Maricopa County, Arizona

Federal-aid Project No. NH-801-B(ARG) ADOT Project No. 801 MA 000 H6876 01L

Prepared for:
Arizona Department of Transportation
Project Management Group
205 S. $17^{\text {th }}$ Avenue Phoenix, AZ 85007

3200 E. Camelback Road, Suite 350 Phoenix, AZ 85018

September 10, 2018

Contents

Chapter 1. Introduction .1
1.1 Report Description. 1
1.2 Project Location$\ldots . . .1$
1.3 SR 30 Recommended Build Alternative 1
Chapter 2. Traffic Analysis Methodology and Tools 3
2.1 Assumptions and Methodology 3
2.2 Traffic Analysis Tools 3
Chapter 3. Travel Demand Overview 5
3.1 Population and Employment Growth. 5
3.2 SR 30 Travel Demand Models 5
3.3 Traffic Distribution on Regional Roadway Network (with and without SR 30)
3.4 Operational Performance of I-10 with and without SR 30 8
Chapter 4. SR 30 Freeway Main Line Analysis10
4.1 Opening Year (2035) Analysis 10
Chapter 5. SR 30 Service Traffic Interchange Analysis28
5.1 Background. 28
5.2 Arterial Street Lane Configurations 28
5.3 Signal Timing. 28
5.4 Service Traffic Interchange Analysis (Synchro Analysis) 28
Chapter 6. SR 30 and SR 202L System Traffic Interchange Analysis 43
6.1 Background43
6.2 Interchange Operational Influence Area 43
6.3 VISSIM Model Development. 43
6.4 Measures of Effectiveness 45
6.5 VISSIM Analysis Results 45
Chapter 7. References 58

Appendixes

Appendix A - HCS Freeway Analysis Reports
Appendix B - Synchro Analysis Reports

Tables

Table 2.1. Highway Capacity Manual Level of Service Criteria for Freeway Segments.................................
Table 2.2. Highway Capacity Manual Level of Service Criteria for Signalized and Unsignalized Intersections 4
Table 3.1. SR 30 Study Area Population and Employment Growth Projections.. 5
Table 3.2. Traffic Distribution on Regional Street Network along Cut Lines .. 7
Table 3.3. Operational Performance of I-10 with and without SR 30, SR 303L to SR 202L (2040) 9
Table 4.1. SR 30 Recommended Build Alternative Main Line HCS Analysis, Eastbound Direction (2035)................ 15
Table 4.2. SR 30 Recommended Build Alternative Main Line HCS Analysis, Westbound Direction (2035)............... 17
Table 4.3. SR 30 Recommended Build Alternative Main Line Analysis, Eastbound Direction (2040)........................ 24
Table 4.4. SR 30 Recommended Build Alternative Main Line Analysis, Westbound Direction (2040) 26
Table 5.1. 2035 Lane Configurations for Arterial Streets Approaching Service Traffic Interchanges 28
Table 5.2. Estrella Parkway Service Traffic Interchange Analysis Results.. 30
Table 5.3. Bullard Avenue Service Traffic Interchange Analysis Results.. 30
Table 5.4. Dysart Road Service Traffic Interchange Analysis Results... 33
Table 5.5. Avondale Boulevard Service Traffic Interchange Analysis Results.. 33
Table 5.6. 107th Avenue Service Traffic Interchange Analysis Results ... 36
Table 5.7. 91st Avenue Service Traffic Interchange Analysis Results.. 36
Table 5.8. 83rd Avenue Service Traffic Interchange Analysis Results ... 39
Table 5.9. 67th Avenue Service Traffic Interchange Analysis Results ... 39
Table 5.10. Turn Lane Minimum Storage Lengths (feet) ... 42

Figures

Figure 1.1. Project Location and Vicinity. .2
Figure 2.1. Level of Service \ldots
Figure 3.1. Cut Line Locations 6
Figure 4.1. SR 30 Recommended Build Alternative Average Daily Traffic (2035) 11
Figure 4.2. SR 30 Recommended Build Alternative AM/PM Peak Hour Traffic (2035) 12
Figure 4.3. SR 30 Recommended Build Alternative AM Peak Hour HCS Level of Service (2035) 13
Figure 4.4. SR 30 Recommended Build Alternative PM Peak Hour HCS Level of Service (2035) 14
Figure 4.5. SR 30 Recommended Build Alternative Average Daily Traffic (2040)

\qquad 20
Figure 4.6. SR 30 Recommended Build Alternative AM/PM Peak Hour Traffic (2040) 21
Figure 4.7. SR 30 Recommended Build Alternative AM Peak Hour HCS Level of Service (2040) 22
Figure 4.8. SR 30 Recommended Build Alternative PM Peak Hour HCS Level of Service (2040)23
Figure 5.1. Sarival Avenue, Turning Movement Volume, Lane Configuration, and AM and PM Level of Service (2035 and 2040) 29
Figure 5.2. Estrella Parkway, Turning Movement Volume, Lane Configuration, and AM and PM Level of Service (2035 and 2040) 31Figure 5.3. Bullard Avenue, Turning Movement Volume, Lane Configuration, and AM and PM Level ofService (2035 and 2040)32
Figure 5.4. Dysart Road, Turning Movement Volume, Lane Configuration, and AM and PM Level of Service (2035 and 2040) 34Figure 5.5. Avondale Boulevard, Turning Movement Volume, Lane Configuration, and AM and PM Level ofService (2035 and 2040) 35
Figure 5.6. 107th Avenue, Turning Movement Volume, Lane Configuration, and AM and PM Level of Service (2035 and 2040)37Figure 5.7. 91st Avenue, Turning Movement Volume, Lane Configuration, and AM and PM Level of Service(2035 and 2040).. 38
8. 83rd Avenue, Turning Movement Volume, Lane Configuration, and AM and PM Level of Service(2035 and 2040) .40Figure 5.9. 67th Avenue, Turning Movement Volume, Lane Configuration, and AM and PM Level of Service(2035 and 2040) 41

Figure 6.1. SR 30/SR 202L System Traffic Interchange - VISSIM Model Study Area Network .. .43

Figure 6.2. MAG Sub Area Network and Origin-Destination Nodes .44
Figure 6.3. SR 30/SR 202L System Traffic Interchange, 2035 AM Peak Hour 1 Level of Service 46
Figure 6.4. SR 30/SR 202L System Traffic Interchange, 2035 AM Peak Hour 2 Level of Service 47
Figure 6.5. SR 30/SR 202L System Traffic Interchange, 2035 AM Peak Hour 3 Level of Service 48
Figure 6.6. SR 30/SR 202L System Traffic Interchange, 2035 PM Peak Hour 1 Level of Service. 49
Figure 6.7. SR 30/SR 202L System Traffic Interchange, 2035 PM Peak Hour 2 Level of Service. 50
Figure 6.8. SR 30/SR 202L System Traffic Interchange, 2035 PM Peak Hour 3 Level of Service 51
Figure 6.9. SR 30/SR 202L System Traffic Interchange, 2040 AM Peak Hour 1 Level of Service 52
Figure 6.10. SR 30/SR 202L System Traffic Interchange, 2040 AM Peak Hour 2 Level of Service 53
Figure 6.11. SR 30/SR 202L System Traffic Interchange, 2040 AM Peak Hour 3 Level of Service 54
Figure 6.12. SR 30/SR 202L System Traffic Interchange, 2040 PM Peak Hour 1 Level of Service 55
Figure 6.13. SR 30/SR 202L System Traffic Interchange, 2040 PM Peak Hour 2 Level of Service 56
Figure 6.14. SR 30/SR 202L System Traffic Interchange, 2040 PM Peak Hour 3 Level of Service 57

Abbreviations and Acronyms

ADOT	Arizona Department of Transportation
ADT	average daily traffic
AM	morning
CDI	compact diamond interchange
FHWA	Federal Highway Administration
HCM	Highway Capacity Manual
HCS	Highway Capacity Software
HOV	high-occupancy vehicle
I-10	Interstate 10
LOS	level of service
MAG	Maricopa Association of Governments
MC 85	Maricopa County Route 85
mph	miles per hour
OD	origin-destination
PM	evening
RBA	Recommended Build Alternative
SR	State Route
TI	traffic interchange
v/c	volume-to-capacity ratio

Chapter 1. Introduction

1.1 Report Description

This report is an addendum to the State Route (SR) 30, SR 303L to SR 202L Final Traffic Report (April 2013). It updates the traffic report with an evaluation of the Recommended Build Alternative (RBA). It includes an update of projected traffic volumes and level of service (LOS) for a 2035 SR 30 opening year and a 2040 design year. Additionally, the SR 30 terminus on the west has been moved east from its original western terminus at Maricopa County Route 85 (MC 85) at Jackrabbit Trail to Sarival Avenue. The eastern terminus remains the same, at 59th Avenue in the area of SR 202L (South Mountain Freeway).

This addendum describes the analysis conducted for the morning (AM) and evening (PM) peak periods for the opening year of 2035 and future year of 2040 using traffic data and forecasts provided by the Maricopa Association of Governments (MAG). The study uses October 2017 MAG conformity model runs for 2035 opening year and 2040 design year traffic projections. The October 2017 MAG conformity model has SR 30 coded as six-lane facility for both 2035 and 2040.

A Phase 1 arterial-style four-lane SR 30 expressway is proposed for 2025 . The October 2017 MAG conformity model runs for 2025 reflect the same. The travel demand analysis discussed in Chapter 3.0 shows the potential system benefits of this interim expressway configuration.

1.2 Project Location

The Study Area for the proposed SR 30 freeway is located southwest of downtown Phoenix and falls entirely within Maricopa County in south-central Arizona. The area encompasses the municipalities of Goodyear, Avondale, and Phoenix, along with unincorporated Maricopa County land. The Study Area is bounded generally by Cotton Lane on the west, Lower Buckeye Road on the north, 51st Avenue on the east, and the northern banks of the Gila and Salt Rivers on the south (see Figure 1.1). At the SR 30 connection with SR 202L, the Study Area extends north along SR 202L nearly to Interstate 10 (I-10, Papago Freeway) and extends south nearly to Elliot Road.

The proposed freeway would run east-to-west, parallel to and south of I-10, for about 14 miles. The western terminu of SR 30 would be located at Sarival Avenue. The eastern terminus would be located at the proposed SR 202L, near 59th Avenue. The Study Area is in the Arizona Department of Transportation's (ADOT's) Central District.

1.3 SR 30 Recommended Build Alternative

The RBA that has been selected by ADOT, the Federal Highway Administration (FHWA), and MAG in August 2017 is the Hybrid Alternative identified in the State Route (SR) 30, SR 303L to SR 202L Final Traffic Report (April 2013). This alternative closely follows the half-mile section between Broadway Road and Southern Avenue between Avondale Avenue and 91st Avenue. It deviates to the south at Avondale Boulevard, following the Southern Avenue alignment between Dysart Road and Avondale Boulevard.

The proposed SR 30 by 2035 would be constructed as a six-lane freeway facility with a 50 -foot-wide median with cable barrier. This median would accommodate another general purpose lane and high-occupancy vehicle (HOV) lan in each direction in the future. When built out, it would have 12 -foot-wide lanes with 12 -foot-wide shoulders on both sides and a median concrete barrier. The service traffic interchanges (TIs) would be located at a minimum of 1-mile spacing, along with 12 -foot-wide auxiliary lanes where warranted. The freeway would cross over the existing major crossroads, leaving the arterial streets at grade.

1.3.1 SR 30 Service Traffic Interchanges

Ten service TIs are proposed for the RBA. These interchanges were assumed to be full compact diamond interchange (CDI) types with the exception of Sarival and 67th Avenues, where a half-CDI type of interchange was evaluated. From west to east, the TI locations are as follows: Cotton Lane, Sarival Avenue, Estrella Parkway, Bullard Avenue Dysart Road, Avondale Boulevard, 107th Avenue, 91st Avenue, 83rd Avenue, and 67th Avenue.

1.3.2 SR 30 and SR 202L System Traffic Interchange

The proposed system TI between SR 30 and SR 202L is located in Phoenix between Broadway Road and Southern Avenue, along the proposed SR 202L over the Salt River. The proposed SR 30 freeway would connect to the proposed SR 202L as a three-legged system TI (northern, southern, and western legs) during initial construction. An eastern leg is also planned as SR 30 is extended east in the future and is accommodated into the TI design. The October 2017 MAG conformity model runs for 2035 opening year and 2040 design year traffic projections include the eastern leg for accurate traffic routing and projections. The eastern leg of this TI is described in the SR30/SR 202L Interchange Selection Report (June 2018).

Figure 1.1. Project Location and Vicinity

2.1 Assumptions and Methodology

It is assumed that the proposed SR 30 freeway would be open to traffic around 2035. Freeway and signalized intersection traffic analysis methodologies as described in the Transportation Research Board's Highway Capacity Manual (HCM) (2010) were used to evaluate the operational performance of the proposed SR 30 freeway and the system and service TIs along SR 30 .

2.2 Traffic Analysis Tools

2.2.1 Freeway Main Line: HCS Analysis

The freeway traffic operational analysis, as described in the HCM, introduces the LOS concept. It is a letter grading system, from A to F, that defines the traffic operations in a qualitative manner based on traffic flow and other roadway characteristics. LOS A depicts free-flow conditions with little or no delay and with free-flow speeds, while LOS F represents the worst condition, with unacceptable congestion, long queues, and delays. LOS A, B, and C are considered to be acceptable and free-flow speeds are maintained. Congestion becomes more noticeable at LOS D with reduced speeds and less freedom to maneuver. Most agencies aim for LOS D to balance mobility and economics. LOS E occurs when demand has reached the capacity of the facility and maneuverability within the traffic stream is extremely limited. Figure 2.1 illustrates the LOS A to F concept based on flow condition.

The freeway main line operational analysis, based on HCM methodology, splits the freeway into three segments:

- Weaving segment: Weaving segments are formed when an auxiliary lane is used to connect adjacent on- and offramps spaced less than 1.5 miles apart. A lane change is required for all the traffic that is either joining or leaving the freeway main line
- Ramp junction: The ramp junction (or merge and diverge) analysis is used in locations where a ramp enters or exits a freeway main line and is not coupled with a weaving area
- Basic freeway segment: The basic freeway segments are all other segments that are outside of the weaving or ramp junction influence areas. This generally occurs between the successive off- and on-ramps. The basic freeway segment analysis is also used to analyze the body of the system TI ramps

The HCM LOS criteria for freeway segments are presented in Table 2.1 based on the lane density ranges for each The freeway operations analysis-which includes basic segments, weaving segments, and exit and entry ramps-is performed using the Highway Capacity Software ($\operatorname{HCS}^{\mathrm{TM}} 2010$ version 6.1), which uses the methodology defined in HCM.

Figure 2.1. Level of Service

Table 2.1. Highway Capacity Manual Level of Service Criteria for Freeway Segments

Level of Service	Density Range (passenger car/mile/lane)		
	Basic	Freeway Segment Type	
	≤ 11	Weaving	Merge and Diverge
B	$11-18$	≤ 10	≤ 10
C	$18-26$	$10-20$	$10-20$
D	$26-35$	$20-28$	$20-28$
E	$35-45$	$28-35$	$28-35$
F	>45	$35-43$	>35

Source: Transportation Research Board, Highway Capacity Manual, 2010

HCS uses the morning and evening peak hour volumes and a number of roadway and driver characteristics to determine LOS. Some of the inputs that are constant along the corridor include:

- peak hour factor of 0.95
- truck factor of 10 percent
- free-flow speed based on the type of roadway:
- freeway - 65 miles per hour (mph)
- system ramp - 55 mph
- service TI on ramp - 55 mph
- service TI off ramp - 60 mph

2.2.2 Service Traffic Interchanges: Synchro Analysis

The service TI signal traffic analysis was performed using the Synchro simulation analysis package (Version 9.1, Build Series 909, Revision 20) developed by Trafficware, Inc. Synchro is a widely used traffic analysis tool that evaluates intersection delays and congestion based on procedures similar to those described in the 2010 HCM (Chapters 18, 19, and 20). It is often used for localized intersection analyses, signal coordination, and traffic study work. It was used to evaluate the ramp intersection performance. Major adjacent street intersections were included within the Synchro network to account for the effect of queues spilling back to the ramp terminal intersections

Basic inputs to Synchro include traffic volumes, lane geometry, signal control, and signal timing and phasing. Synchro was used to optimize the signal cycle length and phasing during the analysis

The HCM evaluates the LOS of individual lane groups and of the entire signalized intersection based on the control delay. It states that:

Control delay is a measure of driver discomfort, frustration, fuel consumption, and increased travel time
The delay experienced by a motorist is made up of a number of factors that relate to control, geometrics, traffic, and incidents. Total delay is the difference between the travel time actually experienced and the reference travel time that would result during base conditions..

Delay is a complex measure and depends on a number of variables, including the quality of progression, the cycle length, the green ratio, and the v / c ratio for the lane group

The HCM LOS grade and associated range of intersection control delay for signalized and unsignalized intersections are presented in Table 2.2

Table 2.2. Highway Capacity Manual Level of Service Criteria for Signalized and Unsignalized Intersections

Level of Service	Average Control Delay (seconds per vehicle)	
	Signalized	Unsignalized
A	≤ 10	≤ 10
B	$10-20$	$10-15$
C	$20-35$	$15-25$
D	$35-55$	$25-35$
E	$55-80$	$35-50$
F	>80	>50

Source: Transportation Research Board, Highway Capacity Manual, 2000

2.2.3 System Traffic Interchanges: VISSIM Analysis

VISSIM (Version 9.00-11) is a microscopic, behavior-based multipurpose traffic simulation program used to optimiz complex transportation systems. VISSIM is based on car following and lane change logic, which can analyze vehicular traffic operations based on various driver behavior patterns and lane configurations, including HOV lane and ramp metering.

VISSIM was used to evaluate traffic operations on the freeway main line and ramps associated with the SR 30/SR 202L TI and I-10/SR 202L TI and the SR 202L freeway connection between them. VISSIM was used in this area because of the complexities of this part of the design and the interaction of these design elements with each other The analysis evaluated both AM and PM peak period conditions on an average weekday for the opening year 2035 and future year 2040 for the RBA at the SR 30/SR 202L system TI. LOS on freeway segments is the primary measure of effectiveness used to evaluate the operational performance of the Study Area network.

Because most of the modeled network is nonexistent today, the VISSIM model was calibrated to anticipate traffic conditions using similar parameters for driving behavior and vehicle performance that were used to develop the South Mountain Freeway VISSIM model.

Chapter 3. Travel Demand Overview

This section discusses travel demand and socioeconomic projections in the southwestern Phoenix metropolitan area. The traffic distribution on the regional freeway system and arterial street network with and without the proposed SR 30 freeway corridor, and other special event traffic, are also presented.

3.1 Population and Employment Growth

Maricopa County has been one of the fastest-growing regions in the United States. Between 2010 and 2016, data from the Arizona State Demographer's Office show that the Maricopa County population increased by 8 percent, adding 313,000 people. Shown in Table 3.1, MAG projects that Maricopa County population in households will increase by 42 percent from 2017 to 2040 . Employment is projected to increase by 40 percent from 2017 to 2040 . Within the SR 30 study area, MAG projects even higher growth rates, with population in households projected to more than double from 2017 to 2040 while employment is projected to more than triple.

Table 3.1. SR 30 Study Area Population and Employment Growth Projections

Description	2017	2025	2035	2040
SR 30 Study Area				
Population in households	46,180	67,725	86,000	96,500
Percentage change from 2017	-	47\%	86\%	109\%
Employment	8,140	11,190	20,550	27,500
Percentage change from 2017	-	37\%	152\%	238\%
Maricopa County				
Population in households	4,164,474	4,796,299	5,550,886	5,902,635
Percentage change from 2017	-	15\%	33\%	42\%
Employment	1,762,612	2,008,459	2,310,886	2,476,057
Percentage change from 2017	-	14\%	31\%	40\%

Source: Maricopa Association of Governments, 2017

3.2 SR 30 Travel Demand Models

The travel demand models for the SR 30 freeway corridor study were provided by MAG based on the 2025, 2035, and 2040 socioeconomic data, the SR 30 RBA alignment, and any planned roadway network improvements during that period. The 2035 travel demand models formed the basis for an opening year traffic analysis, while the 2040 travel demand model was used to provide an understanding of how travel demand would change beyond 2035.

It was assumed that the 2035 travel demand model represented the opening day initial construction of the SR 30 alignment with a three-legged SR 30/SR 202L system TI at the eastern terminus and the southbound-to-eastbound and westbound to northbound direct connections of SR 30 and SR 303L.

3.3 Traffic Distribution on Regional Roadway Network (with and without SR 30)

One of the objectives of the proposed SR 30 freeway is to improve traffic conditions in the southwestern region of the Phoenix metropolitan area by acting as an alternative east-to-west route to I-10, thus reducing congestion on I-10 as well as local arterial streets. It is also generally desired to route more traffic onto freeways compared with arterial streets, which improves the arterial streets' operations. With the use of a cut-line analysis, the traffic distribution on the regional street network with and without the proposed SR 30 freeway can be demonstrated, illustrating the benefits of the new freeway.

A cut line is an imaginary line placed over the road network that crosses a number of parallel roads in a given geographic area. It is drawn perpendicular to the set of parallel roads. It is a tool to measure the amount of traffic distributed among freeways and arterial streets that exist under the cut line for different conditions.

To assess the distribution of existing (2017), 2025, 2035, and 2040 eastbound and westbound traffic on I-10 and on arterial streets north and south of I-10, the Study Team conducted a cut-line analysis by drawing three imaginary north-to-south lines extending from Southern Avenue to Thomas Road (Figure 3.1).

Figure 3.1. Cut Line Locations

The length of the three cut lines was selected based on the assumption that the major east-to-west arterial streets crossing the three cut lines (Broadway Road, Lower Buckeye Road, Buckeye Road, Van Buren Street, McDowell Road, and Thomas Road) would generally be used as alternative routes for I-10 and SR 30.

The Study Team placed the Estrella Parkway cut line between Estrella Parkway and Bullard Avenue, the El Mirage Road cut line between El Mirage Road and Avondale Boulevard, and the 87th Avenue cut line between 91st and 83rd Avenues (see Figure 3.1). The cut-line analysis was performed for four conditions: (1) the existing (2017) condition, (2) the 2025 condition with and without the interim SR 30 expressway, (3) the 2035 condition with and without the proposed $3+0$ SR 30 freeway, and (4) the 2040 condition with and without the proposed $3+0$ SR 30 freeway. I-10 widening attributable to the SR 202L and SR 303L system TIs was also included in the 2035 and 2040 condition. Table 3.2 shows the distribution of PM peak period traffic along the cut lines for these different conditions along the freeways and east-to-west arterial streets. The PM peak period generally represents the most congested hours of the day.

This table also shows an estimate of the total cut line PM peak period freeway and arterial capacity, or "reserved capacity," based on the MAG regional travel demand model.

Table 3.2. Traffic Distribution on Regional Street Network along Cut Lines

	Year/Condition	PM Peak Period Traffic Volume (Reserved Capacity) in 000's			Distribution (\%)		Volume Over Capacity		
Cut Line		Total	Freeways	Arterial streets	Freeways	Arterial streets	Total	Freeways	Arterial streets
Estrella Parkway	2017/existing	67 (170)	44 (75)	23 (95)	66	34	0.40	0.59	0.24
	2025/without SR 30	81 (185)	52 (75)	29 (110)	64	36	0.44	0.69	0.27
	2025 with SR 30 expressway	82 (199)	51 (75)	31 (124)	62	38	0.42	0.68	0.25
	2035/without SR 30	113 (162)	74 (75)	39 (87)	65	35	0.70	0.98	0.45
	2035/with SR 30	127 (273)	94 (150)	33 (123)	74	26	0.47	0.62	0.27
	2040/without SR 30	122 (162)	78 (75)	44 (87)	64	36	0.75	1.04	0.51
	2040/with SR 30	146 (273)	105 (150)	41 (123)	72	28	0.54	0.70	0.34
El Mirage Road	2017/existing	76 (125)	57 (75)	19 (50)	75	25	0.61	0.77	0.38
	2025/without SR 30	91 (156)	65 (75)	26 (81)	71	29	0.58	0.88	0.39
	2025 with SR 30 expressway	93 (169)	64 (75)	29 (94)	69	31	0.64	0.84	0.36
	2035/without SR 30	114 (198)	66 (75)	48 (123)	58	42	0.65	0.93	0.48
	2035/with SR 30	132 (207)	101 (120)	31 (87)	77	23	0.64	0.84	0.36
	2040/without SR 30	129 (198)	70 (75)	59 (123)	54	46	0.65	0.93	0.48
	2040/with SR 30	146 (207)	110 (120)	36 (87)	76	24	0.71	0.92	0.41
87th Avenue	2017/existing	93 (154)	67 (83)	26 (71)	72	28	0.60	0.81	0.37
	2025/without SR 30	110(168)	76 (90)	34 (78)	69	31	0.66	0.85	0.44
	2025 with SR 30 expressway	114 (181)	75 (90)	39 (91)	66	34	0.63	0.84	0.42
	2035/without SR 30	130 (168)	86 (90)	44 (78)	66	34	0.78	0.96	0.56
	2035/with SR 30	156 (235)	125 (158)	31 (78)	80	20	0.66	0.79	0.40
	2040/without SR 30	139 (168)	91 (90)	48 (78)	66	34	0.83	1.01	0.62
	2040/with SR 30	169 (235)	134 (158)	35 (78)	80	20	0.72	0.85	0.45

Estrella Parkway Cut Line: This cut line is on the western end of the SR 30 corridor, where the existing population density is relatively low. In the 2017 existing condition, 66 percent of PM peak period traffic uses I-10. In 2025, the interim SR 30 expressway option does little to relieve congestion on I-10. As this area grows between now and 2040, the importance of SR 30 as a freeway becomes evident. Without SR 30, the portion of traffic using arterial streets increases. With SR 30, the freeways attract more than 70 percent of the volume. The 2040 PM peak period traffic attraction on arterial streets is around 28 percent with SR 30 compared with 46 percent without SR 30 . Under 2040 conditions, I-10 and SR 30 would continue to attract a high percentage (72 percent) of the daily traffic.

The east-to-west arterial streets may not have sufficient capacity to handle 2040 travel demand. The net increase in freeway volumes would be around 18,000 trips in the 2040 PM peak period when compared with and without SR 30 , while in the PM peak period SR 30 would reduce arterial street volume by 18,000 trips. Moreover, these arterial streets may be constrained operationally without the proposed SR 30 in 2040. Therefore, SR 30 as a freeway is filling the need of attracting regional trips and relieving demand on arterial streets.

El Mirage Road Cut Line: This cut line is located near the middle of the SR 30 corridor. The existing population and employment densities are relatively low for this area. In 2025, the proposed interim SR 30 expressway option would provide only minor relief to I-10. In 2040, the distribution of 64 and 75 percent of the daily traffic on freeways with and without SR 30 , respectively, indicates the necessity to have the proposed SR 30 freeway as an alternate route. The 2035 daily traffic on arterial streets would be reduced from 36 percent to 25 percent when comparing conditions without and with SR 30 .

As discussed above, the east-to-west arterial streets would be able to operate within the acceptable level without SR 30 in 2035. But, the significant attraction of additional users onto the freeway network in 2035 and beyond would be beneficial to the transportation system as a whole.

87th Avenue Cut Line: This cut line lies on the eastern end of the SR 30 corridor at 87th Avenue. The existing land use for most of this area is relatively built out. In 2025, the proposed interim SR 30 expressway option would attract up to 5,000 PM peak period trips, resulting in a more significant reduction of I-10 congestion. This suggests that the interim SR 30 expressway may be appropriate between SR 202L and Avondale Boulevard. For 2040, the daily traffic distribution would be around 79 and 66 percent on freeways with and without SR 30 , respectively. The additional attraction of traffic onto freeways from arterial streets with SR 30 illustrates how it would serve as an alternative route and help meet travel demand in the region.

It is evident that the demand on existing freeways would reach capacity in 2040 without SR 30. The east-to-west arterial streets would have to handle any additional traffic generated beyond 2040 and would start experiencing operational issues when the volume-to-capacity ratio (V/C) reaches around 0.9 . With the proposed SR 30 , most of the demand would be shifted to freeways, resulting in better operations on the arterial street network.

3.4 Operational Performance of I-10 with and without SR 30

$\mathrm{I}-10$ is the only major existing freeway serving the needs of east-west travel in the western Phoenix metropolitan area. With the projected growth for this region in 2040 and beyond, the effectiveness of I-10 as an Interstate transportation corridor as well as a regional route becomes vital. The SR 30 freeway is proposed as an alternative route to I-10 to address this additional travel demand. Therefore, it is very important to understand the operational performance of I10 with and without this new freeway corridor. A basic V/C analysis was performed to understand the operational performance defined by LOS.

Delay is noticeable at LOS D, but is considered acceptable during peak hours. More discussion on LOS is presented in Section 2.2.1. The LOS on I-10 for every 1-mile segment between Perryville Road and 51st Avenue was calculated with and without SR 30 in 2025, 2035, and 2040. This analysis was performed for peak directions only during the AM and PM commutes. Eastbound and westbound I-10 are the AM and PM peak directions, respectively. The results of the analysis are presented in Table 3.3.

Notable observations from the analysis include:

- With or without SR 30, LOS will deteriorate through the 2040 planning horizon along the 12 -mile section of I-10 between Bullard and 51st Avenues (both eastbound and westbound). By 2040, most segments of I-10 are forecast to operate at LOS E or F during the peak periods. While SR 30 would improve LOS for some segments of I-10, any new capacity provided by SR 30 would be filled by traffic shifting from the arterial streets.
- Travel demand for this project is so strong that even with a SR 30 Phase 2 roadway, LOS on both I-10 and SR 30 will deteriorate to LOS F for the majority of the corridors. This condition was recognized early on in this study, as was the realization that the number of lanes needed on SR 30 to improve SR 30 LOS was far beyond what the stakeholders deemed reasonable. As such, the maximum SR 30 highway cross section was established at four general purpose lanes, one HOV lane, and auxiliary lanes as needed to match the rest of the valley freeway system, regardless of projected LOS. This is defined as the Phase 3 roadway section and is not currently programmed prior to 2040. Additionally, the system ramps at the SR 30/SR 202L TI were capped at two lanes each. However, even with the Phase 3 SR 30 roadway, LOS in the two corridors is not expected to meaningfully improve in 2040.
- To mitigate the unmet travel demand in the I-10 and SR 30 corridors, a 50 -foot wide high capacity transit corridor is being included in the proposed SR 30 corridor footprint to allow a future means to address this demand. Due to the uncertainty of technological change, the travel mode and technology is purposely not defined at this time for how the future high capacity transit corridor could eventually be used. This is defined as the future Phase 4 condition.

Table 3.3. Operational Performance of I-10 with and without SR 30, SR 303L to SR 202L (2040)

I-10 Segment		I-10 Eastbound (2025 AM Peak Period)		I-10 Westbound (2025 PM Peak Period)		I-10 Eestbound (2035 PM Peak Period)		I-10 Westbound (2035 PM Peak Period)		I-10 Eastbound (2040 AM Peak Period)		I-10 Westbound (2040 PM Peak Period)	
		Without SR 30	With Phase 1 SR 30	Without SR 30	With Phase 1 SR 30	Without SR 30	With Phase 2 SR 30	Without SR 30	With Phase 2 SR 30	Without SR 30	With Phase 2 SR 30	Without SR 30	With Phase 2 SR 30
	Perryville Road to Citrus Road	D	D	E	E	F	F	F	F	F	F	F	F
	Citrus Road to Cotton Lane	D	D	D	D	F	F	F	F	F	F	F	F
	Cotton Lane to Sarival Avenue	D	C	D	D	E	E	E	E	F	E	F	E
	Sarival Avenue to Estrella Parkway	D	D	D	D	F	E	F	E	F	F	F	F
	Estrella Parkway to Bullard Avenue	E	D	E	E	F	E	F	E	F	F	F	F
	Bullard Avenue to Litchfield Road	E	E	E	E	F	E	F	E	F	F	F	F
	Litchfield Road to Dysart Road	E	E	E	E	F	E	F	E	F	F	F	F
	Dysart Road to El Mirage Road	E	E	F	F	F	F	F	F	F	F	F	F
	El Mirage Road to Avondale Boulevard	E	E	F	F	F	E	F	F	F	F	F	F
	Avondale Boulevard to 107th Avenue	F	F	E	E	F	F	F	E	F	F	F	E
	107th Avenue to 99th Avenue	E	E	D	D	F	E	E	D	F	F	F	E
	99th Avenue to 91st Avenue	E	E	F	F	F	E	F	F	F	F	F	F
	91st Avenue to 83rd Avenue	E	E	F	E	F	E	F	F	F	F	F	F
	83rd Avenue to 75th Avenue	F	E	F	F	F	E	F	F	F	F	F	F
	75th Avenue to 67th Avenue	F	F	F	F	F	F	F	F	F	F	F	F
	67th Avenue to 59th Avenue	F	F	E	E	F	F	F	E	F	F	F	F
	59th Avenue to 51st Avenue	F	F	F	F	F	E	F	F	F	F	F	F

Chapter 4. SR 30 Freeway Main Line Analysis

The SR 30 freeway main line analysis (excluding the area around and within the SR 30/SR 202L TI) evaluated the traffic operational performance of the freeway and ramp junctions based on the proposed lane configuration and projected traffic volumes. The main line analysis was conducted using HCS+ Version 6.1, using methodologies from the 2010 HCM , as described in Section 2.2.1.

4.1 Opening Year (2035) Analysis

The opening year analysis represents the condition when the SR 30 RBA would first open to the public as a $3+0$ freeway. It uses traffic volumes generated from the 2035 MAG travel demand model to analyze the LOS of various segments of the freeway main line.

4.1.1 SR 30 Recommended Build Alternative in 2035

The 2035 average daily traffic (ADT) and peak hour forecasts used for the analysis of the RBA main line are presented in Figures 4.1 and 4.2, respectively. Notable observations from the forecasts are:

- Maximum daily traffic of 164,000 vehicles per day is forecast between 67 th and 83 rd Avenues.
- The system ramps connecting SR 30 and SR 303L have an estimated daily traffic of 62,000 vehicles per day.
- In the AM peak period, 76 percent of the SR 30 traffic using the SR 30 and SR 202L system TI is traveling eastbound, while 24 percent is traveling westbound.
- The directional split of PM peak period traffic using the SR 30 and SR 202L system TI is 63 percent westbound and 37 percent eastbound.

The AM and PM peak hour LOS results of the SR 30 RBA main line HCS analysis are presented in Figures 4.3 and 4.4 and Tables 4.1 and 4.2. Detailed HCS reports are provided in Appendix A

Important observations from the freeway main line analysis are

Morning (AM) Peak Hour

- Under 2035 traffic conditions, Table 4.1 shows that four eastbound freeway segments would operate at LOS C or better, three segments would operate at LOS D, four segments would operate at LOS E, and 15 segments would operate at LOS F.
- The westbound SR 30 RBA would operate at LOS C or better under 2035 traffic conditions.

Evening (PM) Peak Hour

- In the westbound direction with 2035 PM peak hour traffic conditions, seven segments of the SR 30 RBA would operate at LOS C or better. Seven segments would operate at LOS D, and six segments would operate at LOS E. Seven segments are forecast to have LOS F operations.
- Because HCS provides localized analysis, it should be noted that poor operations at a downstream segment can affect the operations at an upstream segment (resulting from the shockwave effect). These are not addressed with the HCS analysis.

Future Year (2040) Analysis

The future year 2040 analysis represents the traffic conditions 5 years after the SR 30 RBA may first open to the public. It uses traffic volumes generated from the 2040 MAG travel demand model to analyze the LOS of various segments of the freeway main line.

Figure 4.1. SR 30 Recommended Build Alternative Average Daily Traffic (2035)

Legend

Not to scale
General Purpose Lane /System Ramp: __ High Occupancy Vehicle (HOV) Lane: -_ Service Ramp /Auxilary Lane: - Notes:
CollectorDistributor Road: \qquad Service Road: \qquad River: - Avage Daly Tralc (ADT) $X X X X X$
) Dashed Lines represent future projects of
\qquad

Figure 4.2. SR 30 Recommended Build Alternative AM/PM Peak Hour Traffic (2035)

\qquad

Legend

Not to scale
General Purpose Lane/System Ramp
High Occupancy Vehicle (HOV) Lane:
Service Ramp/Auxilary Lane:

1) Dashed Lines represent future projects of
Collector/Distributor Road: \qquad Service Road: \qquad River: Average Daily Traffic (ADT): xxxxx SR30 east of SR202L and west of SR303L

Table 4.1. SR 30 Recommended Build Alternative Main Line HCS Analysis, Eastbound Direction (2035)

Table 4.2. SR 30 Recommended Build Alternative Main Line HCS Analysis, Westbound Direction (2035)

4.1.2 SR 30 Recommended Build Alternative in 2040

The 2040 ADT and peak hour forecasts used for the analysis of the SR 30 RBA main line are presented in Figures 4.5 and 4.6, respectively. Notable observations from the figures are:

- Maximum daily traffic of 192,000 vehicles per day is forecast between 67 th and 83 rd Avenues.
- The system ramps connecting SR 30 and SR 303L have an estimated daily traffic of 74,000 vehicles per day.
- In the AM peak period, 76 percent of the SR 30 traffic using the SR 30 and SR 202L system TI is traveling eastbound while 24 percent is traveling westbound.
- The directional split of PM peak period traffic using the SR 30 and SR 202L system TI is 64 percent westbound and 36 percent eastbound

The AM and PM peak hour LOS results of the SR 30 RBA main line analysis are presented in Figures 4.7 and 4.8 and Tables 4.3 and 4.4. Detailed HCS reports are provided in Appendix A.

Important observations from the freeway main line analysis are

Morning (AM) Peak Hour

- Two freeway segments would operate at LOS C or better, and four segments would operate at LOS D
- Four freeway segments would operate at LOS E, and 16 segments would operate at LOS F. Please refer to Section 3.4 for a discussion of why LOS F is being presented as an acceptable condition, and the planned mitigations in the SR 30 corridor to help improve this condition in years beyond 2040.

Evening (PM) Peak Hour

- In the westbound direction with 2040 PM peak hour traffic conditions, five segments of the SR 30 RBA would operate at LOS C or better. Five segments would operate at LOS D and two segments would operate at LOS E. Fourteen segments are forecast to have LOS F operations. Please refer to Section 3.4 for a discussion of why LOS F is being presented as an acceptable condition, and the planned mitigations in the SR 30 corridor to help improve this condition in years beyond 2040 .
- Because HCS provides localized analysis, it should be noted that poor operations at a downstream segment can affect the operations at an upstream segment (resulting from the shockwave effect). These are not addressed with the HCS analysis

Figure 4.5. SR 30 Recommended Build Alternative Average Daily Traffic (2040)

Figure 4.6. SR 30 Recommended Build Alternative AM/PM Peak Hour Traffic (2040)

Figure 4.8. SR 30 Recommended Build Alternative PM Peak Hour HCS Level of Service (2040)

Table 4.3. SR 30 Recommended Build Alternative Main Line Analysis, Eastbound Direction (2040)

Table 4.4. SR 30 Recommended Build Alternative Main Line Analysis, Westbound Direction (2040)

Chapter 5. SR 30 Service Traffic Interchange Analysis

5.1 Background

The interchange analyses evaluated and recommended the SR 30 RBA service TI lane configuration, geometry, and type based on the traffic turning movement projections for 2035 and 2040. The Cotton Lane interchange is outside this traffic addendum Study Area and was not analyzed in this update.

The assumptions, approach, and results for all alternatives are discussed in the following sections. The methodology is discussed in detail in Section 2.2.2

We used the service TI lane configurations and traffic control from the State Route (SR) 30, SR 303L to SR 202 L Final Traffic Report (April 2013) and optimized the signal timing for the study scenarios.

5.2 Arterial Street Lane Configurations

SR 30 as a corridor would traverse Goodyear (MC 85 to the Agua Fria River), Avondale (Agua Fria River to 107th Avenue), and Phoenix (107th Avenue to the east). The lane configurations for the arterial streets approaching the TIs were based on local and regional transportation planning documents. Table 5.1 summarizes planned lane configurations. The basic number of through lanes on the crossroad was assumed to pass through the interchange.

Table 5.1. 2035 Lane Configurations for Arterial Streets Approaching Service Traffic Interchanges

Road	Local Jurisdiction	Street Classification	Right-of-way Width (in feet)	Number of Through Lanes in Each Direction
Sarival Avenue	Goodyear	Arterial	110	1
Estrella Parkway	Goodyear	Scenic Arterial	150	3
Bullard Avenue	Goodyear	Major Arterial	110	2
Dysart Road	Avondale	Major Arterial	130	3
Avondale Boulevard	Avondale	Major Arterial	130	3
107th Avenue	Avondale	Major Arterial	130	2
91st Avenue	Phoenix	Arterial	130	2
83rd Avenue	Phoenix	Arterial	130	2
67th Avenue	Phoenix	Arterial	130	3

Sources: City of Goodyear Roadway Classification Map, 2009; City of Avondale Transportation Plan, 2012; City of Phoenix Street
Classification Map, 2010

The ADOT Lessons Learned Document on Traffic Volume Projections and Operational Analysis (2005) states that "the minimum number of turning lanes necessary to achieve an intersection approach and overall interchange LOS of D" should be the basis for ADOT plans. Any additional turn lanes could be added at the request of a local agency, but would require the local agency to share the additional cost with ADOT.

Additional guidance for providing additional turn lanes is found in the ADOT Roadway Design Guidelines (2007b) Its recommendations include

- A right-turn lane should be provided if the right-turn volume is greater than 300 vehicles per hour.
- A left-turn lane should be provided at all appropriate locations, and a second left-turn lane should be provided when the volume is greater than 300 vehicles per hour.

5.3 Signal Timing

Numerous signal timing and phasing designs can be used to coordinate the two signals at a CDI. The Synchro analysis presented in this report assumed a single controller for both TI signals. Phasing and timing were optimized to improve the traffic flow at intersections and progression along the crossroad.

5.4 Service Traffic Interchange Analysis (Synchro Analysis)

Each of the following sections includes a review of each crossroad's characteristics, traffic volumes, Synchro analysis results, and recommendations for lane configurations for each alternative. However, the SR 30 corridor, from SR 303L to SR 202L, is envisioned to be open for the public around 2035, and the arterial lane configurations used in this report may change during this period because cities update their general plans at regular intervals based on new socioeconomic and travel demand forecast data. It is recommended this analysis be reevaluated during the final design phase of the project based on then-available arterial lane configurations from the general plans. Detailed Synchro reports for each TI are provided in Appendix B.

5.4.1 Sarival Avenue

Sarival Avenue is currently a dirt road south of MC 85 . A half CDI (eastbound on ramps, westbound off ramps) is proposed between MC 85 and the Buckeye Canal. All four corners contain undeveloped agricultural land. Sarival Avenue would be a two-lane facility with one lane in each direction and would end at the proposed TI with no planned crossing over the Gila River.

The CDI at this location would have unsignalized intersections (STOP control for left turns and YIELD control for right turns). All other movements would be free flow at the TI. This is a dead-end intersection.

The recommended lane configuration and traffic volumes during the peak period are presented in Figure 5.1.

Figure 5.1. Sarival Avenue, Turning Movement Volume, Lane Configuration, and AM and PM Level of Service (2035 and 2040)
SARIVAL AVENUE

5.4.2 Estrella Parkway

Presently, Estrella Parkway is a two-lane arterial street south of Broadway Road that widens to four lanes north of Broadway Road. The TI is proposed south of Broadway Road. Surrounding land use mostly consists of agricultural land and vacant parcels. Most of the land would be converted to residential and commercial purposes around 2035. MC 85 is located just to the north, while the Gila River is located south of this proposed TI. Estrella Parkway will be widened to six lanes by 2035, with three travel lanes in each direction. A CDI with signalized intersections is proposed at this location.

The recommended lane configuration, traffic volumes during the peak period, and LOS results are presented in Figure 5.2. The Synchro analysis results for all the horizons are presented in Table 5.2

Table 5.2. Estrella Parkway Service Traffic Interchange Analysis Results

SR 30 Study Horizon	Signal	Optimized Cycle Length ${ }^{\text {a }}$ (seconds)	AM Peak Hour		PM Peak Hour	
			LOS	$\begin{gathered} \text { Delay } \\ \text { (seconds/vehicle) } \end{gathered}$	LOS	Delay (seconds/vehicle)
2035	North	65/65	B	12	B	13
	South		B	15	B	13
2040	North	65/70	B	14	B	18
	South		B	16	C	21

5.4.3 Bullard Avenue

Bullard Avenue is a two-lane arterial street in Goodyear. The TI is proposed south of Broadway Road. The northern side of this proposed TI has light industrial land use along Broadway Road. Surrounding land uses mostly consist of agricultural land and vacant parcels. By 2035, most of the agricultural and vacant land would be converted to residential and industrial uses. Bullard Avenue will be a four-lane arterial street with two travel lanes in each direction in 2035. It has an existing bridge crossing over the Gila River. A CDI is proposed at this location with signalized intersections.

The recommended lane configuration, traffic volumes during the peak period, and LOS results are presented in Figure 5.3. The Synchro analysis results for all the horizons are presented in Table 5.3.

Table 5.3. Bullard Avenue Service Traffic Interchange Analysis Results

SR 30 Study Horizon	Signal	Optimized Cycle Length ${ }^{\text {a }}$ (seconds)	AM Peak Hour		PM Peak Hour	
			LOS	$\begin{gathered} \text { Delay } \\ \text { (seconds/vehicle) } \end{gathered}$	LOS	$\begin{gathered} \text { Delay } \\ \text { (seconds/vehicle) } \end{gathered}$
2035	North	70/70	B	11	B	17
	South		B	14	C	24
2040	North	70/100	B	17	C	29
	South		B	15	C	24

a ${ }^{\text {a AM/PM }}$

Figure 5.2. Estrella Parkway, Turning Movement Volume, Lane Configuration, and AM and PM Level of Service (2035 and 2040)

Figure 5.3. Bullard Avenue, Turning Movement Volume, Lane Configuration, and AM and PM Level of Service (2035 and 2040)
bullard avenue

\longrightarrow Lane configuration travel direction $\boldsymbol{X | x}$ AMPM intersection Level of Service Level of Service (LOS): \square LOS Cor better \square LOSD \square LOSE \square LOSF $\underset{\text { NORTH }}{\text { A }}$

5.4.4 Dysart Road

Dysart Road is a two-lane arterial street in Avondale. The TI for the SR 30 RBA is proposed at Southern Avenue, converting Southern Avenue into a pair of one-way frontage roads going east.

The Gila River is located immediately south of the TI. Dysart Road is planned to be a six-lane arterial street, having three lanes in each direction in 2035. Currently, Dysart Road ends at Southern Avenue. In the proposed configuration, Dysart Road would have six lanes across the Gila River (according to the 2006 City of Avondale Transportation Plan) by 2035. It would be a significant road in the future because it is the only road that connects to the farthest extents of Avondale. A CDI is proposed at this location with signalized intersections.

The recommended lane configuration, traffic volumes during the peak period, and LOS results are presented in Figure 5.4. The Synchro analysis results for all the horizons are presented in Table 5.4.

Table 5.4. Dysart Road Service Traffic Interchange Analysis Results

SR 30 Study Horizon	Signal	Optimized Cycle Length ${ }^{\text {a }}$ (seconds)	AM Peak Hour		PM Peak Hour	
			LOS	Delay (seconds/vehicle)	LOS	Delay (seconds/vehicle)
2035	North	70/70	B	14	B	17
	South		C	29	C	26
2040	North	70/90	B	13	C	32
	South		C	24	C	32

5.4.5 Avondale Boulevard (115th Avenue)

Avondale Boulevard (115th Avenue) is currently a four-lane arterial street in Avondale. Surrounding land use mostly consists of residential developments, agricultural land, and vacant parcels. By 2035, most of the agricultural and vacant land would be converted to residential and commercial uses. ISM Raceway (formerly Phoenix International Raceway) is located just south of the proposed TI south of the Gila River over an existing four-lane bridged crossing of the Gila River. By 2035, it will be widened to six lanes, having three travel lanes in each direction. A CDI is proposed at this location with signalized intersections. Because of the special events that occur at ISM that draw large amounts of traffic, additional turn lanes may be considered in later design phases at this TI.

The recommended lane configuration, traffic volumes during the peak period, and LOS results are presented in Figure 5.5. The Synchro analysis results for all the horizons are presented in Table 5.5
Table 5.5. Avondale Boulevard Service Traffic Interchange Analysis Results

SR 30 Study Horizon	Signal	Optimized Cycle Length ${ }^{\text {a }}$ (seconds)	am Peak Hour		PM Peak Hour	
			LOS	Delay (seconds/vehicle)	LOS	Delay (seconds/vehicle)
2035	North	90/90	B	14	B	15
	South		B	18	B	16
2040	North	80/75	B	12	B	17
	South		B	19	B	19

${ }^{a}$ AM/PM

Figure 5.4. Dysart Road, Turning Movement Volume, Lane Configuration, and AM and PM Level of Service (2035 and 2040)

5.4.6 107th Avenue

107th Avenue is currently a two-lane arterial street located at the boundary between Avondale and Phoenix. The surrounding land uses consist of residential, agricultural, and vacant lands. By 2035, most of the agricultural and vacant land would be converted to residential and commercial uses. The Gila River is located south of the proposed TI. 107th Avenue will be widened to four lanes, having two travel lanes in each direction by 2035. A CDI is proposed at this location with signalized intersections.

The recommended lane configuration, traffic volumes during the peak period and LOS results are presented in Figure 5.6. The Synchro analysis results for all the alignment horizons are presented in Table 5.6. 107th Avenue is not planned to cross the Gila River.

Table 5.6. 107th Avenue Service Traffic Interchange Analysis Results

SR 30 Study Horizon	Signal	Optimized Cycle Length ${ }^{\text {a }}$ (seconds)	AM Peak Hour		PM Peak Hour	
			LOS	Delay (seconds/vehicle)	LOS	Delay (seconds/vehicle)
2035	North	60/60	A	7	B	12
	South		A	6	A	7
2040	North	60/60	A	7	B	13
	South		A	5	B	10

5.4.7 91st Avenue

91st Avenue is currently a two-lane arterial street maintained by the City of Phoenix. Surrounding land uses within the Study Area feature residential developments, a wastewater treatment plant, and agricultural land. Most of the land would be converted from agricultural to residential and commercial use by 2035. A CDI is proposed at this location. 91 st Avenue is planned to be widened to four lanes by 2035 . This TI will be signalized.

The 2035 and 2040 AM and PM peak hour turning movement volumes, recommended lane configurations, and LOS results are shown in Figure 5.7. The Synchro analysis results for all the horizons are presented in Table 5.7.

Table 5.7. 91st Avenue Service Traffic Interchange Analysis Results

SR 30 Study Horizon	Signal	Optimized Cycle Length (seconds)	AM Peak Hour		PM Peak Hour	
			Delay (seconds/vehicle)	LOS	Delay (seconds/vehicle)	
	North	$90 / 90$	B	13	C	27
	South		C	21	C	23
${ }^{\text {a AM/PM }}$	North	$90 / 90$	B	17	C	22
	South		B	11	B	19

${ }^{\text {a }}$ AM/PM

Figure 5.6. 107th Avenue, Turning Movement Volume, Lane Configuration, and AM and PM Level of Service (2035 and 2040)

5.4.8 83rd Avenue

83rd Avenue is currently a two-lane road. Surrounding land uses are mostly agricultural. Most of this land would be converted to residential and commercial use around 2035. A CDI is proposed at this location with traffic signals at the intersections. This roadway is planned to be widened to four lanes by 2035

The 2035 AM and PM peak hour turning movement volumes, recommended lane configurations, and LOS are shown in Figure 5.8. The Synchro analysis results for both horizons are presented in Table 5.8.

Table 5.8. 83rd Avenue Service Traffic Interchange Analysis Results

SR 30 Study Horizon	Signal	Optimized Cycle Length ${ }^{\text {a }}$ (seconds)	AM Peak Hour		PM Peak Hour	
			LOS	Delay (seconds/vehicle)	LOS	Delay (seconds/vehicle)
2035	North	90/90	B	17	C	22
	South		B	16	B	19
2040	North	90/90	B	17	C	26
	South		B	15	B	20

5.4.9 67th Avenu

The 67th Avenue TI would be located at the eastern end of the proposed SR 30 freeway. Today, the surrounding area is primarily residential, with some scattered agricultural and vacant properties. Most of this agricultural and vacant land would convert to residential and commercial uses around 2035. 67th Avenue is currently a two-lane arterial stree in Phoenix. By 2035, 67th Avenue is planned to be widened to six lanes, with three lanes in each travel direction. A half CDI (westbound on ramp, eastbound off ramp) is proposed at this location with signalized intersections. It is envisioned that this will become a full diamond TI when SR 30 is extended east of SR 202L. Provisions are proposed in the 67th Avenue typical section to accommodate this change.

The 2035 AM and PM peak hour turning movement volumes and the proposed lane configurations used in the LOS analysis are presented in the Figure 5.9. The Synchro analysis results for both horizons are presented in Table 5.9.

Table 5.9. 67th Avenue Service Traffic Interchange Analysis Results

SR 30 Study Horizon	Signal	Optimized Cycle Length ${ }^{\text {a }}$ (seconds)	AM Peak Hour		PM Peak Hour	
			LOS	Delay (seconds/vehicle)	LOS	Delay (seconds/vehicle)
2035	North	70/70	B	16	C	27
	South		B	18	B	10
2040	North	70/100	B	14	C	34
	South		B	13	C	29

${ }^{\text {a }} \mathrm{AM} / \mathrm{PM}$

Figure 5.8. 83rd Avenue, Turning Movement Volume, Lane Configuration, and AM and PM Level of Service (2035 and 2040)

Figure 5.9. 67th Avenue, Turning Movement Volume, Lane Configuration, and AM and PM Level of Service (2035 and 2040)

5.4.10 Turning Movement Storage Length

This analysis used the minimum storage lengths proposed State Route (SR) 30, SR 303L to SR 202L Final Traffic
Report (April 2013) for the crossroad and ramp turning lanes. These proposed minimum storage lengths are presented
in Table 5.10.
Table 5.10. Turn Lane Minimum Storage Lengths (feet)

Turn Lane	Sarival Avenue	Estrella Parkway	Bullard Avenue	Dysart Road	El Mirage Road	Avondale Boulevard	$\begin{gathered} \text { 107th } \\ \text { Avenue } \end{gathered}$	91st Avenue	83rd Avenue	$\begin{gathered} \text { 67th } \\ \text { Avenue } \end{gathered}$
North Intersection										
Eastbound left	300	300	300	300	300	300	300	300	300	300
Eastbound right	250	250	250	250	250	250	250	250	250	250
Westbound left	350	300	300	300	300	350	350	350	350	300
Westbound right	250	350	350	250	250	350	250	350	250	250
Northbound left	300	300	450	300	300	300	450	300	300	300
Northbound right	250	250	250	250	250	250	250	250	250	250
Southbound left	300	300	300	300	300	300	300	300	300	300
Southbound right	250	250	250	250	250	250	250	250	250	250
South Intersection										
Eastbound left	300	350	300	300	300	300	300	350	350	350
Eastbound right	250	350	350	250	250	350	350	350	250	250
Westbound left	300	300	300	300	300	300	300	300	300	300
Westbound right	250	250	250	250	250	250	250	250	250	250
Northbound left	300	300	300	300	300	300	300	300	300	300
Northbound right	250	250	250	250	250	250	250	250	250	250
Southbound left	300	300	300	300	300	300	300	300	300	300
Southbound right	250	250	250	250	250	250	250	250	250	250

Note: Minimum 250 and 350 -feet storage length for right and left turns, respectively. The locations where more than minimum storage is required is in red text.

Chapter 6. SR 30 and SR 202L System Traffic Interchange Analysis

6.1 Background

This section discusses the traffic operational analysis at the SR 30/SR 202L system TI conducted using the VISSIM micro simulation analysis tool. VISSIM was used to evaluate traffic operations on the freeway main line and ramps of SR 30, SR 202L, and I-10.

The operational analysis of the system TI at SR 30 and SR 202L required a comprehensive study of the network because of its unique configuration, which included TI ramps for the adjacent arterial street network and the nearby I-10 and SR 202L system TI. VISSIM micro simulation software version 9.00-11, developed by PTV, was used to analyze the traffic operations in the opening year 2035 and future year 2040 for the RBA system TI, as described in Section 1.3.2.

6.2 Interchange Operational Influence Area

The Study Area for the evaluation of the traffic operations at the SR 30/SR 202L system TI extended from the SR 202L/Elliot Road TI on the south to the I-10/SR 202L system TI on the north. The area also included the I-10 main line from 75th Avenue to 43rd Avenue and the proposed SR 30 freeway segment from east of SR 202L to the 91 st Avenue service TI in the west. Figure 6.1 shows the study area modeled in VISSIM to evaluate the traffic operational performance of the SR 30/SR 202L system TI. The RBA for the proposed SR 30 freeway was used for the analysis.

6.3 VISSIM Model Development

The VISSIM model developed for the study consisted of four basic components: (1) roadway network (links and connectors), (2) volume data, (3) vehicle routes, and (4) model parameters. The following sections describe in detail the development of each of these components.

6.3.1 Roadway Network (Geometrics)

The roadway geometry for the SR 30 and SR 202L system TI was coded based on the RBA. These included the horizontal curvature and lane configurations for main line and ramps, excluding the HOV direct connector ramps. The roadway network for the SR 202L/I-10 system TI were coded based on the South Mountain Freeway alignment.

Figure 6.1. SR 30/SR 202L System Traffic Interchange - VISSIM Model Study Area Network

6.3.2 Traffic Data

MAG provided 2035 and 2040 traffic volume projections for the entire Study Area network. These traffic projections included daily 3-hour AM and 4-hour PM peak period volumes. The peak period volumes were subdivided into hourly volumes using conversion factors provided by MAG. The 3-hour AM peak period volumes were subdivided into individual peak hourly volumes in the proportions of $0.31,0.35$, and 0.34 for hour 1 , hour 2 , and hour 3 , respectively. The 4-hour PM peak period volumes were subdivided into three individual peak hourly volumes in the proportions of $0.24,0.25$, and 0.26 for hour 1 , hour 2 , and hour 3 , respectively. These three peak hours of the corresponding peak period (AM or PM) were modeled in VISSIM for analysis along with a 0.5 -hour seeding interval, which is estimated as 80 percent of the hour 1 volume. The seeding period was used to fill the network with traffic prior to the start of the data collection period.

MAG also provided the Study Team with origin-destination (OD) matrices for AM and PM peak hour peak volumes for a sub area network that was extracted from the 2035 MAG travel demand model network. The sub area network reflected the Study Area network that was developed in VISSIM. Figure 6.2 shows the external OD nodes and the sub area travel demand model network.

6.3.3 Vehicle Routes

Traffic patterns in VISSIM were modeled using static routes and routing decisions. Vehicle routing through the Study Area was achieved through the development of OD matrices. The OD matrices were developed using the MAG OD data and VISUM's OD matrix estimation feature, TFlowFuzzy. ${ }^{1}$ The OD matrices were developed based on the peak hour volumes and applied throughout the peak period. The same traffic patterns were assumed for both cars and trucks, resulting in routing decisions that were applied to all vehicle types.

6.3.4 Model Parameters

The traffic flow model used by VISSIM is a discreet, stochastic, time step-based microscopic model, with driver and vehicle units as single entities. The model contains a psycho-physical car following model for longitudinal vehicle movement and a rule-based algorithm for lateral movements (lane changing). Various driving, vehicle, and lane changing behavior parameters are used to emulate this traffic flow model.

Because this is a future planned freeway network, the model was not calibrated to any existing conditions. The VISSIM model was developed using driver behavior parameters for basic freeway, merge/diverge, and weaving segments. Driver behavior parameters were based on the default values from VISSIM and were adjusted using engineering judgment and acceptable ranges for freeway car following and lane changing parameters. Speed distributions and vehicle compositions were adopted from the South Mountain Freeway VISSIM models.

[^0]
6.4 Measures of Effectiveness

Operational performance is expressed in terms of measures of effectiveness, which include average vehicle speed, delay, miles of travel, travel time, and vehicle density. While the VISSIM model provides a variety of measures of effectiveness, only LOS for freeway segments based on vehicle density were used for this study.

6.4.1 Freeway Level of Service

For freeways, VISSIM reports densities (and speeds) on a per-link basis, and does not typically distinguish between "main line," "ramp junction," and "weave section" (as HCM does) in calculating measures of effectiveness. VISSIM segmentation is typically based on the characteristics of the link (speed, number of lanes) or locations where interruptions/changes occur (ramp junction, lane drop, etc.). For this study, density was extracted for each segment in the VISSIM model, and the HCM freeway main line density-LOS correlation was used to evaluate all segments. The LOS letter designation derived using VISSIM-reported densities is approximate, since the densities from VISSIM are not reported in terms of passenger car per mile per lane, but are rather reported as number of vehicles per mile per lane. Table 2.1 shows the LOS by density for freeway segments.

6.5 VISSIM Analysis Results

Micro simulation analysis results for the RBA during the AM and PM peak periods are presented in Figures 6.3 through 6.14. To account for inherent variability in traffic flow and operations, 10 simulation runs were performed for each model scenario and the average results were reported. Notable observations from the micro simulation analysis include:

- The overall projected operations on SR 30 and SR 202L near the SR 30/SR 202L system TI are acceptable, with LOS D or better for both the opening year 2035 and future year 2040 AM peak periods. SR 30 eastbound west of 83rd Avenue, however, is operating at LOS F. The over-capacity conditions west of 83 rd Avenue create a bottleneck that reduces the volume of traffic able to reach SR 202L
- The overall projected operations on SR 30 and SR 202L near the SR 30/SR 202L system TI are failing, with LOS F for both the opening year 2035 and future year 2040 PM peak periods. Westbound SR 30 breaks down between the SR 202L system TI and 83rd Avenue, causing congestion and queue spillback that extends to the east and south of the system TI. By the second hour of the simulation, northbound SR 202L is operating at LOS F from SR 30 to south of Elliot Road. This congestion is the result of over-capacity conditions west of 83rd Avenue.
- Congested conditions are observed on I-10 in the eastbound direction in the AM peak period, with LOS F for both the opening year 2035 and future year 2040 scenarios. I-10 eastbound is operating at LOS E or better west of the system TI during the PM peak period, but congestion on northbound SR 202L in the PM peak period creates a bottleneck that reduces the volume of traffic able to reach I-10
- In general, the operational performance near the SR 30/SR 202L system TI is better in the AM peak period than in the PM peak period, but the over-capacity conditions on eastbound SR 30 west of 83 rd Avenue in the AM peak period limit the amount of traffic that is able to reach the system TI.
- Please refer to Section 3.4 for a discussion of why LOS F is being presented as an acceptable condition, and the planned mitigations in the SR 30 corridor to help improve this condition in years beyond 2040.

Figure 6.3. SR 30/SR 202L System Traffic Interchange, 2035 AM Peak Hour 1 Level of Service

Figure 6.4. SR 30/SR 202L System Traffic Interchange, 2035 AM Peak Hour 2 Level of Service

Figure 6.5. SR 30/SR 202L System Traffic Interchange, 2035 AM Peak Hour 3 Level of Service

Figure 6.6. SR 30/SR 202L System Traffic Interchange, 2035 PM Peak Hour 1 Level of Service

Figure 6.7. SR 30/SR 202L System Traffic Interchange, 2035 PM Peak Hour 2 Level of Service

Figure 6.8. SR 30/SR 202L System Traffic Interchange, 2035 PM Peak Hour 3 Level of Service

Figure 6.9. SR 30/SR 202L System Traffic Interchange, 2040 AM Peak Hour 1 Level of Service

Figure 6.10. SR 30/SR 202L System Traffic Interchange, 2040 AM Peak Hour 2 Level of Service

Figure 6.11. SR 30/SR 202L System Traffic Interchange, 2040 AM Peak Hour 3 Level of Service

Figure 6.12. SR 30/SR 202L System Traffic Interchange, 2040 PM Peak Hour 1 Level of Service

Figure 6.13. SR 30/SR 202L System Traffic Interchange, 2040 PM Peak Hour 2 Level of Service

Figure 6.14. SR 30/SR 202L System Traffic Interchange, 2040 PM Peak Hour 3 Level of Service

Chapter 7. References

Arizona Department of Transportation (ADOT). 2005. Lessons Learned Document. Traffic Volume Projections and Operational Analysis.
_ 2007a. SR 801, SR 303L to SR 202L, Alternatives Selection Report.
_ 2007b. ADOT Roadway Design Guidelines. With revisions and amendments.
_- 2013. State Route (SR) 30, SR 303L to SR 202L Final Traffic Report
City of Avondale. 2012. Transportation Plan.
City of Goodyear. 2009. Roadway Classification Map
City of Phoenix. 2010. Street Classification Map.
Maricopa Association of Governments (MAG). 2008. Interstate 10/Hassayampa Valley Roadway Framework Study
_ 2017. Socioeconomic Projections of Population, Housing, and Employment by Municipal Planning Area and Regional Analysis Zone.

Transportation Research Board. 2010. Highway Capacity Manual. Washington, D.C.

Appendix A

HCS Freeway Analysis Reports

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 12/27/2017 AM	Highway/Direction of Travel Eastbound From/To West of Agua Fria River Jurisdiction ADOT Analysis Year 2035	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$6625 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h		
Calculate Flow Adjustments			
		$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 4 $\mathrm{ramps} / \mathrm{mi}$ mph mph	$\begin{aligned} & \mathrm{f} \mathrm{fw} \\ & \mathrm{LW} \\ & \mathrm{fLC} \\ & \text { TRD Adjustment } \\ & \text { FFS } \end{aligned}$	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\begin{array}{lll} \hline \text { Operational }(\text { LOS }) \\ \hline \mathrm{v}_{\mathrm{p}}=\left(\mathrm{V} \text { or DDHV) } /\left(\text { PHF } \times \mathrm{N} \times \mathrm{f}_{\mathrm{Hv}} 1831\right.\right. & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \left.\times \mathrm{f}_{\mathrm{p}}\right) & & \\ \mathrm{S} & 62.4 & \mathrm{mph} \\ \mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & 29.4 & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \\ \text { LOS } & \mathrm{D} & \end{array}$		Design (N) Design LOS $\mathrm{v}_{\mathrm{p}}=(\mathrm{V}$ or DDHV $) /\left(\right.$ PHF $\times N \times \mathrm{f}_{\mathrm{HV}}$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times \mathrm{f}_{\mathrm{p}}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow	$\|$$E_{R}$ - Exhibits 11-10, 11-12 $f_{L W}$ - Exhibit 11-8 $E_{T}-$ Exhibits 11-10, 11-11, 11-13 $f_{L C}-$ Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$	

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 12/29/2017 AM	Highway/Direction of Travel Westbound From/To 83rd Ave major Diverge Jurisdiction ADOT Analysis Year 2035	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT $\times \mathrm{K} \times \mathrm{D}$	$325 \quad$veh/h veh/day veh/h	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi 	
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{aligned} & E_{R} \quad 1.2 \\ & f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{aligned}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 20.0 $\mathrm{ramps} / \mathrm{mi}$ mph mph	f_{Lw} flC TRD Adjustment FFS 60.0	mph mph mph mph
LOS and Performance Measures		Design (N)	
		Design (N) Design LOS Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow hour volume	$\begin{aligned} & E_{R} \text { - Exhibits 11-10, 11-12 } \\ & E_{T} \text { - Exhibits 11-10, 11-11, 11-13 } \\ & f_{p} \text { - Page 11-18 } \\ & \text { LOS, S, FFS, } v_{p} \text { - Exhibits 11-2, } \\ & 11-3 \end{aligned}$	$\begin{aligned} & \mathrm{f}_{\mathrm{LW}} \text { - Exhibit 11-8 } \\ & \mathrm{f}_{\mathrm{LC}}-\text { Exhibit } 11-9 \\ & \text { TRD - Page 11-11 } \end{aligned}$

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 12/26/2017 AM	Highway/Direction of Travel Westbound From/To Jurisidition At Sarival Ave Analysis Year $A D O T$ 2035	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$825 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h		
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 5 $\mathrm{ramps} / \mathrm{mi}$ mph mph	f Lw f LC TRD Adjustment FFS 65.0	mph mph mph mph
LOS and Performance Measures		Design (N)	
		Design (N) Design LOS $\mathrm{v}_{\mathrm{p}}=(\mathrm{V}$ or DDHV $) /\left(\mathrm{PHF} \times N \times f_{\mathrm{HV}}\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times f_{p}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow	E_{R} - Exhibits 11-10, 11-12 $f_{L W}$ - Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 $f_{L C}$ - Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$	

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	HDR Engineering Inc. 12/29/2017 AM	Highway/Direction of Travel Westbound From/To East of 91st Ave Jurisdiction ADOT Analysis Year 2035	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS)		Des.(N)	\square Planning Data
Flow Inputs			
Volume, V AADT	veh/h veh/day	 Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10	
Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h	$\begin{array}{lll}\text { General Terrain: } & \text { Length } & \text { Levi } \\ \text { Grade } & \text { \%i } \\ & \text { Up/Down \% } & \end{array}$	
Calculate Flow Adjustments			
f_{p}	1.00	$\mathrm{E}_{\mathrm{R}} \quad 1.2$	
E_{T}	1.5	$\mathrm{f}_{\mathrm{HV}}=1 /\left[1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right] 0.952$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width	f		
Rt-Side Lat. Clearance	ft	f_{Lw}	mph
Number of Lanes, N	4	f_{LC}	mph
Total Ramp Density, TRD	ramps/mi	TRD Adjustment	mph
FFS (measured)	65.0 mph	FFS 65.0	mph
Base free-flow Speed, BFFS			
LOS and Performance Measures		Design (N)	
Operational (LOS)		Design (N)	
		Design LOS	
$\begin{aligned} & v_{\mathrm{p}}=\left(\mathrm{V} \text { or DDHV) } /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{Hv}}^{532}\right.\right. \\ & \left.\times \mathrm{f}_{\mathrm{p}}\right) \end{aligned}$		$\mathrm{v}_{\mathrm{p}}=\left(\mathrm{V}\right.$ or DDHV) $/\left(\mathrm{PHF} \times \mathrm{N} \times \mathrm{f}_{\mathrm{H}}\right.$	
	65.0 mph	$\binom{p}{x f_{p}}$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$	
$D=v_{p} / S$	$8.2 \mathrm{pc} / \mathrm{mi} / \mathrm{l}$	S mph	
Los		$D=v_{p} / S$ $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	D - Density FFS - Free-flow speed BFFS - Base free-flow	$\|$$E_{R}$ - Exhibits 11-10, 11-12 $f_{L W}$ - Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 $f_{L C}-$ Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$	

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 12/27/2017 AM	Highway/Direction of Travel Westbound From/To Jurisiction East of Agua Fria River Analysis Year ADOT 2035	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$1575 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h		
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 3 $\mathrm{ramps} / \mathrm{mi}$ mph mph	$\begin{aligned} & \mathrm{f} \mathrm{fw} \\ & \mathrm{Lw} \\ & \mathrm{fL} \\ & \text { TRD Adjustment } \\ & \text { FFS } \end{aligned}$	mph mph mph mph
LOS and Performance Measures		Design (N)	
		Design (N) Design LOS $\mathrm{v}_{\mathrm{p}}=(\mathrm{V}$ or DDHV$) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{HV}}\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times f_{\mathrm{p}}\right)$ mph S $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow	E_{R} - Exhibits 11-10, 11-12 $f_{L W}$ - Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 $f_{L C}$ - Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$	

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 12/27/2017 AM	Highway/Direction of Travel Westbound From/To West of Agua Fria River Jurisdiction ADOT Analysis Year 2035	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$1575 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h		
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 4 $\mathrm{ramps} / \mathrm{mi}$ mph mph	$\begin{aligned} & \mathrm{f} \mathrm{fw} \\ & \mathrm{Lw} \\ & \mathrm{fL} \\ & \text { TRD Adjustment } \\ & \text { FFS } \end{aligned}$	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\begin{array}{lll} \text { Operational }(\text { LOS }) \\ \hline \begin{array}{l} v_{p}=\left(V \text { or DDHV) } /\left(\text { PHF } \times N \times f_{H v}\right.\right. \\ \left.\times f_{p}\right) \end{array} & \\ \begin{array}{lll} \mathrm{S} \end{array} & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & 65.0 & \mathrm{mph} \\ \text { LOS } & 6.7 & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \end{array}$		Design (N) Design LOS $\mathrm{v}_{\mathrm{p}}=(\mathrm{V}$ or DDHV $) /\left(\mathrm{PHF} \times N \times f_{\mathrm{HV}}\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times f_{p}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow	$E_{R}-$ Exhibits 11-10, 11-12 $f_{L W}-$ Exhibit 11-8 $E_{T}-$ Exhibits 11-10, 11-11, 11-13 $f_{L C}-$ Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$	

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 12/27/2017 AM	Highway/Direction of Travel Eastbound From/To At 99th Ave Jurisdiction ADOT Analysis Year 2035	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$7950 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h	\%RVs, P_{R} 0 General Terrain: Level Grade \% Length mi Up/Down \%	
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left(1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
E_{T}			
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 3 $\mathrm{ramps} / \mathrm{mi}$ mph mph	f Lw f LC TRD Adjustment FFS 65.0	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\begin{aligned} & \text { Operational (LOS) } \\ & v_{p}=(V \text { or DDHV) } /(\text { PHF } \times N \\ & \left.\times f_{p}\right) \\ & S \\ & D=v_{p} / S \\ & \text { LOS } \end{aligned}$	$\mathrm{NXf}_{\mathrm{Hv}}^{2929}$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ 31.8 mph 92.0 $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ F	$\begin{aligned} & \text { Design }(N) \\ & \text { Design LOS } \\ & v_{p}=(V \text { or DDHV }) /\left(\text { PHF } \times N \times f_{H V}\right. \\ & \left.\times f_{p}\right) \\ & S \\ & D=v_{p} / S \end{aligned}$ Required Number of Lanes, N	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ mph $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design hou	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow hour volume	$\begin{aligned} & \mathrm{E}_{\mathrm{R}} \text { - Exhibits 11-10, 11-12 } \\ & \mathrm{E}_{\mathrm{T}} \text { - Exhibits 11-10, 11-11, 11-13 } \\ & \mathrm{f}_{\mathrm{p}} \text { - Page 11-18 } \\ & \text { LOS, S, FFS, } v_{p} \text { - Exhibits 11-2, } \\ & 11-3 \end{aligned}$	$\begin{aligned} & \mathrm{f}_{\mathrm{LW}}-\text { Exhibit } 11-8 \\ & \mathrm{f}_{\mathrm{LC}}-\text { Exhibit } 11-9 \\ & \text { TRD - Page } 11-11 \end{aligned}$

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 12/27/2017 AM	Highway/Direction of Travel Eastbound From/To Jurisiction East of Agua Fria River Analysis Year ADOT 2035	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$6625 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h		
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 3 $\mathrm{ramps} / \mathrm{mi}$ mph mph	$\begin{aligned} & \mathrm{f} \mathrm{fw} \\ & \mathrm{LW} \\ & \mathrm{fLC} \\ & \text { TRD Adjustment } \\ & \text { FFS } \end{aligned}$	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\begin{array}{lll} \begin{array}{l} \mathrm{v}_{\mathrm{p}}=(\mathrm{V} \text { or } \mathrm{DDHV}) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{Hv}}^{2441}\right. \\ \left.\times \mathrm{f}_{\mathrm{p}}\right) \end{array} & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \mathrm{~S} & 49.6 & \mathrm{mph} \\ \mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & 49.2 & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \\ \mathrm{LOS} & \mathrm{~F} & \end{array}$		Design (N) Design LOS $\mathrm{v}_{\mathrm{p}}=(\mathrm{V}$ or DDHV $) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{HV}}\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times \mathrm{f}_{\mathrm{p}}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $D=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow	$\|$$E_{R}$ - Exhibits 11-10, 11-12 $f_{L W}$ - Exhibit 11-8 $E_{T}-$ Exhibits 11-10, 11-11, 11-13 $f_{L C}-$ Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$	

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	HDR Engineering Inc. 12/29/2017 AM	Highway/Direction of Travel Eastbound From $/$ To West of 67 th Ave Jurisdiction ADOT Analysis Year 2035	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) \square	\square Planning Data
Flow Inputs			
Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT $\times K \times D$	$8625 \quad$veh/h veh/day veh/h		
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{aligned} & E_{R} \quad 1.2 \\ & f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{aligned}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 5 $\mathrm{ramps} / \mathrm{mi}$ mph mph	$\begin{aligned} & \mathrm{f}_{\mathrm{Lw}} \\ & \mathrm{f}_{\mathrm{LC}} \\ & \text { TRD Adjustment } \\ & \text { FFS } \end{aligned}$	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\begin{array}{\|lll} \hline \text { Operational (LOS) } & \\ \hline \begin{array}{l} \mathrm{v}_{\mathrm{p}}=\left(\mathrm{V} \text { or DDHV) } /\left(\mathrm{PHF} \times \mathrm{N} \times \mathrm{f}_{\mathrm{Hv}} 1907\right.\right. \\ \left.\mathrm{xf}_{\mathrm{p}}\right) \end{array} & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \mathrm{~S} & 61.4 & \mathrm{mph} \\ \mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & 31.1 & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \\ \mathrm{LOS} & \mathrm{D} & \end{array}$		Design (N) Design LOS $\mathrm{v}_{\mathrm{p}}=(\mathrm{V}$ or DDHV $) /\left(\mathrm{PHF} \times \mathrm{N} \times \mathrm{f}_{\mathrm{HV}}\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times f_{\mathrm{p}}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow hour volume	$\begin{aligned} & \mathrm{E}_{\mathrm{R}} \text { - Exhibits 11-10, 11-12 } \\ & \mathrm{E}_{\mathrm{T}} \text { - Exhibits 11-10, 11-11, 11-13 } \\ & \mathrm{f}_{\mathrm{p}} \text { - Page 11-18 } \\ & \text { LOS, S, FFS, } \mathrm{v}_{\mathrm{p}} \text { - Exhibits 11-2, } \\ & 11-3 \end{aligned}$	$\begin{aligned} & \mathrm{f}_{\mathrm{LW}} \text { - Exhibit } 11-8 \\ & \mathrm{f}_{\mathrm{LC}}-\text { Exhibit } 11-9 \\ & \text { TRD - Page 11-11 } \end{aligned}$

FREEWAY WEAVING WORKSHEET									
General Information					Site Information				
Analyst Agency/Company Date Performed Analysis Time Period		XL HDR Engineering Inc. 12/26/2017 AM			Freeway/Dir of Travel Weaving Segment Location Analysis Year			Sarival Ave to Estrella Pkwy2035	
Project Description SR 30 East HA ($3+0$)									
Inputs									
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS				$\begin{array}{r} \text { One-Sided } \\ 5 \\ 2200 \mathrm{ft} \\ 65 \mathrm{mph} \end{array}$	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, C_{FL} Terrain type				$\begin{array}{r} \text { Freeway } \\ 15 \\ 2350 \\ \text { Leve } \\ \hline \end{array}$
Conversions to pc/h Under Base Conditions									
	V (veh/h)	PHF	Truck (\%)	RV (\%)	E_{T}	E_{R}	f_{Hv}	$\mathrm{fp}^{\text {p }}$	v (pc/h)
V_{FF}	4975	0.95	10	0	1.5	1.2	0.952	1.00	5499
$\mathrm{V}_{\text {RF }}$	50	0.95	10	0	1.5	1.2	0.952	1.00	55
$\mathrm{V}_{\text {FR }}$	650	0.95	10	0	1.5	1.2	0.952	1.00	718
$V_{\text {RR }}$	0	0.95	10	0	1.5	1.2	0.952	1.00	5499
V_{NW}	5499							$\mathrm{V}=$	6272
$\mathrm{V}_{\text {w }}$	773								
VR	0.123								
Configuration Characteristics									
Minimum maneuver lanes, N_{WL} Interchange density, ID Minimum RF lane changes, $\mathrm{LC}_{\mathrm{RF}}$ Minimum FR lane changes, $\mathrm{LC}_{\mathrm{FR}}$ Minimum RR lane changes, $\mathrm{LC}_{\mathrm{RR}}$				2 lc $0.83 \mathrm{int} / \mathrm{mi}$ $1 \mathrm{lc} / \mathrm{pc}$ $0 \mathrm{lc} / \mathrm{pc}$ Ic/pc	Minimum weaving lane changes, $\mathrm{LC}_{\text {MII }}$ Weaving lane changes, $L C_{w}$ Non-weaving lane changes, $\mathrm{LC}_{\mathrm{Nw}}$ Total lane changes, $\mathrm{LC}_{\text {ALL }}$ Non-weaving vehicle index, $I_{\text {NW }}$				$718 \mathrm{lc/h}$ $1407 \mathrm{lc} / \mathrm{h}$ $1362 \mathrm{lc} / \mathrm{h}$ $2769 \mathrm{lc} / \mathrm{h}$ 0.271
Weaving Segment Speed, Density, Level of Service, and Capacity									
Weaving segment flow rate, v Weaving segment capacity, c_{w} Weaving segment v/c ratio Weaving segment density, D Level of Service, LOS				6272 pc/h 0619 veh/h 0.563 $3.3 \mathrm{pc} / \mathrm{milln}$ C	Weaving intensity factor, W Weaving segment speed, S Average weaving speed, S_{w} Average non-weaving speed, S_{Nw} Maximum weaving length, $L_{\text {max }}$				$\begin{array}{r} \hline 0.271 \\ 53.9 \mathrm{mph} \\ 54.3 \mathrm{mph} \\ 53.8 \mathrm{mph} \\ 3767 \mathrm{ft} \end{array}$
Notes									
a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures ofChapter 13 "Freeway Merge and Diverge Segments".b. For volumes that exceed the weaving segment capacity, the level of service is "F".									
Copyright © 2010 University of Florida, All Rights Reserved HCS 20									

FREEWAY WEAVING WORKSHEET									
General Information					Site Information				
Analyst Agency/Company Date Performed Analysis Time Period		XL HDR Engineering Inc. 12/28/2017 AM			Freeway/Dir of Travel Weaving Segment Location Analysis Year			83rd Ave to 91st Ave2035	
Project Description SR 30 East HA (3+0)									
Inputs									
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS				$\begin{array}{r} \text { One-Sided } \\ 5 \\ 2220 \mathrm{ft} \\ 65 \mathrm{mph} \end{array}$	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type				Freeway 15 2350 Leve
Conversions to pc/h Under Base Conditions									
	V (veh/h)	PHF	Truck (\%)	RV (\%)	$\mathrm{E}_{\text {T }}$	E_{R}	$\mathrm{f}_{\text {HV }}$	$\mathrm{fp}^{\text {p }}$	v (pc/h)
$\mathrm{V}_{\text {FF }}$	1775	0.95	10	0	1.5	1.2	0.952	1.00	1962
V_{RF}	475	0.95	10	0	1.5	1.2	0.952	1.00	525
$\mathrm{F}_{\text {FR }}$	75	0.95	10	0	1.5	1.2	0.952	1.00	83
VRR	0	0.95	10	0	1.5	1.2	0.952	1.00	1962
$\mathrm{VNW}^{\text {N }}$	1962							$\mathrm{V}=$	2570
$\mathrm{v}_{\text {w }}$	608								
VR	0.237								
Configuration Characteristics									
Minimum maneuver lanes, N_{WL} Interchange density, ID Minimum RF lane changes, $L C_{R F}$ Minimum $F R$ lane changes, $L C_{F R}$ Minimum RR lane changes, $\mathrm{LC}_{\mathrm{RR}}$				2 Ic $0.66 \mathrm{int} / \mathrm{mi}$ $1 \mathrm{Ic} / \mathrm{pc}$ $0 \mathrm{Ic} / \mathrm{pc}$ Ic/pc	Minimum weaving lane changes, LC_{M} Weaving lane changes, $L C_{w}$ Non-weaving lane changes, $\mathrm{LC}_{\mathrm{Nw}}$ Total lane changes, LC $_{\text {ALL }}$ Non-weaving vehicle index, $I_{\text {ww }}$				$\begin{array}{r} 83 \mathrm{lch} / \\ 724 \mathrm{lc/h} \\ 644 \mathrm{cch} \\ 1368 \mathrm{lc/h} \\ 0.154 \end{array}$
Weaving Segment Speed, Density, Level of Service, and Capacity									
Weaving segment flow rate, v Weaving segment capacity, c_{w} Weaving segment v / c ratio Weaving segment density, D Level of Service, LOS				2570 pc/h 9662 veh/h 0.253 $8.4 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ A	Weaving intensity factor, W Weaving segment speed, S Average weaving speed, S_{w} Average non-weaving speed, S_{NW} Maximum weaving length, $\mathrm{L}_{\text {MAX }}$				$\begin{array}{r} 0.154 \\ 61.0 \mathrm{mph} \\ 58.3 \mathrm{mph} \\ 61.9 \mathrm{mph} \\ 4914 \mathrm{ft} \end{array}$
Notes									
a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments". b. For volumes that exceed the weaving segment capacity, the level of service is "F".									
Copyright © 2010 University of Florida, All Rights Reserved HC									

FREEWAY WEAVING WORKSHEET									
General Information					Site Information				
Analyst Agency/Company Date Performed Analysis Time Period		XL HDR Engineering Inc. 12/27/2017 AM			Freeway/Dir of Travel Weaving Segment Location Analysis Year			107th Ave to Avondale Blvd2035	
Project Description SR 30 East HA (3+0)									
Inputs									
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{S} Freeway free-flow speed, FFS				$\begin{array}{r} \text { One-Sided } \\ 4 \\ 1675 \mathrm{ft} \\ 65 \mathrm{mph} \end{array}$	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type				$\begin{array}{r} \text { Freeway } \\ 15 \\ 2350 \\ \text { Leve } \\ \hline \end{array}$
Conversions to pc/h Under Base Conditions									
	V (veh/h)	PHF	Truck (\%)	RV (\%)	$\mathrm{E}_{\text {T }}$	E_{R}	f_{HV}	fp_{p}	V (pc/h)
$\mathrm{V}_{\text {FF }}$	1450	0.95	10	0	1.5	1.2	0.952	1.00	1603
$\mathrm{V}_{\text {RF }}$	375	0.95	10	0	1.5	1.2	0.952	1.00	414
$\mathrm{V}_{\text {FR }}$	150	0.95	10	0	1.5	1.2	0.952	1.00	166
$V_{\text {RR }}$	0	0.95	10	0	1.5	1.2	0.952	1.00	1603
V_{NW}	1603							$\mathrm{V}=$	2183
$v_{\text {w }}$	580								
VR	0.266								
Configuration Characteristics									
Minimum maneuver lanes, $\mathrm{N}_{\text {WL }}$ Interchange density, ID Minimum RF lane changes, $\mathrm{LC}_{\text {RF }}$ Minimum $F R$ lane changes, $L_{F R}$ Minimum RR lane changes, $\mathrm{LC}_{\mathrm{RR}}$				$0.83 \mathrm{int} / \mathrm{mi}$ $1 \mathrm{lc} / \mathrm{pc}$ $1 \mathrm{lc} / \mathrm{pc}$ Ic/pc	Minimum	ing lane	ges, L $L C_{N W}$ $I_{\text {ww }}$		$\begin{array}{r} 580 \mathrm{lc/h} \\ 955 \mathrm{lch} \\ 468 \mathrm{lch} \\ 1423 \mathrm{lch} \\ 0.199 \end{array}$
Weaving Segment Speed, Density, Level of Service, and Capacity									
Weaving segment flow rate, v Weaving segment capacity, c_{w} Weaving segment v/c ratio Weaving segment density, D Level of Service, LOS				2183 pc/h 7920 veh/h 0.263 $9.4 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ A	Weaving intensity factor, W Weaving segment speed, S Average weaving speed, S_{w} Average non-weaving speed, $S_{N W}$ Maximum weaving length, $L_{\text {max }}$				$\begin{array}{r} \hline 0.199 \\ 57.8 \mathrm{mph} \\ 56.7 \mathrm{mph} \\ 58.2 \mathrm{mph} \\ 5219 \mathrm{ft} \end{array}$
Notes									
a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments" b. For volumes that exceed the weaving segment capacity, the level of service is "F".									
Copyright © 2010 University of Florida, All Rights Reserved HCS $2010^{\text {TM }}$ Vers									

FREEWAY WEAVING WORKSHEET									
General Information					Site Information				
Analyst Agency/Company Date Performed Analysis Time Period		XL HDR Engineering Inc. 12/27/2017 AM			Freeway/Dir of Travel Weaving Segment Location Analysis Year			Bullard Ave to Estrella Pkwy2035	
Project Description SR 30 East HA ($3+0$)									
Inputs									
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS				$\begin{array}{r} \text { One-Sided } \\ 5 \\ 2085 \mathrm{ft} \\ 65 \mathrm{mph} \end{array}$	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type				Freeway 15 2350 Leve
Conversions to pc/h Under Base Conditions									
	V (veh/h)	PHF	Truck (\%)	RV (\%)	$\mathrm{E}_{\text {T }}$	E_{R}	f_{HV}	$\mathrm{fp}^{\text {p }}$	v (pc/h)
$\mathrm{V}_{\text {FF }}$	1025	0.95	10	0	1.5	1.2	0.952	1.00	1133
V_{RF}	525	0.95	10	0	1.5	1.2	0.952	1.00	580
$\mathrm{VFR}^{\text {F }}$	100	0.95	10	0	1.5	1.2	0.952	1.00	111
$\mathrm{V}_{\text {RR }}$	0	0.95	10	0	1.5	1.2	0.952	1.00	1133
$\mathrm{VNW}^{\text {N }}$	1133							$\mathrm{V}=$	1824
$\mathrm{v}_{\text {w }}$	691								
VR	0.379								
Configuration Characteristics									
Minimum maneuver lanes, N_{WL} Interchange density, ID Minimum RF lane changes, $L C_{R F}$ Minimum $F R$ lane changes, $L C_{F R}$ Minimum RR lane changes, $\mathrm{LC}_{\mathrm{RR}}$				$0.83 \mathrm{int} / \mathrm{mi}$ $0 \mathrm{lc} / \mathrm{pc}$ $1 \mathrm{lc} / \mathrm{pc}$ Ic/pc	Minimum weaving lane changes, LC_{M} Weaving lane changes, $L C_{w}$ Non-weaving lane changes, $\mathrm{LC}_{\mathrm{Nw}}$ Total lane changes, LC $_{\text {ALL }}$ Non-weaving vehicle index, $I_{\text {ww }}$				$\begin{array}{r} 580 \mathrm{lc} / \mathrm{h} \\ 1248 \mathrm{lc} / \mathrm{h} \\ 400 \mathrm{lc} / \mathrm{h} \\ 1648 \mathrm{lc} / \mathrm{h} \\ 0.188 \end{array}$
Weaving Segment Speed, Density, Level of Service, and Capacity									
Weaving segment flow rate, v Weaving segment capacity, c_{w} Weaving segment v / c ratio Weaving segment density, D Level of Service, LOS				1824 pc/h 6033 veh/h 0.288 $6.3 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ A	Weaving intensity factor, W Weaving segment speed, S Average weaving speed, S_{w} Average non-weaving speed, S_{NW} Maximum weaving length, $\mathrm{L}_{\text {MAX }}$				$\begin{array}{r} 0.188 \\ 58.3 \mathrm{mph} \\ 57.1 \mathrm{mph} \\ 59.1 \mathrm{mph} \\ 6445 \mathrm{ft} \end{array}$
Notes									
a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments". b. For volumes that exceed the weaving segment capacity, the level of service is "F".									
Copyright © 2010 University of Florida, All Rights Reserved									

FREEWAY WEAVING WORKSHEET									
General Information					Site Information				
Analyst Agency/Company Date Performed Analysis Time Period		XL HDR Engineering Inc. 12/26/2017 AM			Freeway/Dir of Travel Weaving Segment Location Analysis Year			Estrella Pkwy to Sarival Ave2035	
Project Description SR 30 East HA (3+0)									
Inputs									
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{S} Freeway free-flow speed, FFS				$\begin{array}{r} \text { One-Sided } \\ 5 \\ 2225 \mathrm{ft} \\ 65 \mathrm{mph} \end{array}$	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type				Freeway 15 2350 Leve
Conversions to pc/h Under Base Conditions									
	V (veh/h)	PHF	Truck (\%)	RV (\%)	$\mathrm{E}_{\text {T }}$	E_{R}	f_{HV}	$\mathrm{fp}^{\text {p }}$	v (pc/h)
$\mathrm{V}_{\text {FF }}$	750	0.95	10	0	1.5	1.2	0.952	1.00	829
$\mathrm{V}_{\text {RF }}$	375	0.95	10	0	1.5	1.2	0.952	1.00	414
$\mathrm{V}_{\text {FR }}$	75	0.95	10	0	1.5	1.2	0.952	1.00	83
$V_{\text {RR }}$	0	0.95	10	0	1.5	1.2	0.952	1.00	829
V_{NW}	829							$\mathrm{V}=$	1326
$v_{\text {w }}$	497								
VR	0.375								
Configuration Characteristics									
Minimum maneuver lanes, $\mathrm{N}_{\text {WL }}$ Interchange density, ID Minimum RF lane changes, $\mathrm{LC}_{\text {RF }}$ Minimum $F R$ lane changes, $L_{F R}$ Minimum RR lane changes, $\mathrm{LC}_{\mathrm{RR}}$				$0.83 \mathrm{int} / \mathrm{mi}$ $01 \mathrm{lc} / \mathrm{pc}$ $01 \mathrm{lc} / \mathrm{pc}$ Ic/pc	Minimum weaving lane changes, LC_{M} Weaving lane changes, $L C_{w}$ Non-weaving lane changes, $\mathrm{LC}_{\mathrm{Nw}}$ Total lane changes, $\mathrm{LC}_{\text {ALL }}$ Non-weaving vehicle index, I_{Nw}				$\begin{array}{r} 0 \mathrm{l} / \mathrm{h} \\ 694 \mathrm{lc} / \mathrm{h} \\ 414 \mathrm{lc} / \mathrm{h} \\ 1108 \mathrm{lc} / \mathrm{h} \\ 0.130 \end{array}$
Weaving Segment Speed, Density, Level of Service, and Capacity									
Weaving segment flow rate, v Weaving segment capacity, c_{w} Weaving segment v/c ratio Weaving segment density, D Level of Service, LOS				1326 pc/h 6098 veh/h 0.207 $4.3 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ A	Weaving intensity factor, W Weaving segment speed, S Average weaving speed, S_{w} Average non-weaving speed, S_{NW} Maximum weaving length, $L_{\text {max }}$				$\begin{array}{r} \hline 0.130 \\ 62.0 \mathrm{mph} \\ 59.2 \mathrm{mph} \\ 63.7 \mathrm{mph} \\ 6400 \mathrm{ft} \end{array}$
Notes									
a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments": b. For volumes that exceed the weaving segment capacity, the level of service is "F".									
Copyright © 2010 University of Florida, All Rights Reserved HCS $2010^{\text {TM }}$									

FREEWAY WEAVING WORKSHEET									
General Information					Site Information				
Analyst Agency/Company Date Performed Analysis Time Period		XL HDR Engineering Inc. 12/27/2017 AM			Freeway/Dir of Travel Weaving Segment Location Analysis Year			91st Ave to 83rd Ave2035	
Project Description SR 30 East HA (3+0)									
Inputs									
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS				$\begin{array}{r} \text { One-Sided } \\ 4 \\ 2055 \mathrm{ft} \\ 65 \mathrm{mph} \end{array}$	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type				Freeway 15 2350 Level
Conversions to pc/h Under Base Conditions									
	V (veh/h)	PHF	Truck (\%)	RV (\%)	E_{T}	E_{R}	f_{HV}	fp_{p}	v (pc/h)
$\mathrm{V}_{\text {FF }}$	7550	0.95	10	0	1.5	1.2	0.952	1.00	8345
$\mathrm{V}_{\text {RF }}$	125	0.95	10	0	1.5	1.2	0.952	1.00	138
$\mathrm{V}_{\text {FR }}$	975	0.95	10	0	1.5	1.2	0.952	1.00	1078
$V_{\text {RR }}$	0	0.95	10	0	1.5	1.2	0.952	1.00	8345
V_{NW}	8345							$\mathrm{V}=$	9561
$\mathrm{V}_{\text {w }}$	1216								
VR	0.127								
Configuration Characteristics									
Minimum maneuver lanes, $\mathrm{N}_{\text {WL }}$ Interchange density, ID Minimum RF lane changes, $\mathrm{LC}_{\mathrm{RF}}$ Minimum $F R$ lane changes, $\mathrm{LC}_{\mathrm{FR}}$ Minimum RR lane changes, $L_{R R}$					Minimum weaving lane changes, $\mathrm{LC}_{\text {MIN }}$ $\mathrm{Ic/h}$ Weaving lane changes, LC_{w} IC / h Non-weaving lane changes, $\mathrm{LC}_{\mathrm{NW}}$ $\mathrm{Ic/h}$ Total lane changes, $\mathrm{LC}_{\text {ALL }}$ Ic / h Non-weaving vehicle index, I_{NW}				
Weaving Segment Speed, Density, Level of Service, and Capacity									
Weaving segment flow rate, v Weaving segment capacity, c_{w} Weaving segment v / c ratio Weaving segment density, D Level of Service, LOS				9561 pc/h 8442 veh/h 1.079 $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ F	Weaving intensity factor, W Weaving segment speed, S Average weaving speed, S_{w} Average non-weaving speed, S_{NW} Maximum weaving length, $\mathrm{L}_{\text {MAX }}$				mph mph mph 3805 ft
Notes									
a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments". b. For volumes that exceed the weaving segment capacity, the level of service is "F".									

FREEWAY WEAVING WORKSHEET									
General Information					Site Information				
Analyst Agency/Company Date Performed Analysis Time Period		XL HDR Engineering Inc. 12/27/2017 AM			Freeway/Dir of Travel Weaving Segment Location Analysis Year			Avondale Blva to 107th Ave2035	
Project Description SR 30 East HA (3+0)									
Inputs									
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{S} Freeway free-flow speed, FFS				$\begin{array}{r} \text { One-Sided } \\ 4 \\ 1620 \mathrm{ft} \\ 65 \mathrm{mph} \end{array}$	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type				$\begin{array}{r} \text { Freeway } \\ 15 \\ 2350 \\ \text { Leve } \\ \hline \end{array}$
Conversions to pc/h Under Base Conditions									
	V (veh/h)	PHF	Truck (\%)	RV (\%)	$\mathrm{E}_{\text {T }}$	E_{R}	f_{HV}	$\mathrm{fp}^{\text {p }}$	v (pc/h)
$\mathrm{V}_{\text {FF }}$	6375	0.95	10	0	1.5	1.2	0.952	1.00	7046
$\mathrm{V}_{\text {RF }}$	75	0.95	10	0	1.5	1.2	0.952	1.00	83
$\mathrm{V}_{\text {FR }}$	975	0.95	10	0	1.5	1.2	0.952	1.00	1078
$V_{\text {RR }}$	0	0.95	10	0	1.5	1.2	0.952	1.00	7046
V_{NW}	7046							$\mathrm{V}=$	8207
$v_{\text {w }}$	1161								
VR	0.141								
Configuration Characteristics									
Minimum maneuver lanes, $\mathrm{N}_{\text {WL }}$ Interchange density, ID Minimum RF lane changes, $\mathrm{LC}_{\text {RF }}$ Minimum $F R$ lane changes, $L_{F R}$ Minimum RR lane changes, $\mathrm{LC}_{\mathrm{RR}}$				$0.83 \mathrm{int} / \mathrm{mi}$ $1 \mathrm{lc} / \mathrm{pc}$ $1 \mathrm{lc} / \mathrm{pc}$ Ic/pc	Minimum weaving lane changes, LC Weaving lane changes, $L C_{w}$ Non-weaving lane changes, $\mathrm{LC}_{\mathrm{Nw}}$ Total lane changes, $\mathrm{LC}_{\text {ALL }}$ Non-weaving vehicle index, $I_{\text {Nw }}$				$\begin{array}{r} 1161 \mathrm{lc/h} \\ 1529 \mathrm{lch} \\ 1559 \mathrm{lch} \\ 3088 \mathrm{lch} \\ 0.376 \end{array}$
Weaving Segment Speed, Density, Level of Service, and Capacity									
Weaving segment flow rate, v Weaving segment capacity, c_{w} Weaving segment v/c ratio Weaving segment density, D Level of Service, LOS				8207 pc/h 8274 veh/h 0.945 $3.3 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ E	Weaving intensity factor, W Weaving segment speed, S Average weaving speed, S_{w} Average non-weaving speed, S_{NW} Maximum weaving length, $L_{\text {max }}$				$\begin{array}{\|c\|} \hline 0.376 \\ 47.4 \mathrm{mph} \\ 51.3 \mathrm{mph} \\ 46.8 \mathrm{mph} \\ 3947 \mathrm{ft} \end{array}$
Notes									
a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments": b. For volumes that exceed the weaving segment capacity, the level of service is "F".									
fflorida, All Rights Reserved HCS 2010 ${ }^{\text {TM }}$ Vers									

FREEWAY WEAVING WORKSHEET									
General Information					Site Information				
Analyst Agency/Company Date Performed Analysis Time Period		XL HDR Engineering Inc. 12/27/2017 AM			Freeway/Dir of Travel Weaving Segment Location Analysis Year			Estrella Pkwy to Bullard Ave 2035	
Project Description SR 30 East HA ($3+0$)									
Inputs									
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS				$\begin{array}{r} \text { One-Sided } \\ 5 \\ 2100 \mathrm{ft} \\ 65 \mathrm{mph} \end{array}$	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type				Freeway 15 2350 Leve
Conversions to pc/h Under Base Conditions									
	V (veh/h)	PHF	Truck (\%)	RV (\%)	E_{T}	E_{R}	f_{HV}	$\mathrm{fp}^{\text {p }}$	v (pc/h)
$\mathrm{V}_{\text {FF }}$	5225	0.95	10	0	1.5	1.2	0.952	1.00	5775
$\mathrm{V}_{\text {R }}$	400	0.95	10	0	1.5	1.2	0.952	1.00	442
V_{FR}	1000	0.95	10	0	1.5	1.2	0.952	1.00	1105
V_{RR}	0	0.95	10	0	1.5	1.2	0.952	1.00	5775
V_{NW}	5775							V =	7322
$\mathrm{V}_{\text {w }}$	1547								
VR	0.211								
Configuration Characteristics									
Minimum maneuver lanes, N_{WL} Interchange density, ID Minimum RF lane changes, $\mathrm{LC}_{\mathrm{RF}}$ Minimum FR lane changes, $\mathrm{LC}_{\mathrm{FR}}$ Minimum RR lane changes, ${L C_{R R}}^{\text {R }}$				$21 c$ $0.83 \mathrm{int} / \mathrm{mi}$ $1 \mathrm{Ic} / \mathrm{pc}$ $0 \mathrm{lc} / \mathrm{pc}$ Ic/pc	Minimum weaving lane changes, LC Weaving lane changes, LC_{w} Non-weaving lane changes, $\mathrm{LC}_{\mathrm{Nw}}$ Total lane changes, $\mathrm{LC}_{\mathrm{ALL}}$ Non-weaving vehicle index, $I_{N W}$				$1105 \mathrm{lc} / \mathrm{h}$ $1776 \mathrm{Ic} / \mathrm{h}$ $1365 \mathrm{lc} / \mathrm{h}$ $3141 \mathrm{lc} / \mathrm{h}$ 0.311
Weaving Segment Speed, Density, Level of Service, and Capacity									
Weaving segment flow rate, v Weaving segment capacity, c Weaving segment v/c ratio Weaving segment density, D Level of Service, LOS				7322 pc/h 0262 veh/h 0.680 $8.9 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ D	Weaving intensity factor, W Weaving segment speed, S Average weaving speed, S_{w} Average non-weaving speed, S_{NW} Maximum weaving length, $L_{\text {max }}$				$\begin{array}{r} 0.311 \\ 50.6 \mathrm{mph} \\ 53.2 \mathrm{mph} \\ 50.0 \mathrm{mph} \\ 4652 \mathrm{ft} \end{array}$
a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments". b. For volumes that exceed the weaving segment capacity, the level of service is "F".									

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 12/29/2017 PM	Highway/Direction of Travel Eastbound From/To At 83rd Ave Jurisdiction ADOT Analysis Year 2035	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$4000 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h		
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 4 $\mathrm{ramps} / \mathrm{mi}$ mph mph	f Lw f LC TRD Adjustment FFS 65.0	mph mph mph mph
LOS and Performance Measures		Design (N)	
		Design (N) Design LOS $\mathrm{v}_{\mathrm{p}}=\left(\mathrm{V}\right.$ or DDHV) $/\left(\mathrm{PHF} \times \mathrm{N} \times \mathrm{f}_{\mathrm{HV}}\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times \mathrm{f}_{\mathrm{p}}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow	$\|$$E_{R}$ - Exhibits 11-10, 11-12 $f_{L W}$ - Exhibit 11-8 $E_{T}-$ Exhibits 11-10, 11-11, 11-13 $f_{L C}-$ Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$	

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 12/29/2017 PM	Highway/Direction of Travel Eastbound From/To At 91 st Ave Jurisliction ADOT Analysis Year 2035	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	$3525 \quad$veh/h veh/day veh/h	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 3 $\mathrm{ramps} / \mathrm{mi}$ mph mph	$\begin{aligned} & \mathrm{f} \mathrm{Lw} \\ & \mathrm{f} \text { LC } \\ & \text { fl } \\ & \text { TRD Adjustment } \\ & \text { FFS } \end{aligned}$	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\begin{aligned} & \text { Operational (LOS) } \\ & \begin{array}{l} v_{p}=(V \text { or DDHV) } /(\text { PHF } x \\ \left.\times f_{p}\right) \\ S \\ \text { }=v_{p} / S \\ \text { LOS } \end{array} \\ & \hline \end{aligned}$	$\mathrm{NXf}_{\mathrm{Hv}}{ }_{1299}$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ 65.0 mph 20.0 $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ C	$\begin{aligned} & \text { Design }(\mathrm{N}) \\ & \text { Design LOS } \\ & v_{p}=(V \text { or DDHV }) /\left(\text { PHF } \times N \times f_{H V}\right. \\ & \left.x f_{p}\right) \\ & S \\ & D=v_{p} / S \\ & \text { Required Number of Lanes, } N \end{aligned}$	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ mph $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow hour volume	$E_{R}-$ Exhibits 11-10, 11-12 $f_{L W}-$ Exhibit 11-8 $E_{T}-$ Exhibits 11-10, 11-11, 11-13 $f_{L C}-$ Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$	

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 12/29/2017 PM	Highway/Direction of Travel Eastbound From/To At 99th Ave Jurisdiction ADOT Analysis Year 2035	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$3675 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h		
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 3 $\mathrm{ramps} / \mathrm{mi}$ mph mph	f Lw flC TRD Adjustment FFS 65.0	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\mathrm{v}_{\mathrm{p}}=(\mathrm{V}$ or DDHV$) /\left(\right.$ PHF $\times N \times \mathrm{f}_{\mathrm{HV}}{ }_{1354}$ $\left.\mathrm{xf}_{\mathrm{p}}\right)$ S $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ S 65.0 mph $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ 60.8 $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ LOS C		Design LOS $v_{p}=(V$ or DDHV $) /\left(\right.$ PHF $\times N \times f_{H V}$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times f_{p}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $D=v_{\mathrm{p}} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow hour volume	$\begin{aligned} & \mathrm{E}_{\mathrm{R}} \text { - Exhibits 11-10, 11-12 } \\ & \mathrm{E}_{\mathrm{T}} \text { - Exhibits 11-10, 11-11, 11-13 } \\ & \mathrm{f}_{\mathrm{p}} \text { - Page 11-18 } \\ & \text { LOS, S, FFS, } \mathrm{v}_{\mathrm{p}} \text { - Exhibits 11-2, } \\ & 11-3 \end{aligned}$	$\begin{aligned} & \mathrm{f}_{\mathrm{LW}}-\text { Exhibit } 11-8 \\ & \mathrm{f}_{\mathrm{LC}}-\text { Exhibit } 11-9 \\ & \text { TRD - Page 11-11 } \end{aligned}$

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	HDR Engineering Inc. 12/29/2017 PM	Highway/Direction of Travel Eastbound From/To At 107th Ave Jurisdiction ADOT Analysis Year 2035	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) \square	\square Planning Data
Flow Inputs			
Volume, V AADT	$3375 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h	\%RVs, P_{R} 0 General Terrain: Level Grade Length mi Up/Down \%	
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 3 $\mathrm{ramps} / \mathrm{mi}$ mph mph 65.0	$\begin{aligned} & \mathrm{f} \mathrm{fw} \\ & \mathrm{fw} \\ & \mathrm{fLC} \\ & \text { TRD Adjustment } \\ & \text { FFS } \end{aligned}$	mph mph mph mph
LOS and Performance Measures		Design (N)	
		Design (N) Design LOS Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow hour volume	E_{R} - Exhibits 11-10, 11-12 $f_{L W}$ - Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 $f_{L C}$ - Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$	

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 12/29/2017 PM	Highway/Direction of Travel Eastbound From/To At Avondale Blval Jurisliction ADOT Analysis Year 2035	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$3050 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h		
Calculate Flow Adjustments			
		$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 3 $\mathrm{ramps} / \mathrm{mi}$ mph mph	$\begin{aligned} & \mathrm{f} \mathrm{fw} \\ & \mathrm{LW} \\ & \mathrm{fLC} \\ & \text { TRD Adjustment } \\ & \text { FFS } \end{aligned}$	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\begin{array}{lll} \hline \text { Operational }(\text { LOS }) \\ \hline v_{p}=\left(V \text { or DDHV) } /\left(\text { PHF } \times N \times f_{H v} 1124\right.\right. & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \left.\times f_{p}\right) & 65.0 & \mathrm{mph} \\ \mathrm{~S} & 17.3 & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \\ \mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & \mathrm{~B} & \\ \text { LOS } & \end{array}$		Design (N) Design LOS $\mathrm{v}_{\mathrm{p}}=(\mathrm{V}$ or DDHV$) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{HV}}\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times f_{\mathrm{p}}\right)$ mph S $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow	$\|$$E_{R}$ - Exhibits 11-10, 11-12 $f_{L W}$ - Exhibit 11-8 $E_{T}-$ Exhibits 11-10, 11-11, 11-13 $f_{L C}-$ Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$	

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 12/27/2017 PM	Highway/Direction of Travel Eastbound From/To At Bullard Ave Jurisdiction ADOT Analysis Year 2035	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	$2950 \quad$veh/h veh/day veh/h	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{aligned} & E_{R} \quad 1.2 \\ & f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{aligned}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 4 $\mathrm{ramps} / \mathrm{mi}$ mph mph	f Lw flC TRD Adjustment FFS 65.0	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\mathrm{v}_{\mathrm{p}}=(\mathrm{V}$ or DDHV$) /\left(\right.$ PHF $\times N \times \mathrm{f}_{\mathrm{Hv}} 815$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times f_{\mathrm{f}}\right)$ S 65.0 mph $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ 12.5 $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ LOS B		Design (N) Design LOS Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow	E_{R} - Exhibits 11-10, 11-12 $\mathrm{f}_{\mathrm{LW}}-$ Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 $\mathrm{f}_{\mathrm{LC}}-$ Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$	

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 12/29/2017 PM	 Highway/Direction of Travel Eastbound From/To At Dysart Rd Jurisdiction ADOT Analysis Year 2035	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$2925 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h		
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 3 $\mathrm{ramps} / \mathrm{mi}$ mph mph	f Lw f LC TRD Adjustment FFS 65.0	mph mph mph mph
LOS and Performance Measures		Design (N)	
		Design (N) Design LOS $\mathrm{v}_{\mathrm{p}}=\left(\mathrm{V}\right.$ or DDHV) $/\left(\mathrm{PHF} \times \mathrm{N} \times \mathrm{f}_{\mathrm{HV}}\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times \mathrm{f}_{\mathrm{p}}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow	$\|$$E_{R}$ - Exhibits 11-10, 11-12 $f_{L W}$ - Exhibit 11-8 $E_{T}-$ Exhibits 11-10, 11-11, 11-13 $f_{L C}-$ Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$	

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	HDR Engineering Inc. 12/27/2017 PM	Highway/Direction of Travel Eastbound From/To At Estrella Pkwy Jurisdiction ADOT Analysis Year 2035	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) \square	\square Planning Data
Flow Inputs			
Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	$2300 \quad$veh/h veh/day veh/h	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{aligned} & E_{R} \quad 1.2 \\ & f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{aligned}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 4 $\mathrm{ramps} / \mathrm{mi}$ mph mph	f Lw flC TRD Adjustment FFS 65.0	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\mathrm{v}_{\mathrm{p}}=(\mathrm{V}$ or DDHV) $) /\left(\right.$ PHF $\times N \times \mathrm{f}_{\mathrm{HV}}{ }_{636}$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times f_{\mathrm{p}}\right)$ S 65.0 mph $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ 9.8 $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ LOS A		Design (N) Design LOS Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow	E_{R} - Exhibits 11-10, 11-12 $\mathrm{f}_{\mathrm{LW}}-$ Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 $\mathrm{f}_{\mathrm{LC}}-$ Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$	

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 12/29/2017 PM	Highway/Direction of Travel Eastbound From/To East of Agua Fria River Jurisdiction ADOT Analysis Year 2035	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$2975 \quad$veh/h veh/day	 Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D $D D H V=A A D T \times K \times D$	veh/h	\%RVs, P_{R} 0 General Terrain: Level Grade Length mi Up/Down \%	
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{aligned} & E_{R} \quad 1.2 \\ & f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{aligned}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 3 $\mathrm{ramps} / \mathrm{mi}$ mph mph	f Lw mph f_{LC} mph TRD Adjustment mph FFS 65.0 mph	
LOS and Performance Measures		Design (N)	
$\begin{array}{lll} \begin{array}{l} \mathrm{v}_{\mathrm{p}}=(\mathrm{V} \text { or } \mathrm{DDHV}) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{Hv}} 1096\right. \\ \left.\times f_{\mathrm{p}}\right) \\ \mathrm{S} \end{array} & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & 65.0 & \mathrm{mph} \\ \text { LOS } & 16.9 & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \\ \hline \end{array}$		Design (N) Design LOS Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow	E_{R} - Exhibits 11-10, 11-12 $f_{L W}$ - Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 $f_{L C}-$ Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$	

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	HDR Engineering Inc. 12/29/2017 PM	Highway/Direction of Travel Eastbound From/To EI Mirage Rd Jurisdiction ADOT Analysis Year 2035	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) \square	\square Planning Data
Flow Inputs			
Volume, V AADT	$3125 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h	\%RVs, P_{R} 0 General Terrain: Level Grade Length mi Up/Down \%	
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 3 $\mathrm{ramps} / \mathrm{mi}$ mph mph 65.0	f Lw f LC TRD Adjustment FFS 65.0	mph mph mph mph
LOS and Performance Measures		Design (N)	
		Design (N) Design LOS Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow hour volume	E_{R} - Exhibits 11-10, 11-12 $f_{L W}$ - Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 $f_{L C}$ - Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$	

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 12/29/2017 PM	Highway/Direction of Travel Eastbound From/To West of Agua Fria River Jurisdiction ADOT Analysis Year 2035	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT $\times \mathrm{K} \times \mathrm{D}$	$2975 \quad$veh/h veh/day veh/h	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi 	
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{aligned} & E_{R} \quad 1.2 \\ & f_{H V}=1\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{aligned}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 4 $\mathrm{ramps} / \mathrm{mi}$ mph mph	f_{Lw} f_{LC} TRD Adjustment FFS 65.0	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\mathrm{v}_{\mathrm{p}}=(\mathrm{V}$ or DDHV$) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{HV}} 822\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times f_{\mathrm{p}}\right)$ S 65.0 mph $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ 12.6 $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ LOS B		Design (N) Design LOS $\mathrm{v}_{\mathrm{p}}=\left(\mathrm{V}\right.$ or DDHV) / (PHF $\times \mathrm{N} \times \mathrm{f}_{\mathrm{HV}}$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times \mathrm{f}_{\mathrm{p}}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow	$E_{R}-$ Exhibits 11-10, 11-12 $f_{L W}$ - Exhibit 11-8 $E_{T}-$ Exhibits 11-10, 11-11, 11-13 $f_{L C}-$ Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$	

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 12/29/2017 PM	Highway/Direction of Travel Westbound From/To At 83rd Ave Jurisdiction ADOT Analysis Year 2035	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$8225 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h		
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 4 $\mathrm{ramps} / \mathrm{mi}$ mph mph	f Lw fl LRD Adjustment FFS 65.0	mph mph mph mph
LOS and Performance Measures		Design (N)	
Operational (LOS) $\mathrm{v}_{\mathrm{p}}=(\mathrm{V}$ or DDHV) $/(\mathrm{PHF} \times \mathrm{Nxf}$ $\left.\times \mathrm{f}_{\mathrm{Hv}}\right)$ 2273 $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ S 54.2 mph $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ 41.9 $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ LOS E		Design (N) Design LOS $\mathrm{v}_{\mathrm{p}}=\left(\mathrm{V}\right.$ or DDHV) $/\left(\mathrm{PHF} \times \mathrm{N} \times \mathrm{f}_{\mathrm{HV}}\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times \mathrm{f}_{\mathrm{p}}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow	E_{R} - Exhibits 11-10, 11-12 $f_{L W}$ - Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 $f_{L C}$ - Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$	

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 12/29/2017 PM	Highway/Direction of Travel Westbound From/To At 107th Ave Jurisdiction ADOT Analysis Year 2035	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$7100 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 GeneralTerrain: Grade Length Up/Down \% Level mi	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h		
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 3 $\mathrm{ramps} / \mathrm{mi}$ mph mph	f Lw f LC TRD Adjustment FFS 65.0	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\begin{array}{lll} \hline \text { Operational }(\text { LOS }) & \\ \hline v_{p}=\left(V \text { or DDHV) } /\left(\text { PHF } \times N \times f_{H v} 2616\right.\right. & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \left.\times f_{p}\right) & 44.0 & \mathrm{mph} \\ \mathrm{~S} & 59.4 & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \\ \mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & \mathrm{~F} & \\ \text { LOS } & \end{array}$		Design (N) Design LOS $\mathrm{v}_{\mathrm{p}}=\left(\mathrm{V}\right.$ or DDHV) $/\left(\mathrm{PHF} \times \mathrm{N} \times \mathrm{f}_{\mathrm{HV}}\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times \mathrm{f}_{\mathrm{p}}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $D=v_{p} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow	$\|$$E_{R}$ - Exhibits 11-10, 11-12 $f_{L W}$ - Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 $f_{L C}$ - Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS,v_{p} - Exhibits 11-2, $11-3$	

BASIC FREEWAY SEGMENTS WORKSHEET				
General Information		Site Information		
Analyst Agency or Company Date Performed Analysis Time Period	HDR Engineering Inc. 12/29/2017 PM	Highway/Direction of Travel Westbound From/To At Avondale Blvd Jurisdiction ADOT Analysis Year 2035		
Project Description SR 30 East HA (3+0)				
\square Oper.(LOS) \square		Des.(N)	\square Planning Data	
Flow Inputs				
Volume, V AADT	veh/h veh/day	Peak-Hour Factor, PHF 0.95	$.95$	
Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h	\%RVs, P_{R} 0 General Terrain: Level Grade \% Length Up/Down \%	evel	
Calculate Flow Adjustments				
	1.00	$\mathrm{E}_{\mathrm{R}} \quad 1.2$		
$\mathrm{E}_{\text {T }}$	1.5	$\mathrm{f}_{\mathrm{HV}}=11\left[1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right] 0.952$		
Speed Inputs		Calc Speed Adj and FFS		
Lane Width	ft			
Rt-Side Lat. Clearance	3	${ }_{\text {f }}$	$\begin{aligned} & \mathrm{mph} \\ & \mathrm{mph} \end{aligned}$	
Number of Lanes, N		${ }_{\text {f }}$		
Total Ramp Density, TRD	ramps/mi	TRD Adjustment		
FFS (measured)	65.0	FFS 65.0	mph	
Base free-flow Speed, BFFS	mph			
LOS and Performance Measures		Design (N)		
Operational (LOS)		Design (N)		
		Design LOS		
$\mathrm{v}_{\mathrm{p}}=\left(\mathrm{V}\right.$ or DDHV) $/\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{Hv}}^{2321 \quad \mathrm{pc} / \mathrm{h} / \mathrm{h}}\right.$		$\left(\begin{array}{l} p_{p}-1 \\ \left.\times f_{p}\right) \\ S \end{array}\right.$	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$	
	53.0 mph			
$D=v_{p} / \mathrm{S}$	$43.8 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$	$D=v_{p} / S$	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$	
LOS	E	Required Number of Lanes, N		
Glossary		Factor Location		
N - Number of lanes	s - Speed	E_{R} - Exhibits 11-10, 11-12 E_{T} - Exhibits 11-10, 11-11, 11-13	$\mathrm{f}_{\text {Lw }}$ - Exhibit 11-8	
V - - Hourly volume	D - Density FFS - Free-flow speed		$\mathrm{f}_{\text {LC }}$ - Exhibit 11-9	
v_{p} - Flow rate		$\left\{\begin{array}{l} \mathrm{f}_{\mathrm{p}} \text { - Page 11-18 } \\ \text { LOS, S, FFS, } \mathrm{v}_{\mathrm{p}} \text { - Exhibits 11-2, } \\ 11-3 \end{array}\right.$		
LOS - Level of service	BFFS - Base free-flow			
DDHV - Directional design hour volume				

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	HDR Engineering Inc. 12/29/2017 PM	Highway/Direction of Travel Westbound From/To At Dysart Rd Jurisdiction ADOT Analysis Year 2035	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) \square	\square Planning Data
Flow Inputs			
Volume, V AADT	$6075 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h	\%RVs, P_{R} 0 General Terrain: Level Grade Length mi Up/Down \%	
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 3 $\mathrm{ramps} / \mathrm{mi}$ mph mph 65.0	f Lw f LC TRD Adjustment FFS 65.0	mph mph mph mph
LOS and Performance Measures		Design (N)	
		Design (N) Design LOS Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow hour volume	E_{R} - Exhibits 11-10, 11-12 $f_{L W}$ - Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 $f_{L C}$ - Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$	

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 12/27/2017 PM	Highway/Direction of Travel Westbound From/To At Estrella Pkwy Jurisdiction ADOT Analysis Year 2035	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$5550 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h		
Calculate Flow Adjustments			
$\begin{aligned} & \mathrm{f}_{\mathrm{p}} \\ & \mathrm{E}_{\mathrm{T}} \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 5 $\mathrm{ramps} / \mathrm{mi}$ mph mph	f Lw flC TRD Adjustment FFS 65.0	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\begin{array}{lll} \hline \text { Operational }(\text { LOS }) & \\ \hline \mathrm{v}_{\mathrm{p}}=\left(\mathrm{V} \text { or DDHV) } /\left(\mathrm{PHF} \times \mathrm{N} \times \mathrm{f}_{\mathrm{Hv}} 1227\right.\right. & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \left.\times \mathrm{f}_{\mathrm{p}}\right) & & \\ \mathrm{S} & 65.0 & \mathrm{mph} \\ \mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & 18.9 & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \\ \text { LOS } & \mathrm{C} & \end{array}$		Design (N) Design LOS $\mathrm{v}_{\mathrm{p}}=\left(\mathrm{V}\right.$ or DDHV) $/\left(\mathrm{PHF} \times \mathrm{N} \times \mathrm{f}_{\mathrm{HV}}\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times \mathrm{f}_{\mathrm{p}}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow	$\|$$E_{R}$ - Exhibits 11-10, 11-12 $f_{L W}$ - Exhibit 11-8 $E_{T}-$ Exhibits 11-10, 11-11, 11-13 $f_{L C}-$ Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$	

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 12/29/2017 PM	Highway/Direction of Travel Westbound From/To At Sarival Ave Jurisdiction ADOT Analysis Year 2035	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	$4825 \quad$veh/h veh/day veh/h	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{aligned} & E_{R} \quad 1.2 \\ & f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{aligned}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 5 $\mathrm{ramps} / \mathrm{mi}$ mph mph	f Lw flC TRD Adjustment FFS 65.0	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\mathrm{v}_{\mathrm{p}}=(\mathrm{V}$ or DDHV$) /\left(\right.$ PHF $\times N \times \mathrm{f}_{\mathrm{Hv}} 1067$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times f_{\mathrm{f}}\right)$ S 65.0 mph $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ 16.4 $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ LOS B		Design (N) Design LOS Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow	$E_{R}-$ Exhibits 11-10, 11-12 $f_{L W}$ - Exhibit 11-8 $E_{T}-$ Exhibits 11-10, 11-11, 11-13 $f_{L C}-$ Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$	

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 12/29/2017 PM	Highway/Direction of Travel Westbound From/To East of Agua Fria River Jurisdiction ADOT Analysis Year 2035	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT $\times \mathrm{K} \times \mathrm{D}$	$6450 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi 	
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{aligned} & E_{R} \quad 1.2 \\ & f_{H V}=1\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{aligned}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 3 $\mathrm{ramps} / \mathrm{mi}$ mph mph	f_{Lw} f_{LC} TRD Adjustment FFS 65.0	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\mathrm{v}_{\mathrm{p}}=(\mathrm{V}$ or DDHV$) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{Hv}}^{2376}\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\mathrm{xf}_{\mathrm{p}}\right)$ S 51.5 mph $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ 46.1 $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ LOS F		Design (N) Design LOS $\mathrm{v}_{\mathrm{p}}=\left(\mathrm{V}\right.$ or DDHV) / (PHF $\times \mathrm{N} \times \mathrm{f}_{\mathrm{HV}}$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times \mathrm{f}_{\mathrm{p}}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow	$E_{R}-$ Exhibits 11-10, 11-12 $f_{L W}$ - Exhibit 11-8 $E_{T}-$ Exhibits 11-10, 11-11, 11-13 $f_{L C}-$ Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$	

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 12/29/2017 PM	Highway/Direction of Travel Westbound From/To West of 91 st Ave Jurisdiction ADOT Analysis Year 2035	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$7350 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h		
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 3 $\mathrm{ramps} / \mathrm{mi}$ mph mph	$\begin{aligned} & \mathrm{f} \mathrm{fw} \\ & \mathrm{LW} \\ & \mathrm{fLC} \\ & \text { TRD Adjustment } \\ & \text { FFS } \end{aligned}$	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\begin{array}{lll} \begin{array}{l} \mathrm{v}_{\mathrm{p}}=(\mathrm{V} \text { or } \mathrm{DDHV}) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{Hv}}^{2708}\right. \\ \left.\mathrm{xf} \mathrm{f}_{\mathrm{p}}\right) \end{array} & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \mathrm{~S} & 40.7 & \mathrm{mph} \\ \mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & 66.5 & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \\ \mathrm{LOS} & \mathrm{~F} & \end{array}$		Design (N) Design LOS $\mathrm{v}_{\mathrm{p}}=(\mathrm{V}$ or DDHV $) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{HV}}\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times \mathrm{f}_{\mathrm{p}}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $D=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow hour volume	$\|$$E_{R}$ - Exhibits 11-10, 11-12 $f_{L W}$ - Exhibit 11-8 $E_{T}-$ Exhibits 11-10, 11-11, 11-13 $f_{L C}-$ Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$	

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 12/29/2017 PM	Highway/Direction of Travel Westbound From/To West of Agua Fria River Jurisdiction ADOT Analysis Year 2035	
Project Description SR 30 East HA (3+0)			
\checkmark Oper.(LOS) \square		Des.(N) \square	\square Planning Data
Flow Inputs			
Volume, V AADT	$6450 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h	\%RVs, P_{R} 0 General Terrain: Level Grade \% Length mi Up/Down \%	
Calculate Flow Adjustments			
	1.00	$\begin{aligned} & E_{R} \quad 1.2 \\ & f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{aligned}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 4 $\mathrm{ramps} / \mathrm{mi}$ mph mph	f Lw f LC TRD Adjustment FFS 65.0	mph mph mph mph
LOS and Performance Measures		Design (N)	
		Design (N) Design LOS $\mathrm{v}_{\mathrm{p}}=(\mathrm{V}$ or DDHV $) /\left(\mathrm{PHF} \times \mathrm{N} \times \mathrm{f}_{\mathrm{HV}}\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times \mathrm{f}_{\mathrm{p}}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design hou	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow hour volume	$\|$$E_{R}$ - Exhibits 11-10, 11-12 f_{LW} - Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 f_{LC} - Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS,v_{p} - Exhibits 11-2, $11-3$	

RAMPS AND RAMP JUNCTIONS WORKSHEET																					
General Information				Site Information																	
Analyst ${ }^{\text {a }}$	XL			eeway DDi of Travel		astbound															
				83rd ON Ramp																	
Date Performed	12292/2017								urisdicition												
Analysis Time Period PM				Jurisidition		${ }^{\text {ADOT }}$															
Project Description SR 30 East HA (3+0)																					
Inputs																					
Upstream Adj Ramp		Number of Lanes, N		4					Downstream Adj Ramp												
		Acceleration Lane Length, L_{A}		1500																	
VYes VOn		Deceleration Lane Length L_{D}							$\square \mathrm{Y}$	\square on											
\square No \square Off				4000					$\checkmark \mathrm{N}$	Off											
\square No \square Off		Ramp Volume, V_{R}								ft											
4300 ft				47565.0																	
$\mathrm{v}_{\mathrm{u}}=125 \mathrm{veh} / \mathrm{h}$		Ramp Free-Flow Speed, $\mathrm{S}_{\text {FR }}$		55.0					$v_{\text {D }}=$	veh/h											
Conversion to pc/h Under Base Conditions																					
(pch ${ }^{\text {c }}$	$\begin{gathered} V \\ \text { (Vehhlr) } \end{gathered}$	PHF	Terrain	\%Truck	\%Rv		$\mathrm{HV}^{\text {r }}$	f_{p}	$\mathrm{v}=\mathrm{V} / \mathrm{P}$	$\mathrm{ff}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}$											
Freeway	4000	0.95	Level	10	0	0.9	952	1.00													
Ramp	475	0.95	Level	10	0	0.9	952	1.00													
UpStream	125	0.95	Level	10	0	0.9	52	1.00													
DownStream																					
Merge Areas					Diverge Areas																
Estimation of v_{12}					Estimation of v_{12}																
	$\begin{aligned} & \hline \hline \mathrm{V}_{12}=\mathrm{V}_{\mathrm{F}}\left(\mathrm{P}_{\mathrm{FM}}\right) \\ & \text { (Equation 13-6 or 13-7) } \end{aligned}$				$v_{12}=V_{R}+\left(V_{F}-V_{R}\right) P_{F D}$																
-Ee=																					
$\mathrm{PFM}=$	0.152 using Equation (Exribit 13-6)					using Equation (Exhibit 13-7)															
$\mathrm{V}_{12}=$	673 pc/h				$\mathrm{V}_{12}=$	polh															
V_{3} or $\mathrm{Vav34}^{\text {a }}$	$\begin{aligned} & 1874 \\ & 177 \end{aligned}$	polh (Equation 13-14 or 13-			V_{3} or $\mathrm{Var34}^{\text {a }}$	pch (Equation 13-14 or 13-17)															
$1 \mathrm{ls} \mathrm{V}_{3}$ or $\mathrm{V}_{\text {ar3 }}>2,700$ pch h ? \square Yes $\square \mathrm{No}$					Is V_{3} or $\mathrm{V}_{\text {ar3 }}>2,700 \mathrm{pch}$? $\square \mathrm{Yes} \square \mathrm{No}$																
Is V_{3} or $V_{\text {al3 }} \gg 1.5{ }^{*} V_{12} / 2 \quad \square \mathrm{Yes} \square \mathrm{No}$								$\begin{aligned} & \square \text { Yes } \square \text { No } \\ & \text { pc/h (Equation 13-16, 13-18, or } \\ & 13 \text {-19) } \end{aligned}$													
fr Yes, $V_{12 \mathrm{la}}=$	1768	$\mathrm{pc} / \mathrm{h} \text { (Equatic }$ $(13-19)$	13-16, 13-		fres, $V_{12 \mathrm{a}}=$																
Capacity Checks					Capacity Checks																
	Actual	Capacity		LOS F?		Actual		Capacity		LOS F?											
V_{FO}	4946	Exhibit 13-8		No	V_{F}			Exhibit 13-8													
					$\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}$			Exhibit 13-8													
					V_{R}			Exxibit 10-													
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area																
	Actual	Max Desirable		Violation?			ctual	Max Desira	rable	Violation?											
$\mathrm{V}_{\text {R12 }}$	2293	Exhibit 13-8\|	4600:Al	No	V_{12}			xxibit 13-8													
Level of Service Determination (if not F)					Level of Service Determination (if not F)																
$\begin{aligned} & D_{R}=5.475+0.00734 \mathrm{v}_{\mathrm{R}}+0.0078 \mathrm{~V}_{12}-0.00627 \mathrm{~L}_{\mathrm{A}} \\ \mathrm{C}_{\mathrm{R}} & =13.7(\text { pccmiln }) \\ \mathrm{OS}= & \mathrm{B}(\text { (Exhibitit } 13-2) \end{aligned}$					$\begin{aligned} & \mathrm{D}_{\mathrm{R}}=4.252+0.0086 \mathrm{~V}_{12}-0.009 \mathrm{~L}_{\mathrm{D}} \\ & \mathrm{C}_{\mathrm{R}}= \text { (pc/milln) } \\ & \text { Los }= \text { (Exhibit 13-2) } \\ & \hline \end{aligned}$																
Speed Determination					Speed Determination																
$M_{\mathrm{S}}=$ 0.195 (Exibit 13-11) $S_{\mathrm{R}}=$ 60.5 mph (Exhibit 13-11) $S_{0}=$ 62.0 mph (Exhibit 13-11) $S_{=}=$ 61.3 mph (Exhibit 13-13)					$\mathrm{s}_{\mathrm{s}}=$ (Exxibit 13-12) $\mathrm{s}_{\mathrm{R}}=$ mph (Exhibit 13-12) $\mathrm{s}_{0}=$ mph (Exhibit 13-12) $\mathrm{s}=$ mph (Exibitit 13-13)																

FREEWAY WEAVING WORKSHEET									
General Information					Site Information				
Analyst Agency/Company Date Performed Analysis Time Period		XL HDR Engineering Inc. 12/26/2017 PM			Freeway/Dir of Travel Weaving Segment Location Analysis Year			Sarival Ave to Estrella Pkwy2035	
Project Description SR 30 East HA (3+0)									
Inputs									
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{S} Freeway free-flow speed, FFS				$\begin{array}{r} \text { One-Sided } \\ 5 \\ 2200 \mathrm{ft} \\ 65 \mathrm{mph} \end{array}$	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type				$\begin{array}{r} \text { Freeway } \\ 15 \\ 2350 \\ \text { Leve } \\ \hline \end{array}$
Conversions to pc/h Under Base Conditions									
	V (veh/h)	PHF	Truck (\%)	RV (\%)	$\mathrm{E}_{\text {T }}$	E_{R}	f_{HV}	fp_{p}	v (pc/h)
$\mathrm{V}_{\text {FF }}$	1900	0.95	10	0	1.5	1.2	0.952	1.00	2100
$\mathrm{V}_{\text {RF }}$	100	0.95	10	0	1.5	1.2	0.952	1.00	111
$\mathrm{V}_{\text {FR }}$	400	0.95	10	0	1.5	1.2	0.952	1.00	442
$V_{\text {RR }}$	0	0.95	10	0	1.5	1.2	0.952	1.00	2100
V_{NW}	2100							$\mathrm{V}=$	2653
$v_{\text {w }}$	553								
VR	0.208								
Configuration Characteristics									
Minimum maneuver lanes, $\mathrm{N}_{\text {WL }}$ Interchange density, ID Minimum RF lane changes, $\mathrm{LC}_{\text {RF }}$ Minimum $F R$ lane changes, $L_{F R}$ Minimum RR lane changes, $\mathrm{LC}_{\mathrm{RR}}$					Minimum weaving lane changes, $\mathrm{LC}_{\text {MI }}$ Weaving lane changes, $L C_{w}$ Non-weaving lane changes, $\mathrm{LC}_{\mathrm{Nw}}$ Total lane changes, $\mathrm{LC}_{\mathrm{ALL}}$ Non-weaving vehicle index, $I_{\text {Nw }}$				$\begin{array}{r} 442 \mathrm{lc/h} \\ 1131 \mathrm{lc/h} \\ 662 \mathrm{lc/h} \\ 1793 \mathrm{lc/h} \\ 0.192 \end{array}$
Weaving Segment Speed, Density, Level of Service, and Capacity									
Weaving segment flow rate, v Weaving segment capacity, c_{w} Weaving segment v/c ratio Weaving segment density, D Level of Service, LOS				2653 pc/h 0310 veh/h 0.245 $9.0 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ A	Weaving intensity factor, W Weaving segment speed, S Average weaving speed, S_{w} Average non-weaving speed, S_{NW} Maximum weaving length, $L_{\text {max }}$				$\begin{array}{r} \hline 0.192 \\ 58.8 \mathrm{mph} \\ 56.9 \mathrm{mph} \\ 59.3 \mathrm{mph} \\ 4623 \mathrm{ft} \end{array}$
Notes									
a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures ofChapter 13, "Freeway Merge and Diverge Segments". b. For volumes that exceed the weaving segment capacity, the level of service is "F".									
Copyright © 2010 University of Florida, All Rights Reserved									

FREEWAY WEAVING WORKSHEET									
General Information					Site Information				
Analyst Agency/Company Date Performed Analysis Time Period		XL HDR Engineering Inc. 12/29/2017 PM			Freeway/Dir of Travel Weaving Segment Location Analysis Year			83rd Ave to 91st Ave2035	
Project Description SR 30 East HA (3+0)									
Inputs									
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS			One-Sided 2220ft 65 mph		Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type				D Roadway Multilane Highways 15 2350 Level
Conversions to pc/h Under Base Conditions									
	V (veh/h)	PHF	Truck (\%)	RV (\%)	$\mathrm{E}_{\text {T }}$	E_{R}	f_{Hv}	$\mathrm{fp}^{\text {p }}$	v (pc/h)
$\mathrm{V}_{\text {FF }}$	7175	0.95	10	0	1.5	1.2	0.952	1.00	7930
$\mathrm{V}_{\text {RF }}$	1050	0.95	10	0	1.5	1.2	0.952	1.00	1161
$\mathrm{V}_{\text {FR }}$	175	0.95	10	0	1.5	1.2	0.952	1.00	193
V_{RR}	0	0.95	10	0	1.5	1.2	0.952	1.00	7930
V_{Nw}	7930							$\mathrm{V}=$	9284
$\mathrm{V}_{\text {w }}$	1354								
VR	0.146								
Configuration Characteristics									
Minimum maneuver lanes, N_{WL} Interchange density, ID Minimum RF lane changes, $L_{\text {RF }}$ Minimum $F R$ lane changes, $L_{F R}$ Minimum RR lane changes, L^{R} RR					\|linimum	ng lane	ges, L $\mathrm{LC}_{\mathrm{NW}}$ $I_{N W}$		$193 \mathrm{lc} / \mathrm{h}$ 834 Ic/h $1874 \mathrm{lc} / \mathrm{h}$ $2708 \mathrm{lc} / \mathrm{h}$ 0.264
Weaving Segment Speed, Density, Level of Service, and Capacity									
Weaving segment flow rate, v Weaving segment capacity, c Weaving segment v / c ratio Weaving segment density, D Level of Service, LOS				9284 pc/h 548 veh/h 0.838 $4.0 \mathrm{pc} / \mathrm{milln}$ D	Weaving intensity factor, W Weaving segment speed, S Average weaving speed, S_{w} Average non-weaving speed, S_{Nw} Maximum weaving length, $L_{\text {max }}$				0.264 54.7 mph 54.5 mph 54.7 mph 3990 ft
Notes									
a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments" b. For volumes that exceed the weaving segment capacity, the level of service is "F".									
Copyright © 2010 University of Florida, All Rights Reserved					HCS $2010^{\text {TM }}$ Version 6.1			rated:	10:52

FREEWAY WEAVING WORKSHEET									
General Information					Site Information				
Analyst Agency/Company Date Performed Analysis Time Period		XL HDR Engineering Inc. 12/27/2017 PM			Freeway/Dir of Travel Weaving Segment Location Analysis Year			Bullard Ave to Estrella Pkwy2035	
Project Description SR 30 East HA (3+0)									
Inputs									
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{S} Freeway free-flow speed, FFS				$\begin{array}{r} \text { One-Sided } \\ 5 \\ 2085 \mathrm{ft} \\ 65 \mathrm{mph} \end{array}$	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type				$\begin{array}{r} \text { Freeway } \\ 15 \\ 2350 \\ \text { Level } \end{array}$
Conversions to pc/h Under Base Conditions									
	V (veh/h)	PHF	Truck (\%)	RV (\%)	$\mathrm{E}_{\text {T }}$	E_{R}	f_{HV}	$\mathrm{fp}^{\text {p }}$	v (pc/h)
$\mathrm{V}_{\text {FF }}$	5100	0.95	10	0	1.5	1.2	0.952	1.00	5637
$\mathrm{V}_{\text {RF }}$	925	0.95	10	0	1.5	1.2	0.952	1.00	1022
FR	450	0.95	10	0	1.5	1.2	0.952	1.00	497
V_{RR}	0	0.95	10	0	1.5	1.2	0.952	1.00	5637
N_{NW}	5637							$\mathrm{V}=$	7156
$\mathrm{V}_{\text {w }}$	1519								
VR	0.212								
Configuration Characteristics									
Minimum maneuver lanes, N_{WL} Interchange density, ID Minimum RF lane changes, $\mathrm{LC}_{\text {RF }}$ Minimum FR lane changes, $L^{\text {FR }}$ Minimum RR lane changes, $\mathrm{LC}_{\mathrm{RR}}$				$0.83 \mathrm{int} / \mathrm{mi}$ $01 \mathrm{lc} / \mathrm{pc}$ $1 \mathrm{lc} / \mathrm{pc}$ Ic/pc	Minimum weaving lane changes, LC_{M} Weaving lane changes, $L C_{w}$ Non-weaving lane changes, $\mathrm{LC}_{\mathrm{Nw}}$ Total lane changes, $\mathrm{LC}_{\text {ALL }}$ Non-weaving vehicle index, I_{Nw}				$\begin{aligned} & 1022 \mathrm{lc/h} \\ & 169 \mathrm{lc/h} \\ & 1328 \mathrm{lc/h} \\ & 3018 \mathrm{lc/h} \\ & 0.303 \end{aligned}$
Weaving Segment Speed, Density, Level of Service, and Capacity									
Weaving segment flow rate, v Weaving segment capacity, c_{w} Weaving segment v/c ratio Weaving segment density, D Level of Service, LOS				7156 pc/h 0252 veh/h 0.665 $7.9 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ C	Weaving intensity factor, W Weaving segment speed, S Average weaving speed, S_{w} Average non-weaving speed, S_{NW} Maximum weaving length, $L_{\text {max }}$				$\begin{array}{r} 0.303 \\ 51.3 \mathrm{mph} \\ 53.4 \mathrm{mph} \\ 50.8 \mathrm{mph} \\ 4662 \mathrm{ft} \end{array}$
Notes									
a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures ofChapter 13, "Freeway Merge and Diverge Segments". b. For volumes that exceed the weaving segment capacity, the level of service is "F".									
Copyright © 2010 University of Florida, All Rights Reserved HCS 2010 ${ }^{\text {TM }}$ Vers									

FREEWAY WEAVING WORKSHEET									
General Information					Site Information				
Analyst Agency/Company Date Performed Analysis Time Period		XL HDR Engineering Inc. 12/26/2017 PM			Freeway/Dir of Travel Weaving Segment Location Analysis Year			Estrella Pkwy to Sarival Ave2035	
Project Description SR 30 East HA (3+0)									
Inputs									
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS				$\begin{array}{r} \text { One-Sided } \\ 5 \\ 2225 \mathrm{ft} \\ 65 \mathrm{mph} \end{array}$	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type				$\begin{array}{r} \text { Freeway } \\ 15 \\ 2350 \\ \text { Leve } \\ \hline \end{array}$
Conversions to pc/h Under Base Conditions									
	V (veh/h)	PHF	Truck (\%)	RV (\%)	$\mathrm{E}_{\text {T }}$	E_{R}	f_{HV}	fp_{p}	v (pc/h)
$\mathrm{V}_{\text {FF }}$	4775	0.95	10	0	1.5	1.2	0.952	1.00	5278
$\mathrm{V}_{\text {RF }}$	775	0.95	10	0	1.5	1.2	0.952	1.00	857
$\mathrm{V}_{\text {FR }}$	50	0.95	10	0	1.5	1.2	0.952	1.00	55
$V_{\text {RR }}$	0	0.95	10	0	1.5	1.2	0.952	1.00	5278
V_{NW}	5278							$\mathrm{V}=$	6190
$v_{\text {w }}$	912								
VR	0.147								
Configuration Characteristics									
Minimum maneuver lanes, $\mathrm{N}_{\text {WL }}$ Interchange density, ID Minimum RF lane changes, $\mathrm{LC}_{\text {RF }}$ Minimum $F R$ lane changes, $L_{F R}$ Minimum RR lane changes, $\mathrm{LC}_{\mathrm{RR}}$				$0.83 \mathrm{int} / \mathrm{mi}$ $01 \mathrm{lc} / \mathrm{pc}$ $01 \mathrm{lc} / \mathrm{pc}$ Ic/pc	Minimum weaving lane changes, $\mathrm{LC}_{\text {MI }}$ Weaving lane changes, $L C_{w}$ Non-weaving lane changes, $\mathrm{LC}_{\mathrm{Nw}}$ Total lane changes, $\mathrm{LC}_{\mathrm{ALL}}$ Non-weaving vehicle index, $I_{\text {Nw }}$				$\begin{array}{r} 0 \mathrm{lc/h} \\ 694 \mathrm{lch} \\ 1330 \mathrm{lch} \\ 2024 \mathrm{lch} \\ 0.210 \end{array}$
Weaving Segment Speed, Density, Level of Service, and Capacity									
Weaving segment flow rate, v Weaving segment capacity, c_{w} Weaving segment v/c ratio Weaving segment density, D Level of Service, LOS				6190 pc/h 0543 veh/h 0.559 $1.1 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ C	Weaving intensity factor, W Weaving segment speed, S Average weaving speed, S_{w} Average non-weaving speed, S_{NW} Maximum weaving length, $L_{\text {max }}$				$\begin{array}{r} \hline 0.210 \\ 58.6 \mathrm{mph} \\ 56.3 \mathrm{mph} \\ 59.1 \mathrm{mph} \\ 4005 \mathrm{ft} \end{array}$
Notes									
a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments", b. For volumes that exceed the weaving segment capacity, the level of service is "F".									
Vers									

FREEWAY WEAVING WORKSHEET									
General Information					Site Information				
Analyst Agency/Company Date Performed Analysis Time Period		XL HDR Engineering Inc. 12/27/2017 PM			Freeway/Dir of Travel Weaving Segment Location Analysis Year			Avondale Blvd to 107th Ave2035	
Project Description SR 30 East HA ($3+0$)									
Inputs									
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS				One-Sided 1620ft 65 mph	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\text {IFL }}$ Terrain type				Freeway $\begin{aligned} & 10 \\ & 2350 \end{aligned}$ Leve
Conversions to pc/h Under Base Conditions									
	V (veh/h)	PHF	Truck (\%)	RV (\%)	$\mathrm{E}_{\text {T }}$	E_{R}	f_{Hv}	$\mathrm{fp}^{\text {p }}$	v (pc/h)
V_{FF}	2875	0.95	10	0	1.5	1.2	0.952	1.00	3178
$\mathrm{V}_{\text {RF }}$	150	0.95	10	0	1.5	1.2	0.952	1.00	166
$\mathrm{V}_{\text {FR }}$	500	0.95	10	0	1.5	1.2	0.952	1.00	553
$\mathrm{VRR}^{\text {R }}$	0	0.95	10	0	1.5	1.2	0.952	1.00	3178
$\mathrm{V}_{\text {NW }}$	3178							$\mathrm{V}=$	3897
$\mathrm{v}_{\text {w }}$	719								
VR	0.185								
Configuration Characteristics									
Minimum maneuver lanes, N_{WL} Interchange density, ID Minimum RF lane changes, $\mathrm{LC}_{\mathrm{RF}}$ Minimum FR lane changes, $\mathrm{LC}_{\mathrm{FR}}$ Minimum RR lane changes, $\mathrm{LC}_{\text {RR }}$				2 lc $0.83 \mathrm{int} / \mathrm{mi}$ $1 \mathrm{lc} / \mathrm{pc}$ $1 \mathrm{lc} / \mathrm{pc}$ Ic/pc	Minimum weaving lane changes, $\mathrm{LC}_{\text {MI }}$ Weaving lane changes, $L C_{w}$ Non-weaving lane changes, $\mathrm{LC}_{\mathrm{Nw}}$ Total lane changes, $\mathrm{LC}_{\text {ALL }}$ Non-weaving vehicle index, $I_{N W}$				$\begin{gathered} 719 \mathrm{lc/h} \\ 1087 \mathrm{lc/h} \\ 762 \mathrm{lc/h} \\ 1849 \mathrm{lc/h} \\ 0.251 \end{gathered}$
Weaving Segment Speed, Density, Level of Service, and Capacity									
Weaving segment flow rate, v Weaving segment capacity, c_{w} Weaving segment v/c ratio Weaving segment density, D Level of Service, LOS				3897 pc/h 8149 veh/h 0.455 $7.7 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ B	Weaving intensity factor, W Weaving segment speed, S Average weaving speed, S_{w} Average non-weaving speed, S_{NW} Maximum weaving length, $L_{\text {max }}$				$\begin{array}{r} 0.251 \\ 55.1 \mathrm{mph} \\ 55.0 \mathrm{mph} \\ 55.1 \mathrm{mph} \\ 4378 \mathrm{ft} \end{array}$
a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments" . For volumes that exceed the weaving segment capacity, the level of service is "F".									
Copyright 2010 University of Florida, All Rights Reserved \quad HCS 2010 ${ }^{\text {TM }}$ Version 6.1 ${ }^{\text {a }}$ Generated: 3/28/2018 $3: 29$									

FREEWAY WEAVING WORKSHEET									
General Information					Site Information				
Analyst Agency/Company Date Performed Analysis Time Period		XL HDR Engineering Inc. 12/27/2017 PM			Freeway/Dir of Travel Weaving Segment Location Analysis Year			Estrella Pkwy to Bullard Ave2035	
Project Description SR 30 East HA ($3+0$)									
Inputs									
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS				$\begin{array}{r} \text { One-Sided } \\ 5 \\ 2100 \mathrm{ft} \\ 65 \mathrm{mph} \end{array}$	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type				Freeway 15 2350 Leve
Conversions to pc/h Under Base Conditions									
	V (veh/h)	PHF	Truck (\%)	RV (\%)	$\mathrm{E}_{\text {T }}$	E_{R}	f_{HV}	$\mathrm{fp}^{\text {p }}$	v (p/h)
$\mathrm{V}_{\text {FF }}$	2200	0.95	10	0	1.5	1.2	0.952	1.00	2432
V_{RF}	100	0.95	10	0	1.5	1.2	0.952	1.00	111
$\mathrm{F}_{\text {FR }}$	750	0.95	10	0	1.5	1.2	0.952	1.00	829
VRR	0	0.95	10	0	1.5	1.2	0.952	1.00	2432
$\mathrm{VNW}^{\text {N }}$	2432							$\mathrm{V}=$	3372
$\mathrm{v}_{\text {w }}$	940								
VR	0.279								
Configuration Characteristics									
Minimum maneuver lanes, N_{WL} Interchange density, ID Minimum RF lane changes, $\mathrm{LC}_{\mathrm{RF}}$ Minimum FR lane changes, $\mathrm{LC}_{\mathrm{FR}}$ Minimum RR lane changes, $\mathrm{LC}_{\text {RR }}$				$\begin{array}{r} 2 \mathrm{lc} \\ 0.83 \mathrm{int} / \mathrm{mi} \\ 1 \mathrm{cc} / \mathrm{pc} \\ 0 \mathrm{lc} / \mathrm{pc} \\ \mathrm{lc} / \mathrm{pc} \end{array}$		ing lane	nges, LC_{M} L_{Nw} $l_{\text {ww }}$		$\begin{array}{r} 829 \mathrm{lc/h} \\ 1500 \mathrm{lc/h} \\ 676 \mathrm{lc/h} \\ 2176 \mathrm{lc/h} \\ 0.232 \end{array}$
Weaving Segment Speed, Density, Level of Service, and Capacity									
Weaving segment flow rate, v Weaving segment capacity, c Weaving segment v/c ratio Weaving segment density, D Level of Service, LOS				3372 pc/h 8199 veh/h 0.392 2.1 pc/milln B	Weaving intensity factor, W Weaving segment speed, S Average weaving speed, S_{w} Average non-weaving speed, S_{NW} Maximum weaving length, $\mathrm{L}_{\text {MAX }}$				$\begin{array}{r} 0.232 \\ 55.7 \mathrm{mph} \\ 55.6 \mathrm{mph} \\ 55.8 \mathrm{mph} \\ 5357 \mathrm{ft} \end{array}$
Notes									
a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments". b. For volumes that exceed the weaving segment capacity, the level of service is "F".									
Copyright © 2010 University of Florida, All Rights Reserved									

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 1/2/2018 AM	Highway/Direction of Travel Eastbound From/To At 83rd Ave Jurisdiction ADOT Analysis Year 2040	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$9625 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h		
Calculate Flow Adjustments			
		$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 4 $\mathrm{ramps} / \mathrm{mi}$ mph mph	f Lw flC TRD Adjustment FFS 65.0	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\begin{array}{lll} \begin{array}{l} \mathrm{v}_{\mathrm{p}}=(\mathrm{V} \text { or } \mathrm{DDHV}) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{Hv}}^{2660}\right. \\ \left.\times \mathrm{f}_{\mathrm{p}}\right) \end{array} & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \mathrm{~S} & 42.5 & \mathrm{mph} \\ \mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & 62.6 & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \\ \mathrm{LOS} & \mathrm{~F} & \end{array}$		Design LOS $v_{p}=(V$ or DDHV $) /\left(\right.$ PHF $\times N \times f_{H V}$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times f_{p}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $D=v_{\mathrm{p}} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow hour volume	$\begin{aligned} & E_{R} \text { - Exhibits 11-10, 11-12 } \\ & E_{T} \text { - Exhibits 11-10, 11-11, 11-13 } \\ & \mathrm{f}_{\mathrm{p}} \text { - Page 11-18 } \\ & \text { LOS, S, FFS, } \mathrm{v}_{\mathrm{p}} \text { - Exhibits 11-2, } \\ & 11-3 \end{aligned}$	$\begin{aligned} & \mathrm{f}_{\mathrm{LW}}-\text { Exhibit } 11-8 \\ & \mathrm{f}_{\mathrm{LC}}-\text { Exhibit } 11-9 \\ & \text { TRD - Page 11-11 } \end{aligned}$

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 1/2/2018 AM	Highway/Direction of Travel Eastbound From/To At 99th Ave Jurisdiction ADOT Analysis Year 2040	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$9050 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h		
Calculate Flow Adjustments			
$\begin{aligned} & \mathrm{f}_{\mathrm{p}} \\ & \mathrm{E}_{\mathrm{T}} \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 3 $\mathrm{ramps} / \mathrm{mi}$ mph mph	f Lw flC TRD Adjustment FFS 65.0	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\begin{array}{lll} \begin{array}{l} \mathrm{v}_{\mathrm{p}}=(\mathrm{V} \text { or } \mathrm{DDHV}) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{HV}}^{3334}\right. \\ \left.\times \mathrm{f}_{\mathrm{p}}\right) \end{array} & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \mathrm{~S} & 12.0 & \mathrm{mph} \\ \mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & 278.7 & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \\ \mathrm{LOS} & \mathrm{~F} & \end{array}$		Design LOS $v_{\mathrm{p}}=(\mathrm{V}$ or DDHV$) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{HV}}\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times \mathrm{f}_{\mathrm{p}}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow hour volume	$\begin{aligned} & E_{R} \text { - Exhibits 11-10, 11-12 } \\ & E_{T}-\text { Exhibits 11-10, 11-11, 11-13 } \\ & \mathrm{f}_{\mathrm{p}} \text { - Page 11-18 } \\ & \text { LOS, S, FFS, } v_{p} \text { - Exhibits 11-2, } \\ & 11-3 \end{aligned}$	$\begin{aligned} & \mathrm{f}_{\mathrm{LW}}-\text { Exhibit } 11-8 \\ & \mathrm{f}_{\mathrm{LC}}-\text { Exhbibit 11-9 } \\ & \text { TRD - Page 11-11 } \end{aligned}$

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 1/2/2018 AM	Highway/Direction of Travel Eastbound From/To At Avondale BIvd Jurisdiction ADOT Analysis Year 2040	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$7350 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h		
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 3 $\mathrm{ramps} / \mathrm{mi}$ mph mph	$\begin{aligned} & \mathrm{f} \mathrm{fw} \\ & \mathrm{LW} \\ & \mathrm{fLC} \\ & \text { TRD Adjustment } \\ & \text { FFS } \end{aligned}$	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\begin{array}{lll} \begin{array}{l} \mathrm{v}_{\mathrm{p}}=(\mathrm{V} \text { or } \mathrm{DDHV}) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{Hv}}^{2708}\right. \\ \left.\mathrm{xf} \mathrm{f}_{\mathrm{p}}\right) \end{array} & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \mathrm{~S} & 40.7 & \mathrm{mph} \\ \mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & 66.5 & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \\ \mathrm{LOS} & \mathrm{~F} & \end{array}$		Design (N) Design LOS $\mathrm{v}_{\mathrm{p}}=(\mathrm{V}$ or DDHV $) /\left(\mathrm{PHF} \times \mathrm{N} \times \mathrm{f}_{\mathrm{HV}}\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times \mathrm{f}_{\mathrm{p}}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow	E_{R} - Exhibits 11-10, 11-12 f_{LW} - Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 f_{LC} - Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$	

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 1/2/2018 AM	 Highway/Direction of Travel Eastbound From/To At Dysart Rd Jurisdiction ADOT Analysis Year 2040	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$7075 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h		
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 3 $\mathrm{ramps} / \mathrm{mi}$ mph mph	$\begin{aligned} & \mathrm{f} \mathrm{fw} \\ & \mathrm{LW} \\ & \mathrm{fLC} \\ & \text { TRD Adjustment } \\ & \text { FFS } \end{aligned}$	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\begin{array}{lll} \begin{array}{l} \mathrm{v}_{\mathrm{p}}=(\mathrm{V} \text { or } \mathrm{DDHV}) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{Hv}}^{2607}\right. \\ \left.\mathrm{xf} \mathrm{f}_{\mathrm{p}}\right) \end{array} & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \mathrm{~S} & 44.3 & \mathrm{mph} \\ \mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & 58.8 & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \\ \mathrm{LOS} & \mathrm{~F} & \end{array}$		Design (N) Design LOS $\mathrm{v}_{\mathrm{p}}=(\mathrm{V}$ or DDHV $) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{HV}}\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times \mathrm{f}_{\mathrm{p}}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $D=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow	$\|$$E_{R}$ - Exhibits 11-10, 11-12 $f_{L W}-$ Exhibit 11-8 $E_{T}-$ Exhibits 11-10, 11-11, 11-13 $f_{L C}-$ Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$	

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 1/2/2018 AM	Highway/Direction of Travel Eastbound From/To At Sarival Ave Jurisdiction $A D O T$ Analysis Year 2040	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$6375 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h		
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 5 $\mathrm{ramps} / \mathrm{mi}$ mph mph	$\mathrm{f}_{\text {LW }}$ f_{LC} TRD Adjustment FFS 65.0	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\begin{array}{lll} \begin{array}{l} \mathrm{v}_{\mathrm{p}}=(\mathrm{V} \text { or } \mathrm{DDHV}) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{Hv}}^{1409}\right. \\ \left.\times \mathrm{f}_{\mathrm{p}}\right) \end{array} & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \mathrm{~S} & 65.0 & \mathrm{mph} \\ \mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & 21.7 & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \\ \mathrm{LOS} & \mathrm{C} & \end{array}$		Design (N) Design LOS $\mathrm{v}_{\mathrm{p}}=(\mathrm{V}$ or DDHV $) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{HV}}\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times \mathrm{f}_{\mathrm{p}}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $D=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow	$\|$$E_{R}$ - Exhibits 11-10, 11-12 $f_{L W}-$ Exhibit 11-8 $E_{T}-$ Exhibits 11-10, 11-11, 11-13 $f_{L C}-$ Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$	

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 1/2/2018 AM	Highway/Direction of Travel Eastbound From/To East of Sarival Ave Jurisdiction ADOT Analysis Year 2040	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$6375 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h		
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 4 $\mathrm{ramps} / \mathrm{mi}$ mph mph	$\begin{aligned} & \mathrm{f} \mathrm{fw} \\ & \mathrm{fLW} \\ & \mathrm{fLC} \\ & \text { TRD Adjustment } \\ & \text { FFS } \end{aligned}$	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\begin{array}{lll} \hline \text { Operational (LOS) } & \\ \hline \begin{array}{l} \mathrm{v}_{\mathrm{p}}=\left(\mathrm{V} \text { or DDHV) } /\left(\mathrm{PHF} \times \mathrm{N} \times \mathrm{f}_{\mathrm{Hv}} 1762\right.\right. \\ \left.\mathrm{xf}_{\mathrm{p}}\right) \end{array} & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \mathrm{~S} & 63.1 & \mathrm{mph} \\ \mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & 27.9 & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \\ \text { LOS } & \mathrm{D} & \end{array}$		Design (N) Design LOS $\mathrm{v}_{\mathrm{p}}=(\mathrm{V}$ or DDHV $) /\left(\mathrm{PHF} \times N \times f_{\mathrm{HV}}\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times f_{p}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow	$\begin{aligned} & E_{R}-\text { Exhibits 11-10, 11-12 } \\ & E_{T} \text { - Exhibits 11-10, 11-11, 11-13 } \\ & f_{p}-\text { Page 11-18 } \\ & \text { LOS, S, FFS, } v_{p} \text { - Exhibits 11-2, } \\ & 11-3 \end{aligned}$	$\begin{aligned} & \mathrm{f}_{\mathrm{LW}} \text { - Exhibit } 11-8 \\ & \mathrm{f}_{\mathrm{LC}}-\text { Exhibit } 11-9 \\ & \text { TRD - Page 11-11 } \end{aligned}$

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 1/2/2018 AM	Highway/Direction of Travel Eastbound From/To West of 67 th Ave Jurisliction ADOT Analysis Year 2040	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$9800 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h		
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 5 $\mathrm{ramps} / \mathrm{mi}$ mph mph	f Lw fl LRD Adjustment FFS 65.0	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\begin{array}{lll} \hline \text { Operational }(\text { LOS }) & \\ \hline \mathrm{v}_{\mathrm{p}}=\left(\mathrm{V} \text { or DDHV) } /\left(\mathrm{PHF} \times \mathrm{N} \times \mathrm{f}_{\mathrm{Hv}} 2166\right.\right. & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \left.\times \mathrm{f}_{\mathrm{p}}\right) & & \\ \mathrm{S} & 56.7 & \mathrm{mph} \\ \mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & 38.2 & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \\ \text { LOS } & E & \end{array}$		Design (N) Design LOS $\mathrm{v}_{\mathrm{p}}=(\mathrm{V}$ or DDHV$) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{HV}}\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times f_{\mathrm{p}}\right)$ mph S $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow hour volume	E_{R} - Exhibits 11-10, 11-12 $f_{L W}$ - Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 $f_{L C}$ - Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$	

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 1/2/2018 AM	Highway/Direction of Travel Westbound From/To At 83rd Ave Jurisdiction ADOT Analysis Year 2040	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$2675 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h		
Calculate Flow Adjustments			
		$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 4 $\mathrm{ramps} / \mathrm{mi}$ mph mph	$\begin{aligned} & \mathrm{f} \text { Lw } \\ & \mathrm{L} \text { LC } \\ & \mathrm{fLC} \\ & \text { TRD Adjustment } \\ & \text { FFS } \end{aligned}$	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\begin{array}{lll} \begin{array}{l} \mathrm{v}_{\mathrm{p}}=(\mathrm{V} \text { or } \mathrm{DDHV}) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{Hv}}^{739}\right. \\ \left.\times \mathrm{f}_{\mathrm{p}}\right) \end{array} & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \mathrm{~S} & 65.0 & \mathrm{mph} \\ \mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & 11.4 & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \\ \mathrm{LOS} & B & \end{array}$		Design (N) Design LOS $\mathrm{v}_{\mathrm{p}}=(\mathrm{V}$ or DDHV $) /\left(\mathrm{PHF} \times N \times f_{\mathrm{HV}}\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times f_{p}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow	$\|$$E_{R}$ - Exhibits 11-10, 11-12 $f_{L W}-$ Exhibit 11-8 $E_{T}-$ Exhibits 11-10, 11-11, 11-13 $f_{L C}-$ Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$	

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 1/2/2018 AM	Highway/Direction of Travel Westbound From/To At Bullard Ave Jurisdiction ADOT Analysis Year 2040	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$1950 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h		
Calculate Flow Adjustments			
		$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 4 $\mathrm{ramps} / \mathrm{mi}$ mph mph	f Lw flC TRD Adjustment FFS 65.0	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\begin{array}{lll} \begin{array}{l} \mathrm{v}_{\mathrm{p}}=(\mathrm{V} \text { or } \mathrm{DDHV}) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{Hv}}^{539}\right. \\ \left.\times \mathrm{f}_{\mathrm{p}}\right) \end{array} & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \mathrm{~S} & 65.0 & \mathrm{mph} \\ \mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & 8.3 & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \\ \mathrm{LOS} & \mathrm{~A} & \end{array}$		Design (N) Design LOS $\mathrm{v}_{\mathrm{p}}=\left(\mathrm{V}\right.$ or DDHV) $/\left(\mathrm{PHF} \times \mathrm{N} \times \mathrm{f}_{\mathrm{HV}}\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times \mathrm{f}_{\mathrm{p}}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow hour volume	$\begin{aligned} & \mathrm{E}_{\mathrm{R}} \text { - Exhibits 11-10, 11-12 } \\ & \mathrm{E}_{\mathrm{T}} \text { - Exhibits 11-10, 11-11, 11-13 } \\ & \mathrm{f}_{\mathrm{p}} \text { - Page 11-18 } \\ & \text { LOS, } S, \text { FFS, } \mathrm{v}_{\mathrm{p}} \text { - Exhibits 11-2, } \\ & 11-3 \end{aligned}$	$\begin{aligned} & \mathrm{f}_{\mathrm{LW}}-\text { Exhibit } 11-8 \\ & \mathrm{f}_{\mathrm{LC}} \text { - Exhibit 11-9 } \\ & \text { TRD - Page 11-11 } \end{aligned}$

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 1/2/2018 AM	Highway/Direction of Travel Westbound From/To At Estrella Pkwy Jurisdiction ADOT Analysis Year 2040	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$1450 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h		
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 5 $\mathrm{ramps} / \mathrm{mi}$ mph mph	$\begin{aligned} & \mathrm{f} \mathrm{fw} \\ & \mathrm{LW} \\ & \mathrm{fLC} \\ & \text { TRD Adjustment } \\ & \text { FFS } \end{aligned}$	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\begin{array}{lll} \begin{array}{l} \mathrm{v}_{\mathrm{p}}=(\mathrm{V} \text { or } \mathrm{DDHV}) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{HV}}^{321}\right. \\ \left.\mathrm{xf} \mathrm{f}_{\mathrm{p}}\right) \end{array} & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \mathrm{~S} & 65.0 & \mathrm{mph} \\ \mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & 4.9 & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \\ \mathrm{LOS} & \mathrm{~A} & \end{array}$		Design (N) Design LOS $\mathrm{v}_{\mathrm{p}}=(\mathrm{V}$ or DDHV $) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{HV}}\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times \mathrm{f}_{\mathrm{p}}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $D=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow	$\|$$E_{R}$ - Exhibits 11-10, 11-12 $f_{L W}-$ Exhibit 11-8 $E_{T}-$ Exhibits 11-10, 11-11, 11-13 $f_{L C}-$ Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$	

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 1/2/2018 AM	Highway/Direction of Travel Westbound From/To East of 91st Ave Jurisdiction ADOT Analysis Year 2040	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$2300 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h		
Calculate Flow Adjustments			
		$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 4 $\mathrm{ramps} / \mathrm{mi}$ mph mph	$\begin{aligned} & \mathrm{f} \text { Lw } \\ & \mathrm{L} \text { LC } \\ & \mathrm{fLC} \\ & \text { TRD Adjustment } \\ & \text { FFS } \end{aligned}$	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\mathrm{v}_{\mathrm{p}}=(\mathrm{V}$ or DDHV$) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{HV}} 636\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times f_{\mathrm{p}}\right)$ S 65.0 mph $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ 9.8 $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ LOS A		Design (N) Design LOS $\mathrm{v}_{\mathrm{p}}=(\mathrm{V}$ or DDHV $) /\left(\mathrm{PHF} \times N \times f_{\mathrm{HV}}\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times f_{p}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design hou	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow	$\|$$E_{R}$ - Exhibits 11-10, 11-12 $f_{L W}-$ Exhibit 11-8 $E_{T}-$ Exhibits 11-10, 11-11, 11-13 $f_{L C}-$ Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$	

FREEWAY WEAVING WORKSHEET									
General Information					Site Information				
Analyst Agency/Company Date Performed Analysis Time Period		XL HDR Engineering Inc. 1/2/2018 AM			Freeway/Dir of Travel Weaving Segment Location Analysis Year			Avondale Blvd to 107th Ave2040	
Project Description SR 30 East HA (3+0)									
Inputs									
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS				$\begin{array}{r} \text { One-Sided } \\ 4 \\ 1620 \mathrm{ft} \\ 65 \mathrm{mph} \end{array}$	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\mid \mathrm{FL}}$ Terrain type				Freeway 15 2350 Leve
Conversions to pc/h Under Base Conditions									
	V (veh/h)	PHF	Truck (\%)	RV (\%)	$\mathrm{E}_{\text {T }}$	E_{R}	f_{HV}	f_{p}	v (poch)
$\mathrm{V}_{\text {FF }}$	7275	0.95	10	0	1.5	1.2	0.952	1.00	8041
$\mathrm{V}_{\text {RF }}$	75	0.95	10	0	1.5	1.2	0.952	1.00	83
$\mathrm{VFR}^{\text {F }}$	1075	0.95	10	0	1.5	1.2	0.952	1.00	1188
$\mathrm{V}_{\text {RR }}$	0	0.95	10	0	1.5	1.2	0.952	1.00	8041
$\mathrm{NWW}^{\text {N }}$	8041							$\mathrm{V}=$	9312
$\mathrm{V}_{\text {w }}$	1271								
VR	0.136								
Configuration Characteristics									
Minimum maneuver lanes, N_{WL} 2 lc Interchange density, ID $0.83 \mathrm{int} / \mathrm{mi}$ Minimum RF lane changes, $L^{\text {CF }}$ $1 \mathrm{lc} / \mathrm{pc}$ Minimum FR lane changes, $L_{\text {FR }}$ $1 \mathrm{lc} / \mathrm{pc}$ Minimum RR lane changes, $L_{\text {R }}$ $\mathrm{Ic} / \mathrm{pc}$					Minimum weaving lane changes, $\mathrm{LC}_{\text {MI }}$ Weaving lane changes, $L C_{w}$ Non-weaving lane changes, $\mathrm{LC}_{\mathrm{Nw}}$ Total lane changes, $\mathrm{LC}_{\text {ALL }}$ Non-weaving vehicle index, $I_{\text {ww }}$				
Weaving Segment Speed, Density, Level of Service, and Capacity									
Weaving segment flow rate, v Weaving segment capacity, c_{w} Weaving segment v/c ratio Weaving segment density, D Level of Service, LOS				9312 pc/h 8290 veh/h 1.070 $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ F	Weaving intensity factor, W Weaving segment speed, S Average weaving speed, S_{w} Average non-weaving speed, S_{NW} Maximum weaving length, $\mathrm{L}_{\text {MAX }}$				mph mph mph 3897 ft
Notes									
a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures ofChapter 13 , "Freeway Merge and Diverge Segments".b. For volumes that exceed the weaving segment capacity, the level of service is "F".									
Copyright © 2010 University of Florida, All Rights Reserved HC									

FREEWAY WEAVING WORKSHEET									
General Information					Site Information				
Analyst Agency/Company Date Performed Analysis Time Period		XL HDR Engineering Inc. 1/2/2018 AM			Freeway/Dir of Travel Weaving Segment Location Analysis Year			Sarival Ave to Estrella Pkwy2040	
Project Description SR 30 East HA (3+0)									
Inputs									
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{S} Freeway free-flow speed, FFS				$\begin{array}{r} \text { One-Sided } \\ 5 \\ 2200 \mathrm{ft} \\ 65 \mathrm{mph} \end{array}$	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type				$\begin{array}{r} \text { Freeway } \\ 15 \\ 2350 \\ \text { Leve } \\ \hline \end{array}$
Conversions to pc/h Under Base Conditions									
	V (veh/h)	PHF	Truck (\%)	RV (\%)	$\mathrm{E}_{\text {T }}$	E_{R}	f_{HV}	$\mathrm{fp}^{\text {p }}$	v (pc/h)
$\mathrm{V}_{\text {FF }}$	6300	0.95	10	0	1.5	1.2	0.952	1.00	6963
$\mathrm{V}_{\text {RF }}$	50	0.95	10	0	1.5	1.2	0.952	1.00	55
$\mathrm{V}_{\text {FR }}$	700	0.95	10	0	1.5	1.2	0.952	1.00	774
$V_{\text {RR }}$	0	0.95	10	0	1.5	1.2	0.952	1.00	6963
V_{NW}	6963							$\mathrm{V}=$	7792
$v_{\text {w }}$	829								
VR	0.106								
Configuration Characteristics									
Minimum maneuver lanes, $\mathrm{N}_{\text {WL }}$ Interchange density, ID Minimum RF lane changes, $\mathrm{LC}_{\text {RF }}$ Minimum $F R$ lane changes, $L_{F R}$ Minimum RR lane changes, $\mathrm{LC}_{\mathrm{RR}}$					Minimum weaving lane changes, LC Weaving lane changes, $L C_{w}$ Non-weaving lane changes, $\mathrm{LC}_{\mathrm{Nw}}$ Total lane changes, $\mathrm{LC}_{\mathrm{ALL}}$ Non-weaving vehicle index, I_{NW}				$774 \mathrm{lc} / \mathrm{h}$ $1463 \mathrm{lc/h}$ $1664 \mathrm{lc/h}$ $3127 \mathrm{lc/h}$ 0.298
Weaving Segment Speed, Density, Level of Service, and Capacity									
Weaving segment flow rate, v Weaving segment capacity, c_{w} Weaving segment v / c ratio Weaving segment density, D Level of Service, LOS				7792 pc/h 0681 veh/h 0.695 $9.9 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ D	Weaving intensity factor, W Weaving segment speed, S Average weaving speed, S_{w} Average non-weaving speed, S_{NW} Maximum weaving length, $L_{\text {max }}$				$\begin{array}{r} \hline 0.298 \\ 52.1 \mathrm{mph} \\ 53.5 \mathrm{mph} \\ 51.9 \mathrm{mph} \\ 3602 \mathrm{ft} \end{array}$
Notes									
a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures ofChapter 13, "Freeway Merge and Diverge Segments". b. For volumes that exceed the weaving segment capacity, the level of service is "F".									
Copyright © 2010 University of Florida, All Rights Reserved HCS $2010^{\text {TM }}$ Vers									

FREEWAY WEAVING WORKSHEET									
General Information					Site Information				
Analyst Agency/Company Date Performed Analysis Time Period		XL HDR Engineering Inc. $1 / 2 / 2018$ AM			Freeway/Dir of Travel Weaving Segment Location Analysis Year			83rd Ave to 91st Ave2040	
Project Description SR 30 East HA (3+0)									
Inputs									
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS			$\begin{array}{r} \text { One-Sided } \\ 5 \\ 2220 \mathrm{ft} \\ 65 \mathrm{mph} \end{array}$		Segment type Freeway minimum speed, $\mathrm{S}_{\text {мі }}$ Freeway maximum capacity, C_{FL} Terrain type				D Roadway Multilane Highways 15 2350 Level
Conversions to pc/h Under Base Conditions									
	V (veh/h)	PHF	Truck (\%)	RV (\%)	$\mathrm{E}_{\text {T }}$	E_{R}	f_{HV}	fp_{0}	v (pc/h)
$\mathrm{V}_{\text {FF }}$	2225	0.95	10	0	1.5	1.2	0.952	1.00	2459
V_{RF}	450	0.95	10	0	1.5	1.2	0.952	1.00	497
$\mathrm{VFR}^{\text {F }}$	75	0.95	10	0	1.5	1.2	0.952	1.00	83
$\mathrm{VRR}^{\text {R }}$	0	0.95	10	0	1.5	1.2	0.952	1.00	2459
N_{NW}	2459							$\mathrm{V}=$	3039
$\mathrm{v}_{\text {w }}$	580								
VR	0.191								
Configuration Characteristics									
Minimum maneuver lanes, N_{WL} Interchange density, ID Minimum RF lane changes, $L^{R F}$ Minimum $F R$ lane changes, $\mathrm{LC}_{\mathrm{FR}}$ Minimum RR lane changes, $L_{R R}$					Minimum weaving lane changes, $\mathrm{LC}_{\text {MI }}$ Weaving lane changes, LC_{w} Non-weaving lane changes, $\mathrm{LC}_{\mathrm{NW}}$ Total lane changes, $\mathrm{LC}_{\text {ALL }}$ Non-weaving vehicle index, $I_{\text {Nw }}$				$\begin{array}{r} 83 \mathrm{lc/h} \\ 724 \mathrm{lc/h} \\ 747 \mathrm{lc/h} \\ 1471 \mathrm{lc/h} \\ 0.163 \end{array}$
Weaving Segment Speed, Density, Level of Service, and Capacity									
Weaving segment flow rate, v Weaving segment capacity, c Weaving segment v/c ratio Weaving segment density, D Level of Service, LOS				3039 pc/h 381 veh/h 0.279 $0.0 \mathrm{pc} / \mathrm{milln}$ A	Weaving intensity factor, W Weaving segment speed, S Average weaving speed, S_{w} Average non-weaving speed, S_{NW} Maximum weaving length, $\mathrm{L}_{\text {MAX }}$				$\begin{array}{r} 0.163 \\ 60.8 \mathrm{mph} \\ 58.0 \mathrm{mph} \\ 61.5 \mathrm{mph} \\ 444 \mathrm{ft} \end{array}$
Notes									
a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments" b. For volumes that exceed the weaving segment capacity, the level of service is "F".									
Copyright © 2010 University of Florida, All Rights Reserved \quad HCS 2010 ${ }^{\text {TM }}$ Version 6.1 Generated: 115/2018 9:40									

FREEWAY WEAVING WORKSHEET									
General Information					Site Information				
Analyst Agency/Company Date Performed Analysis Time Period		XL HDR Engineering Inc. 1/2/2018 AM			Freeway/Dir of Travel Weaving Segment Location Analysis Year			91st Ave to 83rd Ave2040	
Project Description SR 30 East HA ($3+0$)									
Inputs									
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS				One-Sided $2055 f t$ 65 mph	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MI }}$ Freeway maximum capacity, $\mathrm{C}_{\text {IFL }}$ Terrain type				Freeway 15 2350 Level
Conversions to pc/h Under Base Conditions									
	V (veh/h)	PHF	Truck (\%)	RV (\%)	$\mathrm{E}_{\text {T }}$	E_{R}	f_{Hv}	$\mathrm{fp}^{\text {p }}$	v (pc/h)
$\mathrm{V}_{\text {FF }}$	8575	0.95	10	0	1.5	1.2	0.952	1.00	9478
$\mathrm{V}_{\text {RF }}$	50	0.95	10	0	1.5	1.2	0.952	1.00	55
$\mathrm{V}_{\text {FR }}$	1025	0.95	10	0	1.5	1.2	0.952	1.00	1133
$\mathrm{V}_{\text {RR }}$	0	0.95	10	0	1.5	1.2	0.952	1.00	9478
V_{NW}	9478							V =	10666
$\mathrm{v}_{\text {w }}$	1188								
VR	0.111								
Configuration Characteristics									
Minimum maneuver lanes, N_{WL} 2 lc Interchange density, ID $0.66 \mathrm{int} / \mathrm{mi}$ Minimum RF lane changes, $L C_{\mathrm{RF}}$ $0 \mathrm{lc} / \mathrm{pc}$ Minimum FR lane changes, $L \mathrm{C}_{\mathrm{FR}}$ $1 \mathrm{lC} / \mathrm{pc}$ Minimum RR lane changes, $L C_{\text {RR }}$ $\mathrm{IC} / \mathrm{cc}$					Minimum weaving lane changes, $\mathrm{LC}_{\text {MIN }}$ Weaving lane changes, LC_{w} Non-weaving lane changes, $\mathrm{LC}_{\mathrm{Nw}}$ Total lane changes, LC CLLL Non-weaving vehicle index, $I_{N W}$				
Weaving Segment Speed, Density, Level of Service, and Capacity									
Weaving segment flow rate, v Weaving segment capacity, c_{w} Weaving segment v/c ratio Weaving segment density, D Level of Service, LOS				0666 pc/h 8488 veh/h 1.197 pc/mi/ln F	Weaving intensity factor, W Weaving segment speed, S Average weaving speed, S_{w} Average non-weaving speed, S_{NW} Maximum weaving length, $L_{\text {MAX }}$				mph mph mph 3650 ft
Notes									
a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments" b. For volumes that exceed the weaving segment capacity, the level of service is "F".									
Copyright © 2010 University of Florida, All Rights Reserved HCS 2010 ${ }^{\text {TM }}$ Version 6.1 Generated: 3/28/2018 3 3:3									

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 1/2/2018 PM	Highway/Direction of Travel Eastbound From/To At Estrella Pkwy Jurisdiction ADOT Analysis Year 2040	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$2750 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h		
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 4 $\mathrm{ramps} / \mathrm{mi}$ mph mph	f Lw fl LRD Adjustment FFS 65.0	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\begin{array}{lll} \begin{array}{l} \mathrm{v}_{\mathrm{p}}=(\mathrm{V} \text { or } \mathrm{DDHV}) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{Hv}}^{760}\right. \\ \left.\mathrm{xf} \mathrm{f}_{\mathrm{p}}\right) \end{array} & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \mathrm{~S} & 65.0 & \mathrm{mph} \\ \mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & 11.7 & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \\ \mathrm{LOS} & B & \end{array}$		Design (N) Design LOS $\mathrm{v}_{\mathrm{p}}=\left(\mathrm{V}\right.$ or DDHV) $/\left(\mathrm{PHF} \times \mathrm{N} \times \mathrm{f}_{\mathrm{HV}}\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times \mathrm{f}_{\mathrm{p}}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow	E_{R} - Exhibits 11-10, 11-12 $f_{L W}$ - Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 $f_{L C}$ - Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$	

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 1/2/2018 PM	Highway/Direction of Travel Eastbound From/To Jurisiction East of Agua Fria River Analysis Year ADOT 2040	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$3500 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h		
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 3 $\mathrm{ramps} / \mathrm{mi}$ mph mph	$\begin{aligned} & \mathrm{f} \mathrm{fw} \\ & \mathrm{LW} \\ & \mathrm{fLC} \\ & \text { TRD Adjustment } \\ & \text { FFS } \end{aligned}$	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\begin{array}{lll} \begin{array}{l} \mathrm{v}_{\mathrm{p}}=(\mathrm{V} \text { or } \mathrm{DDHV}) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{Hv}}^{1289}\right. \\ \left.\times \mathrm{f}_{\mathrm{p}}\right) \end{array} & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \mathrm{~S} & 65.0 & \mathrm{mph} \\ \mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & 19.8 & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \\ \mathrm{LOS} & \mathrm{C} & \end{array}$		Design (N) Design LOS $\mathrm{v}_{\mathrm{p}}=(\mathrm{V}$ or DDHV $) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{HV}}\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times \mathrm{f}_{\mathrm{p}}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $D=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow	E_{R} - Exhibits 11-10, 11-12 f_{LW} - Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 f_{LC} - Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$	

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 1/2/2018 PM	Highway/Direction of Travel Eastbound From/To El Mirage Rd Jurisdiction ADOT Analysis Year 2040	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$3625 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h		
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 3 $\mathrm{ramps} / \mathrm{mi}$ mph mph	$\begin{aligned} & \mathrm{f} \mathrm{fw} \\ & \mathrm{LW} \\ & \mathrm{fLC} \\ & \text { TRD Adjustment } \\ & \text { FFS } \end{aligned}$	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\begin{array}{lll} \begin{array}{l} \mathrm{v}_{\mathrm{p}}=(\mathrm{V} \text { or } \mathrm{DDHV}) /(\mathrm{PHF} \times \mathrm{Nxf} \\ \left.\mathrm{xf} \mathrm{f}_{\mathrm{p}}\right) \\ \text { 1336 } \end{array} & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \mathrm{~S} & 65.0 & \mathrm{mph} \\ \mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & 20.6 & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \\ \mathrm{LOS} & \mathrm{C} & \end{array}$		Design (N) Design LOS $\mathrm{v}_{\mathrm{p}}=(\mathrm{V}$ or DDHV $) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{HV}}\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times \mathrm{f}_{\mathrm{p}}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $D=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow	$\|$$E_{R}$ - Exhibits 11-10, 11-12 $f_{L W}-$ Exhibit 11-8 $E_{T}-$ Exhibits 11-10, 11-11, 11-13 $f_{L C}-$ Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$	

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 1/2/2018 PM	Highway/Direction of Travel Eastbound From/To West of Agua Fria River Jurisdiction ADOT Analysis Year 2040	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$3500 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h		
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 4 $\mathrm{ramps} / \mathrm{mi}$ mph mph	$\begin{aligned} & \mathrm{f} \mathrm{fw} \\ & \mathrm{LW} \\ & \mathrm{fLC} \\ & \text { TRD Adjustment } \\ & \text { FFS } \end{aligned}$	mph mph mph mph
LOS and Performance Measures		Design (N)	
		Design (N) Design LOS $\mathrm{v}_{\mathrm{p}}=(\mathrm{V}$ or DDHV $) /\left(\right.$ PHF $\times N \times \mathrm{f}_{\mathrm{HV}}$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times \mathrm{f}_{\mathrm{p}}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow hour volume	E_{R} - Exhibits 11-10, 11-12 $f_{L W}$ - Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 $f_{L C}$ - Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$	

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 1/2/2018 PM	Highway/Direction of Travel Westbound From/To At 75 th Ave Jurisdiction ADOT Analysis Year 2040	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$10025 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h		
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 5 $\mathrm{ramps} / \mathrm{mi}$ mph mph	f Lw flC TRD Adjustment FFS 65.0	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\begin{array}{lll} \begin{array}{l} \mathrm{v}_{\mathrm{p}}=(\mathrm{V} \text { or } \mathrm{DDHV}) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{Hv}}^{2216}\right. \\ \left.\times \mathrm{f}_{\mathrm{p}}\right) \end{array} & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \mathrm{~S} & 55.6 & \mathrm{mph} \\ \mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & 39.9 & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \\ \mathrm{LOS} & E & \end{array}$		Design (N) Design LOS $\mathrm{v}_{\mathrm{p}}=\left(\mathrm{V}\right.$ or DDHV) $/\left(\mathrm{PHF} \times \mathrm{N} \times \mathrm{f}_{\mathrm{HV}}\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times \mathrm{f}_{\mathrm{p}}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow	$\begin{aligned} & E_{R} \text { - Exhibits 11-10, 11-12 } \\ & E_{T}-\text { Exhibits 11-10, 11-11, 11-13 } \\ & f_{p} \text { - Page 11-18 } \\ & \text { LOS, S, FFS, } v_{p} \text { - Exhibits 11-2, } \\ & 11-3 \end{aligned}$	$\begin{aligned} & \mathrm{f}_{\mathrm{LW}} \text { - Exhibit } 11-8 \\ & \mathrm{f}_{\mathrm{LC}}-\text { Exhibit } 11-9 \\ & \text { TRD - Page 11-11 } \end{aligned}$

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 1/2/2018 PM	Highway/Direction of Travel Westbound From/To At 99th Ave Jurisdiction ADOT Analysis Year 2040	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$8575 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h		
Calculate Flow Adjustments			
		$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 3 $\mathrm{ramps} / \mathrm{mi}$ mph mph	$\begin{aligned} & \mathrm{f} \text { Lw } \\ & \mathrm{L} \text { LC } \\ & \mathrm{fLC} \\ & \text { TRD Adjustment } \\ & \text { FFS } \end{aligned}$	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\begin{array}{lll} \begin{array}{l} \mathrm{v}_{\mathrm{p}}=(\mathrm{V} \text { or } \mathrm{DDHV}) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{HV}}^{3159}\right. \\ \left.\times \mathrm{f}_{\mathrm{p}}\right) \end{array} & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \mathrm{~S} & 21.1 & \mathrm{mph} \\ \mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & 149.5 & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \\ \mathrm{LOS} & \mathrm{~F} & \end{array}$		Design LOS $v_{\mathrm{p}}=(\mathrm{V}$ or DDHV$) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{HV}}\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times f_{\mathrm{p}}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow hour volume	$\begin{aligned} & E_{R} \text { - Exhibits 11-10, 11-12 } \\ & E_{T} \text { - Exhibits 11-10, 11-11, 11-13 } \\ & \mathrm{f}_{\mathrm{p}} \text { - Page 11-18 } \\ & \text { LOS, S, FFS, } \mathrm{v}_{\mathrm{p}} \text { - Exhibits 11-2, } \\ & 11-3 \end{aligned}$	$\begin{aligned} & \mathrm{f}_{\mathrm{LW}} \text { - Exhibit } 11-8 \\ & \mathrm{f}_{\mathrm{LC}}-\text { Exhibit } 11-9 \\ & \text { TRD - Page 11-11 } \end{aligned}$

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 1/2/2018 PM	Highway/Direction of Travel Westbound From/To At Avondale BIvd Jurisdiction ADOT Analysis Year 2040	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$7100 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h		
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 3 $\mathrm{ramps} / \mathrm{mi}$ mph mph	f Lw fl LRD Adjustment FFS 65.0	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\begin{array}{lll} \hline \text { Operational }(\text { LOS }) & \\ \hline v_{p}=\left(V \text { or DDHV) } /\left(\text { PHF } \times N \times f_{H v} 2616\right.\right. & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \left.\times f_{p}\right) & 44.0 & \mathrm{mph} \\ \mathrm{~S} & 59.4 & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \\ \mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & \mathrm{~F} & \\ \text { LOS } & \end{array}$		Design (N) Design LOS $\mathrm{v}_{\mathrm{p}}=\left(\mathrm{V}\right.$ or DDHV) $/\left(\mathrm{PHF} \times \mathrm{N} \times \mathrm{f}_{\mathrm{HV}}\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times \mathrm{f}_{\mathrm{p}}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow hour volume	E_{R} - Exhibits 11-10, 11-12 $f_{L W}$ - Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 $f_{L C}$ - Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$	

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 1/2/2018 PM	Highway/Direction of Travel Westbound From/To At Dysart Rd Jurisdiction ADOT Analysis Year 2040	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$6775 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h		
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 3 $\mathrm{ramps} / \mathrm{mi}$ mph mph	f Lw fl LRD Adjustment FFS 65.0	mph mph mph mph
LOS and Performance Measures		Design (N)	
Operational (LOS) $\mathrm{v}_{\mathrm{p}}=\left(\mathrm{V}\right.$ or DDHV) $/\left(\right.$ PHF $\times N \times \mathrm{f}_{\mathrm{Hv}}^{2496}$ $\left.\times \mathrm{f}_{\mathrm{p}}\right)$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ S 48.0 mph $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ 52.0 $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ LOS F		Design (N) Design LOS $\mathrm{v}_{\mathrm{p}}=\left(\mathrm{V}\right.$ or DDHV) $/\left(\mathrm{PHF} \times \mathrm{N} \times \mathrm{f}_{\mathrm{HV}}\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times \mathrm{f}_{\mathrm{p}}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow hour volume	E_{R} - Exhibits 11-10, 11-12 $f_{L W}$ - Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 $f_{L C}$ - Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$	

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 1/2/2018 PM	Highway/Direction of Travel Westbound From/To Jurisidition At Sarival Ave Analysis Year $A D O T$ 2040	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$6050 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h		
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 5 $\mathrm{ramps} / \mathrm{mi}$ mph mph	f Lw flC TRD Adjustment FFS 65.0	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\begin{array}{lll} \begin{array}{l} \mathrm{v}_{\mathrm{p}}=(\mathrm{V} \text { or } \mathrm{DDHV}) /(\mathrm{PHF} \times \mathrm{Nxf} \\ \left.\mathrm{xf} \mathrm{f}_{\mathrm{p}}\right) \\ 1337 \\ \mathrm{~S} \end{array} & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \mathrm{~S}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & 65.0 & \mathrm{mph} \\ \mathrm{LOS} & 20.6 & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \\ \mathrm{OS} & \mathrm{C} & \end{array}$		Design (N) Design LOS $\mathrm{v}_{\mathrm{p}}=(\mathrm{V}$ or DDHV $) /\left(\mathrm{PHF} \times N \times f_{\mathrm{HV}}\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times f_{p}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow hour volume	$\begin{aligned} & \mathrm{E}_{\mathrm{R}} \text { - Exhibits 11-10, 11-12 } \\ & \mathrm{E}_{\mathrm{T}} \text { - Exhibits 11-10, 11-11, 11-13 } \\ & \mathrm{f}_{\mathrm{p}} \text { - Page 11-18 } \\ & \text { LOS, } S, \text { FFS, } \mathrm{v}_{\mathrm{p}} \text { - Exhibits 11-2, } \\ & 11-3 \end{aligned}$	$\begin{aligned} & \mathrm{f}_{\mathrm{LW}} \text { - Exhibit } 11-8 \\ & \mathrm{f}_{\mathrm{LC}}-\text { Exhibit } 11-9 \\ & \text { TRD - Page 11-11 } \end{aligned}$

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 1/2/2018 PM	Highway/Direction of Travel Westbound From/To Jurisiction East of Agua Fria River Analysis Year ADOT 2040	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$7300 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h		
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 3 $\mathrm{ramps} / \mathrm{mi}$ mph mph	$\begin{aligned} & \mathrm{f} \mathrm{fw} \\ & \mathrm{LW} \\ & \mathrm{fLC} \\ & \text { TRD Adjustment } \\ & \text { FFS } \end{aligned}$	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\begin{array}{lll} \begin{array}{l} \mathrm{v}_{\mathrm{p}}=(\mathrm{V} \text { or } \mathrm{DDHV}) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{Hv}}^{2689}\right. \\ \left.\mathrm{xf} \mathrm{f}_{\mathrm{p}}\right) \end{array} & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \mathrm{~S} & 41.4 & \mathrm{mph} \\ \mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & 64.9 & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \\ \mathrm{LOS} & \mathrm{~F} & \end{array}$		Design (N) Design LOS $\mathrm{v}_{\mathrm{p}}=(\mathrm{V}$ or DDHV $) /\left(\mathrm{PHF} \times N \times f_{\mathrm{HV}}\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times f_{p}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow	$\|$$E_{R}$ - Exhibits 11-10, 11-12 $f_{L W}-$ Exhibit 11-8 $E_{T}-$ Exhibits 11-10, 11-11, 11-13 $f_{L C}-$ Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$	

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 1/2/2018 PM	Highway/Direction of Travel Westbound From/To West of 67 th Ave Jurisdiction ADOT Analysis Year 2040	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$9225 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h		
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 5 $\mathrm{ramps} / \mathrm{mi}$ mph mph	f Lw flC TRD Adjustment FFS 65.0	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\begin{array}{lll} \begin{array}{l} \mathrm{v}_{\mathrm{p}}=(\mathrm{V} \text { or } \mathrm{DDHV}) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{Hv}}^{2039}\right. \\ \left.\times \mathrm{f}_{\mathrm{p}}\right) \end{array} & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \mathrm{~S} & 59.2 & \mathrm{mph} \\ \mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & 34.4 & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \\ \mathrm{LOS} & \mathrm{D} & \end{array}$		Design (N) Design LOS $\mathrm{v}_{\mathrm{p}}=\left(\mathrm{V}\right.$ or DDHV) $/\left(\mathrm{PHF} \times \mathrm{N} \times \mathrm{f}_{\mathrm{HV}}\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times \mathrm{f}_{\mathrm{p}}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow	$\begin{aligned} & E_{R} \text { - Exhibits 11-10, 11-12 } \\ & E_{T}-\text { Exhibits 11-10, 11-11, 11-13 } \\ & f_{p} \text { - Page 11-18 } \\ & \text { LOS, S, FFS, } v_{p} \text { - Exhibits 11-2, } \\ & 11-3 \end{aligned}$	$\begin{aligned} & \mathrm{f}_{\mathrm{LW}} \text { - Exhibit } 11-8 \\ & \mathrm{f}_{\mathrm{LC}}-\text { Exhibit } 11-9 \\ & \text { TRD - Page 11-11 } \end{aligned}$

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 1/2/2018 PM	Highway/Direction of Travel Westbound From/To West of Agua Fria River Jurisdiction ADOT Analysis Year 2040	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$7300 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h		
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 4 $\mathrm{ramps} / \mathrm{mi}$ mph mph	$\begin{aligned} & \mathrm{f} \mathrm{fw} \\ & \mathrm{LW} \\ & \mathrm{fLC} \\ & \text { TRD Adjustment } \\ & \text { FFS } \end{aligned}$	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\begin{array}{lll} \begin{array}{l} \mathrm{v}_{\mathrm{p}}=(\mathrm{V} \text { or } \mathrm{DDHV}) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{Hv}}^{2017}\right. \\ \left.\mathrm{xf} \mathrm{f}_{\mathrm{p}}\right) \end{array} & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \mathrm{~S} & 59.6 & \mathrm{mph} \\ \mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & 33.8 & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \\ \mathrm{LOS} & \mathrm{D} & \end{array}$		Design (N) Design LOS $\mathrm{v}_{\mathrm{p}}=(\mathrm{V}$ or DDHV $) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{HV}}\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times \mathrm{f}_{\mathrm{p}}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $D=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow	E_{R} - Exhibits 11-10, 11-12 f_{LW} - Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 f_{LC} - Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$	

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 1/2/2018 PM	Highway/Direction of Travel Eastbound From/To At 75 th Ave Jurisdiction ADOT Analysis Year 2040	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS)		Des.(N) \square	\square Planning Data
Flow Inputs			
Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	$4975 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 5 $\mathrm{ramps} / \mathrm{mi}$ mph mph	$\begin{aligned} & \mathrm{f} \mathrm{Lw} \\ & \mathrm{f} \text { LC } \\ & \text { fl } \\ & \text { TRD Adjustment } \\ & \text { FFS } \end{aligned}$	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\begin{aligned} & \text { Operational (LOS) } \\ & \begin{array}{l} v_{p}=(V \text { or DDHV) } /(\text { PHF } x \\ \left.\times f_{p}\right) \\ S \\ \text { }=v_{p} / S \\ \text { LOS } \end{array} \\ & \hline \end{aligned}$	$\mathrm{NXf}_{\mathrm{HV}}{ }_{1100}$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ 65.0 mph 16.9 $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ B	$\begin{aligned} & \text { Design }(\mathrm{N}) \\ & \text { Design LOS } \\ & v_{p}=(V \text { or DDHV }) /\left(\text { PHF } \times N \times f_{H V}\right. \\ & \left.x f_{p}\right) \\ & S \\ & D=v_{p} / S \\ & \text { Required Number of Lanes, } N \end{aligned}$	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ mph pc/mi/ln
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow hour volume	$\begin{aligned} & E_{R} \text { - Exhibits 11-10, 11-12 } \\ & E_{T}-\text {-xhibits 11-10, 11-11, 11-13 } \\ & \mathrm{f}_{\mathrm{p}} \text { - Page 11-18 } \\ & \text { LOS, S, FFS, } \mathrm{v}_{\mathrm{p}} \text { - Exhibits 11-2, } \\ & 11-3 \end{aligned}$	$\begin{aligned} & \mathrm{f}_{\mathrm{LW}}-\text { Exhibit } 11-8 \\ & \mathrm{f}_{\mathrm{LC}}-\text { Exhibit } 11-9 \\ & \text { TRD - Page 11-11 } \end{aligned}$

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 1/2/2018 PM	Highway/Direction of Travel Eastbound From/To At 83rd Ave Jurisdiction ADOT Analysis Year 2040	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$4525 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h		
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 4 $\mathrm{ramps} / \mathrm{mi}$ mph mph	f Lw flC TRD Adjustment FFS 65.0	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\begin{array}{lll} \begin{array}{l} \mathrm{v}_{\mathrm{p}}=(\mathrm{V} \text { or } \mathrm{DDHV}) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{Hv}}^{1250}\right. \\ \left.\times \mathrm{f}_{\mathrm{p}}\right) \end{array} & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \mathrm{~S} & 65.0 & \mathrm{mph} \\ \mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & 19.2 & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \\ \mathrm{LOS} & \mathrm{C} & \end{array}$		Design (N) Design LOS $\mathrm{v}_{\mathrm{p}}=\left(\mathrm{V}\right.$ or DDHV) $/\left(\mathrm{PHF} \times \mathrm{N} \times \mathrm{f}_{\mathrm{HV}}\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times \mathrm{f}_{\mathrm{p}}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow	$\begin{aligned} & E_{R} \text { - Exhibits 11-10, 11-12 } \\ & E_{T}-\text { Exhibits 11-10, 11-11, 11-13 } \\ & f_{p} \text { - Page 11-18 } \\ & \text { LOS, S, FFS, } v_{p} \text { - Exhibits 11-2, } \\ & 11-3 \end{aligned}$	$\begin{aligned} & \mathrm{f}_{\mathrm{LW}} \text { - Exhibit } 11-8 \\ & \mathrm{f}_{\mathrm{LC}}-\text { Exhibit } 11-9 \\ & \text { TRD - Page 11-11 } \end{aligned}$

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 1/2/2018 PM	Highway/Direction of Travel Eastbound From/To At 99th Ave Jurisdiction ADOT Analysis Year 2040	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$4250 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h		
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 3 $\mathrm{ramps} / \mathrm{mi}$ mph mph	f Lw flC TRD Adjustment FFS 65.0	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\begin{array}{lll} \begin{array}{l} \mathrm{v}_{\mathrm{p}}=(\mathrm{V} \text { or } \mathrm{DDHV}) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{Hv}} 1566\right. \\ \left.\mathrm{xf} \mathrm{f}_{\mathrm{p}}\right) \end{array} & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \mathrm{~S} & 64.6 & \mathrm{mph} \\ \mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & 24.2 & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \\ \mathrm{LOS} & \mathrm{C} & \end{array}$		Design (N) Design LOS $\mathrm{v}_{\mathrm{p}}=\left(\mathrm{V}\right.$ or DDHV) $/\left(\mathrm{PHF} \times \mathrm{N} \times \mathrm{f}_{\mathrm{HV}}\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times \mathrm{f}_{\mathrm{p}}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow	$\begin{aligned} & E_{R} \text { - Exhibits 11-10, 11-12 } \\ & E_{T}-\text { Exhibits 11-10, 11-11, 11-13 } \\ & f_{p} \text { - Page 11-18 } \\ & \text { LOS, S, FFS, } v_{p} \text { - Exhibits 11-2, } \\ & 11-3 \end{aligned}$	$\begin{aligned} & \mathrm{f}_{\mathrm{LW}}-\text { Exhibit } 11-8 \\ & \mathrm{f}_{\mathrm{LC}} \text { - Exhibit 11-9 } \\ & \text { TRD - Page 11-11 } \end{aligned}$

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	XL HDR Engineering Inc. 1/2/2018 PM	Highway/Direction of Travel Eastbound From/To At Avondale BIvd Jurisdiction ADOT Analysis Year 2040	
Project Description SR 30 East HA (3+0)			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT	$3550 \quad$veh/h veh/day	Peak-Hour Factor, PHF 0.95 \%Trucks and Buses, P_{T} 10 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h		
Calculate Flow Adjustments			
	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.952 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 3 $\mathrm{ramps} / \mathrm{mi}$ mph mph	f Lw fl LRD Adjustment FFS 65.0	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\begin{array}{lll} \begin{array}{l} \mathrm{v}_{\mathrm{p}}=(\mathrm{V} \text { or } \mathrm{DDHV}) /(\mathrm{PHF} \times \mathrm{Nxf} \\ \left.\mathrm{xf} \mathrm{f}_{\mathrm{p}}\right) \\ \text { 1308 } \end{array} & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \mathrm{~S} & 65.0 & \mathrm{mph} \\ \mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & 20.1 & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \\ \mathrm{LOS} & \mathrm{C} & \end{array}$		Design (N) Design LOS $\mathrm{v}_{\mathrm{p}}=\left(\mathrm{V}\right.$ or DDHV) $/\left(\mathrm{PHF} \times \mathrm{N} \times \mathrm{f}_{\mathrm{HV}}\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times \mathrm{f}_{\mathrm{p}}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow	E_{R} - Exhibits 11-10, 11-12 f_{LW} - Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 f_{LC} - Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$	

RAMPS AND RAMP JUNCTIONS WORKSHEET																				
General Information				Site Information																
Analyst XL				eeway/Dir of Travel		Westbound														
Agency or Company	HDR Engineering inc.			unction		67th Ave OFF Ramp														
Date Performed 1/212018				Jurisdicition		ADOT														
Analysis Time Period PM				ysis Year		2040														
Project Description SR 30 East HA (3+0)																				
Inputs																				
Upstream Adj Ramp		Number of Lanes, N		4					Downstream Adj Ramp											
VYes ∇ On		Acceleration Lane Length, L_{A}		1500																
ves		Deceleration	Length $L_{\text {D }}$						\square Yes	\square on										
\square No		Freeway Volume, V_{F}		5850					VNo	\square off										
$L_{\text {up }}=$	ft	Ramp Volume, V_{R}		475					$\mathrm{L}_{\text {down }}=$	ft										
		Freeway Free-Flow Speed, S_{FF} Ramp Free-Flow Speed, $\mathrm{S}_{\text {FR }}$		65.0																
	veh/h			60.0					$\mathrm{V}_{\mathrm{D}}=$	veh/h										
Conversion to pc/h Under Base Conditions																				
(poch)	(Velhrr)	PHF	Terrain	\%Truck	\%Rv		f_{HV}	f_{p}	V V/PHF	HV $\times \mathrm{f}_{\mathrm{p}}$										
Freeway	5850	0.95	Level	10	0		0.952	1.00	646											
Ramp	475	0.95	Level	10	0		0.952	1.00	52											
UpStream	350	0.95	Level	10	0		0.952	1.00	38											
DownStream					Diverge Areas															
Merge Areas																				
Estimation of v_{12}					Estimation of v_{12}															
Capacity Checks					Capacity Checks															
	Actual	Capacity		LOS F?			Actual	Capacity		LOS F?										
V_{FO}		Exhibit 13-8			V_{F}		6466	Exhibit 13-8	9400	No										
					$\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}$	$V_{F}-V_{R}$	5941	Exhibit 13-8	89400	No										
					V_{R}		525	Exhibit 13-10	02200	No										
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area															
	Actual	Max Desirable		Violation?			Actual	Max Desirab		Violation?										
$\mathrm{V}_{\text {R12 }}$		Exhibit 13-8			V_{12}		3115	Exxibit 13-8	4400:All	No										
Level of Service Determination (if not F)					Level of Service Determination (if not F)															
$\mathrm{D}_{\mathrm{R}}=5.475+0$.	$734 \mathrm{v}_{\mathrm{R}}+$	$0.0078 \mathrm{~V}_{12}$	00627 L_{A}		$\mathrm{D}_{\mathrm{R}}=4.252+0.0086 \mathrm{~V}_{12}-0.009 \mathrm{~L}_{\mathrm{D}}$															
$\mathrm{D}_{\mathrm{R}}=$ ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)					$D_{R}=17.5(\mathrm{pc} / \mathrm{m} / \mathrm{ln})$															
LOS $=($ Exhibit $13-2)$																				
Speed Determination					Speed Determination															
$M_{s}=$ (Exibit 13-11)					$\begin{array}{ll} \mathrm{D}_{\mathrm{s}}= & 0.150(\text { Exhibit 13-12) } \\ \mathrm{S}_{\mathrm{R}}= & 61.5 \mathrm{mph}(\text { Exhibit 13-12) } \end{array}$															
$\mathrm{S}_{\mathrm{R}}=\quad \operatorname{mph}($ Exhibit 13-11)																				
					$\begin{array}{ll} S_{0}= & 68.7 \mathrm{mph}(\text { Exhibit 13-12) } \\ \mathrm{S}= & 65.0 \mathrm{mph}(\text { Exhibit 13-13) } \end{array}$															

FREEWAY WEAVING WORKSHEET									
General Information					Site Information				
Analyst Agency/Company Date Performed Analysis Time Period		XL HDR Engineering Inc. 1/2/2018 PM			Freeway/Dir of Travel Weaving Segment Location Analysis Year			Sarival Ave to Estrella Pkwy2040	
Project Description SR 30 East HA (3+0)									
Inputs									
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{S} Freeway free-flow speed, FFS				$\begin{array}{r} \text { One-Sided } \\ 5 \\ 2200 \mathrm{ft} \\ 65 \mathrm{mph} \end{array}$	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type				$\begin{array}{r} \text { Freeway } \\ 15 \\ 2350 \\ \text { Leve } \\ \hline \end{array}$
Conversions to pc/h Under Base Conditions									
	V (veh/h)	PHF	Truck (\%)	RV (\%)	$\mathrm{E}_{\text {T }}$	E_{R}	f_{HV}	fp_{p}	V (pc/h)
$\mathrm{V}_{\text {FF }}$	2250	0.95	10	0	1.5	1.2	0.952	1.00	2487
$\mathrm{V}_{\text {RF }}$	125	0.95	10	0	1.5	1.2	0.952	1.00	138
$\mathrm{V}_{\text {FR }}$	500	0.95	10	0	1.5	1.2	0.952	1.00	553
$V_{\text {RR }}$	0	0.95	10	0	1.5	1.2	0.952	1.00	2487
V_{NW}	2487							$\mathrm{V}=$	3178
$v_{\text {w }}$	691								
VR	0.217								
Configuration Characteristics									
Minimum maneuver lanes, $\mathrm{N}_{\text {WL }}$ Interchange density, ID Minimum RF lane changes, $\mathrm{LC}_{\text {RF }}$ Minimum $F R$ lane changes, $L_{F R}$ Minimum RR lane changes, $\mathrm{LC}_{\mathrm{RR}}$					Minimum weaving lane changes, $\mathrm{LC}_{\text {MI }}$ Weaving lane changes, $L C_{w}$ Non-weaving lane changes, $\mathrm{LC}_{\mathrm{NW}}$ Total lane changes, $\mathrm{LC}_{\text {ALL }}$ Non-weaving vehicle index, I_{NW}				$\begin{array}{r} 553 \mathrm{lc/h} \\ 1242 \mathrm{lch} \\ 742 \mathrm{lch} \\ 1984 \mathrm{lch} \\ 0.208 \end{array}$
Weaving Segment Speed, Density, Level of Service, and Capacity									
Weaving segment flow rate, v Weaving segment capacity, c_{w} Weaving segment v/c ratio Weaving segment density, D Level of Service, LOS				3178 pc/h 0276 veh/h 0.295 $1.0 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ B	Weaving intensity factor, W Weaving segment speed, S Average weaving speed, S_{w} Average non-weaving speed, S_{NW} Maximum weaving length, $L_{\text {max }}$				$\begin{array}{r} \hline 0.208 \\ 57.6 \mathrm{mph} \\ 56.4 \mathrm{mph} \\ 58.0 \mathrm{mph} \\ 4715 \mathrm{ft} \end{array}$
Notes									
a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures ofChapter 13, "Freeway Merge and Diverge Segments". b. For volumes that exceed the weaving segment capacity, the level of service is "F".									
Copyright © 2010 University of Florida, All Rights Reserved HCS $2010^{\text {TM }}$ Versi									

FREEWAY WEAVING WORKSHEET									
General Information					Site Information				
Analyst Agency/Company Date Performed Analysis Time Period		XL HDR Engineering Inc. $1 / 2 / 2018$ PM			Freeway/Dir of Travel Weaving Segment Location Analysis Year			83rd Ave to 91st Ave2040	
Project Description SR 30 East HA ($3+0$)									
Inputs									
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS			One-Sided 2220ft 65 mph		Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type				D Roadway Multilane Highways 15 2350 Leve
Conversions to pc/h Under Base Conditions									
	V (veh/h)	PHF	Truck (\%)	RV (\%)	E_{T}	E_{R}	f_{HV}	f_{p}	v (pc/h)
$\mathrm{VFF}_{\text {FF }}$	8100	0.95	10	0	1.5	1.2	0.952	1.00	8953
$V_{\text {RF }}$	1125	0.95	10	0	1.5	1.2	0.952	1.00	1243
$\mathrm{VFR}^{\text {FR }}$	100	0.95	10	0	1.5	1.2	0.952	1.00	111
VRR	0	0.95	10	0	1.5	1.2	0.952	1.00	8953
V_{NW}	8953							$\mathrm{V}=$	10307
$\mathrm{v}_{\text {w }}$	1354								
VR	0.131								
Configuration Characteristics									
Minimum maneuver lanes, N_{WL} Interchange density, ID Minimum RF lane changes, $\mathrm{LC}_{\mathrm{RF}}$ Minimum FR lane changes, $L^{\text {CR }}$ Minimum RR lane changes, $\mathrm{LC}_{\text {RR }}$					Minimum weaving lane changes, $\mathrm{LC}_{\text {MIN }}$ Weaving lane changes, $L C_{w}$ Non-weaving lane changes, $\mathrm{LC}_{\mathrm{Nw}}$ Total lane changes, $\mathrm{LC}_{\text {ALL }}$ Non-weaving vehicle index, I_{Nw}				$111 \mathrm{lc} / \mathrm{h}$ 804 Ic/h 2946 lc/h 3750 lc/h 0.342
Weaving Segment Speed, Density, Level of Service, and Capacity									
Weaving segment flow rate, v Weaving segment capacity, c Weaving segment v/c ratio Weaving segment density, D Level of Service, LOS				10307 pc/h 0600 veh/h 0.926 $8.2 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ E	Weaving intensity factor, W Weaving segment speed, S Average weaving speed, S_{w} Average non-weaving speed, $S_{N W}$ Maximum weaving length, $\mathrm{L}_{\text {MAX }}$				$\begin{array}{r} 0.342 \\ 54.0 \mathrm{mph} \\ 52.3 \mathrm{mph} \\ 54.3 \mathrm{mph} \\ 3847 \mathrm{ft} \end{array}$
Notes									
a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments" b. For volumes that exceed the weaving segment capacity, the level of service is " F ".									
Copyright © 2010 University of Florida, All Rights Reserved					HCS 2010 ${ }^{\text {TM }}$ Version 6.1			erated:	10:55

FREEWAY WEAVING WORKSHEET									
General Information					Site Information				
Analyst Agency/Company Date Performed Analysis Time Period		XL HDR Engineering Inc. 1/2/2018 PM			Freeway/Dir of Travel Weaving Segment Location Analysis Year			107th Ave to Avondale Blvd2040	
Project Description SR 30 East HA (3+0)									
Inputs									
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{S} Freeway free-flow speed, FFS				$\begin{array}{r} \text { One-Sided } \\ 4 \\ 1675 \mathrm{ft} \\ 65 \mathrm{mph} \end{array}$	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type				$\begin{array}{r} \text { Freeway } \\ 15 \\ 2350 \\ \text { Leve } \\ \hline \end{array}$
Conversions to pc/h Under Base Conditions									
	V (veh/h)	PHF	Truck (\%)	RV (\%)	$\mathrm{E}_{\text {T }}$	E_{R}	f_{HV}	fp_{p}	v (pc/h)
V_{FF}	7000	0.95	10	0	1.5	1.2	0.952	1.00	7737
$\mathrm{V}_{\text {RF }}$	975	0.95	10	0	1.5	1.2	0.952	1.00	1078
$\mathrm{V}_{\text {FR }}$	100	0.95	10	0	1.5	1.2	0.952	1.00	111
$V_{\text {RR }}$	0	0.95	10	0	1.5	1.2	0.952	1.00	7737
V_{NW}	7737							$\mathrm{V}=$	8926
$\mathrm{V}_{\text {w }}$	1189								
VR	0.133								
Configuration Characteristics									
Minimum maneuver lanes, $\mathrm{N}_{\text {WL }}$ Interchange density, ID Minimum RF lane changes, $\mathrm{LC}_{\text {RF }}$ Minimum FR lane changes, $\mathrm{LC}_{\mathrm{FR}}$ Minimum RR lane changes, $L_{R R}$				2 lc $0.83 \mathrm{int} / \mathrm{mi}$ $1 \mathrm{lc} / \mathrm{pc}$ $1 \mathrm{lc} / \mathrm{pc}$ Ic/pc	Minimum weaving lane changes, $\mathrm{LC}_{\text {MI }}$ Weaving lane changes, $L C_{w}$ Non-weaving lane changes, $\mathrm{LC}_{\mathrm{NW}}$ Total lane changes, $\mathrm{LC}_{\text {ALL }}$ Non-weaving vehicle index, $I_{\text {Nw }}$				
Weaving Segment Speed, Density, Level of Service, and Capacity									
Weaving segment flow rate, v Weaving segment capacity, c_{w} Weaving segment v/c ratio Weaving segment density, D Level of Service, LOS				8926 pc/h 8312 veh/h 1.023 $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ F	Weaving intensity factor, W Weaving segment speed, S Average weaving speed, S_{w} Average non-weaving speed, S_{NW} Maximum weaving length, $L_{\text {max }}$				mph mph mph 3865 ft
Notes									
a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments", b. For volumes that exceed the weaving segment capacity, the level of service is "F".									
Copyright 2010 University of Florida, All Rights Reserved \quad HCS 2010 ${ }^{\text {TM }}$ Version 6.1 Generated: 1/3/2018 5:16									

FREEWAY WEAVING WORKSHEET									
General Information					Site Information				
Analyst Agency/Company Date Performed Analysis Time Period		XL HDR Engineering Inc. 1/2/2018 PM			Freeway/Dir of Travel Weaving Segment Location Analysis Year			Avondale Blva to 107th Ave2040	
Project Description SR 30 East HA (3+0)									
Inputs									
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS				One-Sided 1620ft 65 mph	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, C_{FL} Terrain type				$\begin{array}{r} \text { Freeway } \\ 15 \\ 2350 \\ \text { Level } \\ \hline \end{array}$
Conversions to pc/h Under Base Conditions									
	V (veh/h)	PHF	Truck (\%)	RV (\%)	E_{T}	E_{R}	f_{Hv}	$\mathrm{fp}^{\text {p }}$	V (pc/h)
V_{FF}	3350	0.95	10	0	1.5	1.2	0.952	1.00	3703
$\mathrm{V}_{\text {RF }}$	200	0.95	10	0	1.5	1.2	0.952	1.00	221
$\mathrm{V}_{\text {FR }}$	575	0.95	10	0	1.5	1.2	0.952	1.00	636
$V_{\text {RR }}$	0	0.95	10	0	1.5	1.2	0.952	1.00	3703
V_{NW}	3703							$\mathrm{V}=$	4560
$\mathrm{V}_{\text {w }}$	857								
VR	0.188								
Configuration Characteristics									
Minimum maneuver lanes, N_{WL} Interchange density, ID Minimum RF lane changes, $L^{2} C_{R F}$ Minimum FR lane changes, $\mathrm{LC}_{\mathrm{FR}}$ Minimum RR lane changes, $\mathrm{LC}_{\text {RR }}$				2 lc $0.83 \mathrm{int} / \mathrm{mi}$ $1 \mathrm{lc} / \mathrm{pc}$ $1 \mathrm{lc} / \mathrm{pc}$ Ic/pc	Minimum weaving lane changes, $\mathrm{LC}_{\text {MII }}$ Weaving lane changes, $L C_{w}$ Non-weaving lane changes, $\mathrm{LC}_{\mathrm{Nw}}$ Total lane changes, $\mathrm{LC}_{\text {ALL }}$ Non-weaving vehicle index, $I_{\text {ww }}$				$857 \mathrm{lc/h}$ $1225 \mathrm{lc} / \mathrm{h}$ $870 \mathrm{lc} / \mathrm{h}$ $2095 \mathrm{lc} / \mathrm{h}$ 0.277
Weaving Segment Speed, Density, Level of Service, and Capacity									
Weaving segment flow rate, v Weaving segment capacity, c_{w} Weaving segment v/c ratio Weaving segment density, D Level of Service, LOS				4560 pc/h 8137 veh/h 0.534 $.3 \mathrm{pc} / \mathrm{milln}$ C	Weaving intensity factor, W Weaving segment speed, S Average weaving speed, S_{w} Average non-weaving speed, $S_{N W}$ Maximum weaving length, $L_{\text {max }}$				$\begin{array}{r} \hline 0.277 \\ 53.5 \mathrm{mph} \\ 54.2 \mathrm{mph} \\ 53.4 \mathrm{mph} \\ 4413 \mathrm{ft} \end{array}$
Notes									
a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments". b. For volumes that exceed the weaving segment capacity, the level of service is "F".									
Copyright © 2010 University of Florida, All Rights Reserved \quad HCS 2010 ${ }^{\text {TM }}$ Version 6.1 Generated: 312882018 3:50									

FREEWAY WEAVING WORKSHEET									
General Information					Site Information				
Analyst Agency/Company Date Performed Analysis Time Period		XL HDR Engineering Inc $1 / 2 / 2018$ PM			Freeway/Dir of Travel Weaving Segment Location Analysis Year			Estrella Pkwy to Bullard Ave2040	
Project Description SR 30 East HA (3+0)									
Inputs									
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS				$\begin{array}{r} \text { One-Sided } \\ 5 \\ 2100 \mathrm{ft} \\ 65 \mathrm{mph} \end{array}$	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type				Freeway 15 2350 Leve
Conversions to pc/h Under Base Conditions									
	V (veh/h)	PHF	Truck (\%)	RV (\%)	$\mathrm{E}_{\text {T }}$	E_{R}	f_{HV}	$\mathrm{fp}^{\text {p }}$	v (pc/h)
$\mathrm{V}_{\text {FF }}$	2600	0.95	10	0	1.5	1.2	0.952	1.00	2874
V_{RF}	150	0.95	10	0	1.5	1.2	0.952	1.00	166
$\mathrm{F}_{\text {FR }}$	800	0.95	10	0	1.5	1.2	0.952	1.00	884
VRR	0	0.95	10	0	1.5	1.2	0.952	1.00	2874
$\mathrm{VNW}^{\text {N }}$	2874							$\mathrm{V}=$	3924
$\mathrm{v}_{\text {w }}$	1050								
VR	0.268								
Configuration Characteristics									
Minimum maneuver lanes, N_{WL} Interchange density, ID Minimum RF lane changes, $\mathrm{LC}_{\mathrm{RF}}$ Minimum FR lane changes, $\mathrm{LC}_{\mathrm{FR}}$ Minimum RR lane changes, $\mathrm{LC}_{\text {RR }}$					Minimum	ing lane	nges, LC_{M} L_{Nw} $I_{\text {wn }}$		$\begin{array}{r} 884 \mathrm{lc/h} \\ 1555 \mathrm{lc/h} \\ 767 \mathrm{lc/h} \\ 2322 \mathrm{lc/h} \\ 0.245 \end{array}$
Weaving Segment Speed, Density, Level of Service, and Capacity									
Weaving segment flow rate, v Weaving segment capacity, c Weaving segment v/c ratio Weaving segment density, D Level of Service, LOS				3924 pc/h 8542 veh/h 0.438 $4.3 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ B	Weaving intensity factor, W Weaving segment speed, S Average weaving speed, S_{w} Average non-weaving speed, S_{NW} Maximum weaving length, $\mathrm{L}_{\text {MAX }}$				$\begin{array}{r} \hline 0.245 \\ 54.9 \mathrm{mph} \\ 55.2 \mathrm{mph} \\ 54.9 \mathrm{mph} \\ 5239 \mathrm{ft} \end{array}$
Notes									
a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments". b. For volumes that exceed the weaving segment capacity, the level of service is "F".									
Copyright © 2010 University of Florida, All Rights Reserved									

Appendix B

Synchro Analysis Reports

HCM Signalized Intersection Capacity Analysis
1: 67th Ave \& WB On Ramp

C Critical Lane Group

HCM Signalized Intersection Capacity Analysis
2: 67 th Ave \& EB Off Ramp
05/02/2018

nalysis Period (min)
c Critical Lane Group

3: 83rd Ave \& WB On Ram										05/02/2018	
\rangle			\checkmark			4	\uparrow	$>$		\downarrow	
Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			7	\uparrow	F	7	$\uparrow \uparrow$			中	
Traffic Volume (vph)	0	0	15	0	345	15	150	0	0	1000	70
Future Volume (vph)	0	0	15	0	345	15	150	0	0	1000	70
Ideal Flow (vphpl) 1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)			4.0	4.0	4.0	4.0	4.0			4.0	
Lane Util. Factor			0.95	0.91	0.95	1.00	0.95			0.95	
Fit			1.00	0.85	0.85	1.00	1.00			0.99	
Flt Protected			0.95	1.00	1.00	0.95	1.00			1.00	
Satd. Flow (prot)			1559	1338	1395	1641	3282			3249	
Flt Permitted			0.95	1.00	1.00	0.15	1.00			1.00	
Satd. Flow (perm)			1559	1338	1395	252	3282			3249	
Peak-hour factor, PHF 0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	0	0	16	0	363	16	158	0	0	1053	74
RTOR Reduction (vph)	0	0	0	161	160	0	0	0	0	4	0
Lane Group Flow (vph)	0	0	14	23	21	16	158	0	0	1123	0
Turn Type			Perm	NA	Perm	Perm	NA			NA	
Protected Phases				8			25			6	
Permitted Phases			8		8	25					
Actuated Green, G (s)			9.5	9.5	9.5	26.4	26.4			54.5	
Effective Green, g (s)			10.5	10.5	10.5	27.4	27.4			55.5	
Actuated g/C Ratio			0.12	0.12	0.12	0.30	0.30			0.62	
Clearance Time (s)			5.0	5.0	5.0					5.0	
Vehicle Extension (s)			3.0	3.0	3.0					3.0	
Lane Grp Cap (vph)			181	156	162	76	999			2003	
v / s Ratio Prot							0.05			c0.35	
v/s Ratio Perm			0.01	0.02	0.02	c0.06					
v/c Ratio			0.08	0.15	0.13	0.21	0.16			0.56	
Uniform Delay, d1			35.4	35.7	35.7	23.3	22.9			10.1	
Progression Factor			1.00	1.00	1.00	0.57	0.56			1.00	
Incremental Delay, d2			0.2	0.4	0.4	1.4	0.1			1.1	
Delay (s)			35.6	36.2	36.0	14.7	13.0			11.2	
Level of Service			D	D	D	B	B			B	
Approach Delay (s)	0.0			36.1			13.1			11.2	
Approach LOS	A			D			B			B	
Intersection Summary											
HCM 2000 Control Delay		17.0		HCM 200	Level of S	ervice		B			
HCM 2000 Volume to Capacity ratio		0.47									
Actuated Cycle Length (s)		90.0		Sum of los	time (s)			14.0			
Intersection Capacity Utilization		47.2\%		CU Level	Service			A			
Analysis Period (min)		15									

C Critical Lane Group

HCM Signalized Intersection Capacity Analysis

Analysis Period (min)
c Critical Lane Group

5: 91st Ave \& WB On Ramp/WB Off Ramp											05/02/2018	
	$\stackrel{ }{*}$			t			4	\dagger	p		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				7	\dagger	F	\% ${ }^{1+1}$	$\uparrow \uparrow$			ttto	
Trafic Volume (vph)	0	0	0	20	0	510	85	135	0	0	1105	45
Future Volume (vph)	0	0	0	20	0	510	85	135	0	0	1105	45
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				4.0	4.0	4.0	4.0	4.0			4.0	
Lane Util. Factor				0.95	0.91	0.95	0.97	0.95			0.86	
Frt				1.00	0.85	0.85	1.00	1.00			0.99	
Flt Protected				0.95	1.00	1.00	0.95	1.00			1.00	
Satd. Flow (prot)				1559	1337	1395	3183	3282			5907	
Flt Permitted				0.95	1.00	1.00	0.20	1.00			1.00	
Satd. Flow (perm)				1559	1337	1395	676	3282			5907	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	0	0	0	21	0	537	89	142	0	0	1163	47
RTOR Reduction (vph)	0	0	0	0	238	237	0	0	0	0	4	0
Lane Group Flow (vph)	0	0	0	19	33	31	89	142	0	0	1206	0
Turn Type				Perm	NA	Perm	Perm	NA			NA	
Protected Phases					\bigcirc			2			6	
Permitted Phases				8		8	2					
Actuated Green, G (s)				9.4	9.4	9.4	31.3	31.3			70.6	
Effective Green, g (s)				10.4	10.4	10.4	32.3	32.3			71.6	
Actuated g/C Ratio				0.12	0.12	0.12	0.36	0.36			0.80	
Clearance Time (s)				5.0	5.0	5.0	5.0	5.0			5.0	
Vehicle Extension (s)				3.0	3.0	3.0	3.0	3.0			3.0	
Lane Grp Cap (vph)				180	154	161	242	1177			4699	
v/s Ratio Prot								0.04			c0.20	
v / s Ratio Perm				0.01	0.02	0.02	c0.13					
v / C Ratio				0.11	0.21	0.19	0.37	0.12			0.26	
Uniform Delay, d1				35.6	36.1	36.0	21.3	19.3			2.4	
Progression Factor				1.00	1.00	1.00	0.47	0.46			1.00	
Incremental Delay, d2				0.3	0.7	0.6	4.3	0.2			0.1	
Delay (s)				35.9	36.8	36.6	14.2	9.0			2.5	
Level of Service				D	D	D	B	A			A	
Approach Delay (s)		0.0			36.7			11.0			2.5	
Approach LOS		A			D			B			A	
Intersection Summary												
HCM 2000 Control DelayHCM 2000 Volume to Capacity ratio			13.0		HCM 2000	Level of S	Service		B			
			0.31									
Actuated Cycle Length (s)			90.0		Sum of lost	time (s)			14.0			
Intersection Capacity Utilization			46.4\%		CU Level	Service			A			
Analysis Period (min)			15									

C Critical Lane Group

HCM Signalized Intersection Capacity Analysis
6: 91st Ave \& EB Off Ramp/EB On Ramp
05/02/2018

Analysis Period (min)

HCM Signalized Intersection Capacity Analysis

8: EB Off Ramp/EB On Ramp \& 107th											05/02/2018	
	\rangle	\rightarrow	\geqslant	t	\leftarrow		4	\uparrow	7	\downarrow	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\$	7					$\uparrow \uparrow$	「	\%	个4	
Traffic Volume (vph)	80	0	10	0	0	0	0	115	220	480	55	
Future Volume (vph)	80	0	10	0	0	0	0	115	220	480	55	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	5.0					5.0	5.0	4.0	5.0	
Lane Util. Factor	0.95	0.91	0.95					0.95	1.00	1.00	0.95	
Frt	1.00	1.00	0.85					1.00	0.85	1.00	1.00	
Flt Protected	0.95	0.95	1.00					1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1559	1493	1395					3282	1468	1641	3282	
Flt Permitted	0.95	0.95	1.00					1.00	1.00	0.68	1.00	
Satd. Flow (perm)	1559	1493	1395					3282	1468	1167	3282	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	84	0	11	0	0	0	0	121	232	505	58	
RTOR Reduction (vph)	0	32	9	0	0	0	0	0	63	0	0	
Lane Group Flow (vph)	43	10	1	0	0	0	0	121	169	505	58	
Turn Type	Perm	NA	Perm					NA	Perm	Perm	NA	
Protected Phases		4						2			6	
Permitted Phases	4		4						2	6		
Actuated Green, G (s)	6.2	6.2	6.2					43.8	43.8	43.8	43.8	
Effective Green, $\mathrm{g}(\mathrm{s})$	7.2	7.2	6.2					43.8	43.8	44.8	43.8	
Actuated g/C Ratio	0.12	0.12	0.10					0.73	0.73	0.75	0.73	
Clearance Time (s)	5.0	5.0	5.0					5.0	5.0	5.0	5.0	
Vehicle Extension (s)	3.0	3.0	3.0					3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	187	179	144					2395	1071	871	2395	
v / s Ratio Prot								0.04			0.02	
v/s Ratio Perm	c0.03	0.01	0.00						0.12	c0.43		
v/c Ratio	0.23	0.06	0.01					0.05	0.16	0.58	0.02	
Uniform Delay, d1	23.9	23.4	24.1					2.3	2.5	3.4	2.2	
Progression Factor	1.00	1.00	1.00					1.00	1.00	0.89	0.83	
Incremental Delay, d2	0.6	0.1	0.0					0.0	0.3	2.8	0.0	
Delay (s)	24.5	23.5	24.2					2.3	2.8	5.8	1.9	
Level of Service	C	C	c					A	A	A	A	
Approach Delay (s)		24.0			0.0			2.6			5.4	
Approach LOS		C			A			A			A	
Intersection Summary												
HCM 2000 Control Delay			6.2		CM 2000	evel of	ervice		A			
HCM 2000 Volume to Capacity ratio			0.55									
Actuated Cycle Length (s)			60.0		um of los	time (s)			10.0			
Intersection Capacity Utilization			48.0\%		U Level	Service			A			
Analysis Period (min)												

nalysis Period (min)
c Critical Lane Group

9: Avondale Blvd \& WB	B O			Ra								2018
	$\stackrel{ }{*}$			\checkmark				\uparrow			\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				\%	\dagger	F	${ }^{7}$	¢ヶ¢			ttt	F
Traffic Volume (vph)	0	0	0	85	0	320	20	110	0	0	1125	60
Future Volume (vph)	0	0	0	85	0	320	20	110	0	0	1125	60
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				4.0	4.0	4.0	4.0	4.0			4.0	5.0
Lane Util. Factor				0.95	0.91	0.95	1.00	0.91			0.81	0.81
Frt				1.00	0.86	0.85	1.00	1.00			1.00	0.85
Flt Protected				0.95	1.00	1.00	0.95	1.00			1.00	1.00
Satd. Flow (prot)				1559	1345	1395	1641	4715			5592	1189
FIt Permitted				0.95	1.00	1.00	0.95	1.00			1.00	1.00
Satd. Flow (perm)				1559	1345	1395	1641	4715			5592	1189
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	0	0	0	89	0	337	21	116	0	0	1184	63
RTOR Reduction (vph)	0	0	0	0	145	151	0	0	0	0	1	18
Lane Group Flow (vph)	0	0	0	80	29	21	21	116	0	0	1189	39
Turn Type				Perm	NA	Perm	Prot	NA			NA	Perm
Protected Phases					8		5	2			6	
Permitted Phases				8		8						6
Actuated Green, G (s)				10.1	10.1	10.1	3.2	19.1			61.7	61.7
Effective Green, $\mathrm{g}(\mathrm{s}$)				11.1	11.1	11.1	4.2	20.1			62.7	61.7
Actuated g/C Ratio				0.12	0.12	0.12	0.05	0.22			0.70	0.69
Clearance Time (s)				5.0	5.0	5.0	5.0	5.0			5.0	5.0
Vehicle Extension (s)				3.0	3.0	3.0	3.0	3.0			3.0	3.0
Lane Grp Cap (vph)				192	165	172	76	1053			3895	815
v / s Ratio Prot							c0.01	0.02			c0.21	
v/s Ratio Perm				c0.05	0.02	0.02						0.03
v/c Ratio				0.42	0.18	0.12	0.28	0.11			0.31	0.05
Uniform Delay, d1				36.5	35.4	35.1	41.4	27.8			5.3	4.6
Progression Factor				1.00	1.00	1.00	0.79	0.56			1.00	1.00
Incremental Delay, d2				1.5	0.5	0.3	2.0	0.2			0.2	0.1
Delay (s)				37.9	35.9	35.4	34.7	15.8			5.5	4.7
Level of Service				D	D	D	C	B			A	A
Approach Delay (s)		0.0			36.1			18.7			5.4	
Approach LOS		A			D			B			A	
Intersection Summary												
HCM 2000 Control Delay			13.6		HCM 2000	Level of	ervice		B			
HCM 2000 Volume to Capacity rais	ratio		0.33									
Actuated Cycle Length (s)			90.0		Sum of los	time (s)			14.0			
Intersection Capacity Utilization			44.6\%		CU Level	fervice			A			
Analysis Period (min)			15									

C Critical Lane Group

HCM Signalized Intersection Capacity Analysis

Analysis Period (min)
c Critical Lane Group

HCM Signalized Intersection Capacity Analysis

Critical Lane Group

HCM Signalized Intersection Capacity Analysis

Analysis Period (min)
c Critical Lane Group

Synchro 9 Report SD, HDR Inc.,

HCM Signalized Intersection Capacity Analysis

C Critical Lane Group

HCM Signalized Intersection Capacity Analysis
14: Bullard Ave \& EB Off Ramp/EB On Ramp

Analysis Period (min)
c Critical Lane Group

Synchro 9 Repor SD, HDR Inc.,

HCM Signalized Intersection Capacity Analysis

HCM Signalized Intersection Capacity Analysis

nnalysis Period (min)
c Critical Lane Group

HCM Unsignalized Intersection Capacity Analysis

17: Sarival Ave \& WB Off Ramp								05/02/2018
	\checkmark	4	\uparrow			\downarrow		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	\%	「7	\uparrow			$\uparrow \uparrow$		
Trafic Volume (veh/h)	20	410	0	0	0	795		
Future Volume (Veh/h)	20	410	0	0	0	795		
Sign Control	Stop		Free			Free		
Grade	0\%		0\%			0\%		
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95		
Hourly flow rate (vph)	21	432	0	0	0	837		
Pedestrians								
Lane Width (tt)								
Walking Speed (ft/s)								
Percent Blockage								
Right turn flare (veh)								
Median type			None			None		
Median storage veh)								
Upstream signal (ft)								
pX, platoon unblocked								
vC , conficticting volume	418	0			0			
vC1, stage 1 conf vol								
$\mathrm{vC2}$, stage 2 conf vol								
vCu, unblocked vol	418	0			0			
tC, single (s)	7.0	7.1			4.3			
$\mathrm{tC}, 2$ stage (s)								
tF (s)	3.6	3.4			2.3			
p0 queue free \%	96	59			100			
cM capacity (veh/h)	542	1059			1565			
Direction, Lane \#	WB 1	WB 2	WB 3	NB 1	SB 1	SB 2		
Volume Total	21	216	216	0	418	418		
Volume Left	21	0	0	0	0	0		
Volume Right	0	216	216	0	0	0		
CSH	542	1059	1059	1700	1700	1700		
Volume to Capacity	0.04	0.20	0.20	0.00	0.25	0.25		
Queue Length 95th (tt)	3	19	19	0	0	0		
Control Delay (s)	11.9	9.3	9.3	0.0	0.0	0.0		
Lane LOS	B	A	A					
Approach Delay (s)	9.4			0.0	0.0			
Approach LOS	A							
Intersection Summary								
Average Delay			3.3					
Intersection Capacity Utilization			32.0\%		Level	Service	A	
Analysis Period (min)			15					

HCM Signalized Intersection Capacity Analysis
1: 67th Ave \& WB On Ramp
05/10/2018

nalysis Period (min)
Critical Lane Group

R30 TrafficReportUpdate 5:00 pm 11/16/2017 2035 Hybrid Alignment w/ signals (pm scenario) Dualleft

Synchro 9 Report SD. HDR Inc

C Critical Lane Group

HCM Signalized Intersection Capacity Analysis

Analysis Period (min)

[^1]

HCM Signalized Intersection Capacity Analysis

Analysis Period (min)

[^2]

HCM Signalized Intersection Capacity Analysis

Analysis Period（min）
c \quad Critical Lane Group

HCM Signalized Intersection Capacity Analysis

9：Avondale Blvd \＆WB On Ramp／WB Off Ramp											05／10／2018	
	$\stackrel{ }{*}$			\checkmark				4	p		\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				${ }^{*}$	\＄	「	＊	个个¢			tttit	
Trafic Volume（vph）	0	0	0	90	0	860	，	135	0	0	480	3
Future Volume（vph）	0	0	0	90	0	860	0	135	0	0	480	35
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time（s）				4.0	4.0	4.0		4.0			4.0	5.0
Lane Util．Factor				0.95	0.91	0.95		0.91			0.76	0.76
Frt				1.00	0.85	0.85		1.00			1.00	0.85
Flt Protected				0.95	1.00	1.00		1.00			1.00	1.00
Satd．Flow（prot）				1559	1340	1395		4715			6556	1116
FIt Permitted				0.95	1.00	1.00		1.00			1.00	1.00
Satd．Flow（perm）				1559	1340	1395		4715			6556	1116
Peak－hour factor，PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj．Flow（vph）	0	0	0	95	0	905	0	142	0	0	505	37
RTOR Reduction（vph）	0	0	0	0	353	353	0	0	0	0	1	12
Lane Group Flow（vph）	0	0	0	85	110	99		142	0	0	508	21
Turn Type				Perm	NA	Perm	Prot	NA			NA	Perm
Protected Phases					8		5	2			6	
Permitted Phases				8		8						
Actuated Green，G（s）				12.2	12.2	12.2		14.5			37.8	37.8
Effective Green， g （s）				13.2	13.2	13.2		15.5			38.8	37.8
Actuated g／C Ratio				0.22	0.22	0.22		0.26			0.65	0.63
Clearance Time（s）				5.0	5.0	5.0		5.0			5.0	5.0
Vehicle Extension（s）				3.0	3.0	3.0		3.0			3.0	3.0
Lane Grp Cap（vph）				342	294	306		1218			4239	703
v／s Ratio Prot								0.03			c0．08	
v / s Ratio Perm				0.05	0.08	0.07						0.02
v／c Ratio				0.25	0.37	0.32		0.12			0.12	0.03
Uniform Delay，d1				19.3	19.9	19.7		17.0			4.1	4.2
Progression Factor				1.00	1.00	1.00		0.87			1.00	1.00
Incremental Delay，d2				0.4	0.8	0.6		0.2			0.1	0.1
Delay（s）				19.7	20.7	20.3		15.0			4.1	4.
Level of Service				B	C	C		B			A	
Approach Delay（s）		0.0			20.4			15.0			4.1	
Approach LOS		A			C			B			A	
Intersection Summary												
HCM 2000 Control Delay			14.7		HCM 2000	Level of S	ervice		B			
HCM 2000 Volume to Capacity ratio			0.21									
Actuated Cycle Length（s）			60.0		Sum of los	time（s）			14.0			
Intersection Capacity Utilization			45．5\％		CU Level	f Service			A			
Analysis Period（min）			15									

Analysis Period（min）

SR30 TrafficReportlupdate $5: 00 \mathrm{pm} 11 / 16 / 20172035$ Hybrid Alignment w／signals（pm scenari）Dualleft

Synchro 9 Report SD．HDR Inc．

HCM Signalized Intersection Capacity Analysis

HCM Signalized Intersection Capacity Analysis

Analysis Period (min)

R30 TrefficReportUpdate 5.00 pm 11/16/20172035 Hybrid Alignment w/ signals (pm scenario) Dualleft

Synchro 9 Report SD HDR Inc.

HCM Signalized Intersection Capacity Analysis

HCM Signalized Intersection Capacity Analysis

Analysis Period (min)

SR30 TrafficReportlupdate $5: 00 \mathrm{pm} 11 / 16 / 20172035$ Hybrid Alignment w/ signals (pm scenari) Dualleft

Synchro 9 Repor SD. HDR Inc.,
ro 9 Report
Page
13

HCM Signalized Intersection Capacity Analysis

C Critical Lane Group

HCM Signalized Intersection Capacity Analysis

Analysis Period (min)
c Critical Lane Group

SR30 TrafficReportlupdate $5: 00 \mathrm{pm} 11 / 16 / 20172035$ Hybrid Alignment w/ signals (pm scenari) Dualleft

Synchro 9 Repor SD. HDR Inc.

Page 15

Analysis Period (min)
c Critical Lane Group

HCM Unsignalized Intersection Capacity Analysis

17: Sarival Ave \& WB Off Ramp								05/10/2018
	\checkmark	4	\uparrow	p		\downarrow		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	${ }^{7}$	T"	\uparrow			$\uparrow \uparrow$		
Traffic Volume (veh/h)	40	780	110	0	0	475		
Future Volume (Veh/h)	40	780	110	0	0	475		
Sign Control	Stop		Free			Free		
Grade	0\%		0\%			0\%		
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95		
Hourly flow rate (vph)	42	821	116	0	0	500		
Pedestrians								
Lane Width (t)								
Walking Speed (ft/s)								
Percent Blockage								
Right turn flare (veh)								
Median type			None			None		
Median storage veh)								
Upstream signal (tt)								
pX , platoon unblocked								
vC , conficting volume	366	116			116			
$\mathrm{vC1}$, stage 1 conf vol								
$\mathrm{vC2}$, stage 2 conf vol								
vCu , unblocked vol	366	116			116			
tC, single (s)	7.0	7.1			4.3			
tC, 2 stage (s)								
tF (s)	3.6	3.4			2.3			
p0 queue free \%	93	8			100			
cM capacity (veh/h)	586	889			1414			
Direction, Lane \#	WB 1	WB 2	WB 3	NB 1	SB 1	SB 2		
Volume Total	42	410	410	116	250	250		
Volume Left	42	0	0	0	0	0		
Volume Right	0	410	410	0	0	0		
CSH	586	889	889	1700	1700	1700		
Volume to Capacity	0.07	0.46	0.46	0.07	0.15	0.15		
Queue Length 95th (ft)	6	62	62	0	0	0		
Control Delay (s)	11.6	12.5	12.5	0.0	0.0	0.0		
Lane LOS	B	B	B					
Approach Delay (s)	12.4			0.0	0.0			
Approach LOS	B							
Intersection Summary								
Average Delay			7.3					
Intersection Capacity Utilization			39.7\%		Level	Service	A	
Analysis Period (min)			15					

SR30 TrafficReportUpdate 5:00 pm 11/16/2017 2035 Hybrid Alignment w/ signals (pm scenario) DualLeft
Synchro 9 Report SD, HDR Inc.,

HCM Signalized Intersection Capacity Analysis
1: 67th Ave \& WB On Ramp

Analysis Period (min)
c \quad Critical Lane Group

HCM Signalized Intersection Capacity Analysis
2: 67 th Ave \& EB Off Ramp
05/02/2018

Analysis Period (min)
c Critical Lane Group

3：83rd Ave \＆WB On	Ra	／WB	Off R								05／02／2018	
	\rangle			\checkmark			4	\uparrow	$>$	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				\％	\＄	F＇	\％	个个			性	
Traffic Volume（vph）	0	0	0	15	0	350	15	50	0	0	1130	75
Future Volume（vph）	0	0	0	15	0	350	15	50	0	0	1130	75
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time（s）				4.0	4.0	4.0	4.0	4.0			4.0	
Lane Util．Factor				0.95	0.91	0.95	1.00	0.95			0.95	
Fit				1.00	0.85	0.85	1.00	1.00			0.99	
Flt Protected				0.95	1.00	1.00	0.95	1.00			1.00	
Satd．Flow（prot）				1559	1338	1395	1641	3282			3251	
Flt Permitted				0.95	1.00	1.00	0.15	1.00			1.00	
Satd．Flow（perm）				1559	1338	1395	262	3282			3251	
Peak－hour factor，PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj．Flow（vph）	0	0	0	16	0	368	16	53	0	0	1189	79
RTOR Reduction（vph）	0	0	0	0	165	165	0	0	0	0	3	0
Lane Group Flow（vph）	0	0	0	14	21	19	16	53	0	0	1265	
Turn Type				Perm	NA	Perm	Perm	NA			NA	
Protected Phases					8			25			6	
Permitted Phases				8		8	25					
Actuated Green，G（s）				8.1	8.1	8.1	25.4	25.4			56.1	
Effective Green， $\mathrm{g}(\mathrm{s}$ ）				9.1	9.1	9.1	26.4	26.4			57.1	
Actuated g／C Ratio				0.10	0.10	0.10	0.29	0.29			0.63	
Clearance Time（s）				5.0	5.0	5.0					5.0	
Vehicle Extension（s）				3.0	3.0	3.0					3.0	
Lane Grp Cap（vph）				157	135	141	76	962			2062	
v／s Ratio Prot								0.02			c0．39	
v／s Ratio Perm				0.01	0.02	0.01	c0．06					
v／c Ratio				0.09	0.15	0.13	0.21	0.06			0.61	
Uniform Delay，d1				36.7	36.9	36.9	24.0	22.8			9.8	
Progression Factor				1.00	1.00	1.00	0.56	0.55			1.00	
Incremental Delay，d2				0.2	0.5	0.4	1.4	0.0			1.4	
Delay（s）				36.9	37.5	37.3	14.9	12.7			11.2	
Level of Service				D	D	D	B	B			B	
Approach Delay（s）		0.0			37.4			13.2			11.2	
Approach LOS		A			D			B			B	
Intersection Summary												
HCM 2000 Control Delay			17.1		HCM 200	Level of S	ervice		B			
HCM 2000 Volume to Capacity	ratio		0.52									
Actuated Cycle Length（s）			90.0		Sum of los	time（s）			14.0			
Intersection Capacity Utilization			51．0\％		CU Level	f Service			A			
Analysis Period（min）			15									

Analysis Period（min）
c \quad Critical Lane Group

HCM Signalized Intersection Capacity Analysis

Analysis Period（min）
c Critical Lane Group

5：91st Ave \＆WB On	Ram	／WB	Off Ra									2018
	\rangle			\checkmark			4	\uparrow	$>$	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				\％	\＄	F＇	\％${ }^{*}$	个4			†tt\％	
Traffic Volume（vph）	0	0	0	25	0	490	95	110	0	0	1190	45
Future Volume（vph）	0	0	0	25	0	490	95	110	0	0	1190	45
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time（s）				4.0	4.0	4.0	3.5	4.0			4.0	
Lane Util．Factor				0.95	0.91	0.95	0.97	0.95			0.86	
Fit				1.00	0.85	0.85	1.00	1.00			0.99	
Flt Protected				0.95	1.00	1.00	0.95	1.00			1.00	
Satd．Flow（prot）				1559	1338	1395	3183	3282			5910	
Flt Permitted				0.95	1.00	1.00	0.95	1.00			1.00	
Satd．Flow（perm）				1559	1338	1395	3183	3282			5910	
Peak－hour factor，PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj．Flow（vph）	0	0	0	26	0	516	100	116	0	0	1253	47
RTOR Reduction（vph）	0	0	0	0	229	229	0	0	0	0	4	0
Lane Group Flow（vph）	0	0	0	23	32	29	100	116	0	0	1296	0
Turn Type				Perm	NA	Perm	Prot	NA			NA	
Protected Phases					8		5	2			6	
Permitted Phases				8		8						
Actuated Green，G（s）				9.1	9.1	9.1	6.7	26.9			59.7	
Effective Green， g （s）				10.1	10.1	10.1	7.7	27.9			60.7	
Actuated g／C Ratio				0.11	0.11	0.11	0.09	0.31			0.67	
Clearance Time（s）				5.0	5.0	5.0	4.5	5.0			5.0	
Vehicle Extension（s）				3.0	3.0	3.0	3.0	3.0			3.0	
Lane Grp Cap（vph）				174	150	156	272	1017			3985	
v／s Ratio Prot							c0．03	0.04			c0．22	
v / s Ratio Perm				0.01	0.02	0.02						
v／c Ratio				0.13	0.21	0.19	0.37	0.11			0.33	
Uniform Delay，d1				36.0	36.3	36.2	38.9	22.2			6.1	
Progression Factor				1.00	1.00	1.00	1.42	0.44			1.00	
Incremental Delay，d2				0.3	0.7	0.6	0.8	0.2			0.2	
Delay（s）				36.3	37.0	36.8	55.9	10.0			6.3	
Level of Service				D	D	D	E	B			A	
Approach Delay（s）		0.0			36.9			31.2			6.3	
Approach LOS		A			D			C			A	
Intersection Summary												
HCM 2000 Control Delay			17.0		HCM 200	Level of S	ervice		B			
HCM 2000 Volume to Capacity	ratio		0.33									
Actuated Cycle Length（s）			90.0		Sum of los	time（s）			14.0			
Intersection Capacity Utilization			49．8\％		CU Level	f Service			A			
Analysis Period（min）			15									

Analysis Period（min）
c \quad Critical Lane Group

HCM Signalized Intersection Capacity Analysis
6：91st Ave \＆EB Off Ramp／EB On Ramp
05／02／2018

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations	\％	\dagger	「					ttt		\％${ }^{1}$	个 \uparrow	
Traffic Volume（vph）	10	0	450	0	0	0	0	195	90	1070	145	
Future Volume（vph）	10	0	450	0	0	0	0	195	90	1070	145	

$\begin{array}{lrllllllllll} \\ \text { Traffic Volume（vph）} & 10 & 0 & 450 & 0 & 0 & 0 & 0 & 195 & 90 & 1070 & 145 \\ \text { Future Volume（vph）} & 10 & 0 & 450 & 0 & 0 & 0 & 0 & 195 & 90 & 1070 & 145\end{array}$ $\begin{array}{lrrrrllllllll} & 1900\end{array}$
Lane Util．Factor
Fit
Flt Prote
Flt Protected Satd．Flow（pri）
FIt Permitted
Satd．Flow（perm）
eak－hour factor，PHF

Adj．Flow（vph）
RTOR Geduction（val
urn Type
rotected Phases
ermitted Phases
Actuated Green，G（s）
Effective Green，g（ s ）
Actuated g / C Ratio
Clearance Time（s）
ane Grp Cap（vph）
V／s Ratio Prot
v／s Ratio Perm
／／s Ratio
$\begin{array}{llll} & & 0.01 & 0.02 \\ & 0.02 \\ W / C \text { Ratio } & 0.06 & 0.15 & 0.15\end{array}$

	0.01	0.18	0.17
Uniform Delay，d1	35.7	36.2	30.2

Delay（s）
$\begin{array}{lrrr} & 0.1 & 0.6 & 0 \\ \text { Delay（s）} & 35.8 & 36.8 & 36.7 \\ \text { evel of Service } & D & D & \end{array}$
evproach Delay（s）
Approach Delay

Intersection Summary			
HCM 2000 Control Delay	22.2	HCM 2000 Level of Service	C
HCC 2000 Volume to Capacity ratio	0.49		13.5
Actuated Cycle Length（s）	90.0	Sum of lost time（s）	A

Actuated Cycle Length（s）
tersection Capacity Utilizatio
Analysis Period（min）

HCM Signalized Intersection Capacity Analysis

nalysis Period (min)
c Critical Lane Group

9: Avondale Blvd \& W	B O	Ram	WB	Ra								2/2018
	$\stackrel{ }{ }$			t		4	4	\uparrow	p	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				\%	${ }_{*}$	「	7	¢4ヶ			ttitt	7
Traffic Volume (vph)	0	0	0	110	0	365	25	130	0	0	990	65
Future Volume (vph)	0	0	0	110	0	365	25	130	0	0	990	65
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				4.0	4.0	4.0	4.0	4.0			4.0	5.0
Lane Util. Factor				0.95	0.91	0.95	1.00	0.91			0.76	0.76
Frt				1.00	0.86	0.85	1.00	1.00			1.00	0.85
Flt Protected				0.95	1.00	1.00	0.95	1.00			1.00	1.00
Satd. Flow (prot)				1559	1346	1395	1641	4715			6557	1116
Flt Permitted				0.95	1.00	1.00	0.21	1.00			1.00	1.00
Satd. Flow (perm)				1559	1346	1395	363	4715			6557	1116
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	0	0	0	116	0	384	26	137	0	0	1042	68
RTOR Reduction (vph)	0	0	0	0	160	167	0	0	0	0	1	16
Lane Group Flow (vph)	0	0	0	104	40	29	26	137	0	0	1048	45
Turn Type				Perm	NA	Perm	Perm	NA			NA	Perm
Protected Phases					8			2			6	
Permitted Phases				8		8	2					6
Actuated Green, G (s)				10.8	10.8	10.8	23.3	23.3			59.2	59.2
Effective Green, g (s)				11.8	11.8	11.8	24.3	24.3			60.2	59.2
Actuated g/C Ratio				0.15	0.15	0.15	0.30	0.30			0.75	0.74
Clearance Time (s)				5.0	5.0	5.0	5.0	5.0			5.0	5.0
Vehicle Extension (s)				3.0	3.0	3.0	3.0	3.0			3.0	3.0
Lane Grp Cap (vph)				229	198	205	110	1432			4934	825
v / s Ratio Prot								0.03			c0.16	
v/s Ratio Perm				c0.07	0.03	0.02	c0.07					0.04
v/c Ratio				0.45	0.20	0.14	0.24	0.10			0.21	0.05
Uniform Delay, d1				31.2	30.0	29.7	20.9	20.0			2.9	2.8
Progression Factor				1.00	1.00	1.00	0.69	0.74			1.00	1.00
Incremental Delay, d2				1.4	0.5	0.3	5.0	0.1			0.1	0.1
Delay (s)				32.6	30.5	30.0	19.4	14.8			3.0	2.9
Level of Service				C	C	C	B	B			A	A
Approach Delay (s)		0.0			30.7			15.6			3.0	
Approach LOS		A			C			B			A	
Intersection Summary												
HCM 2000 Control Delay			12.0		HCM 2000	Level of S	ervice		B			
HCM 2000 Volume to Capacity	ratio		0.28									
Actuated Cycle Length (s)			80.0		Sum of los	time (s)			14.0			
Intersection Capacity Utilization			49.2\%		CU Level	Service			A			
Analysis Period (min)			15									

Analysis Period (min)
c Critical Lane Group

HCM Signalized Intersection Capacity Analysis

Analysis Period (min)
c Critical Lane Group

HCM Signalized Intersection Capacity Analysis

Analysis Period (min)
c \quad Critical Lane Group

HCM Signalized Intersection Capacity Analysis

Analysis Period (min)
c Critical Lane Group

Synchro 9 Report SD, HDR Inc.,

HCM Signalized Intersection Capacity Analysis

C Critical Lane Group

HCM Signalized Intersection Capacity Analysis
14: Bullard Ave \& EB Off Ramp/EB On Ramp
 $\left.\begin{array}{llllllllllllll} & 590\end{array}\right)$
otal Lost time (s)
Frt
Flt Protected Satd. Flow (pro
aatd. Flow (perm)
Peak-hour factor, PHF Adj. Flow (vph)
RTOR Reduction ane Group Flow (vpl)
urn Type
Protected Phases
Permitted Phases
Actuated Green, G (s)
Effective Green, $g(s)$
Actuated g / C Ratio
Clearance Time (s) Lane Grp Cap (vph)
Lane Grp Cap (vis
v/s Ratio Prot
I/s Ratio Perm
V / s R
V/c Ratio
Progression Factor
Incremen
Delay (s)
Approach Delay (s)
Approacach LOS
HCM 2000 Control Delay

HCM 2000 Volume to Capacity ratio	14.7	HCM 2000 Level of Service	B
Actuated Cycle Length (s)	0.37	Sum of lost time (s)	13.0

Actuated Cycle Length (s)
tersection Capacity Utilization
Analysis Period (min)
Critical Lane Group

HCM Signalized Intersection Capacity Analysis

HCM Signalized Intersection Capacity Analysis

Analysis Period (min)
c Critical Lane Group

HCM Unsignalized Intersection Capacity Analysis

17: Sarival Ave \& WB Off Ramp								05/02/2018
	t	+	\dagger	p		\downarrow		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	\%	「"	\uparrow			$\uparrow \uparrow$		
Traffic Volume (veh/h)	20	385	0	0	0	855		
Future Volume (Veh/h)	20	385	0	0	0	855		
Sign Control	Stop		Free			Free		
Grade	0\%		0\%			0\%		
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95		
Hourly flow rate (vph)	21	405	0	0	0	900		
Pedestrians								
Lane Width (tt)								
Walking Speed (tts)								
Percent Blockage								
Right turn flare (veh)								
Median type			None			None		
Median storage veh)								
Upstream signal (ft)								
pX, platoon unblocked								
vC , conficticting volume	450	0			0			
vC1, stage 1 conf vol								
$\mathrm{vC2}$, stage 2 conf vol								
vCu, unblocked vol	450	0			0			
tC, single (s)	7.0	7.1			4.3			
$\mathrm{tC}, 2$ stage (s)								
tF (s)	3.6	3.4			2.3			
p0 queue free \%	96	62			100			
cM capacity (veh/h)	518	1059			1565			
Direction, Lane \#	WB 1	WB 2	WB3	NB 1	SB 1	SB 2		
Volume Total	21	202	202	0	450	450		
Volume Left	21	0	0	0	0	0		
Volume Right	0	202	202	0	0	0		
cSH	518	1059	1059	1700	1700	1700		
Volume to Capacity	0.04	0.19	0.19	0.00	0.26	0.26		
Queue Length 95th (tt)	3	18	18	0	0	0		
Control Delay (s)	12.2	9.2	9.2	0.0	0.0	0.0		
Lane LOS	B	A	A					
Approach Delay (s)	9.4			0.0	0.0			
Approach LOS	A							
Intersection Summary								
Average Delay			3.0					
Intersection Capacity Utilization			33.6\%		U Level 0	Service	A	
Analysis Period (min)			15					

HCM Signalized Intersection Capacity Analysis
1: 67th Ave \& WB On Ramp

nalysis Period (min)
c Critical Lane Group

Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	**	「		tttt	$\uparrow \uparrow \uparrow$		
Trafic Volume (vph)	515	860	0	715	105	0	
Future Volume (vph)	515	860	0	715	105	0	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	4.0	4.0		4.0	4.0		
Lane Util. Factor	0.97	0.91		0.86	0.91		
Fit	0.93	0.85		1.00	1.00		
Flt Protected	0.97	1.00		1.00	1.00		
Satd. Flow (prot)	3041	1336		5942	4715		
Flt Permitted	0.97	1.00		1.00	1.00		
Satd. Flow (perm)	3041	1336		5942	4715		
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	
Adj. Flow (vph)	542	905	0	753	111	0	
RTOR Reduction (vph)	200	294	0	0	0	0	
Lane Group Flow (vph)	785	168	0	753	111	0	
Turn Type	Prot	Perm		NA	NA		
Protected Phases	4			2	6		
Permitted Phases		4					
Actuated Green, G (s)	24.4	24.4		35.6	12.1		
Effective Green, g (s)	25.4	25.4		36.6	13.1		
Actuated g/C Ratio	0.36	0.36		0.52	0.19		
Clearance Time (s)	5.0	5.0		5.0	5.0		
Vehicle Extension (s)	3.0	3.0		3.0	3.0		
Lane Grp Cap (vph)	1103	484		3106	882		
v/s Ratio Prot c0	c0.26			c0.13	0.02		
v / s Ratio Perm		0.13					
v / C Ratio	0.71	0.35		0.24	0.13		
Uniform Delay, d1	19.2	16.3		9.1	23.7		
Progression Factor	1.00	1.00		1.00	1.14		
Incremental Delay, d2	2.2	0.4		0.2	0.3		
Delay (s)	21.3	16.7		9.3	27.2		
Level of Service	C	B		A	C		
Approach Delay (s)	19.9			9.3	27.2		
Approach LOS	B			A	C		
Intersection Summary							
HCM 2000 Control Delay			16.8		CM 2000	Level of Service	B
HCM 2000 Volume to Capacity ratio			0.47				
Actuated Cycle Length (s)			70.0		m of los	me (s)	13.0
Intersection Capacity Utilization			45.5\%	ICU Level of Service			A
Analysis Period (min)			15				

Analysis Period (min)
c Critical Lane Group

HCM Signalized Intersection Capacity Analysis

nalysis Period (min)
c Critical Lane Group

HCM Signalized Intersection Capacity Analysis
5. 91 st Ave \& WB On Ramp/WB Off Ramp

5: 91st Ave \& WB On Ram	$\begin{aligned} & \text { n Cap } \\ & \text { /WB } \end{aligned}$	acity Off R	$\begin{aligned} & \text { nalys } \\ & \text { np } \end{aligned}$								/2018
\rangle	\rightarrow		\checkmark	\leftarrow	4	4	4	p	\checkmark	\downarrow	\checkmark
Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			*	\$	7	**	个个			ttta	
Traffic Volume (vph)	0	0	0	O	425	185	290	0	0	485	65
Future Volume (vph)	0	0	0	0	425	185	290	0	0	485	65
Ideal Flow (vphpl) 1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				4.0	4.0	4.0	4.0			4.0	
Lane Util. Factor				0.91	0.95	0.97	0.95			0.86	
Frt				0.85	0.85	1.00	1.00			0.98	
Flt Protected				1.00	1.00	0.95	1.00			1.00	
Satd. Flow (prot)				1336	1395	3183	3282			5837	
Flt Permitted				1.00	1.00	0.41	1.00			1.00	
Satd. Flow (perm)				1336	1395	1370	3282			5837	
Peak-hour factor, PHF 0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph) 0	0	0	0	0	447	195	305	0	0	511	68
RTOR Reduction (vph)	0	0	0	189	189	0	0	0	0	18	
Lane Group Flow (vph)	0	0	0	35	34	195	305	0	0	561	0
Turn Type			Perm	NA	Perm	Perm	NA			NA	
Protected Phases				8			2			6	
Permitted Phases			8		8	2					
Actuated Green, G (s)				9.8	9.8	31.7	31.7			50.2	
Effective Green, $\mathrm{g}(\mathrm{s})$				10.8	10.8	32.7	32.7			51.2	
Actuated g/C Ratio				0.15	0.15	0.47	0.47			0.73	
Clearance Time (s)				5.0	5.0	5.0	5.0			5.0	
Vehicle Extension (s)				3.0	3.0	3.0	3.0			3.0	
Lane Grp Cap (vph)				206	215	639	1533			4269	
v / s Ratio Prot				c0.03			0.09			c0.10	
v/s Ratio Perm					0.02	c0.14					
				0.17	0.16	0.31	0.20			0.13	
Uniform Delay, d1				25.7	25.7	11.6	11.0			2.8	
				1.00	1.00	0.51	0.49			1.00	
Progression Factor Incremental Delay, d2				0.4	0.4	1.2	0.3			0.1	
Delay (s)				26.1	26.0	7.1	5.7			2.9	
	Level of Service			c	C	A	A			A	
Approach Delay (s)	0.0			26.1			6.2			2.9	
Approach LOS	A			C			A			A	
Intersection Summary											
HCM 2000 Control Delay		10.8		HCM 2000	Level of S	ervice		B			
HCM 2000 Volume to Capacity ratio		0.25									
Actuated Cycle Length (s)		70.0		Sum of los	time (s)			14.0			
Intersection Capacity Utilization		32.2\%		CU Level	Service			A			
Analysis Period (min)		15									

Analysis Period (min)

[^3]HCM Signalized Intersection Capacity Analysis

Analysis Period (min)
c \quad Critical Lane Group

HCM Signalized Intersection Capacity Analysis
7: 107th \& WB Off Ramp/WB On Ramp
05/10/2018

Analysis Period (min)

R230 TrafficReportUpdate 5:00 pm 11/16/2017 2040 Hybrid Alignment w/ signals (pm scenario) Dualleft

Synchro 9 Report SD, HDR Inc.,

HCM Signalized Intersection Capacity Analysis

Analysis Period (min)
c \quad Critical Lane Group

HCM Signalized Intersection Capacity Analysis

Analysis Period (min)
c Critical Lane Group

C Critical Lane Group

HCM Signalized Intersection Capacity Analysis

Analysis Period (min)

HCM Signalized Intersection Capacity Analysis

C Critical Lane Group

HCM Signalized Intersection Capacity Analysis

Analysis Period (min)

SR30 TrafficReportUpdate $5: 00 \mathrm{pm} 11 / 16 / 20172040$ Hybrid Alignment w/ signals (pm scenario) Duall eft
Synchro 9 Report SD. HDR Inc.

HCM Signalized Intersection Capacity Analysis

Analysis Period (min)
c Critical Lane Group

HCM Signalized Intersection Capacity Analysis

Analysis Period (min)
c Critical Lane Group

Synchro 9 Report

HCM Unsignalized Intersection Capacity Analysis

17: Sarival Ave \& WB Off Ramp								05/10/2018
	\checkmark	4	\uparrow	p		\downarrow		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	${ }^{7}$	尔	\uparrow			个 \uparrow		
Traffic Volume (veh/h)	0	1165	0	0	0	900		
Future Volume (Veh/h)	0	1165	0	0	0	900		
Sign Control	Stop		Free			Free		
Grade	0\%		0\%			0\%		
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95		
Hourly flow rate (vph)	0	1226	0	0	0	947		
Pedestrians								
Lane Width (t)								
Walking Speed (ft/s)								
Percent Blockage								
Right turn flare (veh)								
Median type			None			None		
Median storage veh)								
Upstream signal (tt)								
pX , platoon unblocked								
vC , conficting volume	474	0			0			
$\mathrm{vC1}$, stage 1 conf vol								
$\mathrm{vC2}$, stage 2 conf vol								
vCu , unblocked vol	474	0			0			
tC, single (s)	7.0	7.1			4.3			
tC, 2 stage (s)								
tF (s)	3.6	3.4			2.3			
p0 queue free \%	100	0			100			
cM capacity (veh/h)	500	1059			1565			
Direction, Lane \#	WB 1	WB 2	WB 3	NB 1	SB 1	SB 2		
Volume Total	0	613	613	0	474	474		
Volume Left	0	0	0	0	0	0		
Volume Right	0	613	613	0	0	0		
CSH	1700	1059	1059	1700	1700	1700		
Volume to Capacity	0.00	0.58	0.58	0.00	0.28	0.28		
Queue Length 95th (ft)	0	96	96	0	0	0		
Control Delay (s)	0.0	13.0	13.0	0.0	0.0	0.0		
Lane LOS	A	B	B					
Approach Delay (s)	13.0			0.0	0.0			
Approach LOS	B							
Intersection Summary								
Average Delay			7.3					
Intersection Capacity Utilization			44.1\%		Level	Service	A	
Analysis Period (min)			15					

SR30 TrafficReportUpdate 5:00 pm 11/16/2017 2040 Hybrid Alignment w/ signals (pm scenario) DualLeft
Synchro 9 Report SD, HDR Inc.,

[^0]: TFlowFuzzy is a matrix estimation method in VISUM used to adjust an OD matrix so that the result of the assignment more closely matches the volumes in the network.

[^1]: SR30 TrafficReportUpdate 5:00 pm 11/16/2017 2035 Hybrid Alignment w/ signals (pm scenario) DualLeft
 Synchro 9 Report
 SD, HDR Inc.,

[^2]: SR30 TrafficReportUpdate 5:00 pm 11/16/2017 2035 Hybrid Alignment w/ signals (pm scenario) DualLeft
 Synchro 9 Report

[^3]: SR30 TrafficReportUpdate 5:00 pm 11/16/2017 2040 Hybrid Alignment w/ signals (pm scenario) DualLeft
 Synchro 9 Report

