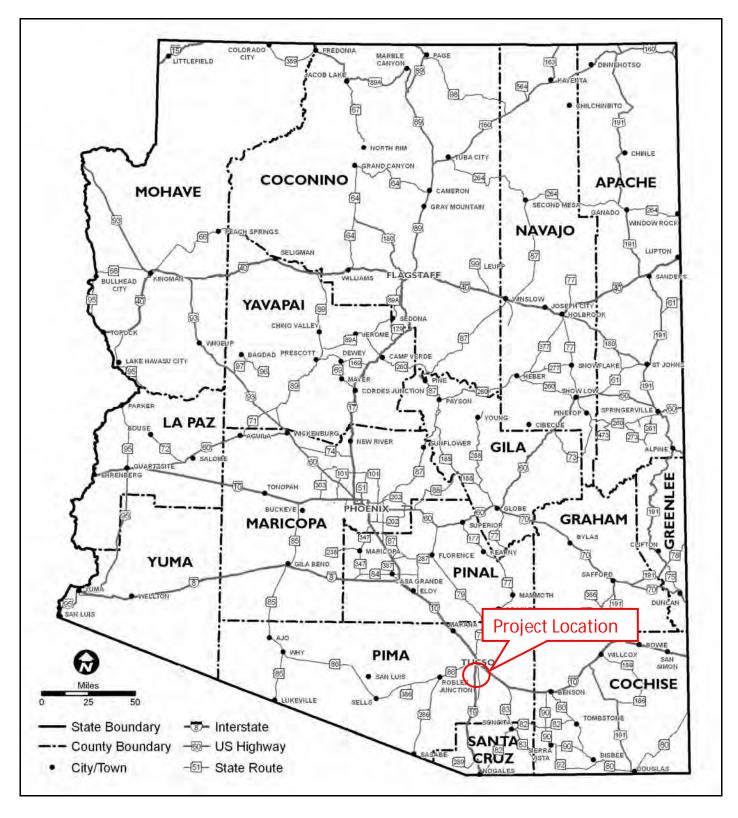
PROJECT NEED

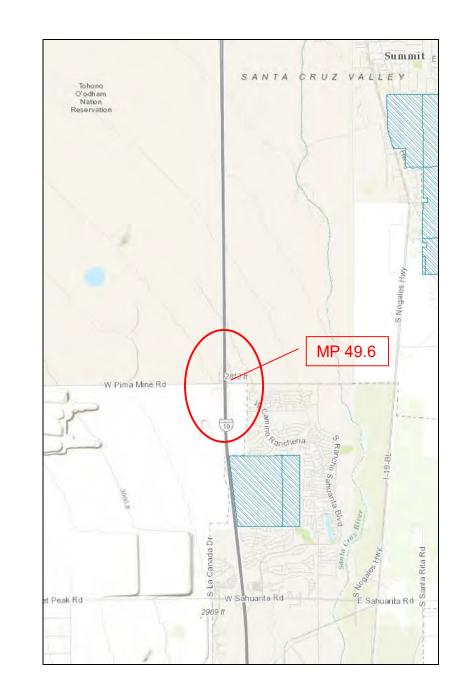
A high rate of crashes with fatalities and serious injuries are reported by the Tucson District and confirmed by the Corridor Profile Study. Crashes appear to be correlated with merging movements from on ramps to the travel lane. Congestion is projected to migrate south from Tucson and the volume to capacity ratio is anticipated to fall from Good to Fair, as measured by the Corridor Profile Study.

PROJECT PURPOSE				
What is the Primary Purpose of the Project?	Preservation	Modernization \boxtimes	Expansion 🗌	
The project will improve ramps associated wit striping, edge of pavement delineation, and signals and striping at the striping at	8	•	•	

traffic, especially as volumes are increase significantly within the next ten years.

PROJECT TYPE				
Pavement Preservation	Roadway Widening	System Enhancement		
Bridge Scour/Rehab	Bridge Replacement 🗌	Sign Replacement		
Other 🖾 : Safety related ramp improvements				


		PRC	JECT RISKS					
Check any risks identifie	ed that may impact the pr	oject's s	cope, schedu	le, or	budget:			
Access / Traffic Con	trol / Detour Issues		🛛 Righ	t-of-V	Vay			
Constructability / Co	onstruction Window Issue	es	🗌 Envir	ronme	ental			
Stakeholder Issues			🗌 Utili	ties				
Structures & Geoted	;h		🗌 Othe	er:				
	orary traffic controls will i e risks of continued highe				he constru	uction period	I. The	project is
		FUNDI	NG SOURCE	(S)				
Anticipated Project Desi	gn/Construction Funding	г.		È	ΓΑΡ	☐ HSIP		State
Type: (Check all that ap			Local		Private	Other:		
		COS	T ESTIMATE					
Preliminary Eng	Design	Riç	ght-of-Way		Constr	ruction		Total
\$148,000	\$496,000		\$0		\$4,95	4,960		\$5,598,960
			ECT DELIVER	v				
Delivery: 🗌 Design-Bio	1-Build Design	n-Build		ther:				
Design Program Year: F		T Dana	•					
Construction Program \								
oonstruction rogium								
		ATT	ACHMENTS					
 State Location I Project Vicinity Project Scope o Project Schedul Itemized Cost E 	Map X f Work e							


PRELIMINARY SCOPING REPORT

DING SOURCE(S)						
STP	🗌 TAP	HSIP	State			
Local Private Other:						
ST ESTIMATE						

STESTIVIATE		
Right-of-Way	Construction	Total
\$0	\$4,954,960	\$5,598,960

JECT DELIVERY	
I Other:	

- Modify existing NB/SB entry and exit ramps to a parallel configuration
- Include necessary pavement, striping, signage, lighting, and earthwork as necessary
- Widen NB Pima Mine OP to accommodate parallel ramp

Administration: 🔀 ADOT Administered

PRELIMINARY SCOPING REPORT

GENERAL PROJEC	T INFORMATION			
Date: March 3, 2017 ADOT Project Manager: n/a				
Project Name: Papago TI Ramp Improvements				
City/Town Name:	County: Pima			
Primary Route/Street: I-19				
Beginning Limit: 54.4				
End Limit: 54.4				
Project Length: <1.0 m				
Right-of-Way Ownership(s) (where proposed project construction would occur): (Check all that apply)				
City/Town; County; ADOT; Private; Federal; Tribal; Other:				
Adjacent Land Ownership(s): (Check all that apply)				
City/Town; County; ADOT; Private; Federal; Tribal; Other:				
http://gis.azland.gov/webapps/parcel/				
LOCAL PUBLIC AGENCY (LPA) or TRI	BAL GOVERNMENT INFORMATION			
(If applicable)				
LPA/Tribal Name: Tohono O'odham Nation – San Xavier Distr				
LPA/Tribal Contact: Mark Pugh, Principal Planner				
Email Address: Phone Number:				

PROJECT NEED

Certification Acceptance

Self-Administered

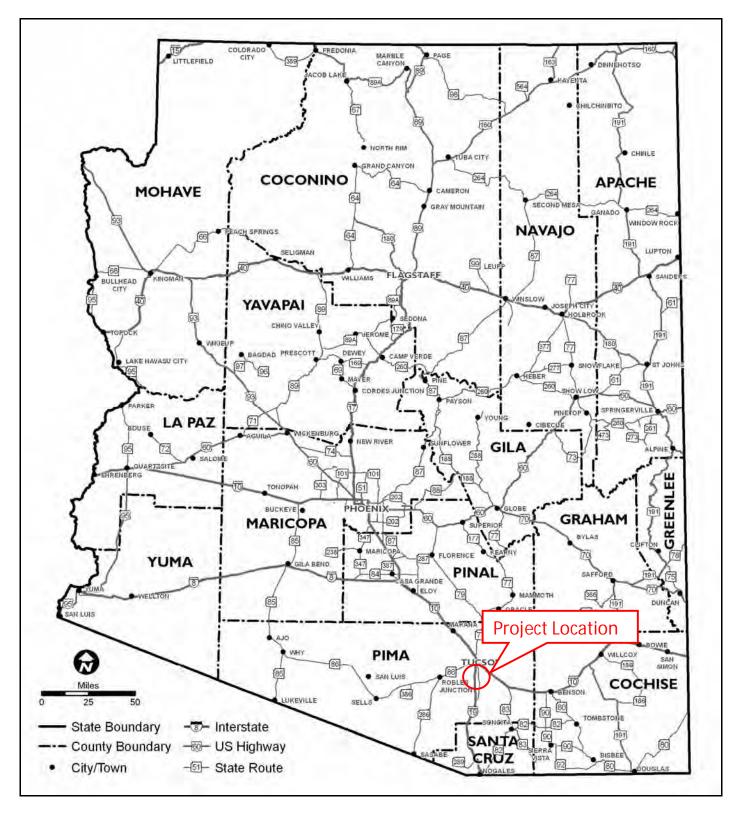
A high rate of crashes with fatalities and serious injuries are reported by the Tucson District and confirmed by the Corridor Profile Study. Crashes appear to be correlated with merging movements from on ramps to the travel lane. Congestion is projected to migrate south from Tucson and the volume to capacity ratio is anticipated to fall from Good to Fair, as measured by the Corridor Profile Study.

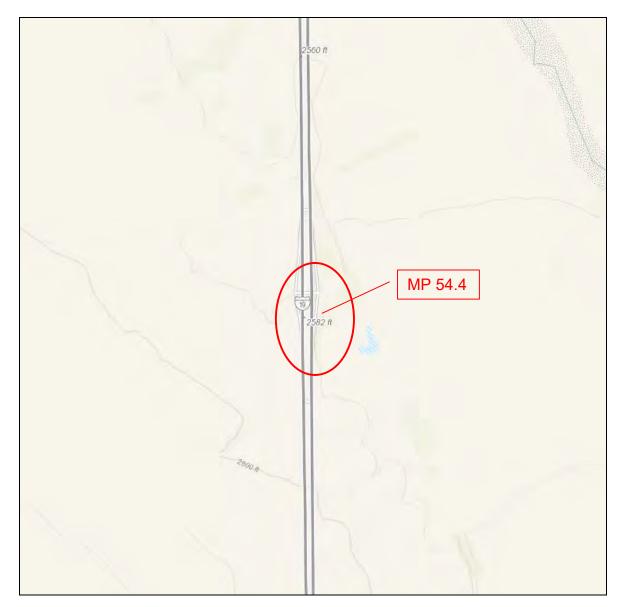
PROJECT PURPOSE						
What is the Primary Purpose of the Project? Preservation Modernization Expansion						
The project will improve ramps associated with the interchange, including the construction of parallel entrance ramps, striping, edge of pavement delineation, and signage. The project will assist drivers in safely merging with high speed						

traffic, especially as volumes are increase significantly within the next ten years.

PROJECT TYPE				
Pavement Preservation	Roadway Widening	System Enhancement		
Bridge Scour/Rehab	Bridge Replacement 🗌	Sign Replacement		
Other 🛛 : Safety related ramp improvements				

			CT RISKS		
5	d that may impact the pr	roject's scop	1	5	
Access / Traffic Con	Access / Traffic Control / Detour Issues Right-of-Way				
Constructability / Co	onstruction Window Issue	es	Environ	imental	
Stakeholder Issues			Utilities	5	
Structures & Geoted	ch		Other:		
	e risks of continued highe			ng the construction period s.	
		FUNDING	SOURCE(S)		
Anticipated Project Design/Construction Funding STP TAP HSIP State Type: (Check all that apply) Local Private Other:					
		COST E	STIMATE		
Preliminary Eng	Design	Right-	of-Way	Construction	Total
\$117,000	\$392,000	0	\$0	\$3,916,000	\$4,425,000
		PROJECT	DELIVERY		
Delivery: Design-Bio	d-Build 🗌 Desig	n-Build	Othe	er:	
Design Program Year: F	Y				
Construction Program \	/ear: FY				
		ATTAC	HMENTS		
 State Location I Project Vicinity Project Scope o Project Schodul 	Map X f Work				


- 4) Project Schedule 5) Itemized Cost Estimate
- 6) 15% Design Plan Sheets (as needed)


PRELIMINARY SCOPING REPORT

ING SOURCE	(S)		
STP	🗌 TAP	HSIP	State
Local	Private	Other:	

ST ESTIMATE		
Right-of-Way	Construction	Total
\$0	\$3,916,000	\$4,425,000

JECT DELIVERY	
Other:	

- Modify existing NB/SB entry and exit ramps to a parallel configuration
- Update pavement, lane striping, signage, lighting, edge of pavement markings, and earthwork as necessary

PRELIMINARY SCOPING BUDGET

GENERAL PROJECT	[INFORMATION		
Date: March 3, 2017 ADOT Project Manager: n/a			
Project Name: Tucson Area Parallel Ramps			
City/Town Name: Tucson	County: Pima		
Primary Route/Street: I-19			
Beginning Limit: 57.0			
End Limit: 61.9			
Project Length: 4.9 m			
Right-of-Way Ownership(s) (where proposed project construct City/Town; County; ADOT; Private; Federal	11.5		
Adjacent Land Ownership(s): (Check all that apply)			
City/Town; County; ADOT; Private; Federal	l; 🔲 Tribal; 🛄 Other:		
http://gis.azland.gov/webapps/parcel/			
LOCAL PUBLIC AGENCY (LPA) or TRIE	SAL GOVERNMENT INFORMATION		

(If applicable)

LPA/Tribal Name:
LPA/Tribal Contact:

Email Address:

Administration: ADOT Administered

PROJECT NEED

Phone Number:

Certification Acceptance

High Mobility Index performance deficiency, based on heavy NB flows entering Tucson urban area.
Congested levels existing peak hour V/C and future daily V/C.

Self-Administered

• The number of weekdays vs. weekend days in which traffic volumes exceed acceptable LOS are nearly equal. There is no spike in traffic that can be attributed to week day or weekend traffic.

• The corridor profile study indicates a High Safety need.

• 67% of closures are accident-related, which may be related to increased congestion in urban area.

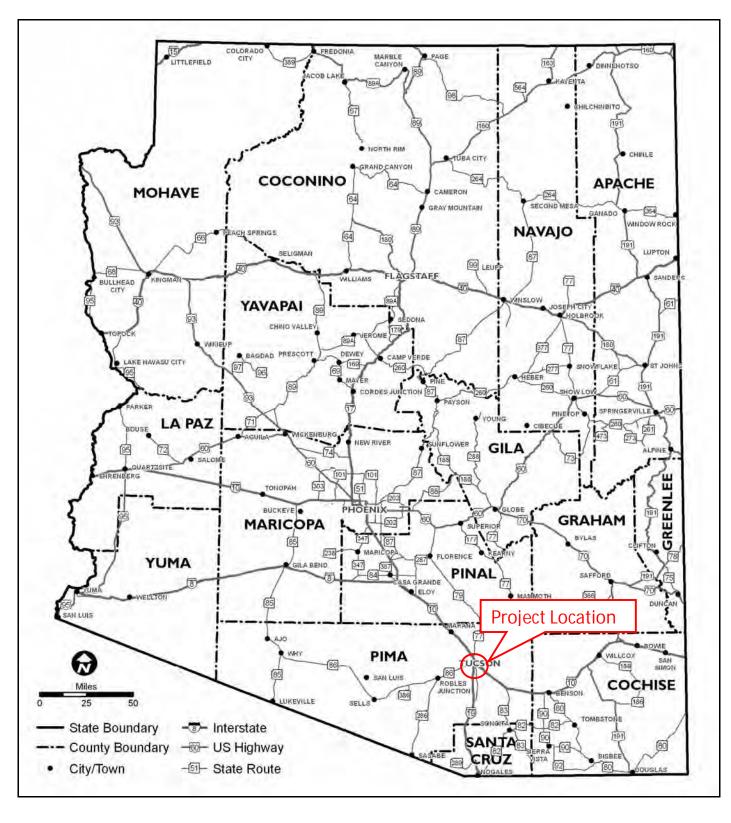
PROJECT PURPOSE					
What is the Primary Purpose of the Project? Preservation Modernization Expansion					
Improve safety and mobility by providing additional buffer in merge/weave area.					

PROJECT TYPE					
Pavement Preservation	Roadway Widening		System Enhancement 🛛		
Bridge Scour/Rehab	Bridge Replaceme	nt 🗌		Sign Replacement	
Other 🖾 : Improve entry/exit ramps and implement ramp metering at Irvington Rd SB, Valencia Rd NB/SB, and San Xavier Rd NB (Modernization)					
	PROJE	CT RISKS			
Check any risks identified that may impa	ct the project's sco	be, schedu	le, or budge	t:	
Access / Traffic Control / Detour Issues					
Constructability / Construction Window Issues					
Stakeholder Issues					
Structures & Geotech Other:					
Risk Description: (If a box is checked abo	ve, briefly explain t	he risk)			
Temporary traffic controls must be imple	emented during the	constructi	on period.		
Location and cost of required utilities TE	D				
FUNDING SOURCE(S)					
Anticipated Project Design/Construction	Funding	STP	TAP	HSIP State	
Type: (Check all that apply)		Local	Private	Other:	

		CO3
Preliminary Eng	Design	Ri
\$372,000	\$1,234,000	

PROJECT DELIVERY				
Delivery: 🗌 Design-Bid-Build	Design-Build	Other:		
Design Program Year: FY				
Construction Program Year: FY				

		ATT
1)	State Location Map	
2)	Project Vicinity Map	
3)	Project Scope of Work	
4)	Project Schedule	
5)	Itemized Cost Estimate	
6)	15% Design Plan Sheets (as needed)	


PRELIMINARY SCOPING BUDGET

ST ESTIMATE		
Right-of-Way	Construction	Total
\$0	\$12,334,000	\$13,940,000

ACHMENTS

ATTACHMENT 1 – LOCATION MAP

- Modify existing SB entry ramps at Irvington Rd to a parallel configuration
- Modify existing NB exit ramps at Irvington Rd to include ramp metering
- Widen Airport Wash Bridges (NB/SB) to accommodate parallel ramps
- Rehab Airport Wash Bridges (NB/SB) deck in conjunction with bridge widening to improve deck rating
- Modify existing NB/SB entry/exit ramps at Valencia Rd to a parallel configuration
- Modify existing NB/SB entry/exit ramps at Valencia Rd to include ramp metering
- Modify existing NB entrance ramps at San Xavier Rd to a parallel configuration
- Modify existing SB exit ramps at San Xavier Rd to include ramp metering

GENERAL PROJECT INFORMATION					
Date: March 3, 2017 ADOT Project Manager: n/a					
Project Name: Tucson Variable Speed Limits					
City/Town Name: Tucson	County: Pima				
Primary Route/Street: I-19					
Beginning Limit: 57.0					
End Limit: 64.0					
Project Length: 7 miles					
Right-of-Way Ownership(s) (where proposed project construction would occur): (Check all that apply)					
City/Town; County; ADOT; Private; Federal; Other:					
Adjacent Land Ownership(s): (Check all that apply)					
🔀 City/Town; 🔲 County; 🔄 ADOT; 🔀 Private; 🗌 Federal; 🔲 Tribal; 🗌 Other:					
http://gis.azland.gov/webapps/parcel/					
LOCAL PUBLIC AGENCY (LPA) or TRIBAL GOVERNMENT INFORMATION					

(If applicable)					
LPA/Tribal Name:					
LPA/Tribal Contact:					
mail Address: Phone Number:					
Administration: 🗌 ADOT Administered	Self-Administere	d Certification Acceptance			

PROJECT NEED

- High Mobility Index performance deficiency, based on heavy NB flows entering Tucson urban area.
 Congested levels existing peak hour V/C and future daily V/C.

• The number of weekdays vs. weekend days in which traffic volumes exceed acceptable LOS are nearly equal. There is no spike in traffic that can be attributed to week day or weekend traffic.

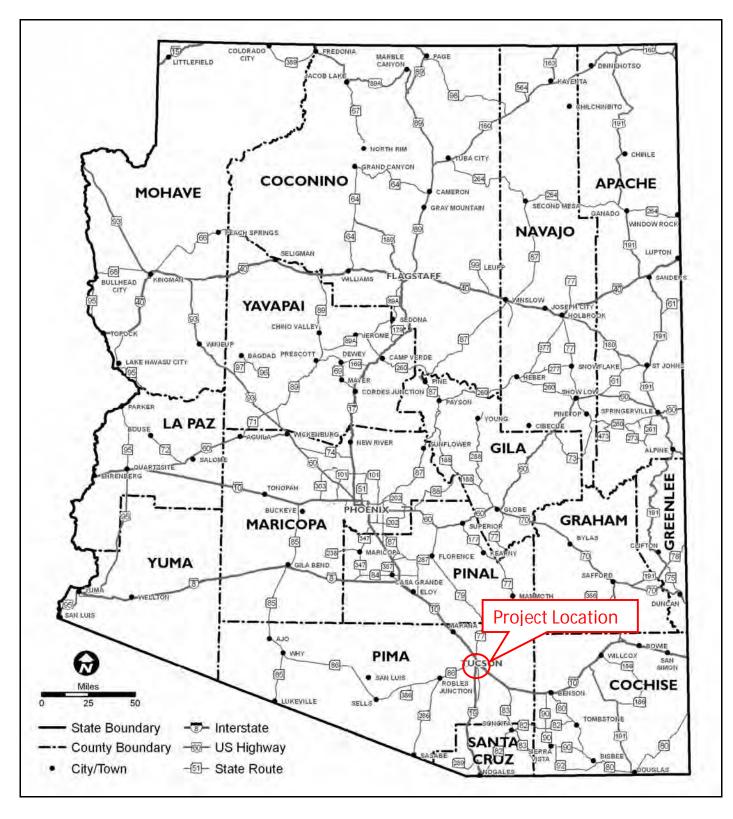
• The corridor profile study indicates a High Safety need.

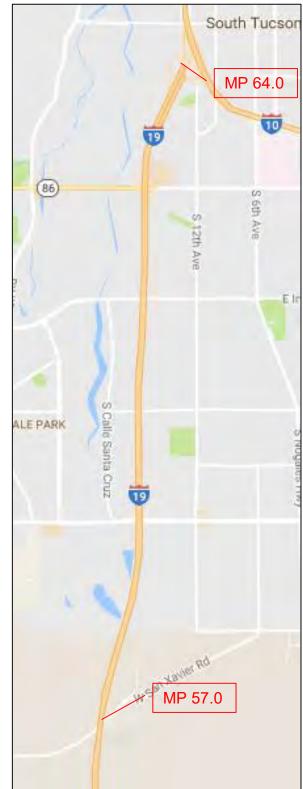
• 67% of closures are accident-related, which may be related to increased congestion in urban area.

PROJECT PURPOSE				
What is the Primary Purpose of the Project? Preservation 🗌 Modernization 🖾 Expansion 🗌				
Improve safety and mobility with improved traffic controls				

		PF	ROJECT TYPE				
Pavement Preservation		Roadway Wid	ening	System Enhand	cement 🛛		
Bridge Scour/Rehab		Bridge Replac	ement	Sign Replacem	ent		
Other 🛛 : Implement variable spec	ed limits, wireless,	overhead, NE	S/SB (extend north	to MP 64.0)			
		PR	OJECT RISKS				
Check any risks identifie	ed that may impac	t the project's	scope, schedule,	or budget:			
Access / Traffic Con	trol / Detour Issue	es	🗌 Right-o	f-Way			
Constructability / C	Constructability / Construction Window Issues						
Stakeholder Issues							
Structures & Geotech Other:							
Risk Description: (If a box is checked above, briefly explain the risk)							
Temporary traffic controls must be implemented during the construction period.							
Location and cost of required utilities TBD							
			ING SOURCE(S)	-			
Anticipated Project Design/Construction Funding							
Type: (Check all that apply) Local Private Other:							
COST ESTIMATE							
Preliminary Eng	Preliminary Eng Design Right-of-Way Construction Total						
\$664,000	\$2,212,000		\$0	\$22,120,000	\$24,996,000		

	PROJECT	DELIVERY		
Delivery: Design-Bid-Build Design-Build Other:				
Design Program Year: FY				
Construction Program Year: FY				


		ATTA
1)	State Location Map	
2)	Project Vicinity Map	
3)	Project Scope of Work	
4)	Project Schedule	
5)	Itemized Cost Estimate	
6)	15% Design Plan Sheets (as needed)	


PRELIMINARY SCOPING REPORT

ST ESTIMATE					
Right-of-Way	Construction	Total			
\$0	\$22,120,000	\$24,996,000			

ACHMENTS

(Provide a detailed breakdown of the project's scope of work using bullet format)
Implement variable speed limits in project area, timed to peak hour congestion

GENERAL PROJECT INFORMATION					
Date: March 3, 2017 ADOT Project Manager: n/a					
Project Name: I-19/Tucson Widening					
City/Town Name: Tucson	County: Pima				
Primary Route/Street: I-19					
Beginning Limit: 57.0					
End Limit: 62	End Limit: 62				
Project Length: 5 m					
Right-of-Way Ownership(s) (where proposed project construction would occur): (Check all that apply)					
City/Town; County; ADOT; Private; Federal; Tribal; Other:					
Adjacent Land Ownership(s): (Check all that apply)					
🖂 City/Town; 🔲 County; 🔄 ADOT; 🔀 Private; 🔛 Federal; 🔛 Tribal; 🔛 Other:					
http://gis.azland.gov/webapps/parcel/					
LOCAL PUBLIC AGENCY (L	LOCAL PUBLIC AGENCY (LPA) or TRIBAL GOVERNMENT INFORMATION				
(If applicable)					

LPA/Tribal Name:		
LPA/Tribal Contact:		
Email Address:	Phone Nur	mber:
Administration: 🗌 ADOT Administered	Self-Administered	Certification Acceptance

PROJECT NEED

- High Mobility Index performance deficiency, based on heavy NB flows entering Tucson urban area.
 Congested levels existing peak hour V/C and future daily V/C.

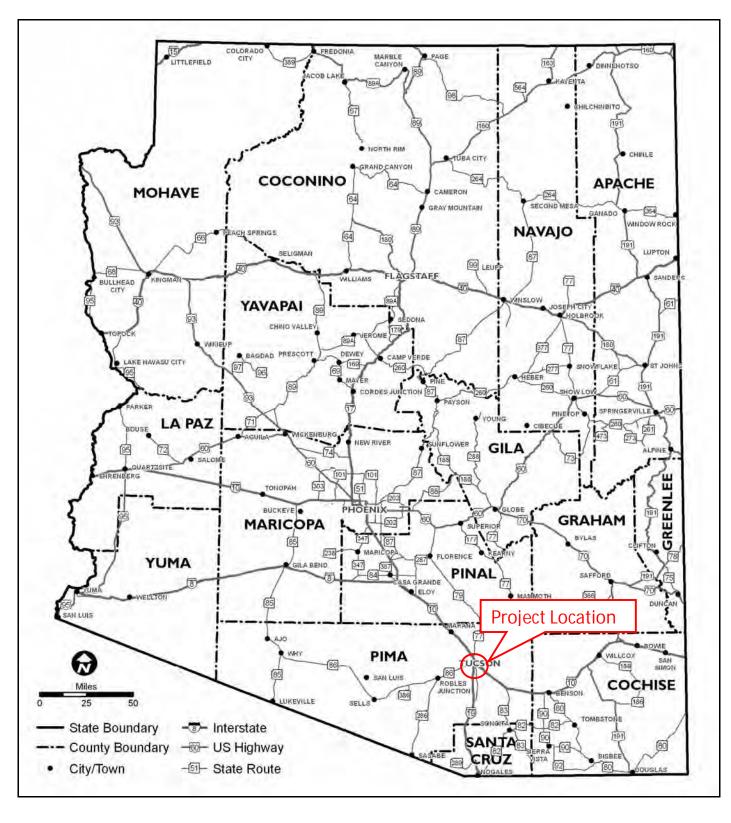
• The number of weekdays vs. weekend days in which traffic volumes exceed acceptable LOS are nearly equal. There is no spike in traffic that can be attributed to week day or weekend traffic.

- The corridor profile study indicates a High Safety need.
- 67% of closures are accident-related, which may be related to increased congestion in urban area.

PROJECT PURPOSE				
What is the Primary Purpose of the Project?	Preservation	Modernization	Expansion 🛛	

Improve safety and mobility. Add 1 general purpose lane in each direction from Irvington Rd to San Xavier Rd in increase capacity in Tucson Area.

	PROJECT TYPE					
Pavement Preservation	Roadwa	ay Widening 🛛	System Enhand	cement		
Bridge Scour/Rehab	Bridge	Replacement 🗌	Sign Replacem	ent		
Other 🗌 : Construct new general p						
		PROJECT RISKS				
	ed that may impact the pr	oject's scope, schedule,	or budget:			
Access / Traffic Con	trol / Detour Issues	Right-o	of-Way			
Constructability / Co	onstruction Window Issue	es 🗌 Enviro	nmental			
Stakeholder Issues		🗌 Utilitie	es			
Structures & Geote	ch	Other:				
Risk Description: (If a b	ox is checked above, brief	fly explain the risk)				
Temporary traffic control	ols must be implemented	during the construction	n period.			
		FUNDING SOURCE(S)				
	ign/Construction Funding	STP [TAP HSIP	State		
Type: (Check all that ap	ply)	Local	Private Other:			
		COST ESTIMATE				
Preliminary Eng	Design	Right-of-Way	Construction	Total		
\$888,000	\$2,958,000	\$0	\$29,582,000	\$33,428,000		
	PROJECT DELIVERY					
Delivery: Design-Bio	d-Build 🗌 Desigr	n-Build 🗌 Oth	er:			
Design Program Year: FY						
Construction Program	Construction Program Year: FY					
		ATTACHMENTS				
 State Location Project Vicinity Project Scope of 	Мар					


- 4) Project Schedule
- 5) Itemized Cost Estimate
- 6) 15% Design Plan Sheets (as needed)

PRELIMINARY SCOPING REPORT

ST ESTIMATE		
Right-of-Way	Construction	Total
\$0	\$29,582,000	\$33,428,000

ATTACHMENT 1 – LOCATION MAP

- Construct New NB/SB GP Lanes between Irvington Rd and San Xavier Rd (inside widening)
- Widen Airport Wash Bridge to accommodate new GP lanes
- Rehab Airport Wash Bridge deck and superstructure in conjunction with bridge widening to improve ratings

GENERAL PROJECT	INFORMATION		
Date: March 3, 2017	ADOT Project Manager: n/a		
Project Name: I-19/Drexel-Irvington Pedestrian Overpass and I	Barrier Fencing		
City/Town Name: Tucson	County: Pima		
Primary Route/Street: I-19			
Beginning Limit: MP 59.5			
End Limit: MP 61.5			
Project Length: <1.0 mile			
Right-of-Way Ownership(s) (where proposed project construct	ion would occur): (Check all that apply)		
🔀 City/Town; 🗌 County; 🔀 ADOT ; 🔄 Private ; 🔛 Federal; 🛄 Tribal; 🛄 Other:			
Adjacent Land Ownership(s): (Check all that apply)			
🔀 City/Town; 🔲 County; 🛄 ADOT; 🔀 Private; 🛄 Federal; 🛄 Tribal; 🛄 Other:			
http://gis.azland.gov/webapps/parcel/			

LOCAL PUBLIC	AGENCY (LPA) or TRIBAL O	SOVERNMENT INFORMATION	
	(If applicable	e)	
LPA/Tribal Name:			
LPA/Tribal Contact:			
Email Address:	Phor	ne Number:	
Administration: 🗌 ADOT Administe	ered Self-Administere	d Certification Acceptance	

PROJECT NEED

Poor performance in the Safety Index.
High number pedestrian involved serious or fatal crashes possibly resulting from lack of suitable pedestrian facilities in the immediate vicinity

• Pedestrians cross I-19 from nearby residential area, separated only by 4' fence

PROJECT PURPOSE			
What is the Primary Purpose of the Project?	Preservation	Modernization 🛛	Expansion 🗌
Reduce fatal and serious vehicle-pedestrian cr	ashes		

PROJECT TYPE				
Pavement Preservation	Roadway Widening	System Enhancement		
Bridge Scour/Rehab	Bridge Replacement 🗌	Sign Replacement		
Other 🛛 : scope of project to be determined pending Performance Effectiveness Analysis				

		PRO	JECT RISKS		
Check any risks identifie	d that may impact the pr	oject's s	cope, schedule,	or budget:	
Access / Traffic Con	trol / Detour Issues		🛛 🖂 Right-o	f-Way	
Constructability / Co	onstruction Window Issu	es	Enviror	nmental	
Stakeholder Issues			Utilitie:	S	
Structures & Geoted	ch		Other:		
Risk Description: (If a be	ox is checked above, brie	fly explai	n the risk)		
Coordination required v	vith local agency to deter	mine app	propriate location	on and connectivity to oth	ner pedestrian facilities.
		FUNDI	NG SOURCE(S)		
Anticipated Project Desi	gn/Construction Funding	Γ.	☐ STP		🖂 State
Type: (Check all that ap		·	∑ Local	Private Other:	
		COST	ESTIMATE		
Preliminary Eng	Design	Rig	ht-of-Way	Construction	Total
\$59,000	\$199,000		\$ -	\$1,992,000	\$2,250,000
PROJECT DELIVERY					
Delivery: 🗌 Design-Bio	d-Build 🗌 Desig	n-Build	🗌 Othe	er:	
Design Program Year: FY					
Construction Program Y	'ear: FY				
		ATTA	ACHMENTS		

1)	State Location Map X
2	

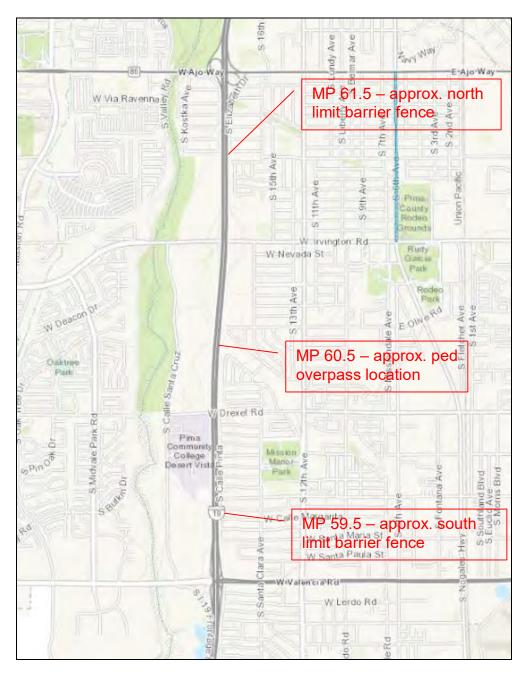
Project Vicinity Map X
 Project Scope of Work
 Project Schedule
 Itemized Cost Estimate

6) 15% Design Plan Sheets (as needed)

PRELIMINARY SCOPING REPORT

ING SOURCE	(S)		
STP	🗌 TAP	HSIP	🖂 State
🛛 Local	Private	Other:	

ST ESTIMATE		
Right-of-Way	Construction	Total
\$ -	\$1,992,000	\$2,250,000


JECT DELIVERY	
I Other:	

TACHMENTS	S
-----------	---

ATTACHMENT 1 – LOCATION MAP

- Construct pedestrian overpass
- Construct 2.0 miles 8' barrier fencing, east side of I-19 from north end of existing noise wall near Valencia Blvd. to ½ mile south of Ajo Way
- Construct 1.0 mile of 8' barrier fencing along commercial development west of I-19 between Irvington Rd and Drexel Rd.