

Arizona Department of Transportation Environmental Planning

Project Level Carbon Monoxide (CO) and Particulate Matter (PM10) Consultation Document

SR 303L, 51st Ave to I-17 & SR 303L, Lake Pleasant Parkway to 51st Avenue

Project No. 303 MA 136 F0562 01C & 303 MA 131 F0561 01C Federal No. 303-A(203)T & 303-A(229)T

October 17, 2024

The environmental review, consultation, and other actions required by applicable Federal environmental laws for this project are being, or have been, carried out by ADOT pursuant to 23 U.S.C. 326 and a Memorandum of Understanding dated December 20, 2023, and executed by FHWA and ADOT. This page intentionally left blank.

Project- Level Conformity Interagency Consultation

Purpose and Description

The Arizona Department of Transportation's (ADOT) Project No. 303 MA 136 F0562 01C [Federal Reference Number 303-A(203)T] and Project No. 303 MA 131 F0561 01C [Federal Reference Number 303-A(229)T] are within the same general the State Route 303 Loop (Loop 303) project area and may be bid together. Therefore, per coordination with the US Environmental Protection Agency (EPA), for the purposes of air quality analysis, these two projects will be evaluated for CO & particulate matter (PM) hot spot analysis in one consultation document.

F0562 Project Setting and Description

ADOT Project No. 303 MA 136 F0562 01C is a project to prepare the final design for the proposed a third general-purpose lane (GPL) in each direction on the Loop 303 between 51st Avenue and Interstate 17 (I-17), as well as direct-connecting system ramps to and from Loop 303 to I-17. The project limits on Loop 303 are between milepost (MP) 136.00 near 51st Avenue to the Loop 303/I-17 interchange, and along I-17 between MP 220.65 near Dixileta Drive and MP 223.30 near Dove Valley Road within the City of Phoenix, in Maricopa County, Arizona. Temporary traffic control would extend 2 miles west along SR 303L, 1 mile north and south along I-17, and 1 mile east along Sonoran Desert Drive. In addition, spot overhead traffic sign installation improvements would occur on I-17 at MP 219.24 and MP 224.91.

Several northwest valley communities, including those along the Loop 303 corridor, have been identified as among the fastest growing in the region. New residential and commercial growth along the Loop 303 and I-17 corridors is contributing to increasing traffic congestion in this area. Loop 303 serves as one of the main travel routes in the west valley, stretching for approximately 35 miles from the City of Goodyear to I-17, where it becomes Sonoran Desert Drive.

This section of Loop 303 was built in 2011 as an interim facility with two 12-foot lanes in each direction of travel and a wide unpaved median, with the intention to increase capacity over time. The purpose of this project is to continue the planned expansion of the existing Loop 303 to meet future travel demands of this region, provide congestion relief for I-17 and surrounding communities, and accommodate the expanding business, residential, and economic area growth that is expected.

The scope of work for the project consists of:

- Adding a GPL in both directions on Loop 303 from just west of 51st Avenue to I-17
- Grading and paving the median along Loop 303
- Constructing flyover direct ramp connections (bridges) between Loop 303 and I-17
- Constructing new retaining walls along ramps where needed
- Widening the outside of I-17 to accommodate new ramp connections and lane tapers
- Restriping lanes on Loop 303 and I-17
- Removing and replacing pavement, curb, and gutter as needed along the existing Loop 303 and ramps
- Repairing concrete pavement on Loop 303 near MP 137.40
- Removing, replacing, and installing roadway loop detectors and CCTV equipment
- Removing, replacing and adding concrete barriers, as needed

- Removing and replacing end treatments, as needed
- Constructing noise abatement, if determined necessary through a noise evaluation
- Installing new drainage ditches and catchments, storm drains, catch basins, and manholes
- Extending existing drainage pipes, as necessary
- Installing permanent and temporary erosion control measures
- Removing, replacing and adding traffic signs, signals and ITS
- Removing, replacing, and adding overhead street lights, pull boxes, and conduit
- Installing overhead traffic structures on I-17 at northbound MP 219.24 and southbound MP 224.91
- Relocating existing utilities and installing new utilities including ITS conduit
- Staging and stockpiling equipment and construction materials within the project limits
- Vegetation removal, as needed
- Installing landscape and irrigation measures, as needed
- Removing temporary connector roads (previous I-17 connection)

The project would occur within the existing ADOT right-of-way (ROW) through private lands and ADOT easement through Arizona State Land Department (ASLD) lands. No new ROW, easement, or temporary construction easements are required. Construction funding for this project has not yet been programmed. If obtained, construction could begin as early as spring 2025 and is expected to take approximately two years.

F0561 Project Setting and Description

ADOT Project No. 303 MA 131 F0561 01C is proposing a roadway widening project on Loop 303 from MP 131.2 to MP 136.6 in the City of Peoria and City of Phoenix, Maricopa County, Arizona. The project would occur within ADOT ROW and ADOT easement on ASLD lands and Bureau of Reclamation (BOR) lands.

Loop 303 consists of two 12-foot through lanes in each direction with 10-foot minimum outside shoulders and 12-foot minimum inside shoulders. The purpose of this project is to increase capacity on Loop 303 by adding a GPL to provide a total of three 12-foot lanes in each direction.

The scope of work for this project includes:

- Widen Loop 303 toward the median to provide three lanes in each direction
- Construct new Loop 303 mainline and bridges at 67th Avenue
- Construct new pavement, curb and gutter, barriers, guardrails, and retaining walls, as needed
- Remove and reconstruct roadside barriers and/or guardrail, as needed
- Construct temporary roadway to facilitate repair and/or replacement of existing pavement and subgrade, as needed
- Remove temporary roadway, as needed
- Repair and/or replace existing pavement and subgrade, as needed
- Modify existing drainage facilities and construct new drainage facilities to accommodate new mainline improvements
- Install lighting, as needed
- Remove and reconstruct fence, as needed
- Remove existing signage and provide new signage, including embedded advance warning signs

- Obliterate and install roadway striping, raised pavement markers, and rumble strips
- Install Freeway Management System (FMS) infrastructure
- Remove/trim vegetation
- Install temporary and/or permanent stormwater measures, as needed
- Install irrigation and landscaping, as needed
- Construct new utilities and relocate utilities, as needed
- Conduct utility potholing and geotechnical investigations, as needed

No new ROW, easement, or temporary construction easements will be required for the project. Staging/stockpiling areas have yet to be determined and will be the responsibility of the contractor. Temporary lane closures and/or lane shifts will be necessary during construction. Temporary traffic control signing will be utilized to alert the travelling public of the upcoming traffic changes. The construction start date is dependent on funding. Once a funding source has been established, additional schedule information will be developed and distributed during final design. The anticipated construction duration is approximately 14 months.

These projects are within the Phoenix CO maintenance area and a nonattainment area for PM10 and Ozone. Though these projects are split, a combined proposed project is included in the *Maricopa Association of Governments (MAG) Regional Transportation Plan (RTP) MOMENTUM* 2050. In addition, the combined project is included in the *FY* 2022-2025 *MAG Transportation Improvement Program*.

Figure 1. Project Vincinity Map

Transportation (azdot.gov)

CO Project Assessment – Part A

The following questionnaire is used to compare the proposed project to a list of project types in 40 CFR 93.123(a) requiring a quantitative analysis of local CO emissions (Hot-spots) in nonattainment or maintenance areas, which include:

- i) Projects in or affecting locations, areas, or categories of sites which are identified in the applicable implementation plan as sites of violation or possible violation;
- ii) Projects affecting intersections that are at Level-of-Service D, E, or F, or those that will change to Level-of-Service D, E, or F because of increased traffic volumes related to the project;
- iii) Any project affecting one or more of the top three intersections in the nonattainment or maintenance area with highest traffic volumes, as identified in the applicable implementation plan; and
- iv) Any project affecting one or more of the top three intersections in the nonattainment or maintenance area with the worst level of service, as identified in the applicable implementation plan.

If the project matches one of the listed project types in 40 CFR 93.123(a)(1) above, it is considered a project of local air quality concern and the hot-spot demonstration must be based on quantitative analysis methods in accordance to 40 CFR 93.116(a) and the consultation requirements of 40 CFR 93.105(c)(1)(i).

Projects Affecting CO Sites of Violation or Possible Violation

Does the project affect locations, areas or categories of sites that are identified in the CO applicable plan or implementation plan submissions, as appropriate, as sites of violation or potential violation?

NO – This project does not affect locations, areas or categories of sites that are identified in the MAG 2013 Carbon Monoxide Maintenance Plan for Maricopa County as sites of violation or potential violation.

Projects with Congested Intersections

Is this a project that affects a congested intersection (LOS D or greater) will change LOS to D or greater because of increased traffic volumes related to the project?

YES – For F0561 project, the project would not affect a congested intersection will change LOS to D or greater because of increased traffic volumes. For F0562 project, among the 10 intersections, 3 intersections in AM peak hour and 3 intersections in PM peak hour operate at LOS D or greater under existing condition. One intersection would result in LOS D in the 2050 build scenario. ADT volume increase at intersections range from -48,545 vehicles to23,598 vehicle and truck ADT volume increase at intersections range from -5,748 vehicle to 1,681 vehicles.

Table 1A – Freeway Mainline & Intersection ADT and Truck ADT in Existing, No Build and Build Conditions (F0561)

								Difference		
		2023 Existing		2050 No-Build		2050 Build		(Build - No- Build)		
	AAD1 and Truck volumes	ADT	Truck	ADT	Truck	ADT	Truck	ADT	Truck	Truck
			(%)		(%)		(%)		ADT	(%)
	SR 303L East of 67th Ave. to 51st	17 199	12 38%	53 374	10 31 %	98 509	11 23%	45 136	5 563	0.92%
	Ave	17,177	12.3070	00,014	10.0170	90,009	11.2070	40,100	0,000	0.7270
oline	SR303L between 67th Ave. & Lake	17.199	12.38%	53,374	10.31%	96.298	11.40%	42,924	5.474	1.09%
Iaiı	Pleasant Parkway	17/177	12.0070	00,07 1	1010170	, o <u>)</u> _, o	11110/0		0,1,1	1.07 /0
N	SR 303L West of Lake Pleasant	21 852	12.03%	61 110	0 77%	03 300	12.22%	32 100	5 430	2.45%
	Parkway	21,002	12.9370	01,119	9.11/0	93,309	12.22 /0	52,190	5,430	2.45 /0
	Lake Pleasant Parkway & SB	10 406	9.62%	46 587	3 30%	27 170	6.67%	-19417	276	3 37%
Ч	SR303L	10,100	9.0270	10,007	0.00 %	27,170	0.07 /0	17,117	270	0.01 /0
ecti	Lake Pleasant Parkway & NB	8.748	8.29%	43,500	3.11%	25,244	5.94%	-18,256	146	2.83%
ers	SR303L	-, -	0.23 //0	- ,		- /		-,	_	
Int	67th Avenue & SB SR303L					37,853	11.83%			
	67th Avenue & NB SR303L					24,445	9.54%			

Note: Truck% includes heavy truck and medium truck. ADT at intersections include volumes on approach lanes. Source: MAG traffic demand model received from Kimley Horn on April 3, 2024

Table 1B – Freeway Mainline & Intersection ADT and Truck ADT in Existing, No Build and Build Conditions (F0562)

								Dif	ference	
AADT and Truck Volumes		2023 Existing		2050 No-Build		2050 Build		(Build - No- Build)		ild)
		ADT	Truck	ADT	Truck	ADT	Truck	ADT	Truck	Truck
			(%)		(%)		(%)		ADT	(%)
	SR 303L between 51st Ave & 43rd	27,289	13.77%	73,709	11.15%	115,512	12.98%	41,803	6,776	1.83%
	Sonoran Desert Dr between 43rd Ave & I-17	29,947	14.74%	77,899	11.19%	95,411	13.21%	17,512	3,880	2.01%
0	I-17 south of Dexileta Dr	141,166	13.48%	250,198	16.45%	194,016	16.65%	-56,181	-8,857	0.20%
Aainline	I-17 between Dexileta Dr & Sonoran Desert Dr	138,861	13.58%	239,749	16.81%	233,692	17.84%	-6,057	1,389	1.03%
V	I-17 between Sonoran Desert Dr & Dove Valley Rd	110,845	14.03%	180,162	18.85%	140,367	21.52%	-39,796	-3,765	2.66%
	I-17 between Dove Valley Rd & Carefree Hwy	117,668	13.80%	176,817	19.04%	153,885	20.33%	-22,932	-2,389	1.28%
	51st Avenue & SB SR 303L	7,017	19.59%	36,074	7.72%	42,525	8.95%	6,451	1,024	1.24%
	51st Avenue & NB SR 303L	5 <i>,</i> 853	18.85%	16,848	7.13%	34,279	7.35%	17,431	1,320	0.23%
	43rd Avenue & SB SR 303L	7,399	17.94%	23,716	8.25%	37,660	7.89%	13,944	1,016	-0.36%
ų	43rd Avenue & NB SR 303L	947	12.25%	10,009	8.22%	33,607	7.45%	23,598	1,681	-0.77%
sctic	Dexileta Dr & NB I-17					14,663	6.67%			
terse	Dexileta Dr & SB I-17					12,655	6.97%			
In	Sonoran Desert Dr & NB I-17	29,881	12.78%	70,907	9.45%	44,042	7.97%	-26,865	-3,188	-1.48%
	Sonoran Desert Dr & SB I-17	35,570	13.84%	86,569	10.63%	38,024	9.09%	-48,545	-5,748	-1.54%
	Dove Valley Rd & NB I-17	16,196	8.21%	39,348	4.52%	35,082	3.65%	-4,266	-499	-0.87%
	Dove Valley Rd & SB I-17	11,023	9.09%	49,700	5.57%	35,605	3.40%	-14,095	-1,558	-2.17%

Note: Truck% includes heavy truck and medium truck. ADT at intersections include volumes on approach lanes. Source: MAG traffic demand model received from Jacobs on March 11, April 16, 2024, and May 10, 2024

Table 2A – Intersections LOS in the Project Area (F0561)							
		2023 Existing		2050 No-Build		2050 Build	
		AM	PM	AM	PM	AM	PM
Lovel of	Sorvice (IOS)	Peak	Peak	Peak	Peak	Peak	Peak
Level of Service (LOS)		LOS	LOS	LOS	LOS	LOS	LOS
		(delay)	(delay)	(delay)	(delay)	(delay)	(delay)
ection SS	67th Avenue & SB SR 303L					C (20.9)	B (19.9)
Ove Interse LC	67th Avenue & NB SR 303L					B (15.9)	B (13.8)

TT 11 00.

Notes:

67th Avenue TI does not currently exist.

Lake Pleasant Parkway intersections have LOS C or better in 2020 existing, and 2040 Build per Final Traffic Report, SR303, Lake Pleasant Parkway to I-17 (completed in 2022).

Source: Initial Traffic Memo provided by Kimley Horn on April 3, 2024.

				,	(/	
		2023 H	Existing	2050 N	Io-Build	2050 Build	
		AM	PM	AM	PM	AM	PM
Т	evel of Service (LOS)	Peak	Peak	Peak	Peak	Peak	Peak
		LOS	LOS	LOS	LOS	LOS	LOS
		(delay)	(delay)	(delay)	(delay)	(delay)	(delay)
	51st Avenue & SB SR 303L	A (0)	A (0)	B (11.9)	B (12.3)	B (14.8)	B (12.1)
	51st Avenue & NB SR 303L	A (0)	A (0)	C (23.5)	A (8.8)	D (42.5)	B (13.7)
LOS	43rd Avenue & SB SR 303L	B (10.1)	A (5.0)	C (20.5)	B (19.7)	C (20.5)	B (19.8)
ion	43rd Avenue & NB SR 303L	B (11.3)	A (7.7)	B (16.8)	B (13.6)	C (28.2)	C (20.5)
rsect	Dexileta Dr & NB I-17			A (0)	A (0)	A (0)	A (0)
Inte	Dexileta Dr & SB I-17			A (0)	A (0)	A (0)	A (0)
erall	Sonoran Desert Dr & NB I-17	E (63.5)	F (195.8)	F (358.1)	F (329.4)	B (18.0)	B (19.4)
OVé	Sonoran Desert Dr & SB I-17	E (74.6)	F (87.5)	F (375.7)	F (447.9)	B (16.8)	B (15.0)
	Dove Valley Rd & NB I-17	C (33.3)	C (34.7)	C (33.7)	C (27.2)	C (27.1)	C (26.1)
	Dove Valley Rd & SB I-17	D (46.8)	D (38.8)	C (30.9)	D (50.1)	C (26.5)	C (25.4)

Table 2B – Intersections LOS in the Project Area (F0562)

Notes:

Source: LOS data provided by Jacobs on April 8 and April 15, 2024.

Projects Affecting Intersections with Highest Traffic Volumes

Does the project affect one or more of the top three intersections in the CO maintenance area with highest traffic volumes identified in the CO applicable implementation plan?

*Three	Highest	Intersections ir	Current Plans
11100		interested in	

	MAG ¹	
	16 th St & Camelback Rd	
	107 th Ave & Grand Ave	
	Priest Dr & Southern Ave	
^{1}N	IAG 2013 Carbon Monoxide Maintenance Plan for the Mari	copa County Area

NO. This project does not affect one or more of the top three intersection in the carbon monoxide maintenance area with the highest traffic volumes identified in the MAG 2013 Carbon Monoxide Maintenance Plan for Maricopa County.

Projects Affecting Intersections with the Worst Level of Services

Does the project affect one or more of the top three intersections in the CO maintenance area with the worst level of services identified in the CO applicable implementation plan?

NO – This project does not affect one or more of the top three intersections with the worst LOS in the MAG 2013 Carbon Monoxide Maintenance Plan for Maricopa County.

*Three Worst LOS Intersections in Current Plans

MAG ¹
7 th Ave & Van Buren St
German Rd & Gilbert Rd
Thomas Rd & 27th Ave

¹Same as above

Project Assessment – Part B

Hot-Spot Determination

Decide which type of hot-spot analysis is required for the project by choosing a category below.

☑ If answered "Yes" to any of the questions in the Project Assessment – Part A

- A <u>quantitative CO hot-spot analysis</u> is required under 40 CFR 93.123(a)(1).
- \boxtimes Check If a formal air quality report for conformity is required for this project.
- The applicable air quality models, data bases, and other requirements specified in 40 CFR part 51, Appendix W (Guideline on Air Quality Models) should be completed using **"Project Level CO Quantitative Hot-Spot Analysis – Consultation Document"** circulated through interagency consultation for review and comments for <u>30 days</u> prior to commencing any modeling activities.
- Or

 \Box Check **If** the project fits the condition of the "**CO Categorical Hot-Spot Finding**". In the January 24, 2008, Transportation Conformity Rule Amendments, EPA included a provision at 40 CFR 93.123(a)(3) to allow the U.S. DOT, in consultation with EPA, to make categorical hot-spot findings in CO nonattainment and maintenance areas if appropriate modeling showed that a type of highway or transit project would not cause or contribute to a new or worsened air quality violation of the CO NAAQS or delay timely attainment of the NAAQS or

required interim milestone(s), as required under 40 CFR 93.116(a).

Projects Fitting the Condition of the CO Categorical Hot-Spot Finding

Do the project's parameters fall within the acceptable range of modeled parameters (Use "Table 1: Project Parameters and Acceptable Ranges for CO Categorical Hot-Spot Finding" or enter the project information into FHWA's web based tool:

https://www.fhwa.dot.gov/environment/air_quality/conformity/policy_and_g uidance/cmcf_2017/tool.cfm)?

NO – This project's parameters do not fall within the acceptable range of modeling parameters for a CO Categorical Hot-spot Finding in Appendix Table 1 on next page.

Table 1: Project Parameters and Acceptable Ranges for CO Categorical Hot-Spot Finding for Urban Intersection

Parameter	Acceptable Range	
Analysis year	Greater than or equal to 2017	
Angle of cross streets for intersection (degrees)	90	
Maximum grade for the intersection (%)	Less than or equal to 2	
Maximum grade on cross street for the		
intersection (%)	0	
Number of through lanes	Less than or equal to 4	
Number of left turn lanes	Less than or equal to 2	
Lane width (ft)	12	
Median width (ft)	0	
Peak hour average approach speed (mph)	Greater than or equal to 25	
Peak hour approach volume (vph)	Less than or equal to 2640	
Peak hour Level of Service	A through E	
Ambient temperature (°F)	Greater than or equal to -10	
Heavy-duty trucks (%)	Greater than or equal to 5	
1-hour background CO concentrations (ppm)	Less than or equal to 32.6	
8-hour background CO concentrations (ppm)	Less than or equal to 7.3	
Persistence factor	Less than or equal to 0.7	

□ If answered "No" to all of the questions in the Project Assessment – Part A

- A <u>qualitative CO analysis</u> is required under 40 CFR 93.123(a)(2). The demonstrations required by 40 CFR 93.116 Localized CO, PM10, and PM2.5 violations (hot-spots) may be based on either:
- (i) Quantitative methods that represent reasonable and common professional practice;

□ Check **If** an Air Quality Report <u>includes CO modeling</u> for NEPA EA/EIS use this report to satisfy option (i)

- Or
- (ii) A qualitative consideration of local factors, if this can provide a clear demonstration that the requirements of 40 CFR 93.116 are met.

□ Check **If** there is an Air Quality Report that <u>does not include</u> CO modeling for NEPA EA/EIS use this report to satisfy (ii)

□ Check **If** the project is a CE under NEPA that does not require Air Quality Report for NEPA EA/EIS use this Questionnaire to add additional justification to satisfy (ii)

The F0562 project requires a quantitative hot-spot analysis for carbon monoxide. The intersections to be modeled were determined using EPA's Guideline for Modeling Carbon Monoxide from Roadway Intersections (EPA, 1992). The intersections with the highest volumes and longest delays were identified for the 2050 build alternative. The top three intersections ranked by volume are as follows:

- Sonoran Desert Dr & NB I-17
- 51st Avenue & SB SR 303L
- Sonoran Desert Dr & SB I-17

The top three intersections ranked by LOS and delay are as follows:

- 51st Avenue & NB SR 303L (AM Peak Hour)
- 43rd Avenue & NB SR 303L (AM Peak Hour)
- Dove Valley Rd & NB I-17 (AM Peak Hour)

Based on the top intersections ranked by volume and by LOS and delay, the intersection modeling analysis will be performed for the following four TI intersections' peak hours of the days:

- 51st Avenue & SB SR 303L
- 51st Avenue & NB SR 303L
- 43rd Avenue & NB SR 303L
- Sonoran Desert Dr & NB I-17
- Sonoran Desert Dr & SB I-17
- Dove Valley Rd & NB I-17

Modeling will be performed under the worst case scenario using the 2026 MOVES emission rates (the highest CO emission rates) with the 2050 traffic data (the maximum traffic volumes). 2026 is selected because it is the opening year. It is assumed that if the selected worst-case intersections do not show an exceedance of the NAAQS, none of the intersections will. Refer to the enclosed supplemental traffic study.

Project Level CO Quantitative Hot-Spot Analysis – Consultation Document

Completing a Carbon Monoxide (CO) Hot-Spot Analysis

The general steps required to complete a quantitative CO hot-spot analysis are outlined below and described in detail in the EPA Office of Transportation and Air Quality guidance document "Using MOVES3.1 in Project-Level Carbon Monoxide Analyses" EPA-420-B-21-047, December 2021, and "Guideline for Modeling Carbon Monoxide from Roadway Intersections" EPA-454/R-92-005, November 1992.

* Described in the previous section

** These Steps will be described and documented in a final air quality analysis report.

Step 2: Determine the Approach, Models, and Data

- a. Describe the project area (area substantially affected by the project, 58 FR 62212) and emission sources.
- b. Determine general approach and analysis year(s) year(s) of peak emissions during the time frame of the transportation plan (69 FR 40056).
- c. Determine CO National Ambient Air Quality Standards (NAAQS) to be evaluated.
- d. Select emissions and dispersion models and methods to be used.
- e. Obtain project-specific data (e.g., fleet mix, peak-hour volumes and average speed).

Step 3: Estimate On-Road Motor Vehicle Emissions with MOVES3.1

- a. Generate RunSpec and enter project-specific data into Project Data Manager
- b. Estimate on-road motor vehicle emissions.

Step 4: Select Air Quality Model, Data Inputs, and Receptors for CAL3QHC

- a. Obtain and input required site data (e.g., meteorological).
- b. Input MOVES outputs (emission factors).

- c. Determine number and location of receptors, roadway links, and signal timing.
- d. Run air quality dispersion model and obtain concentration results.

Step 5: Document Methods, Models and Assumptions

- a. Summarize the methods, models and assumptions based on Step 3 & 4 (see the example in Table 1).
- b. Submit the summary document to ADOT for review.

Step 6: Determine Background Concentrations

a. Determine background concentrations from nearby and other emission sources excluding the emissions from the project itself.

Step 7: Calculate Design Values and Determine Conformity

- a. Add step 5 results to background concentrations to obtain values for the Build scenario.
- b. Determine if the design values allow the project to conform.

Step 8: Consider Mitigation or Control Measures

- a. Consider measures to reduce emissions and redo the analysis. If mitigation measures are required for project conformity, they must be included in the applicable SIP and be enforceable.
- b. Determine if the design values from allow the project to conform after implementing mitigation or control measures.

Step 9: Document Analysis

- a. Determine if the project conforms or not based on the results of step 7 or step 8. *To support the conclusion that a project meets conformity under 40 CFR 93.116 and 93.123, at a minimum the documentation will include:*
- Description of proposed project, when it is expected to open, and projected travel activity data.
- Analysis year(s) examined and factors considering in determining year(s) of peak emissions.
- *Emissions modeling data, model used with inputs and results, and how characterization of project links.*
- Model inputs and results for road dust, construction emissions, and emissions from other source if needed.
- Air Quality modeling data, included model used, inputs and results and receptors.
- How background concentrations were determined.
- Any mitigation and control measures implemented, including public involvement or consultation if needed.
- *How interagency and public participation requirements were met.*
- Conclusion that the proposed project meets conformity requirements.
- Sources of data for modeling.

Table 1. Methods, Models and Assumptions							
Estimate On-Roa	Estimate On-Road Motor Vehicle Emissions (Step 3)						
MOVES3.1	Description	Data Source					
Scale	On road, Project, Inventory	EPA Using MOVES3 in Project-Level Carbon Monoxide Analyses, Section 2.3.2					
Time Span	EPA 1992 Guideline conservatively uses a typical peak-hour traffic activity in one MOVES run to generate emission rates: The worst case scenario using the January, weekdays, hours of 7:00- 7:59 in 2026 MOVES emission rates (the highest CO emission rates) with the 2050 traffic data (the maximum traffic volumes) will be selected.	EPA Using MOVES3 in Project-Level Carbon Monoxide Analyses, Section 2.3.3					
Geographic Bounds	Maricopa County	EPA Using MOVES3 in Project-Level Carbon Monoxide Analyses, Section 2.3.4					
Onroad Vehicles	All Fuels and Source Use Types will be selected	EPA Using MOVES3 in Project-Level Carbon Monoxide Analyses, Section 2.3.5					
Road Type	Urban Restricted and Urban Unrestricted access	EPA Using MOVES3 in Project-Level Carbon Monoxide Analyses, Section 2.3.6					
Pollutants and Processes	CO Running Exhaust, CO Crankcase Running Exhaust	EPA Using MOVES3 in Project-Level Carbon Monoxide Analyses, Section 2.3.7					
Output	Database will be created, Grams, Miles, Distance Traveled, Population will be selected. Emissions process will be selected in the Output Emissions Detail. Emission rates for each process can be appropriately summed to calculate aggregate CO emission rates for each link.	EPA Using MOVES3 in Project-Level Carbon Monoxide Analyses, Section 2.3.10					
Project Data Manager	Database and MOVES3.1 templates will be created to include local project data and information provided by MPO, e.g., MAG's or PAG's I/M programs, Age Distribution data which are consistent with the regional models. The average temperature and humidity in January for metrology data and the default MOVES fuel data will be used. Links and Link Source Type will be specific to project as provided by the traffic analysis, any missing information will use default MOVES3.1 data. After running MOVES, the MOVES CO_CAL3QHC_EF post-processing script is run.	EPA 1992 Guideline, Section 4.7.1., Using MOVES3 in Project-Level Carbon Monoxide Analyses, Section 2.1, 2.4 for Links; the required data necessary to be consistent with regional emissions analysis (40 CFR 93.123(c)(3)). See Table 2 below for details.					
Select Air Qualit	y Model, Data Inputs, and Receptors (Step 4)	I					
CAL3QHC	Description	Data Source					

Methods, Models and Assumptions for CO

Emissions Sources Receptor Locations	Emissions Rates in grams/mile will be developed using the inputs described in MOVES3.1 section above. The free flow and queue links defined for modeling with MOVES3.1 will be used as input into CAL3QHC. At least 3m from the roadways at a height of 1.8m, nearby occupied lot, vacant lot, sidewalks, and any locations near breathing height (1.8m) to which the general public has continuous access.	1992 Guideline for Modeling Carbon Monoxide from Roadway Intersections, EPA-454/R-92-005, November 1992. Section 3.2 & 4.2.3.1 of Appendix W to 40 CFR Part 51, CO screening analyses of intersection projects should use the CAL3QHC dispersion model. 1992 Guideline for Modeling Carbon Monoxide from Roadway Intersections, Section 2.2
Traffic and Geometric Design	Lane Configuration, Lane Width, Signalization, Turning Movements, Median Width, Traffic Volume, Level of Service, Grade, % of Heavy-Duty Trucks, and Peak Hour Average Approach Speed.	1992 Guideline for Modeling Carbon Monoxide from Roadway Intersections, Section 4.7.4
Meteorology	Temperature, Wind Speed, Wind Direction, Atmospheric Stability Class, Mixing Heights and Surface Roughness.	1992 Guideline for Modeling Carbon Monoxide from Roadway Intersections, Section 4.7.1
Persistence Factor	Local persistence factor based on monitoring data. If it is not available, use a default persistence factor of 0.7. Will use persistence factor of 0.7 because local measured monitored concentrations are not available.	1992 Guideline for Modeling Carbon Monoxide from Roadway Intersections, Section 4.7.2
Determine Backg	round Concentrations (Step 6)	
Background Monitor	The West Phoenix (WP) monitor located at 39 th Avenue & Earll Drive in Phoenix was selected as background CO monitor because it is closest to the project site and has similar environment settings as the project corridor. Three years of monitoring data (20212023) show a maximum 8-hour value of 3.5 ppm. 5.0 ppm (which is the 8-hour concentration divided by a persistence factor of 0.7) will be added to the maximum modeled hourly concentration for comparison to the NAAQS. 3.5 ppm will be added to the maximum 8-hour modeled concentration. The same background values will be used for all analysis years.	1992 Guideline for Modeling Carbon Monoxide from Roadway Intersections, Section 4.7.3

Table 2. Project Data Manager Inputs						
Input	Level of Detail/notes	Possible Data Source				
Meteorology	Same for build and no-build scenarios. The average temperature and humidity were determined by averaging temperature values for January 2021, 2022, and 2023 at the Phoenix Sky Harbor International Airport Station. (source: National Weather Service) The average temperature of 55.5 degrees F and the average relative humidity of 43.7% were uses in all MOVES runs, regardless of analysis year or time of day.	ADEQ, MPO EPA Using MOVES3 in Project-Level Carbon Monoxide Analyses, Section 2.4.1				
Age Distribution	Same for build and no-build scenarios, unless something about the project would change them: The latest local age distribution data from MAG regional CO conformity analysis (Approved Sprint 2023) will be used. No change would be	ADOT, MPO EPA Using MOVES3 in Project-Level Carbon Monoxide Analyses, Section 2.4.2				
Fuel	Same for build and no-build scenarios. MOVES default fuel supply and formulation information will be used.	MPO, MOVES defaults EPA Using MOVES3 in Project-Level Carbon Monoxide Analyses, Section 2.4.3				
I/M Programs	Same for build and no-build scenarios. Projects in Area A and B should define the I/M programs. Use MPO data. If not available, may use the MOVES default I/M programs but review the details and make any necessary changes before use. Will use I/M local data from MAG AQ conformity analysis.	MPO, MOVES defaults EPA Using MOVES3 in Project-Level Carbon Monoxide Analyses, Section 2.4.4				
Retrofit Data	<i>If necessary. For example, a bus terminal project might include plans to mitigate emissions by retrofitting the bus fleet.</i>	Project specific modeling EPA Using MOVES3 in Project-Level Carbon Monoxide Analyses, Section 2.4.5				
Links	Four selected TI intersections (51 st Ave & SR303L, 43 rd Ave & SR303L, Sonoran Desert Dr & I-17, and Dove Valley Rd & I-17) will be divided into links and each link's length (in miles), traffic volume (vehicle per hour), average speed (miles per hour) and road grade (percent) will be specified. Other roadway segments within 1000 feet of the intersection will be included. (See attachment for graphical representation of model setup)	Project specific modeling, ADOT, MPO EPA Using MOVES3 in Project-Level Carbon Monoxide Analyses, Section 2.4.6				
Link Source Types	<i>Option 2 in the EPA's CO MOVES3 Guidance Section 2.4.7 will be used.</i>	Project specific modeling, ADOT, MPO EPA Using MOVES3 in Project-Level Carbon Monoxide Analyses, Section 2.4.7				
Link Drive Schedules, Operating Mode	Average speeds and road types through the Links Importer will be used. Option 1 was used because of data availability.	Project specific modeling, ADOT, MPO EPA Using MOVES3 in Project-Level Carbon Monoxide Analyses, Section 2.4.8, 2.4.9				

1001110jeet1005	505 Will 150 1 0502 01C & 505 Will 151 1 0501 01C	Environmental Pic
Off-	If necessary. For example, a project analysis	EPA Using MOVES3 in Project-Level
Network,	includes areas where vehicles are not driving on	Carbon Monoxide Analyses, Section
Hotelling	the project links, but still contributing to the	2.4.10
_	project's emissions.	

Table 3. Construction Emissions (Only if Applicable)					
Construction	Construction Emissions need to be addressed if	40CFR93.123(c)(5)"Each site which is			
Emissions	construction lasts longer than 5 years at any	affected by construction-related activities			
	individual site. In the context of CO, this is	shall be considered separately, using			
	usually excess CO emissions due to traffic delay	established "Guideline" methods." If			
	and/or detours.	applicable, include analysis as an			
		Appendix to the Air Quality Report.			

Preliminary Link Configurations and Receptor Placements for CO Hot-Spot Analysis

The following graphics present the preliminary link configurations and receptor placements for the four intersections that will be modeled as part of the CO hot-spot analysis in CAL3QHC. The following applies to all figures:

- Free flow links extend 1000 feet away from center of signalized intersection
- Graphic representation of free flow links includes 10 foot mixing zone
- Traffic activity within 1000 feet from intersections are included

• Yellow circles are receptors located on the existing R/W (more than 10 feet from the edge of roadway).

• Receptors are spaced at 25-meter intervals at the height of 1.8 meters outside of the mixing zone.

• Receptor location coordinates will be provided by a separate file

Site Description: This site began operating in January 1984. This SLAMS location monitors for CO, NO₂, O₃, PM₁₀, and PM_{2.5}. Meteorological monitoring includes ambient temperature, barometric pressure, and wind speed/direction. The site is in an area of stable, high-density, residential properties. This is the QA collocation site for PM_{2.5} where one filter based PM_{2.5} FRM sampler operates alongside a continuous PM_{2.5} FEM analyzer as per *40 CFR Part 58 Appendix A*.

Project Level PM Quantitative Hot-Spot Analysis

Project Assessment

The following questionnaire is used to compare the proposed project to a list of project types in 40 CFR 93.123(b) requiring a quantitative analysis of local particulate emissions (Hot- spots) in nonattainment or maintenance areas, which include:

- i) New highway projects that have a significant number of diesel vehicles, and expanded highway projects that have a significant increase in the number of diesel vehicles;
- Projects affecting intersections that are at Level-of-Service D, E, or F with a significant number of diesel vehicles, or those that will change to Level-of-Service D, E, or F because of an increase in traffic volumes from a significant number of diesel vehicles related to the project;
- iii) New bus and rail terminals and transfer points that have a significant number of diesel vehicles congregating at a single location;
- iv) Expanded bus and rail terminals and transfer points that significantly increase the number of diesel vehicles congregating at a single location; and
- v) Projects in or affecting locations, areas, or categories of sites which are identified in the PM₁₀ or PM_{2.5} applicable implementation plan or implementation plan submission, as appropriate, as sites of violation or possible violation.

If the project matches one of the listed project types in 40 CFR 123(b)(1) above, it is considered a project of local air quality concern and the hot-spot demonstration must be based on quantitative analysis methods in accordance to 40 CFR 93.116(a) and the consultation requirements of 40 CFR 93.105(c)(1)(i). If the project does not require a PM hot-spot analysis, a qualitative assessment will be developed that demonstrates that the project will not contribute to any new localized violations, increase the frequency of severity of any existing violations, or delay the timely attainment of any NAAQS or any required emission reductions or milestones in any nonattainment or maintenance area.

On March 10, 2006, EPA published *PM2.5 and PM10 Hot-Spot Analyses in Project-Level Transportation Conformity Determinations for the New PM2.5 and Existing PM10 National Ambient Air Quality Standards; Final Rule describing the types of projects that would be considered a project of air quality concern and that require a hot-spot analysis (71 FR 12468- 12511). Specifically on page 12491, EPA provides the following clarification: "Some examples of <i>projects of air quality concern* that would be covered by § 93.123(b)(1)(i) and (ii) are: A project on a new highway or expressway that serves a significant volume of diesel truck traffic, such as facilities with greater than 125,000 annual average daily traffic (AADT) and 8% or more of such AADT is diesel truck traffic;" ..." Expansion of an existing highway or other facility that affects a congested intersection (operated at Level-of-Service D, E, or F) that has a significant increase in the number of diesel trucks;" These examples will be used as the baseline for determining if the project is a project of air quality concern.

New Highway Capacity

Is this a new highway project that has a significant number of diesel vehicles? *Example: total traffic volumes* \geq 125,000 *annual average daily traffic (AADT) and truck volumes* \geq 10,000 *diesel trucks per day (8% of total traffic).*

NO – This project is not a new highway project.

Expanded Highway Capacity

Is this an expanded highway projects that have a significant increase in the number of diesel vehicles? *Example: the build scenario of the expanded highway or expressway causes a significant increase in the number of diesel trucks compared with the no-build scenario, truck volumes* > 8% of the total traffic.

YES – This highway project has a significant increase in the number of diesel vehicles. The ADT and truck percentage for the Build alternative were compared to the No Build alternative on 3 mainline sections and 4 intersections along the project corridor for F0561 project, as summarized in Table 1A. The percentage increase in the medium and heavy trucks ranges from a 0.92% to 2.45% on mainline and from 2.83% to 3.37% at the intersections, and the total increase in medium and heavy truck ranging from 5,430 to 5,563 vehicles on mainline and from 146 to 276 vehicles at the intersections. Table 1B summarizes ADT and truck percentage for the Build alternative compared to the No Build alternative on 6 mainline sections and 10 intersections for F0562 project. The percentage increase in the medium and heavy trucks ranges from a 0% to 9.09% at the intersections, and the total increase in medium and heavy trucks ranges from 0 to 3,455 vehicles at the intersections.

Table 1A – Freeway Mainline & Intersection ADT and Truck ADT in Existing, No Build and Build
Conditions (F0561)

								Difference		
A ADT on d True de Velennes		2023 Existing		2050 No-Build		2050 Build		(Build - No- Build)		
	AAD1 and Truck volumes	ADT	Truck	ADT	Truck	ADT	Truck	ADT	Truck	Truck
			(%)		(%)		(%)		ADT	(%)
	SR 303L East of 67th Ave. to 51st	17 199	12 38%	53 374	10 31%	98 509	11 23%	45 136	5 563	0 92%
	Ave	17,155	12.30/0	55,574	10.5170	50,505	11.2370	43,130	5,505	0.5270
line	SR303L between 67th Ave. & Lake	17 100	12 20%	52 274	10 21%	06 208	11 / 0%	12 024	5 474	1 00%
Main	Pleasant Parkway		12.30/0	55,574	10.5170	90,298	11.40%	42,924	5,474	1.09%
	SR 303L West of Lake Pleasant	21.052	12.020/	C1 110	0.770/	02.200	12 220/	22,100	F 420	2.450/
	Parkway	21,852	12.93%	61,119	9.77%	93,309	12.22%	32,190	5,430	2.45%
	Lake Pleasant Parkway & SB	10.406	0.62%	46 5 8 7	3 30%	27 170	6 67%	-10/17	276	2 27%
ersection	SR303L	10,400	9.0278	+0,507	5.50%	27,170	0.0770	13,417	270	5.5770
	Lake Pleasant Parkway & NB	8.748	8 29%	43.500	3.11%	25.244	5.94%	-18.256	146	2.83%
	SR303L	-,	0.2370	,						
Int	67th Avenue & SB SR303L					37,853	11.83%			
	67th Avenue & NB SR303L					24,445	9.54%			

Note: Truck% includes heavy truck and medium truck. ADT at intersections include volumes on approach lanes. Source: MAG traffic demand model received from Kimley Horn on April 3, 2024

				Ì	/					
AADT and Truck Volumes								Difference		
		2023 Existing		2050 No-Build		2050 Build		(Build - No- Build)		ild)
		ADT	Truck	ADT	Truck	ADT	Truck	ADT	Truck	Truck
			(%)		(%)		(%)		ADT	(%)
	SR 303L between 51st Ave & 43rd	27,289	13.77%	73,709	11.15%	115,512	12.98%	41,803	6,776	1.83%
	Sonoran Desert Dr between 43rd Ave & I-17	29,947	14.74%	77,899	11.19%	95,411	13.21%	17,512	3,880	2.01%
0	I-17 south of Dexileta Dr	141,166	13.48%	250,198	16.45%	194,016	16.65%	-56,181	-8,857	0.20%
Mainline	I-17 between Dexileta Dr & Sonoran Desert Dr	138,861	13.58%	239,749	16.81%	233,692	17.84%	-6,057	1,389	1.03%
	I-17 between Sonoran Desert Dr & Dove Valley Rd	110,845	14.03%	180,162	18.85%	140,367	21.52%	-39,796	-3,765	2.66%
	I-17 between Dove Valley Rd & Carefree Hwy	117,668	13.80%	176,817	19.04%	153,885	20.33%	-22,932	-2,389	1.28%
	51st Avenue & SB SR 303L	7,017	19.59%	36,074	7.72%	42,525	8.95%	6,451	1,024	1.24%
	51st Avenue & NB SR 303L	5,853	18.85%	16,848	7.13%	34,279	7.35%	17,431	1,320	0.23%
	43rd Avenue & SB SR 303L	7,399	17.94%	23,716	8.25%	37,660	7.89%	13,944	1,016	-0.36%
Ę	43rd Avenue & NB SR 303L	947	12.25%	10,009	8.22%	33,607	7.45%	23,598	1,681	-0.77%
ectic	Dexileta Dr & NB I-17					14,663	6.67%			
erse	Dexileta Dr & SB I-17					12,655	6.97%			
Inte	Sonoran Desert Dr & NB I-17	29,881	12.78%	70,907	9.45%	44,042	7.97%	-26,865	-3,188	-1.48%
	Sonoran Desert Dr & SB I-17	35,570	13.84%	86,569	10.63%	38,024	9.09%	-48,545	-5,748	-1.54%
	Dove Valley Rd & NB I-17	16,196	8.21%	39,348	4.52%	35,082	3.65%	-4,266	-499	-0.87%
	Dove Valley Rd & SB I-17	11,023	9.09%	49,700	5.57%	35,605	3.40%	-14,095	-1,558	-2.17%

Table 1B - Freeway Mainline & Intersection AD	DT and Truck ADT in Existing, No Build and Bui	ld
Conditio	ons (F0562)	

Note: Truck% includes heavy truck and medium truck. ADT at intersections include volumes on approach lanes. Source: MAG traffic demand model received from Jacobs on March 11, April 16, 2024, and May 10, 2024

Projects with Congested Intersections

Is this a project that affects a congested intersection (LOS D or greater) that has a significant number of diesel trucks, <u>OR</u> will change LOS to D or greater because of an increase in traffic volumes from a significant number of diesel trucks related to the project?

YES. For F0561 project, none of the intersections would experience LOS D or greater, as shown in Table 2A. F0562 project is a project that affects a congested intersection of LOS D or will change LOS to D or greater which has a significant number of diesel trucks, see Table 2B. The intersection operation analysis shows 3 intersections have a LOS of D, E, or F under existing condition with 1,002 to 4,923 truck ADT, and 1 intersection has a LOS D in 2050 Build with 2,520 truck ADT, as shown in previous Table 1B.

Project Name: SR 303L, 51st Ave to I-17 & SR 303L, Lake Pleasant Parkway to 51st Avenue Federal Project No's .: 303-A(203)T & 303-A(229)T ADOT Project No's .: 303 MA 136 F0562 01C & 303 MA 131 F0561 01C

Table 2A – Intersections LOS in the Project Area (F0361)							
		2023 Existing		2050 N	lo-Build	2050 Build	
		AM	PM	AM	PM	AM	PM
Lovel of	Sorvica (IOS)	Peak	Peak	Peak	Peak	Peak	Peak
Level of Service (LOS)		LOS	LOS	LOS	LOS	LOS	LOS
		(delay)	(delay)	(delay)	(delay)	(delay)	(delay)
erall section DS	67th Avenue & SB SR 303L					C (20.8)	B (19.9)
Ov(Inters L(67th Avenue & NB SR 303L					B (15.9)	B (13.8)

T-1-1-0A Intersections I OS in the Project Area (E0561)

Notes:

67th Avenue TI does not currently exist.

Lake Pleasant Parkway intersections have LOS C or better in 2020 existing, and 2040 Build per Final Traffic Report, SR303, Lake Pleasant Parkway to I-17 (completed in 2022).

Source: Initial Traffic Memo provided by Kimley Horn on April 3, 2024.

		2023 Existing		2050 No-Build		2050 Build	
		AM	PM	AM	PM	AM	PM
T.	aval of Sarvica (LOS)	Peak	Peak	Peak	Peak	Peak	Peak
Г		LOS	LOS	LOS	LOS	LOS	LOS
		(delay)	(delay)	(delay)	(delay)	(delay)	(delay)
	51st Avenue & SB SR 303L	A (0)	A (0)	B (11.9)	B (12.3)	B (14.8)	B (12.1)
	51st Avenue & NB SR 303L	A (0)	A (0)	C (23.5)	A (8.8)	D (42.5)	B (13.7)
Overall Intersection LOS	43rd Avenue & SB SR 303L	B (10.1)	A (5.0)	C (20.5)	B (19.7)	C (20.5)	B (19.8)
	43rd Avenue & NB SR 303L	B (11.3)	A (7.7)	B (16.8)	B (13.6)	C (28.2)	C (20.5)
	Dexileta Dr & NB I-17			A (0)	A (0)	A (0)	A (0)
	Dexileta Dr & SB I-17			A (0)	A (0)	A (0)	A (0)
	Sonoran Desert Dr & NB I-17	E (63.5)	F (195.8)	F (358.1)	F (329.4)	B (18.0)	B (19.4)
	Sonoran Desert Dr & SB I-17	E (74.6)	F (87.5)	F (375.7)	F (447.9)	B (16.8)	B (15.0)
	Dove Valley Rd & NB I-17	C (33.3)	C (34.7)	C (33.7)	C (27.2)	C (27.1)	C (26.1)
	Dove Valley Rd & SB I-17	D (46.8)	D (38.8)	C (30.9)	D (50.1)	C (26.5)	C (25.4)

Table 2B – Intersections LOS in the Project Area (F0562)

Notes:

Source: LOS data provided by Jacobs on April 8 and April 15, 2024.

New Bus and Rail Terminals

Does the project involve construction of a new bus or intermodal terminal that accommodates a significant number of diesel vehicles?

NO – This project does not construct any new bus or rail terminals.

Expanded Bus and Rail Terminals

Does the project involve an existing bus or intermodal terminal that has a large vehicle fleet where the number of diesel buses (or trains) increases by 50% or more, as measured by

NO – This project does not expand any bus or rail terminals.

Projects Affecting PM Sites of Violation or Possible Violation

Does the project affect locations, areas or categories of sites that are identified in the PM₁₀ or PM_{2.5} applicable plan or implementation plan submissions, as appropriate, as sites of violation or potential violation?

NO – The project location is not listed in MAG's 2012 SIP as a site of violation or potential violation.

POAQC Determination

F0562 and F0561 projects are expanded highway projects that has a significant increase in the number of diesel vehicles on mainline and at intersections. Therefore, ADOT is recommending these two projects for interagency consultation in accordance with 40 CFR93.105 as a Project of Air Quality Concern and thereby will require a PM hot-spot analysis.

For F0562 project, the top three intersections ranked by volume are as follows:

- Sonoran Desert Dr & NB I-17
- 51st Avenue & SB SR 303L
- Sonoran Desert Dr & SB I-17

And, the top three intersections ranked by LOS and delay are as follows:

- 51st Avenue & NB SR 303L (AM Peak Hour)
- 43rd Avenue & NB SR 303L (AM Peak Hour)
- Dove Valley Rd & NB I-17 (AM Peak Hour)

Based on the top intersections ranked by volume and by LOS and delay, the intersection modeling analysis will be performed for the following four TI intersections' peak hours of the days for F0562 project:

- 51st Avenue & SB SR 303L
- 51st Avenue & NB SR 303L
- 43rd Avenue & NB SR 303L
- Sonoran Desert Dr & NB I-17
- Sonoran Desert Dr & SB I-17
- Dove Valley Rd & NB I-17

For F0561 project, the intersection modeling analysis will be performed for two intersections' peak hours of the days including 67th Avenue & SB SR303L and 67th Avenue & NB SR303L.

For PM hotspot analysis, receptors are placed around the concerned TI/intersections and extended along the on and off-ramps to the mainline gore area. Receptors are not placed on freeway mainline between the gore area of two adjacent TIs on SR303. The reason is because high PM concentrations normally occur adjacent to the intersections because of greater traffic volumes, worse LOS, and close proximity to public.

Section 3.3.2 of EPA's PM Hot Spot Guidance indicates the geographic area to be covered by a PM hot-spot analysis is to be determined on a case-by-case basis. The guidance states that it may be appropriate to focus the PM hot-spot analysis only on locations of highest air quality concentrations, and that if conformity requirements are met at such locations, then it can be assumed that conformity is met throughout the project area.

Receptors could not be modeled along SR303L West of Lake Pleasant Parkway NB offramp because it is outside of project limit and no design files/data are available.

Based on the above reasons, we believed the five TIs selected for PM hotspot analysis in the consultation document are the locations that would result in highest air quality concentrations.

Project Level PM Quantitative Hot-Spot Analysis – Consultation Document for Project of Air Quality Concern

Completing a Particulate Matter (PM) Hot-Spot Analysis

The general steps required to complete a quantitative PM hot-spot analysis are outlined below and described in detail in the EPA Office of Transportation and Air Quality guidance document "Transportation Conformity Guidance for Quantitative Hot-spot Analyses in PM_{2.5} and PM₁₀ Nonattainment and Maintenance Areas" EPA-420-B-21-037, October 2021.

* Described in the previous section.

** These Steps will be described and documented in a final air quality analysis report.

Step 2: Determine the Approach, Models, and Data

- Describe the project area (area substantially affected by the project, 58 FR 62212) and emission sources.
- Determine general approach and analysis year(s) year(s) of peak emissions during the time frame of the transportation plan (69 FR 40056).
- Determine National Ambient Air Quality Standards (NAAQS) and PM types to be evaluated.
- Select emissions and dispersion models and methods to be used.
- Obtain project-specific data (e.g., fleet mix, peak-hour volumes and average speed).

Step 3: Estimate On-Road Motor Vehicle Emissions

a. Estimate on-road motor vehicle emissions using MOVES.

Step 4: Estimate Dust and Other Emissions

- □ Estimate road dust emissions using AP-42 Paved Roads.
- Do emissions from other sources (e.g., locomotives) need to be considered?

Step 5: Set Up and Run Air Quality Model (AERMOD)

- Obtain and input required site data (e.g., meteorological).
- Input MOVES and AP-42 outputs (emission factors).
- Determine number and location of receptors, roadway links, and signal timing.
- Run air quality dispersion model and obtain concentration results.

Step 6: Determine Background Concentrations

- a. Determine background concentrations from nearby and other emission sources excluding the emissions from the project itself.
- Nearby TMCS emissions are included
- Atypical Events Report will be needed.

Step 7: Calculate Design Concentrations and Compare Build/No-Build Results

- * Add step 5 results to background concentrations to obtain values for the Build scenario.
- * Determine if the design values allow the project to conform.

Step 8: Consider Mitigation or Control Measures

- a. Consider measures to reduce emissions and redo the analysis. If mitigation measures are required for project conformity, they must be included in the applicable SIP and be enforceable.
- b. Determine if the design values from allow the project to conform after implementing mitigation or control measures.

Step 9: Document Analysis

- a. Determine if the project conforms or not based on the results of step 7 or step 8. *To support the conclusion that a project meets conformity under* 40 *CFR* 93.116 *and* 93.123, *at a minimum the documentation will include:*
- Description of proposed project, when it is expected to open, and projected travel activity data.
- Analysis year(s) examined and factors considering in determining year(s) of peak emissions.
- *Emissions modeling data, model used with inputs and results, and how characterization of project links.*
- Model inputs and results for road dust, construction emissions, and emissions from other source if needed.
- Air Quality modeling data, included model used, inputs and results and receptors.
- How background concentrations were determined.
- Any mitigation and control measures implemented, including public involvement or consultation if needed.
- How interagency and public participation requirements were met.
- Conclusion that the proposed project meets conformity requirements.
- Sources of data for modeling.

Estimate On-Road Motor Ve	hicle Emissions (Step 3)			
MOVES3.1	Input	Data Source/Detail		
Scale	Onroad, Project Scale and Inventory	MAG Regional Conformity Data (Spring, 2023)		
Time Spans	2050, 16 runs PM ₁₀ emission factors were developed for an analysis year of 2050, which represents the year peak emissions from the project are expected. Vehicle emissions of PM10 are a combination of vehicle exhaust, brakewear, tirewear, and road dust. Road dust is the largest contributor to the overall emissions. Because road dust is highly dependent on vehicle volumes, the analysis year of 2050 was selected as the year of peak emissions because it was the year with the greatest vehicle volumes. This has been reflected in the 2021 MAG Conformity Analysis budget test, which resulted in highest PM10 emissions in 2050 due to largest VMT and the most surrounding PM emissions.	4 seasons (Jan, Apr, July & Oct) x 4 weekday time periods (6-9AM, 9AM- 4PM, 4-7PM & 7PM-6AM)		
GeographicBounds	MaricopaCounty	EPA Hot Spot Guidance Section 4.4.4		
Onroad Vehicles	All Fuels and Source Use Types	EPA Hot Spot Guidance Section 4.4.5		
Road Type	Urban Restricted and Urban Unrestricted access	EPA Hot Spot Guidance Section 4.4.6		
Pollutants and Processes	Primary Exhaust PM10-Total(for Running Exhaust and Crankcase Running Exhaust), Break Wear Particulate, Tire Wear Particulate	<i>EPA Hot Spot Guidance Sections 2.5, 4.4.7</i>		
General Output and Output Emissions Detail	Output Database TBD	EPA Hot Spot Guidance Section 4.4.8, 4.4.9 & 4.6		
Create Input Database	Input database will be created and modified for Project level using required Regional Inputs from latest Regional Conformity Analysis.	MAG Regional Conformity Data (Spring, 2023)		
Project Data Manager	Database will be created and MOVES3.1 templates will be created to include local project data and information provided by MAG, e.g., Fuel, Age Distribution, Meteorology Data, to be consistent with the regional model. Links and Link Source Type will be specific to project as provided by the traffic study, any missing information will use default MOVES3.1 data.	EPA Hot Spot Guidance Sections 4.5 &Appendix D		
Meteorology	Calculated from ADEQ Phoenix AERMET data based on 4 seasons and 4 weekday time periods from year 2017 to 2021.	16 meteorology data set, 4 seasons (Jan, Apr, July & Oct) x 4 weekday time periods		
Age Distribution	MAG local specific data (sourceTypeID: 11 – 62, yearID: 2050, ageID: 0 -30)	MAG Regional Conformity Data (Spring, 2023)		
Fuel	MOVES default	EPA Hot Spot Guidance Section 4.5.3		

Table 1. Proposed Inputs, Parameters and Data Sources

I/M Programs	MAG local specific data (countyID: 4013, yearID: 2050)	MAG Regional Conformity Data (Spring, 2023)
Retrofit Data	Not used	
Links	Please see attached the link maps.	
Link Source Types	<i>Option 2 in the EPA's PM Hot- spot Guidance Section 4.5.7 will be used.</i>	MAG Regional Conformity Data (Spring, 2023)
Link Drive Schedules, Operating Mode Distribution	Options 1 in the EPA's PM Hot-spot Guidance Section 4.5.8 will be used. Average speeds and road types through the Links Importer will be used.	
Off-Network, Hoteling	Not used	
Estimate Dust and Other Emi	ssions (Step 4)	
AP-42, Fifth Edition, 2011	Parameter	Data Source/Detail
Average Weight Vehicles	<i>Freeways</i> 3.83 <i>tons in</i> 2025, 3.87 <i>tons in</i> 2030, 3.97 <i>tons in</i> 2040, <i>and</i> 4.08 <i>tons in</i> 2050. <i>Arterials</i> 2.48 <i>tons in</i> 2025, 2.49 <i>tons in</i> 2030, 2.48 <i>tons in</i> 2040, <i>and</i> 2.48 <i>tons in</i> 2050	Conformity Analysis for the FY 2022- 2025 MAG TIP and the Momentum 2050 RTP, dated December, 2021.
Silt Loading	Section 13.2.1 Paved Roads from AP 42 will be used, consistent with the Regional analysis from MAG. Emission factors for road and construction dust should be added to the emission factors generated for each link by MOVES. Ex. Silt loading – Freeways .02 g/m^2, Arterials >10,000 ADT .067g/m^2, Low traffic roads <10,000 ADT .23g/m^2.	EPA Hot Spot Guidance Section 6, When estimating emissions of re- entrained road dust from paved roads, site-specific silt loading data must be consistent with the data used for the project's county in the regional emissions analysis (40 CFR 93.123(c)(3)).
Construction Dust	Construction Emissions will not be addressed because the construction of this project is not expected to last longer than 5 years. There are no other sources (e.g., locomotives) that need to be considered for most projects.	EPA Hot Spot Guidance Section 6.5
Precipitation	In 2008-2012 SIP/Regional Conformity used average of 32 days with at least .01 inch of precipitation County.	The MAG 2012 Five Percent Plan for PM-10 (used for the Conformity Analysis for the FY 2022-2025 MAG TIP and the Momentum 2050 RTP, dated December, 2021).
Set Up and Run Air Quality	Model (AERMOD) (Step 5)	
AERMOD v.23132	Parameter	Data Source/Detail
Model Setup (CO Pathway)		EPA Hot Spot Guidance Section 7.1, 7.2 & Appendix J, AERMOD User's Guide Section 2.3.2 & 3.2
TITLEONE	TBD	
MODELOPT	CONC FLAT. Initial modeling will be done with all sources and receptors at grade.	Modeling Concentrations and Flat Terrain
AVERTIME	24	Average across each 24-hour period from the available met data
URBANOPT	1,645,000	Population of Phoenix, AZ https://www.census.gov/quickfacts/fact /table/phoenixcityarizona/PST045222

Project Name: SR 303L, 51st Ave to I-17 & SR 303L, Lake Pleasant Parkway to 51st Avenue Federal Project No's.: 303-A(203)T & 303-A(229)T ADOT Project No's.: 303 MA 136 F0562 01C & 303 MA 131 F0561 01C

FLAGPOLE	Receptor height in meter, 1.8	
POLLUTID	PM10	

Source Types and		
Characters (SO Pathway)		
	Srcid Srctyp (VOLUME)	VOLUME Courses and the stars
SKCPARAM	Srcia Viemis Keingt Syinit Szinit	See EPA Hot Spot Guidance Appendix J.3.1
URBANSRC	ALL	All urban source
EMISFACT	Emission rate=1, Use SEASHR (season by hour-of-day) As directed by the PM Hot Spot Guidance, emissions were input in a manner to reflect changes in emission factors and vehicle volumes throughout the day. This was represented in AERMOD by specifying an emission rate of 1 g/s/m ² with the variable variable emission rate option to specify the emission rate of 96 emission factors (4 seasons/24 hours per day) for each emission source. Excel files that outline this process are included with MOVES and AERMOD	Total 16 MOVES run=4 seasons x 4 time periods to 96 factors (4 seasons/24 hours) See PM hot-spot training slides (FHWA, 2022)
	modeling files for agency review.	
SRCGROUP	ALL	
Meteorological Data (ME Pathway)		
SURFFILE	Phoenix2017-2021.sfc ADOT followed up with ADEQ on the AERMET files- the Phoenix Sky Harbor Airport dataset. ADEQ provided a document detailing the AERMET data completeness, their representativeness of meteorology of the project area, and QA/QC.	ADEQ Phoenix AERMET files
PROFFILE	Phoenix2017-2021.pfl ADOT followed up with ADEQ on the AERMET files- the Phoenix Sky Harbor Airport dataset. ADEQ provided a document detailing the AERMET data completeness, their representativeness of meteorology of the project area, and QA/QC.	ADEQ Phoenix AERMET files
SURFDATA	23183 2017	ADEQ Phoenix AERMET files
UAIRDATA	23160 2017	ADEQ Phoenix AERMET files
PROFBASE	0	ADEQ Phoenix AERMET files
Run Met Pre-Processor	Not used	

Urban or Rural Sources	Specifications for URBANSRC (SO Pathway). The emission sources are SR 303L and I-17 mainlines, ramps, frontage roads, and cross streets. No nearby emission sources other than the roadway links included in the model run would be affected by the project. All emission sources used URBANOPT to specify urban dispersion coefficients. The PM Hot-spot Guidance recommends "in urban areas, sources should generally be treated as urban." Appendix W recommends multiple procedures to identify an area as urban. Using the Auer land use procedure described in Section 7.2.1.1(b)(i). Based on aerial maps, this project is in the urban fringe of Phoenix that is partially developed. Currently, residential takes 5% of the land use, open space takes 35%, and vacant land takes 31%, other minor land use includes industrial and commercial. Therefore, the use of urban dispersion coefficients is appropriate for the project area.	EPA Hot Spot Guidance Section 7.5.5 & Appendix J.4, AERMOD Implementation Guide, Section 7.2.3 of Appendix W to 40 CFR Part 51
Receptors (RE Pathway)	Please see attached receptor maps on pages 14 to 18. 67 th Avenue TI, 51 st Avenue TI, 43 rd Avenue TI, Sonoran Desert Dr TI, and Dove Valley Rd TI were selected for PM hotspot analysis that were ranked by ADT volumes on mainline and at intersections, and LOS and delay at intersections. The receptor placement is consistent with the guidance. Receptors were placed 5m from the edge of the roadway. Receptors were placed at 25 meters spacing. (total 969 receptors for 67 th Ave TI, 979 receptors for 51st Ave TI, 977 receptors for 43 rd Ave TI, 750 receptors for Sonoran Desert Dr TI, and 966 receptors for Dove Valley Rd TI). the highest PM concentration would normally occur at receptors near the roadway sources. the PM concentrations would decrease further away from the roadway sources, and receptor placements further away from the source would not affect the highest PM concentration design value for the intersection and analysis results.	EPA Hot Spot Guidance Section 7.6, AERMOD User's Guide Section 2.3.4 & 3.4, Section 7.2.2 of Appendix W to 40 CFR Part 51, See PM hot-spot training slides
DISCCART	X Y (Z)	<i>Z</i> is optional if FLAGPOLE is already defined in CO Pathway.
GRIDCART	Not used	
Output (OU Pathway)		
RECTABLE	24 6th	Since PM should be one or less exceedance per year, with 5 years of met data, the 6th highest concentration at each receptor

PLOTFILE	Not used						
POSTFILE	Not used						
Model Runs							
Determine Background Concentrations (Step 6)							
Source Type	Description	Data Source/Detail					
Nearby Sources	TSMC AZ project has gone through the NEPA process, see link at: https://www.nist.gov/chips/national- environmental-policy-act-nepa Below is the excerpt from the AQ section from	Maricopa Air Quality Permit Application, and email provided by EPA email, October 4, 2024					
	its Draft Environmental Assessment: TSMC AZ has modeled and CPO has reviewed the estimated criteria pollutant emissions from all three phases (assuming emissions from semiconductor manufacturing at the technology nodes noted in Section 2.2.2) using the same air dispersion modeling software (i.e., AERMOD v21112 and AERMAP v18081) that TSMC used to obtain its current permit for Phases 1 and 2. Background pollutant concentrations were determined from the closest ambient air monitors to the Facility. To achieve a conservative estimate of criteria pollutant emissions from all three phases, TSMC factored all anticipated emissions from full use of the SME and tools that would be installed in Phases 1 through 3 into its modeling approach. The resulting Facility-wide impact from the operations of Phases 1, 2, and 3 was added to the ambient air background levels to determine the total impact of the Proposed Project. This modeling showed that emissions under the Proposed Project would not cause an exceedance of NAAQS standards. TSMC AZ would have no significant effects with mitigation and BMPs for the air quality. TSMC SZ was modeled in the PM10 hotspot analysis per EPA's correspondence on October 2, 2024. 148-point sources and/or volume sources were exported from original TSMC AERMOD model provided by EPA and imported into SR303 AERMOD model. See materials provided.						

Other Sources (Ambient	Please see the selected monitor's location map	EPA Hot Spot Guidance Section 8.3,
Monitoring Data)	and monitoring data with wind rose	PM hot-spot training slides Module 5
	information. Zuni Hills (ZH) monitor was	86
	selected as PM background monitor.	
	6	
	The background concentration data of 7uni	
	Lille (711) maniton is nonnegative for the	
	project area because:	
	1. Similar characteristics between the	
	monitor location and project area	
	including density, mix of emission	
	sources, land use, terrain, etc.	
	2. Distance of monitor from the project	
	area. ZH monitor is closer	
	to the project and have concentration	
	most similar to the project area.	
	3 Wind natterns between the monitor and	
	the project area 7H monitor shows	
	cionificant unwind natterne	
	significant apoint patierns.	
	Atypical Events Report is under preparation.	
	See Atypical Events Report for detailed	
	monitor data, calculations, and resulting	
	recommended background concentrations	
	when ready.	
	For the design concentration, the highest	
	sixth-highest value among all recentors	
	should be added to the fourth highest	
	hackground monitor value (Section 9.3.1 of	
	DM Hot mot Cuidance) The design	
	concentration will then be compared to	
	NAAQS threshold for conformity	
	determination.	
	1	

References

PM Hot-spot guidance, EPA-420-B-21-037, October 2021.

User's Guide for the AMS/EPA Regulatory Model (AERMOD), EPA-454/B-21-001, April 2021.

AERMOD Implementation Guide, EPA-454/B-21-006, July 2021.

User's Guide for the AERMOD Meteorological Preprocessor (AERMET), EPA-454/B-22-006, June 2022.

Completing Quantitative PM Hot-spot Analyses: 3-Day Course, FHWA, October 2022.

Figure 1. PM Links and Receptors Placement for Air Quality Modeling (67th Avenue & SR303L, F0561)

There are no existing developments or sidewalks beyond the freeway mainline at 67th Avenue. In addition, there will be no planned developments for the next 10 years. Thus, the proposed sidewalks at the TI are for future use as there are currently no connections to the north or south of the TI, the likelihood of the sidewalks being used would be minor. No PM receptors would be placed on the sidewalks as a result.

Figure 2. PM Links and Receptors Placement for Air Quality Modeling (51st Avenue & SR303L, F0562)

Figure 3. PM Links and Receptors Placement for Air Quality Modeling (43rd Avenue & SR303L, F0562)

Figure 4. PM Links and Receptors Placement for Air Quality Modeling (Sonoran Desert Dr & I-17, F0562)

Figure 5. PM Links and Receptors Placement for Air Quality Modeling (Dove Valley Rd & I-17, F0562)

	Site	109 th Ave. &
	Location	Deer Valley Rd. Phoenix
	Spatial Scale	Neighborhood
	Site	Population
	Туре	Exposure
		· Martin
		A
2 A A A A A A A A A A A A A A A A A A A		

Site Description: This site began operating in December 2009. This SLAMS location monitors for PM₁₀. Meteorological monitoring includes ambient temperature and wind speed/direction.

The station is located on the campus of the Zuni Hills Elementary School.

Number of complete monitoring days at Zuni Hills:

2019	2020	2021	Total
361	365	365	1091

4th Highest 24-hour readings at Zuni Hills Without removing atypical events (in red number):

	2021	2022	2023
1	248	167	146
2	142	126	129
3	122	116	125
4	110	107	120

Based on the background PM10 concentrations and preliminary modeling results, the potential dates (subject to minor changes based on coordination with EPA) of the atypical events to be removed for Zuni Hills are: 7/9/2021; 7/10/2021; 10/12/2021; 10/11/2021; 9/2/2022; 8/31/2023; 7/21/2023; 7/26/2023; 4/3/2023. These dates have been flagged as atypical events because of PM10 exceedances at varies PM10 monitors per communication between Beverly Chenausky (ADOT) and Ron Pope (AQD) on April 5, 2024. EPA reviewed these days and replied on September 10 and stated that "*The green days show impacts at other monitors as well as sustained WS over 25mph at the airport along with weather type logs of dust or drops in visibility. The yellow days showed spikes at other monitors but sustained WS were not at or over 25mph, there were no notes on adverse weather types, nor noticeable changes in visibility."* For the yellow days, EPA would like to see more evidence to support the weight of evidence for their removal compared to the green days.

4th Highest 24-hour readings at Zuni Hills after removing atypical events (in red number). Pending EPA approval.

		- Providence	
	2021	2022	2023
1	110	126	146
2	84	116	66
3	72	107	65
4	70	87	62

Source: https://www.epa.gov/outdoor-air-quality-data/download-daily-data

Period: 2019-01-01 00:00 - 2023-12-31 23:59

Source: email from Ron Pope (AQD) Friday, April 5, 2024

This page intentionally left blank.

TSMC Facility Modeling Approach and Results

EPA provided the TSMC AERMOD input file for PM10 from the document as *4D2D6C7F.inp on October 4, 2024*, which contains every modeled source information for TSMC facilities. See screenshot below. In all, there were 148 point sources and/or volume sources modeled for the TSMC facilities, and 1000 receptors were modeled around the TSMC facilities.

After running the original TSMC AERMOD file provided by EPA with ADEQ Met file with data between 2017 and 2021, the maximum and 6th high 24-hour PM10 concentration results in the TSMC immediate property line on the east (red circle in figure below) and the 6th highest 24-hour PM10 concentration from TSMC facilities would be **8.2 ug/m3**.

Deculte Cum m	-
Recipies Summ	

TSMC Arizona	i								
PM-10 NAAQS (Pre 97) - Concentration - Source Group: ALL									
Averaging Period	Rank	Peak	Units	х (m)	Y (m)	ZELEV (m)	ZFLAG (m)	ZHILL (m)	Peak Date, Start Hour
24-HR	1ST	8,96902	ua/m^3	393402.92	3738133.70	486.01	0.00	486.01	8/26/2019 24
24-HR	6TH	8.19158	ug/m^3	393402.92	3738133.70	486.01	0.00	486.01	10/9/2021, 24

Per EPA's suggestion, to be consistent with the source parameters and locations from the TSMC permit, we exported all TSMC sources into excel files and re-imported them into our SR303 AERMOD file for every TI under evaluation, that way the source parameters and locations would be identical, see example figures below for imported TSMC sources in SR303 AERMOD models at nearby 43rd Ave TI and 51st Ave TI.

Because the PM10 concentrations generated by TSMC facilities are far less than those generated by roadway emissions from SR303 project, the PM10 hotspot areas would still be located near at each TI/intersection that our modeled receptors already cover those areas. And there is no need to input the 1000 receptors from TSMC AERMOD file into our SR303 AERMOD model file.

Below are the results with PM10 concentration contours for each analyzed TI/intersections with TSMC facilities sources included. We modeled receptors along sidewalks at Sonoran Desert Dr

TI and Dove Valley Rd TI per EPA's direction.

Permit Information other Background

Beverly Chenausky <bchenausky@azdot.gov>

RE: Atypical Events Approach for Loop 303, Lake Pleasant Parkway to I-17 Improvements @ Mon, May 13, 2024 10:00am - 12:00pm (GMT-07)

1 message

Tsui, William <Tsui.William@epa.gov>

Fri, Oct 4, 2024 at 2:04 PM To: Beverly Chenausky

schenausky@azdot.gov>, "Wickersham, Lindsay (she/her/hers)" <wickersham.lindsay@epa.gov> Cc: ADOTAirNoise - ADOT <adotairnoise@azdot.gov>, "ddunn@aztec.us" <ddunn@aztec.us>, "dshu@aztec.us" <dshu@aztec.us>, Ivan Racic <iracic@azdot.gov>, Joonwon Joo <jjoo@azdot.gov>, Katie Rodriguez <krodriguez@azdot.gov>, "mchase@aztec.us" <mchase@aztec.us>, Morgan Ghods <mghods@azdot.gov>, "Seeds, Amy" <Seeds.Amy@epa.gov>, "ssingh@aztec.us" <ssingh@aztec.us>, Sandy Thoms <sthoms@azdot.gov>

Hello Beverly,

Thanks for taking the time to write up an outline of your approach. While it is a reasonable attempt to characterize the emissions in the absence of additional information, we were recently able to find source parameters and locations from the TSMC permit. Therefore, we recommend using this detailed source information instead. See attached files.

TSMC application.pdf contains the modeling report associated with the TSMC permit in Appendix E. Also, Appendix A of Appendix E contains a spreadsheet of source parameters and emissions. TSMC TSD initialpermit.docx contains the initial permit issuance and includes all AERMOD input and output files in the appendix. For your convenience, we have attached the AERMOD input file for PM10 from this document as 4D2D6C7F.inp, which contains source information for TSMC.

If you have any questions, please let us know.

Thank you,

William

William G. Tsui, Ph.D.

Geographic Strategies and Modeling Section, Air & Radiation Division

U.S. Environmental Protection Agency, Region 9

Email: tsui.william@epa.gov

From: Beverly Chenausky

bchenausky@azdot.gov>

Sent: Wednesday, October 2, 2024 2:22 PM

To: Wickersham, Lindsay (she/her/hers) <wickersham.lindsay@epa.gov>

Cc: ADOTAirNoise - ADOT <adotairnoise@azdot.gov>; ddunn@aztec.us; dshu@aztec.us; lvan Racic <iracic@azdot.gov>; Joonwon Joo <jjoo@azdot.gov>; Katie Rodriguez <krodriguez@azdot.gov>; mchase@aztec.us; Morgan Ghods <mghods@azdot.gov>; Seeds, Amy <Seeds.Amy@epa.gov>; ssingh@aztec.us; Sandy Thoms <sthoms@azdot.gov>; Tsui, William <Tsui.William@epa.gov>

10/15/24, 10:36 AM State of Arizona Mail - RE: Atypical Events Approach for Loop 303, Lake Pleasant Parkway to I-17 Improvements @ Mon, May 1... **Subject:** Re: Atypical Events Approach for Loop 303, Lake Pleasant Parkway to I-17 Improvements @ Mon, May 13,

2024 10:00am - 12:00pm (GMT-07)

Caution: This email originated from outside EPA, please exercise additional caution when deciding whether to open attachments or click on provided links.

Lindsay - Please find attached a general outline of the approach that should cover the approach, if this is ok with EPA, we will provide the updated modeling files and begin formal consultation. You can see the added additional receptors on Sonoran Desert Drive sidewalks of the SR303/I-17 TI. We also added a TSMC facility into the model per attached approach.

Beverly Chenausky ASSISTANT ENVIRONMENTAL ADMINISTRATOR ARIZONA DEPARTMENT OF TRANSPORTATION MD EM02, 206 S. 17th Ave. Phoenix, AZ 85007 480.390.3417 Website: azdot.gov

On Wed, Oct 2, 2024 at 2:13 PM Wickersham, Lindsay (she/her/hers) <wickersham.lindsay@epa.gov> wrote:

Hi Beverly and Team,

I wanted to follow up with you all about our comment regarding modeling the TSMC as a stationary source.

We consulted with OTAQ and determined that the TSMC **should** be modeled as a stationary source in this PM Hot Spot analysis. We are happy to consult with ADOT on how to best model this facility in the hot spot analysis. We have also reached out to Maricopa county to see if we can find more information about the anticipated emissions used for their permit--we will share any materials we receive with you.

In the meantime, we wanted to pass on the advice we got from OTAQ on how to get started: "This facility should be modeled in line with Appendix W, allowable emissions based on Table 8-1 (82 FR 5219) or Table 8-2 (82 FR 5220), GEP Stack heights for any stacks, downwash, etc."

Please let us know if you would like us to set up a meeting to discuss this further—we are happy to help as we can!

Best,

Lindsay

Lindsay Wickersham (she/hers) | 415-947-4192

Physical Scientist | Planning Section (AIR-2-1) | Air and Radiation Division | US EPA - Region 9

-----Original Appointment----From: Beverly Chenausky <bchenausky@azdot.gov>
Sent: Wednesday, September 11, 2024 8:51 AM
To: Beverly Chenausky; ADOTAirNoise - ADOT; ddunn@aztec.us; dshu@aztec.us; Ivan Racic; Joonwon Joo; Katie Rodriguez; mchase@aztec.us; Morgan Ghods; Seeds, Amy; ssingh@aztec.us; Sandy Thoms; Tsui, William; Wickersham, Lindsay (she/her/hers)
Subject: Atypical Events Approach for Loop 303, Lake Pleasant Parkway to I-17 Improvements @ Mon, May 13, 2024 10:00am – 12:00pm (GMT-07)
When: Monday, September 23, 2024 11:00 AM-12:00 PM America/Phoenix.

Caution: This email originated from outside EPA, please exercise additional caution when deciding whether to open attachments or click on provided links.

Join with Google Meet

Meeting link

meet.google.com/exp-zwjq-ouz

Join by phone

+1 929-282-0937(US) PIN: 673321219

More phone numbers

Attachments

F0561&F0562_SR303_AQ_C...

5.29.24 EPA Comments o...

Discussion on days and data needs for atypical event and monitor selection.

Project Details, Public meeting materials https://azdot.gov/projects/central-district-projects/loop-303-lake-pleasant-parkway-i-17-improvements

Draft Modeling Files - Refer to 9/5 email with documents

https://azdot.my.workfront. adobe.com/document/public/view?publicToken= GwwbpJWS7fbmmc9m3z90_ fYpLoJa9tRgPYSDw1pVB8UDOHb9mOK Nyy4XIC7cBiCHZDdaYgMMPb6Cv5gJO ZSoWQ==&endcap

When

11am – 12pm (Mountain-Monday Sep 23, 2024 Standard Time - Phoenix)

Guests

- organizer Beverly Chenausky

ADOTAirNoise - ADOT

ddunn@aztec.us

dshu@aztec.us

Ivan Racic

Joonwon Joo

Katie Rodriguez

mchase@aztec.us

Morgan Ghods

seeds.amy@epa.gov

ssingh@aztec.us

Sandy Thoms

tsui.william@epa.gov

10/15/24, 10:36 AM	State of Arizona Mail - RE: Atypical Events Approach for Loop 303, Lake Pleasant Parkway to I-17 Improvements @ Mon, May 1
	View all guest info
	wickersham.lindsay@epa.gov for Reply
	Maybe No Yes
	More options
Invitation	n from Google Calendar

You are receiving this email because you are an attendee on the event. To stop receiving future updates for this event, decline this event.

Forwarding this invitation could allow any recipient to send a response to the organizer, be added to the guest list, invite others regardless of their own invitation status, or modify your RSVP. Learn more

3 attachments

TSMC_TSD_initialpermit.docx 5189K

D	4D2D6C7F.inp
	709K

Beverly Chenausky <bchenausky@azdot.gov>

RE: Atypical Events Approach for Loop 303, Lake Pleasant Parkway to I-17 Improvements @ Mon, May 13, 2024 10:00am – 12:00pm (GMT-07)

1 message

Wickersham, Lindsay (she/her/hers) <wickersham.lindsay@epa.gov> Wed, Oct 2, 2024 at 2:13 PM To: Beverly Chenausky

schenausky

bchenausky @azdot.gov>, ADOTAirNoise - ADOT <adotairnoise@azdot.gov>, "ddunn@aztec.us" <ddunn@aztec.us>, "dshu@aztec.us" <dshu@aztec.us>, Ivan Racic <iracic@azdot.gov>, Joonwon Joo <jjoo@azdot.gov>, Katie Rodriguez <krodriguez@azdot.gov>, "mchase@aztec.us" <mchase@aztec.us>, Morgan Ghods <mghods@azdot.gov>, "Seeds, Amy" <Seeds.Amy@epa.gov>, "ssingh@aztec.us" <ssingh@aztec.us>, Sandy Thoms <sthoms@azdot.gov>, "Tsui, William@epa.gov>

Hi Beverly and Team,

I wanted to follow up with you all about our comment regarding modeling the TSMC as a stationary source.

We consulted with OTAQ and determined that the TSMC **should** be modeled as a stationary source in this PM Hot Spot analysis. We are happy to consult with ADOT on how to best model this facility in the hot spot analysis. We have also reached out to Maricopa county to see if we can find more information about the anticipated emissions used for their permit--we will share any materials we receive with you.

In the meantime, we wanted to pass on the advice we got from OTAQ on how to get started: "This facility should be modeled in line with Appendix W, allowable emissions based on Table 8-1 (82 FR 5219) or Table 8-2 (82 FR 5220), GEP Stack heights for any stacks, downwash, etc."

Please let us know if you would like us to set up a meeting to discuss this further—we are happy to help as we can!

Best,

Lindsay

Lindsay Wickersham (she/hers) | 415-947-4192

Physical Scientist | Planning Section (AIR-2-1) | Air and Radiation Division | US EPA - Region 9

-----Original Appointment-----

- From: Beverly Chenausky

 bchenausky@azdot.gov>
- Sent: Wednesday, September 11, 2024 8:51 AM

To: Beverly Chenausky; ADOTAirNoise - ADOT; ddunn@aztec.us; dshu@aztec.us; Ivan Racic; Joonwon Joo; Katie Rodriguez; mchase@aztec.us; Morgan Ghods; Seeds, Amy; ssingh@aztec.us; Sandy Thoms; Tsui, William; Wickersham, Lindsay (she/her/hers)

Subject: Atypical Events Approach for Loop 303, Lake Pleasant Parkway to I-17 Improvements @ Mon, May 13, 2024 10:00am – 12:00pm (GMT-07)

When: Monday, September 23, 2024 11:00 AM-12:00 PM America/Phoenix. Where:

4747 N. 22nd Street, Suite 200 Phoenix, Arizona 85016 United States www.ghd.com

Our ref: 11218799-03

March 15, 2022

Mr. Ryan Dalrymple, EIT Air Quality Engineering Associate Maricopa County Air Quality Department 3800 North Central, Suite 1400 Phoenix, AZ 85012

New Source Non-Title V Application - Additional Information Submittal Taiwan Semiconductor Manufacturing Company Arizona Corporation Facility ID: F041443; Permit Number: P00008497

Dear Mr. Dalrymple:

On behalf of the Taiwan Semiconductor Manufacturing Company Arizona Corporation (TSMC), GHD Services Inc. (GHD) has prepared an additional information submittal for Maricopa County Air Quality Department (MCAQD) review. Since the New Source Non-Title V (NTV) application submittal in August 2021, updated process and equipment information has become available, some of which affects facility potential emissions, as well as the dispersion modeling analysis. However, the emissions remain within the NTV permit thresholds. TSMC has also requested to include both fab facilities (P1 and P2) to the existing application. Application changes and/or updated sources of emissions are summarized below.

Change	Affected Equipment	Affected Application Section
Updated of emissions for P2	All Equipment/Process, except emergency generators	PTE calculations
Updated generator stack height from 15m to 13m (all units); Reduced generator numbers from 38 to 22 for P1Emergency generators, P1 only. zero in P2		PTE calculations, Dispersion modeling analysis
Updated GOWN building position	None	Dispersion modeling analysis
Updated HAPs identified for scrubbers and RCTO	Acid scrubbers, bench scrubbers, RCTO	PTE calculations; dispersion modeling analysis
Updated VOCs for scrubbers	Bench scrubbers	PTE calculations; dispersion modeling analysis
Updated fugitive VOC emissions included in PTE (wipe cleaning)	Not applicable	PTE calculations
Updated NOx/CO performance guarantees from low NOx-burners	RCTO	PTE calculations; dispersion modeling analysis
Updated NOx/CO emissions	Acid Scrubbers	PTE calculations; dispersion modeling analysis
Updated Total Exhaust Flow for each Phase	RCTO Process	PTE calculations; dispersion modeling analysis
Revised SO ₂ emission calculation methodology	RCTO	PTE calculations; dispersion modeling analysis

Notes:

PTE - Potential to Emit

HAP - hazardous air pollutants RCTO - Rotor Concentrator Thermal Oxidizers VOCs - volatile organic compounds NOx - nitrogen oxides CO - carbon monoxide SO_2 - sulphur dioxide The aforementioned changes do not trigger any new applicable requirements or affect the revised confidentiality request, which was approved by MCAQD on January 28, 2022. The following documents have been attached:

- Updated NTV permit application that includes:
 - Updated main permit application document and MCAQD forms
 - Updated PTE calculations
 - Updated Modeling Report
- Updated modeling files

If requested, the documents will be uploaded to the IMPACT system.

Sincerely,

hy

Xinze Peng, Ph.D. Air Compliance Engineer

+1 949 585-5246 xinze.peng@ghd.com

Encl.

XP/trc/Dalr-001

Non-Title V Air Permit Application

TSMC Phoenix Project

Phoenix, Maricopa County, Arizona

TSMC Arizona Corporation

March 15, 2022

Acronyms List

AsH ₃	Arsine
AP-42	EPA Compilation of Air Pollutant Emission Factors
BAAQMD	Bay Area Air Quality Management District
BACT	Best Available Control Technology
bhp	brake horsepower
BTU	British Thermal Unit
C ₂ H ₃ N	acetonitrile
CARB	California Air Resources Board
CFR	Code of Federal Regulations
Cl ₂	chlorine
CMP	Chemical Mechanical Planarization Polishing
СО	carbon monoxide
COS	carbonyl sulfide
CVD	Chemical Vapor Deposition
EC	Exhaust Conditioner
ECS	Emission Control System
EPA	Environmental Protection Agency
Fab	Semiconductor Manufacturing (Fabrication) Plant
g	grams
H_2SO_4	sulfuric acid
HAP	hazardous air pollutant
HCI	hydrogen chloride
HF	hydrogen fluoride
HNO ₃	nitric acid
HP	horsepower
hr	hour
kW	kilowatt
lb/hr	pound per hour

MCAPCR	Maricopa County Air Pollution Control Regulations
MCAQD	Maricopa County Air Quality Department
mg	milligrams
MMBTU	Million British Thermal Units
NH ₃	ammonia
NMHC	non-methane hydrocarbon
NOx	nitrogen oxides
NSR	New Source Review
O&M	Operation and Maintenance
PM _{2.5}	Particulate Matter less than 2.5 micron aerodynamic diameter
PM ₁₀	Particulate Matter less than 10 micron aerodynamic diameter
ppm	parts per million
ppmv	parts per million by volume
PH ₃	Phosphine
POU	Point of Use
PTE	potential to emit
PVD	Physical Vapor Disposition
RACT	Reasonably Available Control Technology
RCTO	Rotor Concentrator Thermal Oxidizers
SCAQMD	South Coast Air Quality Management District
SJVAPCD	San Joaquin Valley Air Pollution Control District
sfc	standard cubic foot
SO ₂	sulfur dioxide
TiCL ₄	titanium tetrachloride
Title V	Title V of the Clean Air Act Amendments of 1990
TPY	tons per year
TSMC	Taiwan Semiconductor Manufacturing Co., Ltd.
VOC	volatile organic compounds
WWTP	Wastewater Treatment Plant
yr	year

Contents

1.	Projec	t Descrip	otion	1	
2.	Proces	ss Descr	iption	1	
	2.1	Manufa	acturing Process Description	1	
		2.1.1	Doping	2	
			2.1.1.1 Ion Implantation	2	
		010	2.1.1.2 Diffusion	3	
		2.1.2	2121 Physical Vapor Deposition (PVD)	3 3	
			2.1.2.2 Chemical Vapor Deposition (CVD)	3	
		2.1.3	Photolithography	3	
			2.1.3.1 Photoresist Coating	3	
		044	2.1.3.2 Exposure and Development	3	
		2.1.4	Etching	4	
			2.1.4.2 Dry Etching	4	
		2.1.5	Planarization (Polishing)	4	
		2.1.6	Cleaning Operations	4	
	2.2	Air Pollution Control Equipment		4	
		2.2.1	Acid Scrubbers	4	
		2.2.2	Ammonia Scrubbers	5	
		2.2.3	RCTOs	5	
	2.3	Suppor	t Equipment	5	
		2.3.1	Hot Water Boilers	5	
		2.3.2	Cooling Towers	5	
		2.3.3	Emergency Generators and Fire Pumps	5	
	2.4	Utilities	5	5	
		2.4.1	Tanks	5	
		2.4.2	Wastewater Treatment Systems	6	
3.	Emiss	ion Infor	mation	6	
	3.1	Rotor Concentrator Thermal Oxidizers			
	3.2	Hot Wa	ater Boilers	6	
	3.3	Cooling Towers			
	3.4	Scrubbers			
	3.5	Emergency Generators and Fire Pumps			
	3.6	Fugitive VOC			
	3.7	Summary Emissions			
	Decul			0	
4.				9	
	4.1	Applica	IDIE Federal Standards	9	
		4.1.1	Findines	9	
	42	Annlica	able MCAQD Standards	a	
	1.4	4.2 1	Rule 324 – Stationary Internal Combustion Engines	9	
		4.2.2	Rule 338 – Semiconductor Manufacturing	9	
		—	5	5	

	4.3 Performance Test and Optional Compliance Demonstration			10	
		4.3.1	Acid/Bas	e Emissions and the Wet Scrubber Performance Test	10
		4.3.2	Procedur	es to Determine Requirement for O&M Plan for POU/EC Units	10
		4.3.3	VOC Aba	atement Performance Test	10
	4.4 MCAQD Permit Application Requirements			11	
	4.5	MCAQ	D Minor N	SR	11
5.	BACT and RACT Analyses			12	
	5.1	Applica	ability Dete	rmination	13
		5.1.1	Hot Wate	er Boilers	13
		5.1.2	Emergen	cy Engines	13
		5.1.3	Fire Pum	ps	14
		5.1.4 Cooling Towers			15
		5.1.5	Semicon	conductor Manufacturing (Photolithography and Etching)	15
			5.1.5.1	VOC Emissions	15
			5.1.5.2	Acid and Ammonia Emissions	15
6.	Dust	Control F	Plan		16
7.	O&M	Plans			16

Table index

Table 1	PTE Summary of Criteria Pollutant Emissions	8
Table 2	MCAQD Non-Title V Permit Application Requirements	11
Table 3	MCAQD Minor NSR Requirements	11
Table 4	Total Annual PTE Associated with Emergency Generators	14

Figure Index

Figure 1 Simplified Process Flow Diagram

2

Figures Following Text

- Figure 1 Site Map
- Figure 2A Facility Plot Plan
- Figure 2B Source Detail
- Figure 3A Facility Process Flow Diagram
- Figure 3B Fab Process Flow Diagram
- Figure 3C Support Equipment Process Flow Diagram

Appendices

- Appendix A Application for Non-Title V Air Quality Permit
- Appendix B Detailed Emission Calculations
- Appendix C Specification Sheets
- Appendix D BACT Calculations
- Appendix E Air Dispersion Modeling Analysis Report
- Appendix F Chemical Summary
1. Project Description

TSMC Arizona Corporation (TSMC) proposes to construct an advanced semiconductor facility on an approximate 1,000-acre parcel near the City of Phoenix, Maricopa County, Arizona. The proposed facility will utilize TSMC's 5 nanometer technology for semiconductor wafer fabrication. Construction is proposed to commence in 2021, with production targeted to start in 2024.

The facility will be located at Parcel #204 09 001, which is bounded by 51st Avenue, Dove Valley Road, State Route 303, and 43rd Avenue. The site location, emission sources, and building information are depicted in attached **Figures 1, 2A**, and **2B**. The facility will consist of two semiconductor fabrication (Fab) plant buildings (P1 and P2) where semiconductor chips will be manufactured in buildings containing the air pollution control and support equipment for the Fab, including natural gas fired boilers, diesel fired emergency generators, fire pump engines, and cooling towers. Based on the projected emissions, this project qualifies for a Non-Title V permit.

The enclosed application demonstrates that the proposed project meets the applicable requirements of Maricopa County Air Quality Department (MCAQD) Rules 220 and 241. The Non-Title V (NTV) Air Permit Application form is included as **Appendix A**.

2. Process Description

The proposed project includes two Fab buildings where semiconductor chips will be manufactured in buildings containing air pollution control and support equipment, as further outlined herein. Supporting equipment will reside in the Wastewater Treatment Plant (WWTP), Chemical Storage, Bulk Specialty Gas System, and Central Utility Plant buildings. A general process flow diagram is included in attached **Figure 3A**, a Fab building process flow diagram is included in attached **Figure 3A**, a Fab building process flow diagram is included in attached **Figure 3A**.

Manufacturing operations will occur 24 hours per day, 7 days per week, 365 days per year.

2.1 Manufacturing Process Description

The semiconductor manufacturing process starts with thin disks of high purity silicon called wafers, which undergo various processes, including diffusion, ion implantation, photolithography, etching, layering, and oxidizing. These are cyclical processes; the sequence and the number of cycles will vary depending on the requirements of the integrated circuit design. The simplified process flow diagram is shown in Figure 1 below.

Figure 1 Simplified Process Flow Diagram

The manufacturing process of integrated circuits utilizes silicon wafers as the base material. The silicon wafers are exposed to oxygen at high temperatures to form a layer of silicon dioxide on the wafer surface. After the surface oxide film is formed, the photosensitive agent is coated to the wafers. After a wafer has been coated with photoresist and the photoresist has cured, the wafer is exposed to a light source and developed in combination with a photomask to form various types of circuits on the wafer. After etching, removing photoresist liquids, and doping, the wafer is deposited to form the circuits and electrodes for final testing.

The typical processes of semiconductor manufacturing are described below.

2.1.1 Doping

A semiconductor is a material whose conductivity is between that of a conductor and a non-conductor. Its ability to conduct electricity depends not only on the energy gap characteristics of its own material, but also is affected by foreign impurities. The energy levels generated by the donor and the acceptor increase the original conductivity of silicon. This action of adding a small amount of specific impurities to the semiconductor is called doping. Doping methods include ion implantation and diffusion.

2.1.1.1 Ion Implantation

The ion implantation method first ionizes the dopants (e.g., Arsine [AsH3]), and then with the use of an accelerator, the ionized dopants are directly injected into the silicon wafer to pre-set the dopants to form various N type or P type

semiconductor regions. This method can accurately adjust the content (concentration) and distribution of the dopants in the wafer.

2.1.1.2 Diffusion

The diffusion method utilizes the dopants' mobility along its own concentration gradient at high temperatures (above about 800 degrees Celsius) to realize the doping of silicon wafers. Because it is not easy to control the concentration distribution of dopants by heat diffusion in hot furnace tubes, this method is mainly used to perform the distribution correction of dopants after implantation and restore the single crystal structure of the surface atoms at the silicon wafer.

2.1.2 Layering (Thin Film)

The formation of a thin film of material on the wafer is due to the gas molecules or other particles spread on the surface of the wafer. These particles may be solidified due to the chemical reactions and deposit on the surface of the wafer, or they may lose part of their kinetic energy after undergoing surface diffusion and be adsorbed on the surface of the wafer and then deposited. Therefore, layering methods include physical and chemical vapor deposition.

2.1.2.1 Physical Vapor Deposition (PVD)

PVD is a technology that forms a thin film through physical processes, including evaporation and sputtering. In the evaporation process, the deposition material is evaporated by heating. Once the deposition material saturates in the vapor phase, it is then condensed and deposited to form a thin film on the wafer surface. The sputtering process uses the ions generated by the plasma to bombard the electrode of the deposition material, emitting particles of the deposition material to the vapor phase, and then depositing a thin film on the wafer surface.

2.1.2.2 Chemical Vapor Deposition (CVD)

CVD is a thin film deposition technology that uses chemical reactions to generate solid products from gaseous reactants in the reactor that deposit on the surface of the wafer. Because it involves chemical reactions, it is called CVD. At present, it is the most important and the main thin film deposition technology in the semiconductor manufacturing process. It can deposit materials with precise composition and has better step coverage. Main CVD technologies include atmospheric pressure CVD, low pressure CVD, and plasma CVD.

2.1.3 Photolithography

Photolithography is the most important step in the entire semiconductor manufacturing process. Anything related to the metal oxide semiconductor device structure, such as the pattern of each layer of film and the area of impurities, are determined by this step. The basic procedure consists of three steps: photoresist coating, exposure, and development.

2.1.3.1 Photoresist Coating

Photoresist is mainly composed of resin, photosensitizer, solvent, and several other different compositions. Negative photoresists produce chains when exposed to light and cannot dissolve in the developer, while positive photoresists themselves are difficult to dissolve in the developer but dissociate into the developer solution when exposed to light.

2.1.3.2 Exposure and Development

Parallel light from the light source passes through the glass body photomask with a desired pattern and reaches the photoresist coated wafer. The projected light inherits the same pattern from the photomask, and therefore, exposes the photosensitive materials on the wafer surface. The exact same pattern on the photomask is transferred onto the wafer surface in this manner. During the development process, the exposed photoresist on the wafer surface is removed via a neutralization reaction, and then the desired pattern is retained on the wafer.

2.1.4 Etching

The etching process removes the deposited film material not coated and protected by the photoresist during the photolithography process. This is done via chemical reactions or physical processes to complete the final goal of transferring the mask pattern onto the film. The film developed and etched by photolithography will become a part of the semiconductor. Etching techniques including wet etching and dry etching.

2.1.4.1 Wet Etching

Wet etching uses a chemical reaction between the film and a specific solution to remove the film not coated by the photoresist. The process occurs at the acid tanks and is simple and fast.

2.1.4.2 Dry Etching

Dry etching uses plasma to etch the films. As the process does not involve any solution, it is called dry etching.

2.1.5 Planarization (Polishing)

Chemical Mechanical Planarization (or Polishing, CMP) is the process of injecting abrasive particles into the polishing pad of the polishing machine to remove varying types of materials from the wafer. The purpose is to smooth the dielectric layer and the metal layer on the integrated circuit wafer to flatten it and achieve three-dimensional wiring or multilayer wiring, increasing the wiring density while reducing defects.

2.1.6 Cleaning Operations

Various organic and inorganic cleaners are used in enclosed hoods to clean equipment parts and quartz reaction chambers. Organic cleaners can include isopropanol which is a source of volatile organic compounds (VOC) emissions. Inorganic cleaners include acids such as hydrogen chloride (HCI), and bases such as ammonium hydroxide solution. The enclosed hoods will have a positive pressure and each collection system will have a negative pressure so that the emissions can be collected and sent to an abatement device (i.e., Rotor Concentrator Thermal Oxidizers [RCTO]).

2.2 Air Pollution Control Equipment

In general, acid gas will be routed to an acid abatement system (Acid or Bench Scrubbers), ammonia gas will be routed to an alkaline abatement system (Ammonia Scrubbers), and VOCs will be routed to a VOC abatement system (RCTO).

2.2.1 Acid Scrubbers

Each of the two Fabs will have acid scrubber systems, bench scrubber systems, and wastewater acid scrubber systems. Each acid scrubber will have a single scrubber whereas the bench scrubber systems have a design with two scrubbers in series, initially installed with a single scrubber with space for future addition. The bench scrubber system will be used to control emissions from processes with high acid concentration that require a secondary scrubber to achieve the desired removal efficiency.

The Fab process exhaust airstreams routed to these scrubbers will contain primarily inorganic acids hydrogen fluoride (HF), nitric acid (HNO₃), HCl, and sulfuric acid (H₂SO₄), as well as other compounds such as chlorine (Cl₂), acetonitrile (C₂H₃N), carbonyl sulfide (COS), titanium tetrachloride (TiCl₄), Ethylene Glycol, Triethylamine, Phosphine (PH₃) and Cobalt. The acid laden exhaust stream enters at the bottom of the packed tower and rise upwards with water draining through the packed column. Most of the acid gases will be transferred out of the air stream into the water stream and the treated exhaust streams will be vented to the atmosphere.

The WWTP buildings will also be equipped with wastewater acid scrubber systems that will vent to the atmosphere.

2.2.2 Ammonia Scrubbers

Each Fab will have ammonia (NH_3) scrubbers to control NH_3 in the exhaust stream before being vented to the atmosphere.

2.2.3 RCTOs

Each Fab will have RCTOs to control the VOCs emitted throughout the photolithography and etching processes. The airstream from these sources will first enter a zeolite rotor concentrator wheel where the VOCs will be absorbed onto the zeolite wheel before being vented to the atmosphere. A small portion of the clean exhaust stream will be heated and passed over the concentrator wheel after it passes from the adsorption section to the desorption section. The VOC concentration of the airstream will be increased while the overall airflow will be reduced. The resulting airflow will then be routed to the thermal oxidizer where most of the VOCs will be removed from the airstream before being vented to the atmosphere.

2.3 Support Equipment

2.3.1 Hot Water Boilers

Each Fab will have natural gas fired boilers to supply heating to the site. To allow for operational flexibility, all boilers are being permitted. These hot water boilers are expected to be used for a maximum of 300 hours per year per boiler. Loading requirements will vary based on outdoor temperatures with colder temperatures requiring more load.

2.3.2 Cooling Towers

Each Fab will be supported by mechanically induced (i.e., fan driven) cooling towers that are open to the atmosphere. Initially, cooling towers will be installed for the Fabs and based on need, a few more may be added in the future. The cooling towers will be used to dissipate large heat loads generated by the Fab and to condition the incoming air. The heat generated will be removed by air handlers whose heat is ultimately rejected to the atmosphere from the cooling towers. Cooling tower demand is expected to be higher during the warmer months and decrease during the cooler months.

2.3.3 Emergency Generators and Fire Pumps

P1 will have emergency power provided by 22 emergency diesel generators. There will also be one diesel fire pump for each Fab. The emergency engines will provide backup power in case of power disruptions during emergency conditions. The generators and fire pumps will combust ultra-low sulfur diesel fuel (15 parts per million [ppm] of Sulfur) and will be tested monthly for reliability and quarterly for load testing to ensure proper operation. Currently, no emergency generators are proposed for P2.

2.4 Utilities

2.4.1 Tanks

Liquid waste for disposal will be collected in aboveground storage tanks. The chemicals for acid waste neutralization and water purification will also be stored in tanks. Tanks containing primarily inorganic wastes will have breathing vents ducted to the scrubbers. Solvent tanks will be equipped with a pressure/vacuum relief valve and a flame arrestor to maintain the tanks' internal pressures and prevent explosions caused by potential external ignition sources.

There will be four vertical fixed tanks for each of the following materials: IPA, Thinner-1, Thinner-3, and DP001. These tanks will store the following chemical components: Isopropyl Alcohol, Propylene Glycol Monomethyl Ether, Propylene

Glycol 1-Monomethyl Ether Acetate, and Butyl Acetate. Tank emissions will be captured with 100 percent efficiency and controlled with 95 percent efficiency.

2.4.2 Wastewater Treatment Systems

Each Fab will have an ancillary WWTP to receive feed streams from Wastewater Reclaim Systems, Scrubbers, Cooling Towers, Process Tools, and General Facility/Public Uses (**Figure 3A**).

3. Emission Information

This project may generate emissions of the following criteria pollutants:

- Nitrogen oxides (NOx)
- Carbon Monoxide (CO)
- Sulfur Dioxide (SO₂)
- VOC
- Particulate matter with a diameter less than 10 microns (PM10)
- Particulate matter with a diameter less than 2.5 microns (PM_{2.5})

Emissions from each of the process units in the wastewater reclaim system and in the wastewater treatment system will be routed to an abatement device resulting in insignificant emissions from wastewater treatment and reclaim systems.

The following sections describe the methodology used to calculate emissions for the project. Detailed emissions calculations are provided in **Appendix B** of this application.

3.1 Rotor Concentrator Thermal Oxidizers

The VOC emissions from the Fab operation will be controlled by the RCTOs. The emission factors for estimating combustion emissions from RCTO was based on emission factors in Tables 1.4 1, 1.4 2, and 1.4 3 for natural gas combustion in AP-42 (From EPA Compilation of Air Pollutant Emission Factors), assuming a fuel heat value of 1,020 British Thermal Unit (BTU)/standard cubic foot (scf), a flow rate of 3,390 scf/hour (hr), and 8,760 hrs/year (yr) of operation.

The proposed RCTOs will be subject to Maricopa County Air Pollution Control Regulations (MCAPCR) Rule 338- Semiconductor Manufacturing. Section 301 specifies that the RCTOs will need to achieve the requirements of subsections 301.1 or 301.2 of this rule. Specifically, achieve at least 80 percent overall VOC-control of aggregated cleaning plus photoresist VOC, including capture and processing of photoresist VOC or capture at least 90 percent of all aggregated cleaning plus photoresist VOC and achieve an hourly average stack concentration not exceeding 20 milligrams (mg) VOC/standard cubic meter.

3.2 Hot Water Boilers

The combustion emissions from the natural gas fired hot water boilers are based on emission factors from Tables 1.4.1, 1.4 2, and 1.4 3 for natural gas combustion in AP-42 assuming a fuel heat value of 1,020 BTU/scf, a boiler rating of 5.12 million BTU (MMBTU)/hr, and 300 hrs/yr per boiler of operation.

3.3 Cooling Towers

Cooling tower emissions are based on a conservative maximum total dissolved solids of 2,000 mg per liter. The emissions are based on a cooling water flow rate of 16,120 gallons per minute, a drift rate of 0.0005 percent, and 8,760 hrs/yr of operation. PM emissions assume 31.5 percent of total PM as PM₁₀, and 60 percent of PM₁₀ as PM_{2.5}.

3.4 Scrubbers

There will be three types of scrubbers at the Fab, including acid scrubbers, bench scrubbers, and ammonia scrubbers. The acid scrubbers will control emissions of HF, HCl, H₂SO₄, HNO₃, NH₃, and Cl₂. The calculations for these sources are based on stack test data from acid scrubbers at a comparable Taiwan Fab plus a 15 percent safety factor to account for differences in emissions between facilities as operated. PM emissions are also based on stack test data for a comparable Taiwan Fab plus a 15 percent safety factor. Adjustments were made to HF and HNO₃ based on an expected increased material usage for these chemicals.

For the acid scrubbers, there will also be NOx and CO emissions resulting from Point of Use (POU) abatement unit combustion at the tool level. Emission rates used in this application are based on stack test data from the same scrubbers at a comparable Fab in Taiwan.

AsH₃, C₂H₃N, COS, and TiCl₄¹ emissions were calculated conservatively assuming that 100 percent of these compounds are emitted and routed to a destruction device. For AsH₃, it is assumed that over 99.5 percent of the emissions are controlled by the absorption bed and then routed to the acid scrubber. This is based on a test report from a similar facility showing that at an inlet concentration of 192 ppm of AsH₃, the outlet concentration was a non-detect. For the C₂H₃N, COS, and TiCl₄, a conservative control efficiency of 95 percent is assumed. The emissions from the ammonia scrubbers are also based on stack test data from the same scrubbers at a comparable Fab in Taiwan and a 15 percent safety factor was also added to these emissions.

Ethylene Glycol, PH₃, and Triethylamine emissions were calculated based on facility chemical usage, conservatively assuming that 100 percent of the compounds are emitted, and a 15 percent safety factor was also added to these emissions. Cobalt emissions were based on stack test data at a comparable Fab in Taiwan with an added 15 percent safety factor.

3.5 Emergency Generators and Fire Pumps

The emergency generators and fire pumps will be fueled by diesel with a sulfur content of 15 ppm and emissions are based on available manufacturer specifications and AP-42 factors for diesel engines. The manufacturer specifications are included in **Appendix C**. The generators have an engine rating of 2,923 horsepower (HP) and the fire pumps are rated at 360 HP. As these are emergency engines, their operation hours are limited to 18 hrs/yr.

3.6 Fugitive VOC

Fugitive VOC emissions come from the chemical usage of wipe cleaning process.

¹ It is not expected to actually have measurable TiCl₄ emissions due to the highly reactive nature of the compound.

3.7 Summary Emissions

The PTE summary for this project is presented below. Criteria pollutants emissions are shown in **Table 1** and HAP emissions are shown in **Appendix B** of this application.

Emission Source	>	00		PM10		PM2.5	S	02	Z	ŏ	Ō	0
Description	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ
Boilers	0.17	0.02	0.23	0.03	0.23	0.03	0.07	0.010	3.01	0.45	2.53	0.38
Emergency Engines	59.21	0.53	17.97	0.16	17.97	0.16	0.78	0.01	566.74	5.10	63.44	0.57
Cooling Towers	ı	I	0.71	3.12	0.43	1.87	ı	1	ı	ı	ı	
Fire Pump Engines	0.51	4.57E-03	0.24	2.14E-03	0.24	2.14E-03	8.74E-03	7.86E-05	4.76	0.04	4.13	0.04
Tanks	0.04	0.2	I	I	ı	1	ı	1	I	I	ı	·
RCTOs - Combustion	1.81	7.93	3.8	16.8	3.8	16.8	0.3	1.2	3.9	17.0	2.7	11.8
Acid Scrubbers	0.09	0.39	7.7	33.6	7.7	33.6	I	1	14.6	64.2	12.0	52.8
Bench Scrubbers	1.84	8.08	3.9	17.3	3.9	17.3	ı	1	ı	ı	ı	ı
Ammonia Scrubbers	0.77	3.35	0.1	0.4	0.1	0.4	ı	1	ı	ı	ı	·
Fugitive VOC	0.26	1.13	ı	I	ı	1	I	1	ı	ı	I	ı
Total Emissions	64.7	21.6	34.7	71.4	34.4	70.2	1.1	1.2	593.0	86.8	84.8	65.6

Table 1 PTE Summary of Criteria Pollutant Emissions

4. Regulatory Applicability

4.1 Applicable Federal Standards

4.1.1 40 CFR Part 60, Subpart IIII – Stationary Compression Ignition Internal Combustion Engines

The emergency generators and fire pump engines proposed in this permit application will be manufactured after April 1, 2006, and thereby subject to requirements under 40 Code of Federal Regulations (CFR) Part 60, Subpart IIII.

TSMC proposes to purchase the emergency engines that is certified by the manufacturer to the emissions standard specified in 40 CFR 60.4202(d)(2)(ii) to meet the compliance requirement of this regulation in accordance with 40 CFR 4205(b).

TSMC will meet the emission standards specified in Table 4 to 40 CFR Part 60, Subpart IIII per §60.4205(c) to comply with this regulation.

TSMC shall demonstrate compliance with this standard by keeping a copy of the manufacturer's certification onsite for the life of each of the emergency generators. TSMC will not modify these engines in any way and will operate and maintain the emergency generators and fire pumps at the Facility in accordance with the manufacturer's specifications. Therefore, TSMC will comply with all necessary regulations under New Source Performance Standards Subpart IIII. In complying with this subpart, the emergency generators and fire pumps will satisfy the associated National Emission Standards of Hazardous Air Pollutant, Subpart ZZZ regulations.

4.2 Applicable MCAQD Standards

4.2.1 Rule 324 – Stationary Internal Combustion Engines

Per MCAQD Rule 324 §102, the proposed emergency generator and fire pump engines are subject to Rule 324, as the rating for each engine is greater than 250 brake hp (bhp). In addition to the 40 CFR Part 60, Subpart IIII requirements incorporated into Rule 324, TSMC will use fuel that contains no more than 15 ppm sulfur by weight, alone or in combination with other fuels, as required by MCAQD Rule 324 §301.1.

4.2.2 Rule 338 – Semiconductor Manufacturing

TSMC will meet the following conditions per MCAQD Rule 338 §502.4, for the RCTOs and scrubbers the associated Operation and Maintenance (O&M) plan:

- 1. Maintain continuous record of the times an Emission Control System (ECS) is used to comply with this rule.
- 2. Maintain records of the O&M Plan's key system operating parameters with the frequency required by the Plan.
- 3. Maintain records of all maintenance performed according to the O&M Plan.
- 4. TSMC will also document the reason for scheduled maintenance that is not performed during the period designated in the O&M Plan.

The O&M plan will be submitted as supplement to this application at a later time, within the required timeframe of MCAQD.

Per MCAQD Rule 338 §502, records shall be retained for 5 years and shall be made available to the Control Officer upon request.

4.3 Performance Test and Optional Compliance Demonstration

Semiconductor fabrication facilities commonly produce very dilute emission streams, which typically result from the high ventilation airflow used in a clean room environment. Because of the very dilute pollutant concentrations, it is often difficult, sometimes impractical, to demonstrate compliance by conducting a traditional performance test. According to the MCAQD Permitting Handbook (December 2021), TSMC proposes to use the following three alternative methods to demonstrate compliance:

- Acid/Base Emissions and the Wet Scrubber Performance Test
- Procedures to Determine Requirement for O&M Plan POU / Exhaust Conditioner (EC) Units
- VOC Abatement Performance Test

4.3.1 Acid/Base Emissions and the Wet Scrubber Performance Test

For process emissions emitting through the acid scrubbers and bench scrubbers, TSMC will follow the general procedure and conduct performance tests for regulated pollutants according to standard permit conditions. After the completion of the performance tests, should the results be inadequate to demonstrate compliance, TSMC will use one of the following optional compliance demonstrations (OCDs):

- Vendor performance curve
- Mass Emissions
- Non-detect

It should be noted that POU control devices will not be subject to performance tests due to the size and configuration of relatively small piping to the unit. Traditional stack testing methods are neither feasible nor applicable to these types of devices due to the size constraint.

4.3.2 Procedures to Determine Requirement for O&M Plan for POU/EC Units

Based on the MCAQD Permitting Handbook, an O&M plan is not required for POU control devices that are interlocked (shutdown) to the appropriate process equipment. In TSMC's cases, all local POUs are operated as follows:

- Primary failure of device => switch to secondary unit
- If secondary unit fails => interlock forces tool shutdown

Therefore, an O&M plan is not required to be submitted with the permit application.

4.3.3 VOC Abatement Performance Test

For process emissions controlled by the RCTOs, TSMC will follow the general procedure and conduct performance tests for regulated pollutants according to standard permit conditions. After the completion of the performance tests, should the results be inadequate to demonstrate compliance, TSMC will use the following OCD:

Non-detect

It should be noted that POU control devices will not be subject to performance tests due to the size and configuration of relatively small piping to the unit. Traditional stack testing methods are neither feasible nor applicable to these types of devices due to the size constraint.

4.4 MCAQD Permit Application Requirements

MCAQD Rule 220 §301, Permit Application Processing Procedures, describes the requirements for a complete permit application. **Table 2** below illustrates how this application complies with this rule. The completed MCAQD Non-Title V Permit Application Form is contained in **Appendix A**.

Table 2	MCAQD Non-Title	V Permit	Application	Requirements
			/ ipplioution	rtoquinonitorito

Rule 220 Section	Description	Compliance in this application
301.1	Standard Application Form and Required Information: To apply for a permit or permit revision under this rule, applicants shall complete a permit application filed in the manner and form prescribed by the Control Officer. The Control Officer, either upon the Control Officer's own initiative or upon the request of a permit applicant, may waive the requirement that specific information or data for a particular source or category of sources be submitted in the permit application.	To be determined by MCAQD Control Officer.
301.4.b	An application for a new permit or a permit revision shall contain an assessment of the applicability of Rule 241-Minor New Source Review (NSR) of these rules. If the applicant determines that the proposed new source is subject to Rule 241 of these rules, or the proposed permit revision constitutes a minor NSR modification, then the applicant shall demonstrate compliance with all applicable requirements of Rule 241 of these rules.	Compliance with Rule 241 is in Section 4.4 of this application.
301.4.c	An application for a new permit, permit revision, or renewal shall be deemed complete unless the Control Officer notifies the applicant by certified mail within 60 days of receipt of the application that the application is not complete and specifies what additional information is necessary for the application to be deemed complete.	To be determined by MCAQD within 60 days of receipt.

4.5 MCAQD Minor NSR

MCAQD Rule 241 §300 - Standards, describes the requirements for a Minor NSR permit application. **Table 3** below illustrates how this application complies with this rule.

Table 3 MCAQD Minor NSR Requirements

Rule 241 Section	Description	Compliance in this application
102.1	APPLICABILITY: the provisions of this rule shall apply to the construction of any new or modified stationary source, when a new source has the potential to emit a regulated minor NSR pollutant in an amount equal to or greater than any of the permitting thresholds specified in Rule 100 of these rules.	The PTE emissions are below major source thresholds so Rule 241 applies.
301	PERMIT REQUIRED: An owner or operator of a source shall not begin actual construction of a new stationary source without first obtaining a permit or a proposed final permit from the Control Officer in accordance with the requirements of Rule 210 or Rule 220 of these rules.	This permit application seeks to obtain a permit before construction of source.

Rule 241 Section	Description	Compliance in this application
302, 304, 305, 306, 307	CONTROL TECHNOLOGY REQUIREMENTS: The Control Officer shall not issue a permit or permit revision to an owner or operator of a source proposing to construct a new source or make a modification unless such owner or operator implements Best Available Control Technology (BACT) or Reasonably Available Control Technology (RACT), as required by Sections 304 or 305 of this rule.	BACT analysis and determinations are provided in Section 5. BACT is triggered by PM and NOx emissions.
303, 308, 312	AMBIENT AIR QUALITY IMPACT ASSESSMENTS: An ambient air quality impact assessment, if required by Section 303 of this rule, must demonstrate that emissions from the new or modified source will not interfere with attainment or maintenance of any national ambient air quality standard.	Ambient air quality impact assessment is provided in the Modeling Report included in this application. Modeling is conducted in accordance with 40 CFR 51, Appendix W.
	MODELING REQUIRED: All modeling required pursuant to this rule shall be conducted in accordance with 40 CFR 51, Appendix W as of July 1, 2019 (and no future amendments or additions).	
310	PUBLIC NOTICE: Public notice requirements pursuant to Rules 210 or 220 of these rules shall be required for a permit or permit revision if the emissions of any one pollutant is equal to or greater than the public notice threshold as defined in Rule 100-General Provisions and Definitions of these rules.	TSMC will comply with the public notice requirements in accordance with Rule 220
311	NOTICE TO OTHER AGENCIES: A copy of the notice required by Rule 210, Section 408 for permits or significant permit revisions or Rule 220, Section 304.4 of these rules for permits or non-minor permit revisions subject to this rule must also be sent to the Administrator through the appropriate regional office. The notice also must be sent to any other agency in the region having responsibility for implementing the procedures required under this rule.	A copy of the notice will be sent to appropriate agencies.

5. BACT and RACT Analyses

As per MCAQD Standard Operating Procedure (SOP 2020 06), for Selecting BACT and RACT, Issued June 2020:

- 1. BACT is defined as "an emissions limitation, based on the maximum degree of reduction for each pollutant, subject to regulation under the Clean Air Act, which would be emitted from any proposed stationary source or modification, which the Control Officer, on a case by case basis, taking into account energy, environmental, and economic impacts and other costs, determines is achievable for such source or modification through application of production processes or available methods, systems, and techniques, including fuel cleaning or treatment or innovative fuel combination techniques for control of such pollutant."
- 2. RACT is listed as emission limitations for applicable facilities per MCAPCR, Regulation III (Control of Air Contaminants). For facilities subject to MCAPR, Regulation II, RACT is the lowest emission limitation that a particular source is capable of achieving by the application of control technology that is reasonably available considering technological and economic feasibility. Such technology may have been applied to a similar, but not necessarily identical source category. RACT for a particular facility, other than a facility subject to MCAPCR Regulation III, is determined on a case-by-case basis, considering the technological feasibility and cost effectiveness of the application of the control technology to the source category.

5.1 Applicability Determination

In accordance with MCAPCR Rule 241, Section 304.1, BACT must be implemented for each pollutant emitted from every new stationary source that meets or exceeds the following PTE thresholds:

- 40 TPY of VOCs
- 40 TPY of NOx
- 40 TPY of SO₂
- 15 TPY of PM₁₀
- 100 TPY of CO
- 10 TPY of PM_{2.5}
- 0.3 TPY of lead

Per MCAPCR Rule 341, Section 305, RACT is required to be implemented for pollutants for which the increase in emissions is less than the BACT thresholds specified above (MCAPCR Rule 241, Section 304.1)

Based on emission calculations provided in Appendix B:

- BACT is required for PM₁₀, PM_{2.5} and NOx
- RACT is required for VOC, SO₂, and CO

As per MCAQD SOP 2020 06, Section VII (Procedures), Part D, TSMC is opting to conduct an "Alternative to Top Down BACT Analysis" for the proposed sources as discussed below.

5.1.1 Hot Water Boilers

TSMC proposes to install and operate three natural gas fired hot water boilers (5.12 MMBTU/hr each). The hot water boilers are expected to operate for a maximum of 300 hr/yr per boiler and are used to supply hot water and heating to the site. Due to the limited hours of operation, boiler PTE is negligible, and installation of additional emission controls is not cost effective. TSMC proposes to use pipeline quality natural gas and good combustion practices as BACT/RACT for the proposed hot water boilers.

5.1.2 Emergency Engines

TSMC proposes to install and operate 22 emergency generators and one emergency fire pump in P1. The emergency generators will be powered by diesel fired compression ignition engines with a horsepower rating greater than 750 hp (600 [kilowatt] kW). MCAQD follows the BACT requirements from California air quality agencies, such as the South Coast Air Quality Management District (SCAQMD) and the Bay Area Air Quality Management District (BAAQMD). On September 22, 2021, GHD was informed by MCAQD that the BACT determination for NOx emissions from stationary emergency engines at the proposed TSMC facility (F041443) has been reached. The SCAQMD BACT requirement for NOx, PM₁₀, and PM_{2.5} emissions from diesel fired engines of this size and service is²:

- The use of United Stated Environmental Protection Agency (EPA) or California Air Resources Board (CARB) certified Tier 2 engines with NOx+ Non-methane hydrocarbon (NMHC) emission limitations of 6.4 grams (g)/kW hr (4.8 g/bhp hr) and filterable PM emission limitations of 0.20 g/kW hr (0.15 g/bhp hr). If there are no available engines that meet the above standards, then the engine must meet the family emission limits established by the manufacturer and approved by EPA.
- 2. Restrict operation of emergency compression ignition engines to 50 hrs/yr for maintenance and testing and a maximum of 200 hrs/yr total operation. For engines used to drive standby generators, operation beyond 50 hrs/yr for maintenance and testing is allowed only in the event of a loss of grid power or up to 30 minutes prior to a rotating outage provided that the electrical grid operator or electric utility has ordered rotating outages in the

² South Coast Air Quality Management District, *Best Available Control Technology (BACT) Guidelines, Part D: BACT Guidelines for Non-Major Polluting Facilities*, February 1, 2019, pp. 75 79, I.C. Engine, Stationary, Emergency, 2 1 2019 Rev. 6.

control area where the engine is located or has indicated that it expects to issue such an order at a certain time, and the engine is located in a control area that is subject to the rotating outage.

BAAQMD recently issued new BACT guidance for stationary emergency engines, which requires that new engines greater than or equal to 1,000 hp meet the "demonstrated in practice" BACT of Tier 4 emissions standards.

TSMC proposes to follow BACT as outlined by SCAQMD for the emergency generators. TSMC has proposed extremely limited use restrictions for all emergency engines; they will be limited to only 18 hours per year per engine. Due to the limited operation, total annual PTE associated with the emergency generators is minor, as shown in **Table 4** below.

Table 4	Total Annual PTE Associated with Emergency Generators
---------	---

Pollutant (TPY)	voc	PM10	PM2.5	SO2	NOx	со
Gensets	0.53	0.16	0.16	0.01	5.10	0.57

A cost analysis was performed to determine the cost effectiveness of implementing Tier 4 engines vs. Tier 2 engines for the project. The additional capital cost associated with purchasing 22 Tier 4 engines vs. 22 Tier 2 engines is \$9.25 million per a quote from Kohler Power Generation and \$1.39 million in additional tax, transport, and installation fees. Also, the extra operations and maintenance costs would run approximately \$1,000 per engine or \$22,000 per year. This results in an annualized control cost of approximately \$950,000 per year and a corresponding NOx reduction cost of approximately \$207,000 per ton of emissions. Please refer to **Appendix D** for supporting calculations.

It is requested that each engine be allowed to operate up to 18 hours per year. This reduces proposed NOx emissions by more than half and increases the per ton reduction cost to nearly \$400,000. The benefits of moving from Tier 2 to Tier 4 emissions controls are significantly outweighed by the cost. As such, Tier 4 generators are considered economically infeasible for this project.

In accordance with MCAPCR Regulation III, Rule 324 (Stationary Reciprocating Internal Combustion Engines), Section 301.1, RACT for SO₂, is the use of diesel fuel with a sulfur content no greater than 15 ppm by weight. There is no defined RACT limit in Rule 324 specific to VOC or CO that is applicable to emergency engines of this size/use.

TSMC will utilize ultra-low sulfur diesel fuel as required by this rule.

5.1.3 Fire Pumps

TSMC proposes to install and operate one fire pump (360 hp) per Fab. The fire pump will be powered by diesel fired compression ignition engines with an hp rating greater than 175 hp but less than 750 hp (600 kW). MCAQD allows facilities to utilize the BACT requirements of California air quality agencies. SCAQMD BACT for NOx, PM10, and PM2.5 emissions from diesel fired engines of this size and service is1³.

- The use of EPA or CARB certified Tier 3 engines with NOx+NMHC emission limitations of 4 g/kW hr (3.0 g/bhp hr) and filterable PM emission limitations of 0.20 g/kW hr (0.15 g/bhp hr). If, because of the averaging, banking, and trading program, there is no new engine from any manufacturer that meets the above standards, then the engine must meet the family emission limits established by the manufacturer and approved by EPA.
- 2. Restrict operation of emergency compression ignition engines to 50 hrs/yr for maintenance and testing and a maximum of 200 hrs/yr total operation. For engines used to drive standby generators, operation beyond 50 hrs/yr for maintenance and testing is allowed only in the event of a loss of grid power or up to 30 minutes prior to a rotating outage provided that the electrical grid operator or electric utility has ordered rotating outages in the control area where the engine is located or has indicated that it expects to issue such an order at a certain time, and the engine is located in a control area that is subject to the rotating outage.

³ South Coast Air Quality Management District, *Best Available Control Technology (BACT) Guidelines, Part D: BACT Guidelines for Non-Major Polluting Facilities*, February 1, 2019, pp. 75 79, I.C. Engine, Stationary, Emergency, 2 1 2019 Rev. 6.

TSMC proposes to follow BACT outlined by SCAQMD for the fire pump.

In accordance with MCAPCR Regulation III, Rule 324 (Stationary Reciprocating Internal Combustion Engines), Section 301.1, RACT for SO2, is the use of diesel fuel with a sulfur content no greater than 15 ppm by weight. There is no defined RACT limit in Rule 324 specific to VOC or CO that is applicable to fire pump engines of this size/use. TSMC will utilize low sulfur diesel fuel as required by this rule.

5.1.4 Cooling Towers

TSMC proposes to install and operate 14 cooling towers in each fab to support facility operations.

San Joaquin Valley Air Pollution Control District (SJVAPCD) documents the BACT for PM₁₀ control from cooling towers in SJVAPCD BACT Guideline 8.3.10 as the use of cellular type drift eliminators. No specific drift rate was stipulated by SJVAPCD.

BAAQMD determinations for BACT for cooling towers were reviewed. The BAAQMD's permit evaluation document⁴ for Metcalf Energy Center, LLC, indicates that BACT for cooling towers is high efficiency mist eliminators with a maximum guaranteed drift rate of 0.0005 percent.

Further review of EPAs RACT/BACT/Lowest Achievable Emission Rate Clearinghouse database shows BACT for cooling towers is high efficiency drift eliminators with drift rate of 0.0005 percent.

Based on Maricopa County's streamlined Alternative to Top Down BACT Analysis, BACT for cooling towers is a design capable of achieving a drift rate of 0.0005 percent.

TSMC will install and operate cooling towers capable of achieving a drift rate of 0.0005 percent to meet BACT requirements.

5.1.5 Semiconductor Manufacturing (Photolithography and Etching)

5.1.5.1 VOC Emissions

Organic emissions from etching and photolithography are captured by the fab ventilation systems and directed to the RCTO for thermal destruction resulting in products of combustion (VOC, NOx, CO, SO₂, PM₁₀, and PM_{2.5}). TSMC proposes to install and operate six RCTO units per fab to capture and destroy VOC emissions.

RACT for VOC emission shall be the installation, operation, and maintenance of ECS that meets BAAQMD standards for BACT (BACT guidelines for Semiconductor Fabrication Photoresist operations):

The RCTO shall:

- 1. Achieve at least 98.5 percent VOC control when the inlet VOC concentration >2,000 ppm by volume (ppmv) measured as methane
- Achieve at least 97 percent VOC control when the inlet VOC concentration >200 to <2,000 ppmv measured as methane
- 3. Achieve at least 90 percent VOC control when the inlet VOC concentration <200 ppmv measured as methane
- 4. Achieve an outlet concentration of less than or equal to 10 ppmv measured as methane

TSMC proposes to follow BACT outlined by BAAQMD (as detailed above) as BACT for RCTOs proposed at the Site.

5.1.5.2 Acid and Ammonia Emissions

Acid and ammonia emissions from the etching areas include NH₃, HF, HNO₃, HCl, H₂SO₄, phosphoric acid, Cl₂, and AsH₃. These vent streams are collected and routed to acid, bench, and ammonia scrubbers, as appropriate, for control of emissions prior to release to the atmosphere.

⁴ Permit Evaluation and Statement of Basis for the Major Facility Review Permit (for Metcalf Energy Center, LLC) April 2011

TSMC proposes install and operate 18 acid scrubbers, 9 bench scrubbers, and 6 ammonia scrubbers for each fab to capture and control acid emissions from these processes.

There is no required BACT determination for scrubbers since acids, bases, and HAPs are not specifically subject to BACT under the Maricopa County rules as they are not criteria pollutants (MCAPCR Rule 241, Section 304.1).

Based on Maricopa County Environmental Services Department, Optional Compliance Demonstrations Procedure, "A Guideline for Semiconductor Industry/Part I, Acid/Base Emissions & Wet Scrubber Performance Test (May 4, 2001)", each wet scrubber system will have removal efficiency for the acid gas constituent of at least 90 percent by weight or less than a 1 ppmv outlet concentration for that pollutant.

The proposed scrubbers at the facility are expected to attain removal efficiencies equal to or greater than 90 percent for acid and caustic exhausts from the facility.

6. Dust Control Plan

A dust control plan has been filed for the construction phase of the project. Once constructed, there will be no "routine" dust generating operations with a disturbed surface area that equals or exceeds 0.10 acres (4,356 square feet). All undeveloped areas will be graded and stabilized until development is necessary. The roads and parking lots on Site will be paved and landscaping will be added to exposed areas. Therefore, a Dust Control Plan is not included with this application.

7. O&M Plans

The RCTOs and Scrubbers are emission controls subject to this requirement. O&M plans for this equipment is being developed and will be provided to MCAQD for approval shortly after permit issuance.

Figures

Filename: \\ghdnet\ghd\US\Phoenix\Projects\562\11218799\Digital_Design\ACAD 2017\Figures\NSR\11218799-03(NSR)GN-DL001.dwg
Plot Date: 09 June 2021 8:20 PM

FIGURE 3A

Filename: \\ghdneftghd\US\Phoenix\Projects\562\11218799\Digital_Design\ACAD 2017\Figures\NSR\11218799-03(NSR)GN-DL001.dwg Plot Date: 09 June 2021 8:21 PM

Appendices

Appendix A Application for Non-Title V Air Quality Permit

NON-TITLE V PERMIT - APPLICATION INSTRUCTIONS

APPLICATION FOR A NON-TITLE V AIR QUALITY PERMIT

Applications should be submitted through the AQD Online Portal. Please see our instructions for creating an account. Additional information is available on the AQD Online Portal (IMPACT) page.

Is this the right application for your needs?

Use this form to apply for a Non-Title V air quality permit. Do not use this form to renew a Non-Title V permit, amend prior applications, add additional pieces of equipment to an existing permitted facility, transfer a current air quality permit from one person to another, or apply for a Title V air quality permit. Separate application forms are available for these purposes.

Your facility may be eligible for an Authority to Operate (ATO) under a General Permit. The General Permit program offers an alternative to regular permits and simplifies the process for authorizing operation. To see if your facility qualifies for an ATO under a General Permit or for more information, please visit our <u>General Permit Information page</u> or call (602) 506-6010. Do <u>not</u> use this application to apply for an ATO under a General Permit.

How to complete this application

Complete the application by typing or printing legibly. Complete items 1-18 and any additional sections that are applicable to your facility. Submit manufacturers' drawings and specifications when required by the permit application. If necessary, attach additional sheets to the application to provide all required information. Submit the application by completing the attached <u>original</u> forms. **All applicants must complete items 1 through 18 or the application will be deemed incomplete.** If supporting calculations to verify the facility's emissions are not included for Section Z of the application, all emission estimates will be performed by an MCAQD permit engineer. The applicant will be charged for this activity as a billable permit action at the current hourly permit processing rate.

Public Records

The submitted application and documents become the property of the Maricopa County Air Quality Department (hereafter referred to as the Department) and will not be returned. All submitted documents will be available to the public unless a notice of confidentiality has been submitted by the applicant in accordance with Arizona Revised Statutes (ARS) §49-487 and accepted by the Department in accordance with Maricopa County Air Pollution Control Regulations, Rules 100 and 200. If confidentiality is claimed pursuant to ARS §49-487, a fully completed application with confidential information clearly identified along with a separate copy of the application for public review without the confidential information and a written justification for the confidentiality claimed must be submitted.

Fees

A **\$200.00** application fee is due at the time of submittal. Before the permit is issued, the applicant will be billed for all permit processing time required for a billable permit action. If the application is submitted as a result of receiving a notice of violation (NOV), an additional **\$100.00** late fee must accompany the application. Before the permit is issued, the Permittee will be billed for all permit processing time required for a billable permit action at a rate of \$158.80 per hour, adjusted annually under Department Rule 280 (Fees), \$304. An annual administrative fee will also be charged per Rule 280, \$302.2. For questions regarding billing, call (602) 506-6010.

Assistance and Resources

If you would like to schedule a pre-application meeting with permitting staff, please contact the Non-Title V Permitting Supervisor at 602-506-7248. If you need assistance completing the application package, please contact our Business Assistance Office at 602-506-5102.

Maricopa County Air Pollution Control Regulations are available at the above address or may be viewed and/or downloaded from the Adopted Rules page of our web site.

Notice of Regulatory Reform

In accordance with A.R.S. §11-1604:

A. A county shall not base a licensing decision in whole or in part on a licensing requirement or condition that is not specifically authorized by statute, rule, ordinance or delegation agreement. A general grant of authority does not constitute a basis for imposing a licensing requirement or condition unless the authority specifically authorizes the requirement or condition.

B. Unless specifically authorized, a county shall avoid duplication of other laws that do not enhance regulatory clarity and shall avoid dual permitting to the maximum extent practicable.

C. This section does not prohibit county flexibility to issue licenses or adopt ordinances or codes.

D. A county shall not request or initiate discussions with a person about waiving that person's rights. E. This section may be enforced in a private civil action and relief may be awarded against a county. The court may award reasonable attorney fees, damages and all fees associated with the license application to a party that prevails in an action against a county for a violation of this section.

F. A county employee may not intentionally or knowingly violate this section. A violation of this section is cause for disciplinary action or dismissal pursuant to the county's adopted personnel policy.

G. This section does not abrogate the immunity provided by section 12-820.01 or 12-820.02.

For Office Use Only	Date Received:	Log Number:			
AP	PLICATION FOR A NON-TITI	LE V AIR QUALITY PERMIT			
As required by	y A.R.S. §49-480 and Maricopa Count	y Air Pollution Control Regulations, Rule 200			
ALL	APPLICANTS MUST COMPLET	E THE ENTIRE APPLICATION			
Important : Please note that email account. Please be sure that your of	l will be our <u>primary</u> means for routine email address is entered correctly.	e communication with you, unless you do not have an email			
1. Business Name (as filed with the Arizona Corporation Commissio	e Dn): TSMC Arizona Corporation				
2. Is this a portable source?	Ves (If yes, provide the <u>current</u> site inf	to in items 2a, 2b & 3) I No (Complete items 2a, 2b & 3)			
2a. Address of site: 32200 N 43rd	Street				
City: Phoenix		State: AZ Zip Code: 85083			
2b. Parcel # 204-09-001	Look	up using the Maricopa County Assessor parcel lookup search			
3. Contact at Site: Robert Sandova	al Phone	Email: sandoval@tsmc.com			
4. Type of Ownership: Corpo	oration Sole Owner Partnershi	ip Government Other - Specify:			
5. Name of Ownership or Legal Entity: TSMC Arizona Corporation					
Address: 2510 W Dunla	ap Avenue Suite 600				
City: Phoenix	State: A	AZ Zip Code: 85021			
6. Ownership Contact: Brian Harrison6a. Phone: 602-567-16886b. Fax:					
7. Send All Comp	any Name: TSMC Arizona Corporat	ion Attn: Brian Harrison			
Correspondence Addre	ss: 2510 W Dunlap Avenue Suite 60	00			
And Permit To: City: F	Phoenix	State: AZ Zip Code: 85021			
8. SIC (Standard Industrial Classifi	ication) or <u>NAICS (North American I</u>	ndustry Classification) Code(s): 3674			
9. Brief Description of Business or Process at Site: Se	emiconductor manufacturing				
10. Operating Schedule I	Hours Per Day: 24 Days Per	Week: 7 Weeks Per Year: 52			
11. Projected Start-Up Date (New	Facilities): January 2024				
12. The authorized contact person	regarding this application is:				
Name: Xinze Peng		Title: Air Compliance Engineer			
Company: GHD Services Inc.		Email: xinze.peng@ghd.com			
Phone: +1 949 585-5246	F	čax:			
13. I certify that I am familiar with and the information provided I	the operations and equipment representering is true and complete to the best	ented on this application, and the corresponding attachments, t of my knowledge.			

Signature of owner or		Data	
responsible official of business:		Date:	
Type or Print Name and Title:	Sr. Vice President		

Maricopa County Air Quality Department 3800 N. Central Ave, Suite 1400, Phoenix, AZ 85012 Phone: 602.506.6010 Fax: 602.372.0587 AQPermits@maricopa.gov

Ν

W SE

NON-TITLE V PERMIT APPLICATION

14. SITE DIAGRAM: Attach a site layout showing distances to property lines, equipment, controls, ducts, stacks and emission points. Also show storage areas for fuels, raw materials, chemicals, finished products, waste materials, etc. Attach additional sheets if necessary.

.

Please see figures 1, 2A, and 2B of the Application Report.

Maricopa County Air Quality Department 3800 N. Central Ave, Suite 1400, Phoenix, AZ 85012 Phone: 602.506.6010 Fax: 602.372.0587 AQPermits@maricopa.gov

NON-TITLE V PERMIT APPLICATION

15. PROCESS FLOW DIAGRAM: Attach a flow diagram which indicates how processes/activities are conducted at the facility. Begin with raw materials and show each step in the production process. Indicate emissions control devices and all emission points. Attach additional sheets if necessary.

Please see figures 3A, 3B, and 3C of the Application Report.

16. OPERATION & MAINTENANCE (O&M) PLAN(S): O&M Plans are required for any process that vents emissions through a control device and includes both add-on control type equipment or processes whose controls are integrated into the design of the process equipment. Indicate if your facility has such control devices. (The list below is not an all-inclusive list of control devices.)

Equipment	No	Yes	How Many?
Baghouse	\odot	0	
Dust Collector/Filter	\odot	0	
Incineration System (e.g., catalytic or thermal oxidizer, afterburner, boiler, process heater, flare)	0	\odot	12
Specify: RCTOs			
Adsorption Unit (e.g., resin, carbon filter, other)	0	0	
Specify:			
Absorption Unit (e.g., scrubber)	0	\odot	72
Specify: scrubbers			

If you checked YES to any of these boxes, submit a separate O&M Plan for each control device. The O&M Plan should specify key system operating parameters and limits, maintenance procedures and schedules, and documentation methods necessary to demonstrate proper operation and maintenance for the control device. For new equipment or processes, provide an educated estimate of the ranges of any parameters to be monitored. These ranges should be supported with manufacturer's test data or other manufacturer's data from engineering calculations and/or experience with the equipment. In addition, O&M Plans should be prepared in accordance with Maricopa County Air Quality Department O&M Plan Guidelines. These guidelines can be obtained on the Forms and Applications web page, on the Operations & Maintenance tab. Multiple control devices can be combined in a single O&M Plan providing they are identical in type, capacity, and use. A separate O&M Plan is required for each device that is unique in type, capacity, or use.

17. DUST CONTROL PLAN: Facilities that conduct "routine" dust-generating operations with a disturbed surface area that equals or exceeds 0.10 acre (4,356 square feet) are required to submit a Dust Control Plan. "Routine" is defined as any dust-generating operation which occurs more than 4 times per year or lasts 30 cumulative days or more per year. Dust-generating operations involve any activity capable of generating fugitive dust including, but not limited to, land clearing, earthmoving, weed abatement by discing or blading, excavating, vehicle use and movement on unpaved parking lots, the operation of any outdoor equipment, or bulk material handling, storing and/or transporting. Bulk materials include, but are not limited to, non-metallic minerals, soil, demolition debris, cotton, trash, saw dust, feed, grain, fertilizers, fluff from shredders, dry concrete, or any other material that is capable of producing fugitive dust.

A. Indicate if your facility has or conducts any of the following:

Unpaved parking lots	●No OYes
Unpaved staging/material storage areas	●No OYes
Unpaved haul/access roads	●No OYes
Open storage piles	●No OYes
Bulk material hauling, storing and/or transporting	●No OYes
Weed abatement by discing or blading	●No OYes
Blasting operations	$O_{No} O_{Yes}$
Other routine dust-generating activity	\bigcirc No \bigcirc Yes

B. How many acres of disturbed surface area does the facility have? 700

C. If you checked YES to any of the items in Question 17(A) and have more than 0.10 acre (4,356 square feet) of disturbed surface area, you must submit a Dust Control Plan with this application. The appropriate dust control plan forms are available on our website.

Rule 316 Dust Control Plan (Non-metallic mineral processing facilities subject to Rule 316)

Rule 310 Dust Control Plan (All other facilities not subject to Rule 316)

18. APPLICABLE SECTIONS. Review each section of the application and mark below the sections that apply to this facility. Submit <u>only</u> those sections that apply to this facility. Note that <u>Section Z must be completed by all applicants</u>.

✓ A	Fuel Burning Equipment	J	Graphic Arts
✓ B	Internal Combustion Engines & Turbines	K-1	Concrete Batch Plants
C	Petroleum Storage Tanks	K-2	Non-Metallic Mineral Mining and/or Processing
D	Water & Soil Remediation	K-3	Asphalt Production
E	Surface Coating	K-4	Non-Metallic Mineral Storage and Processing (continued)
F	Woodworking Operations	L	Abrasive Blasting
G	Solvent Cleaning	X	Emissions Sources for Hazardous Air Pollutants
Н	Metal Finishing Processes	Y	Other Sources
Ι	Dry Cleaning Equipment	✓ Z	Air Pollution Emissions

SECTION A. EXTERNAL FUEL BURNING EQUIPMENT

Your facility <u>may not require</u> a Non-Title V permit if the facility is eligible to obtain an authority to operate (ATO) under a general permit. (Refer to the <u>Fuel Burning General Permit Application</u> to determine eligibility)

Complete this section if you burn natural gas, propane, butane, waste derived fuel, fuel oils, used oil, diesel, kerosene, gasoline, coal, charcoal, wood, or any other fossil fuel. Provide complete specifications for non-commercial and special fuels. Describe equipment such as boilers, furnaces, space heaters, water heaters, dryers, pool and spa heaters, kilns, ovens, burners, stoves, steam cleaners, hot water pressure washers, etc, with an input rating of 300,000 Btu/hr or more. Do not include vehicles, forklifts, lawn mowers, weed eaters and hand-held equipment operating on fossil fuels. Use Section Y to describe items such as asphalt kettles, incinerators, crematories, and emission control devices burning fuel. List internal combustion engines and gas turbines in Section B.

Fuel Type	Make / Model / Identification #	Date of Installation	Number of Hours in Operation Annually	Equipment Rating (Btu/hr)*
natural gas	Danstoker / GLOBAL No. 3 Boilers (6)	TBD	300	5,120,000
natural gas	RCTO - D-Tech Group (12)	TBD	8760	3,458,000

*Equipment rating is the heat input capacity for each external combustion unit (boiler, heater, etc.) in Btu/hr.

SECTION B. INTERNAL COMBUSTION ENGINES & TURBINES

Your facility <u>may not require</u> a Non-Title V permit if the facility is eligible to obtain an authority to operate (ATO) under a general permit. (Refer to the <u>Emergency Internal Combustion Engine General Permit Application</u> to determine eligibility.)

This section applies to stationary fuel-fired equipment such as generators, fire pumps, air conditioning compressor engines, co-generation units, etc. Do not include vehicles, forklifts, lawnmowers, and hand-held equipment.

Portable engines that remain in one location for no more than 12-consecutive months are exempt from permitting requirements. If you believe your engine may qualify, please fill out a <u>Non-Road Engine Determination Form</u>.

Submit the manufacturer's specification sheets for each engine listed, specifying the engine make, model, manufactured date, emission data, and maximum engine power rating.

Fuel Type	Make / Model / Identification # *	Emergency or Non-emergency	Date Manufactured	Number of Hours in Operation Annually	Engine Rating (bhp) **	Genset Output (hp, kW)
Diesel	KOHLER / Mitsubishi - S16R R2PTAW2-1 Engines (22)	Emergency	TBD	18	2,293	2,180
Diesel	CLARKE / DQ6H-UFAA88 - Fire Pump Engine (2)	Emergency	TBD	18	360	268

* Describe air pollution abatement/controls, if any.

** Enter the brake horsepower (bhp) rating of the <u>engine</u>. This information may be found on the engine faceplate or obtained from the engine manufacturer. The engine bhp rating should not be confused with the output power rating of the generator.

SECTION C. PETROLEUM STORAGE TANKS

Your facility <u>may not require</u> a Non-Title V permit if the facility is eligible to obtain an authority to operate (ATO) under a general permit. (Refer to the <u>Gasoline Dispensing General Permit Application</u> to determine eligibility.)

This section applies to storage of gasoline and other organic liquids which have a true vapor pressure of 0.5 psia or greater under actual loading conditions. Petroleum terminals and bulk plants must use Section Y instead of this section. Also use Section Y to list storage tanks containing liquids with a vapor pressure less than 0.5 psia, non-petroleum organic liquids, caustic solutions, acids, etc.

1. Describe Tanks and Products Stored

Product Stored	Capacity of Each Tank (gallons)	Above Ground or Underground?	Date of Installation	Submerged Fill Pipe? (Yes/No)*	Stage I Vapor Recovery System? (Yes/No)**
Diesel Fuel	sel Fuel 27,738 Aboveground		TBD	Yes	No

*A fill pipe is considered submerged if the discharge opening is completely submerged when the liquid level is six inches above the tank bottom. All gasoline storage tanks with a capacity of more than 250 gallons must be equipped with a submerged fill pipe.

**A Stage I Vapor Recovery System returns displaced vapors from the storage tank into the tank truck from where the liquid is loaded.

2. Estimate total annual throughput for each product stored in these tanks.

Product:	Diesel Fuel	Gallons/year:	86,214
Product:		Gallons/year:	
3. Is any gas	oline stored at this facility resold? 🗌 Yes 🔳 No		

Maricopa County Air Quality Department 3800 N. Central Ave, Suite 1400, Phoenix, AZ 85012 Phone: 602.506.6010 Fax: 602.372.0587 AQPermits@maricopa.gov

IR QUALIT

NON-TITLE V PERMIT APPLICATION

SECTION G. SOLVENT CLEANING

This section applies to solvent operations such as, but not limited to, dip tanks for parts cleaning, wipe cleaning, vapor degreasers, and in-line cleaning machines.

1. List all solvent cleaning devices and cleaning solvents used. Provide the manufacturer's specifications to each piece of equipment. Submit a Safety Data Sheet (SDS) for each material listed and number it to correspond to the table below. Each SDS must state the name, manufacturer, VOC content, hazardous component concentrations, density/specific gravity, and vapor pressure of the material. Provide any additional equipment information, usage rate and/or operating parameters for solvent cleaning devices utilizing any of the following halogenated solvents: methylene chloride, perchloroethylene, trichloroethylene, 1, 1, 1-trichloroethane, carbon tetrachloride, and/or chloroform.

	Exhausted to Control?				
	Disposal Quantity (gallons)				
	Annual Solvent Usage (gallons)				
	SDS #				
	Solvent Used				
	Solvent Interface Area (sq ft)				
	Internal Volume (gallons)				
	Make/Model/Identification #				
0	Equipment Type* (See list below)				

*Solvent cleaning equipment types:

- A. Non-vapor batch cleaning machine with remote reservoir
 - B. Non-vapor batch cleaning machine with internal reservoir
 - C. Non-vapor in-line cleaning machine
- D. Special non-vapor machine using blasting, misting or high pressure flushings
- E. Non-vapor batch cleaning machine using solvent that is heated, agitated, or has a VOC vapor pressure exceeding 1 mm Hg at 68° F

F. Batch loaded vapor cleaning machine G. In-line vapor cleaning machine

H. Other (specify) :

Maricopa County Air Quality Department 3800 N. Central Ave, Suite 1400, Phoenix, AZ 85012 Phone: 602.506.6010 Fax: 602.372.0587 AOPermits@maricopa.gov

NON-TITLE V PERMIT APPLICATION

- 2. Describe how the cleaning solvents are disposed. Disposal of solvent by evaporation is not permitted. If waste solvent is redistilled on site, provide information on the still, including manufacturer's specifications.
- 3. Describe air pollution control devices. Submit an Operation and Maintenance (O&M) Plan for each control device listed and provide documentation of control efficiency (e.g., manufacturer's data or actual test data).

No

SECTION L. ABRASIVE BLASTING

This section is intended for all processes, equipment, and related emission controls associated with abrasive blasting operations (e.g. surface preparation using an abrasive media propelled by pressurized liquid, compressed air, or other method against a substrate's surface). Your facility may not require a Non-Title V permit if the facility is eligible to obtain an authority to operate (ATO) under a General Permit for Surface Coating and Abrasive Blasting.

1. Is abrasive blasting performed daily or is it part of the facility's primary work activities?

Yes

residual chemical

2. Describe substrate being blasted (e.g., metal, stone, concrete, etc.): metal parts

3. Describe substrate being removed (e.g., non-leaded paint, leaded paint, rust, etc.):

%

4. Blast Media: Indicate the type and quantity of each blast media used and submit a safety data sheet (SDS).

If leaded paint was indicated on item 3, indicate the percent concentration of lead in the paint:

Type of Blast Media	Maximum Annual Usage (tons/yr)	Are Blast Media CARB Certified? (Yes/No) *	How many times are Blast Media reclaimed for reuse?
soda lime glass	0.55	No	

*Certified by California Air Resources Board (CARB) pursuant to Section 92530 of Subchapter 6, Title 17, California Code of Regulations. See the <u>CARB list of certified abrasives</u>.

5. List all abrasive blasting equipment.

Equipment Type (see list below)**	Make / Model / Identification #	Blasting Method (see list below)***	Internal Volume (ft ³)	Confined or Unconfined?	Equipment Exhaust Vents
В	NORMFINISH DI-12 P	С	23	Confined	to SEX scrubber

**Equipment Types: A. Booth B. Enclosure C. Room D. Cabinet E. Other (Specify):

***Blasting Methods: A. Hydroblasting B. Wet Abrasive Blasting C. Dry Abrasive Blasting D. Vacuum Blasting

E. Other (Specify):

6. Describe air pollution control devices. Submit an Operation and Maintenance (O&M) Plan for each control device listed and provide written documentation of control efficiency (e.g., manufacturer's data or actual test data).

Type of Control Device	Make / Model / Identification #	Maximum Design Air Flow Rate (CFM)	Control Efficiency (% Weight)	Control Exhaust Vents: (indoors / outdoors)
scrubber				

Maricopa County Air Quality Department 3800 N. Central Ave, Suite 1400, Phoenix, AZ 85012 Phone: 602.506.6010 Fax: 602.372.0587 AQPermits@maricopa.gov

SECTION X. EMISSIONS SOURCES FOR HAZARDOUS AIR POLLUTANTS

This section is for all facilities which will have hazardous air pollutant (HAP) emissions of any single federal HAP listed on the last page of the application. Please see the modeling report in Appendix F of the Application Report for HAPs emission sources information. Identify each HAP emission source and each HAP associated with that emission source for the entire facility. Use as many lines as necessary for each HAP source.

Distance from	Source to Nearest Property Line (ft) (5)					
Source ()	Height (ft)					
g or Release imensions (4	Width (ft)					
Building	Length (ff)					
	Temp (°F)					
rameters (3)	Flow Rate (ACFM)					
t Discharge Pa	Exit Velocity (fps)					
Stack or Poin	Stack Height Above Ground (ft)					
	Stack ID					
nission te	(tons/yt) (2)					
HAP E _i Ra	(lb/hr) (1)					
d v H	and/or CAS#					
	Equipment Name					

(1) Pounds per hour (lb/hr) is actual emission rate estimated or measured by applicant to be released from the emissions source.

(2) Tons per year is actual annual emission rate estimated or measured by applicant to be released from the emissions source. This value should take into account process operating schedules.

(3) If the emission source is a point source, provide information about the stack or point of discharge.

(4) If the emission source is a non-point (area) source located inside a building, provide the dimensions of the building. Otherwise, provide the dimension of the release source.

(5) Enter the closest distance between the emission source and the nearest property boundary.

SECTION Y. OTHER SOURCES

This section is intended for all emissions related activities, equipment and applicable emission controls which are not covered in previous sections. Use a separate sheet for each process line. If you need additional sheets, print multiple copies of this page.

Provide a simple process (block flow) diagram with emission points and/or emission areas and control equipment identified. In response to item 2, provide a detailed step-by-step narrative, including how raw materials are handled, stored, processed, mixed, treated, and converted to finished products. Provide flow rates, temperatures, pressures, and other appropriate details concerning each process. Whenever available, provide manufacturer's data sheets and literature. Describe in detail how waste materials are generated, handled, stored, processed, mixed, treated and disposed of. List each material that is partially recovered, salvaged or otherwise reclaimed. Provide estimates of the quantities of such material recoveries on an annual basis. Describe how the annual quantity figures were developed.

1. Name of Process, Equipment Grouping or Activity:

2. Narrative description:

3. Equipment List. Include machinery, storage silos, tanks, etc.

Assigned Equipment #	Make / Model / Identification #	Date of Installation	Rated Capacity (specify units)	Exhausted to Control? (Yes/No)

4. Material List. List all materials handled, stored, processed, used, mixed, treated, or emitted from the facility, including but not limited to chemicals, mixtures, resins, cleaning compounds, etc. Submit a copy of the Safety Data Sheet (SDS) for <u>each</u> material and number the SDS to correspond to the table below.

		Chemical	Annual Usage or	Amount Shipped as	Equipment
SDS #	Material	Composition (%	Throughput	Waste	Number in which
		weight)	(gal/lbs/tons)	(gal/lbs/tons)	used**

**Specify the assigned equipment number from item 3, column 1 for the piece of equipment in which the material is used.

5. Describe air pollution control devices. Submit an Operation and Maintenance (O&M) Plan for each control device listed and provide written documentation of control efficiency (e.g., manufacturer's data or actual test data).

Type of Control Device	Make / Model / Identification #	Maximum Design Air Flow Rate (CFM)	Control Efficiency (% Weight)	Equipment Controlled ***

***Specify the assigned equipment number from item 3, column 1 for the piece of equipment whose emissions are being controlled by the control device.

NON-TITLE V PERMIT APPLICATION

SECTION Z. AIR POLLUTANT EMISSIONS

Provide a summary of the projected actual air emissions on an annual basis for the entire site in the following summary tables. Submit detailed calculations to support the figures.

Pollutant	Emissions (lbs/yr)
Carbon monoxide (CO)	131,223
Oxides of nitrogen (NOx)	173,572
Oxides of sulfur (SOx)	2,387
Particulates of 2.5 microns or smaller (PM _{2.5})	140,326
Particulates of 10 microns or smaller (PM ₁₀)	142,819
Total suspended particulates (TSP), including PM_{10}	142,819
Volatile organic compounds (VOCs) ¹	43,254
Lead	0
Federal hazardous air pollutants (list each one separately):	
Benzene	3
Toluene	2
Xylenes	1
Formaldehyde	28
HF	7,874
HCI	13,326
Cl2	13,326
Acetonitrile	501
COS	2,555
TiCl4	1,539
Arsine	15
H2SO4	9,208
Ethylene Glycol	6,725
Phosphine	34
Triethylamine	433
Cobalt	3

¹VOCs are defined by EPA in their <u>Technical Overview of Volatile Organic Compounds</u> web page.

NON-TITLE V PERMIT APPLICATION

Do not include the emissions from motor vehicles. Include the emissions from stationary sources, portable sources, test areas, experimental facilities, evaporative losses, storage and handling losses, fuel loading and unloading losses, etc. Specifically identify the following in detailed calculations:

- 1. Emissions From Each Point Source And Each Stack
- 2. Capture Efficiencies
- 3. Control Efficiencies

- 4. Overall Efficiencies
- 5. Fugitive Emissions
 - 6. Non-point (area) Emissions

For particulate (dust) emissions, describe the types of particulates being emitted and the quantities of emissions for each type. Whenever a material is identified by a trade name, also provide its generic name and its chemical abstract service (CAS) number.

Facilities with emissions greater than or equal to the thresholds shown below may be subject to additional permitting requirements, such as minor New Source Review (NSR) and/or Best Available Control Technology (BACT) per MCAQD Rule 241.

Pollutant	Potential to Emit	Threshold (tpy)
	Minor NSR	BACT
Fine Particulate Matter (PM2.5)	5.0	10
Respirable Particulate Matter (PM10)	7.5	15
Sulfur Dioxide (SO ₂)	20	40
Nitrogen Oxides (NO _X)	20	40
Volatile Organic Compounds	20	40
Carbon Monoxide (CO)	50	100
Lead (Pb)	0.3	0.3

For sources subject to minor NSR and required to conduct an ambient air quality impact assessment, see the Minor New Source Review Air Dispersion Modeling Guideline.

See Requirements, Procedures and Guidance in Selecting BACT and RACT for information about BACT.

Emission Factors for calculating emissions from specific industries or processes can be obtained at the EPA <u>Compilation of Air Pollutant</u> <u>Emission Factors</u> (AP-42). Industry-specific help sheets and other reference materials may be found at: <u>Emissions Inventory Instructions</u> <u>& Help Sheets</u>.

If you need help completing the application package, please contact our **Business Assistance Office** at 602-506-5102.

AIR QUALITY DEPARTMENT

3800 N. Central Ave, Suite 1400, Phoenix, AZ 85012 Maricopa County Air Quality Department Phone: 602.506.6010 Fax: 602.372.0587 AQPermits@maricopa.gov

NON-TITLE V PERMIT APPLICATION

FEDERAL HAZARDOUS AIR POLLUTANTS LIST

(Federal Clean Air Act, Title I, Section 112(b)) CAS No.

Methylene diphenyl diisocyanate (MDI) 4,4'-Methylenedianiline

101688 101779

Naphthalene Nitrobenzene

91203 98953

Chemical name

CAS No.	Chemical name	CAS No.	Chemical name N.N. Diothyl anilino (N.N.N. Dimothylonilino)
60355	Acetamide	64675	n, n-Deuryr annine (n, n-Dinetriyiannine) Diathyl sulfata
75058	Acetonitrile	119904	3.3-Dimethoxvbenzidine
98862	Acetophenone	60117	Dimethyl aminoazobenzene
53963	2-Acetylaminofluorene	119937	3,3'-Dimethyl benzidine
107028	Acrolein	79447	Dimethyl carbamoyl chloride
79061	Acrylamide	68122	Dimethyl formamide
79107	Acrylic acid	57147	1,1-Dimethyl hydrazine
107131	Acrylonitrile	131113	Dimethyl phthalate
107051	Allyl chloride	77781	Dimethyl sulfate
926/1	4-Aminobiphenyl	534521 54001	4,6-Dinitro-o-cresol, and salts
62533	Aniline	51285	2,4-Uinitrophenol
90040	o-Anisidine	121142	2,4-Dinitrotoluene
1332214	Aspestos	123911	1,4-Dioxane (1,4-Diethyleneoxide)
/1432	Benzene (including benzene from gasoline)	122667	1,2-Uphenylhydrazine Esishlamhydria (1 Oblara 2 3 anow managad)
C/076	Democratic block	100090	Epicinioronyarin (1-Unioro-2,3-epoxypropane)
10047		100001	1,2-Epoxybutane
00444/	Derizyi cirio irue Binhanul	100414	Etilyi aciyiate Ethvil henzene
117817	Bis/2_ethv/hexv/)nhthalate (DEHP)	51796	Ethyl carbamate / Irethane)
542881	Bis(chloromethvl)ether	75003	Ethyl chloride (Chloroethane)
75252	Bromoform	106934	Ethylene dibromide (Dibromoethane)
106990	1,3-Butadiene	107062	Ethylene dichloride (1,2-Dichloroethane)
156627	Calcium cvanamide	107211	Ethylene alvcol
133062	Captan	151564	Ethvlene imine (Aziridine)
63252	Carbary	75218	Ethvlene oxide
75150	Carbon disulfide	96457	Ethylene thiourea
56235	Carbon tetrachloride	75343	Ethylidene dichloride (1.1-Dichloroethane)
463581	Carbonyl sulfide	50000	Formaldehyde
120809	Catechol	76448	Heptachlor
33904	Chloramben	118741	Hexachlorobenzene
57749	Chlordane	87683	Hexachlorobutadiene
7782505	Chlorine	77474	Hexachlorocyclopentadiene
79118	Chloroacetic acid	67721	Hexachloroethane
532274	2-Chloroacetophenone	822060	Hexamethylene-1, 6-diisocyanate
108907	Chlorobenzene	680319	Hexamethylphosphoramide
510156	Chlorobenzilate	110543	Hexane
67663	Chloroform	302012	Hydrazine
107302	Chloromethyl methyl ether	7647010	Hydrochloric acid
126998	Chloroprene	7664393	Hydrogen fluoride (Hydrofluoric acid)
1319//3	Cresols/Cresylic acid (Isomers and mixture)	79501	Hydroquinone
10405	0-Clesol	1 0001	
108394	m-Uresol	200349 100246	Lindane (all Isomers)
08828		67561	Mathanol Mathanol
04757	Outriere 0.4_D salts and astars	72/35	Methovychlor
3547044		74839	Methvl hromide (Bromomethane)
334883	Diazomethane	74873	Methyl chloride (Chloromethane)
132649	Dibenzofurans	71556	Methyl chloroform (1.1.1-Trichloroethane)
96128	1,2-Dibromo-3-chloropropane	60344	Methyl hydrazine
84742	Dibutylphthalate	74884	Methyl iodide (lodomethane)
106467	1,4-Dichlorobenzene(p)	108101	Methyl isobutyl ketone (Hexone)
91941	3,3-Dichlorobenzidene	624839	Methyl isocyanate
111444	Dichloroethyl ether (Bis(2-chloroethyl)ether)	80626	Methyl methacrylate
542756	1,3-Dichloropropene	1634044	Methyl tert butyl ether
62/3/		75002	4,4-Methylene bis(2-chloroaniine)
111422	Dietnanolaniirie	ZANG/	Methylehe ciliolide (Dictilololitetiatie)

Propylene dichloride (1,2-Dichloropropane)

Polychlorinated biphenyls (Aroclors)

Phthalic anhydride

Phosphorus

Phosphine

Phosgene

1,3-Propane sultone

beta-Propiolactone Propoxur (Baygon) Propionaldehyde

1,2-Propylenimine(2-Methyl aziridine)

Quinoline Quinone Styrene

79469 689935 689935 59892 59892 59892 59892 59892 108952 108952 108952 1120714 112082 10

Propylene oxide

[2] Includes mono- and di- ethers of ethylene glycol, diethylene glycol and triethylene glycol R(OCH2CH2)n-OR' [1] X'CN where X = H' or any other group where a formal dissociation may occur. For example KCN or Ca(CN)2. "compounds" and for glycol ethers, unless otherwise specified, these listings are defined as including any unique chemical substance that contains the named Arsenic Compounds (inorganic including arsine) chemical as part of that chemical's infrastructure. For all listings above which contain the word Radionuclides (including radon)[5] Polycylic Organic Matter[4] Lead Compounds Manganese Compounds Chromium Compounds Cobalt Compounds Cyanide Compounds[1] Coke Oven Emissions Antimony Compounds Beryllium Compounds Cadmium Compounds Selenium Compounds Mercury Compounds Fine mineral fibers[3] Nickel Compounds Chemical name Glycol ethers[2] n = 1, 2 or 3 where:

Pentachloronitrobenzene (Quintobenzene)

p-Phenylenediamine Pentachlorophenol

Phenol

N-Nitrosodimethylamine N-Nitroso-N-methylurea

2-Nitropropane 4-Nitrobiphenyl

4-Nitrophenol

92933 100027

N-Nitrosomorpholine

Parathion

ring and which have a boiling point greater than or equal to 100°C. [4] Includes organic compounds with more than one (1) benzene

[3] Includes mineral fiber emissions from facilities manufacturing or glass, rock or slag fibers or other mineral derived fibers of average

diameter one (1) micrometer or less.

R = alkyl C7 or less, or phenyl or alkyl substituted phenyl

Fetrachloroethylene (Perchloroethylene)

Fitanium tetrachloride

2,3,7,8-Tetrachlorodibenzo-p-dioxin

Styrene oxide

1,1,2,2-Tetrachloroethane

R' = H, or alkyl C7 or less, or carboxylic acid ester,

sulfate, phosphate, nitrate, or sulfonate.

oxaphene (chlorinated camphene)

1,2,4-Trichlorobenzene

1,1,2-Trichloroethane 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol

2,4-Toluene diisocyanate

o-Toluidine

2,4-Toluene diamine

Foluene

Frichloroethyleneprocessing

[5] A type of atom which spontaneously undergoes radioactive decay

Vinylidene chloride (1,1-Dichloroethylene)

2,2,4-Trimethylpentane

/inyl bromide

593602 75014

Vinyl acetate

Vinyl chloride

riethylamine

Trifluralin

Xylenes (isomers and mixture)

m-Xylenes

o-Xylenes p-Xylenes

75354 1330207 95476 108383 106423

Appendix B Detailed Emission Calculations

Facility Emissions Summary TSMC Phoenix Project Maricopa County, Arizona

	×	20	Ā	M ₁₀	Ē	A _{2.5}	SC	0_2	ž	ň	с С	0
Emission Source Description	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Boilers	0.17	0.02	0.23	0.03	0.23	0.03	0.07	0.010	3.01	0.45	2.53	0.38
Emergency Engines	59.21	0.53	17.97	0.16	17.97	0.16	0.78	0.01	566.74	5.10	63.44	0.57
Cooling Towers			0.71	3.12	0.43	1.87						
Fire Pump Engine	0.51	4.57E-03	0.24	2.14E-03	0.24	2.14E-03	8.74E-03	7.86E-05	4.76	0.04	4.13	0.04
Tanks	0.04	0.2										
RCTOS	1.81	7.93	3.8	16.8	3.8	16.8	0.3	1.2	3.9	17.0	2.7	11.8
Acid Scrubbers	0.09	0.39	7.7	33.6	7.7	33.6			14.6	64.2	12.0	52.8
Bench Scrubbers	1.84	8.08	3.9	17.3	3.9	17.3						
Ammonia Scrubbers	0.77	3.35	0.1	0.4	0.1	0.4						
Fugitive VOC	0.26	1.13	,		,	,	,	'	·	,	·	'
Total Emissions for 2 FABs	64.7	21.6	34.7	71.4	34.4	70.2	1.1	1.2	593.0	86.8	84.8	65.6

Notes:

TSMC - Taiwan Semiconductor Manufacturing Co., Ltd. VOC - volatile organic compounds PM₁₀ - Particulate Matter less than 10 micron aerodynamic diameter PM_{2.5} Particulate Matter less than 2.5 micron aerodynamic diameter SO₂ - suftur dioxide No₂ - nitrogen oxides CO - carbon monoxide Ib/hr - pound per hour tons/yr - tons per year TO - Thermal Oxidizers RCTO - Rotor Concentrator Thermal Oxidizers

												App	endix B															
											Hazardı	ous Air Pollut TSMC Ph Maricopa C	ants Emission: oenix Project ounty, Arizona	s Summary														
EPN CAS#	Benzene	Toluer.	<u> </u>	Xylenes	For	maldehy de	16	HF 34.39.3	HC 7647.0		CI ₂ 7782-50-5	٩	cetonitrile 75.05.8	CC AE3-	SC 1-82	TICI4	ŕ	Arsine	Ethylene	9 Glycol	PH3 7803-51-2	Trie 12	hylamine	Cob 567 92	oalt Jeana	Total HAP	S	EDN
Description	hr tonewai	· h/hr to	nelvoar	Ih/hr tone/v	inar Ihihi	tonewas	r Ih/hr	tonewar	Ih/hr	Onelvoar	Ih/hr tone/	voar Ih/h	· tonelvear	lhhr	tone war	Ih/hr tone	Voar Ih/h	r tone/vear	- Ih/hr	tons/voar	Thihr tonely	A Ih/hr	tonelyaar	100 02	tonelvear	Ihihr ton	e/voar	2
Emergency Engines 0.	13 0.001	0.05 4	14E-04	0.03 2.84E	-04 0.01	1.16E-0	+	-							-					-			-		-	0.22	0.00 Eme	argency Engines
Fire Pump Engines 1.42	E-03 1.28E-05	5.15E-04 4.	.63E-06 3.	:54E-04 3.18E	5-06 1.45E-	04 1.30E-0.	- 9					'		•			•	•			•					0.00	0.00 Fire	Pump Engines
Hot Water Boilers 6.3.	E-05 9.48E-06	1.02E-04 1	.54E-05		2.26E	03 3.39E-0	4	•	,	,		'	,		,			,		,		•	,		,	0.00	0.00 Hot	Water Boilers
RCTOS 8.5-	E-05 3.74 E-04	- 1.38E-04 6	.06E-04		3.05E	03 1.34E-0.	2 0.11	0.50														,			, 0	0.12	0.51 RCT	ŝ
Acid Sofubbers			,				0.00	101	LRD	4.00	1.91 4.1		11.0	0.19	0.85	20.0	-0.0 2000	00:0	0.00	10.01	0.0	ZU.U ZU	77.0	00.0	0.00	1.8.2	Z:4Z PCID	1 Scrubbers
Bench Scrubbers							0.08	0.30	0.46	2.00	0.45 2.1	70'0 Or	0.08	0.10	0.43	0.06	0.0	00:0								11.1	0.12 Ben	icn scrubbers
Ammonia Scrubbers WMT Srubbers							0.10	- 0.44	0.15	- 0.67	0.6									3.35						0.40	3.35 Amn 1.77 WW	T Srubbers
Total Emissions 0.	13 0.00	0.05	0.00	0.03 0.0	0 0.02	0.01	0.90	3.94	1.52	6.66	1.52 6.6	36 0.0£	0.25	0.29	1.28	0.18 0.	77 0.01	0.01	0.77	3.36	0.00 0.0.	0.02	0.22	0.00	0.00	5.49 2	3.18 Tota	al Emissions
Other Regulated Air Pollutants E	missions Summ	hary																										
EPN	H2SO4																											
CAS#	1 004-93-9	1.																										
Acid Scriphore 0	13 0.56	_																										
Parch Scribbare	100 000																											
Ammonia Scrubbers																												
WWT Srubbers 0.	0.05																											
Total Emissions 1	05 4.60																											
	9208																											
Project Total per Fab Building																												
Ч	urly																											
Emi	sion			Annual Emissi.	on A.	Inual HAP D.	e Minimis																					
2	ate Hourly H.	4P De Minimis T	hreshold	Rate		Thresho	pic																					
Air Contaminant IL	/hr 	lb/hr N/A	ę .	ons/year Ib/y	ear	lb/yea	-																					
	271			2000	_	102 245																						
Vitance 0.	14	801		10000		544	2																					
Eormaldehvele 0.	118	N/N		0.000		190																						
HF	06	0.56		3.94 7.87	4	06																						
HCI	52	0.93		6.66 13,3	.56	129																						
Cl ₂ 1.	52			6.66 13,3	26	'																						
Acetonitrile 0.	06			0.25 50	-	•																						
COS	29	1.7		1.28 2,5;	55	•																						
TICI	18		,	0.77 1,5.	39																							
AST3 T.	E-U3	- c	-	.40E-U3 T.		1200.0																						
		6.2		1/0 00'0	07	2000'7	_																					
Triothidomino 0	00			0.07 0.02																								
Cohalt	100			100	>	0.0045	~																					
H-SO.	35	,		4.60 9.20	JR.																							
r 4																												
Notes:																												
EPN - Emission Point Number	TICIA - Stani	um tetrachloride	uq	s/vear - tons per v	tear.																							
HF - hvdrogen fluoride	AsH Arsir	e	RC 1	TO - Rotor Conce	ntrator Thermal	Oxidizer																						
HCI - hydrogen chloride	HAP - haza	rdous air pollutant	EU	W - Extreme Ultrav	violet Lithograph																							
Cl ₂ - chlorine	CAS - Cher	nical Abstracts Serv	γ ² Η eq.	SO ₄ - sulfuric acid																								
COS - carbonyl sulfide	lhr - poun	ds per hour	Fai	b - Semiconductor	· Manufacturing ,	Fabrication) Pli	ant																					

Q+D 11218799 (3)

Page 2 of 2

	A VOC	
	Плания Плани	
	P+4 0.0000 0.00005 0.0005 0	
	Filty Vinta Filty Vinta Constrained Constraine	
	CO 1.4600 1.	
	NOK	
	Name 1, 7946 1, 794	
	10001 10002 10000 10000 10000 10000 10000 100000 100000 100000 10000 100000	
	710,4 1 710,4 1 710	
	COS 4 COS 4 00227 00027 00227 00027 00227 00027 00227 00027 00227 00000000	
	5.34.M. ⁴	
	9.0.* . 0.0.*	
	##* ##* 0.0734 </td <td></td>	
	9 	
	Residue Residue <t< td=""><td>east 99.5%.</td></t<>	east 99.5%.
	N N	ed to be at l
	Image Image <th< td=""><td>cy is assum</td></th<>	cy is assum
ns ject tzona	Image: second	ntrol efficien
pendix B er Emissk hoenix Prc County, A	Image: constraint of the second sec	emission oc
Ap Scrubb TSMC Pi Maricopa	00000000000000000000000000000000000000	2 softhr and
	NOX 4075-02 4075-02	dings is 0.7
	All All PA PA PA PA <tr tr=""> PA<</tr>	ach Fab buil
	11 24 24 24 24 24 24 24 24 24 24 24 24 24	ughput for e
	Trial 1, 2015	² AsH ₅ thro
	COS 4 5 40E0 3 5 40E	
	CANN ¹ CANN ² CANN ²	
	 41. 41. 42. 43. 44. 44. 45. 45. 45. 45. 45. 45. 46. 46. 47. 47.	
	1.450.4 1.450.4 3.356.50.1 3.366.50.1 3.366.50.2 3.466.50.2 3.466.50.2 3.466.50.2 3.466.50.2 3.466.50.2 3.466.50.2 3.466.50.2 3.466.50.2 3.466.50.2 3.466.50.2 3.466.50.2 3.466.50.2 3.466.50.2 3.466.50.2 3.466.50.2 3.466.50.2	
	Mail Annual Annu	
	14 14 14 14 14 14 14 14 14 14 14 14 14 1	
	Num Num 1 Num 1 1 AMS_SEX (Add) Strubber 1 1 1 AMS_SEX (Add) Strubber 2 1 1 AMS_SEX (Add) Strubber 3 1 1 AMS_SEX (Add) Strubber 1 1 1 </td <td>de oue</td>	de oue
	1 1	trogen fluori
	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	HE - hyd

Rotor Concentrator Thermal Oxidizer Emissions TSMC Phoenix Project Maricopa County, Arizona

	VC	C	PI	M ₁₀	PN	N _{2.5}	S	D ₂	N	0 _x	C	0
Emission Source Description	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
RCTOs - Combustion	0.22	0.98	0.31	1.35	0.31	1.35	2.44E-02	0.107	3.88	16.99	2.70	11.82
RCTOs - Process Chemical	1.59	6.95	3.53	15.45	3.53	15.45	0.24	1.07	*	*	*	*
RCTO Total	1.81	7.93	3.84	16.80	3.84	16.80	0.27	1.18	3.88	16.99	2.70	11.82
Per RCTO	0.30		0.64		0.64		0.04		0.65		0.45	

*NOx and CO process emission already accounted in the combustion emission calculations

Rotor Concentrator Thermal Oxidizer Combustion Emissions TSMC Phoenix Project Maricopa County, Arizona

Number of RCTOs per FAB building: Number of FAB buildings per project: Number of RCTOs per project: Fuel Usage (m ³ /hr): Hourly Fuel Usage for all units (MMscf/hr): Annual Fuel Usage for all units (MMscf/yr): RCTO Heat Rate (MMBTI//br):	6 2 12 576 0.04 356.38 3.458
Hours of Operation (hr/yr):	8 760
Fuel Heat Value (BTU/scf):	1,020
CO Emissions Calculation	
Total Exhaust Flow (m ³ /hr) for one FAB:	800,000
Total Exhaust Flow (m ³ /hr) for two FABs:	1,600,000
CO Exhaust Concentration (ppm):	0.8
Exhaust Temperature (°C):	83.90
Hours of Operation (hr/yr):	8,760
Standard Molecular Volume (L/mol at 0°C):	22.4
Molecular Weight of CO (g/mol):	28.01
All RCTOs Actual Flow Rate of CO in Exhaust (L/hr):	1280.00
All RCTOs Standard Flow Rate of CO in Exhaust (L/hr):	979.22
All RCTOs CO Molar Flow Rate (mol/hr):	43.72
All RCTOs CO Molar Flow Rate (lb/hr):	2.70
NOx Emissions Calculation	
Total Exhaust Flow (m ³ /hr) for one FAB:	800,000
Total Exhaust Flow (m ³ /hr) for two FABs:	1,600,000
NOx Exhaust Concentration (ppm):	0.7
Exhaust Temperature (°C):	83.90
Hours of Operation (hr/yr):	8,760
Standard Molecular Volume (L/mol at 0°C):	22.4
Molecular Weight of NOx (g/mol):	46.00
All RCTOs Actual Flow Rate of NOx in Exhaust (L/hr):	1120.00
All RCTOs Standard Flow Rate of NOx in Exhaust (L/hr)	856.82

	Emission	Combustion		mission Combustion A		All R	CTOs
Pollutant	lb/MMscf	lb/hr	tons/year	lb/hr	tons/year		
PM ₁₀	7.6	0.03	0.11	0.31	1.35		
PM _{2.5}	7.6	0.03	0.11	0.31	1.35		
Benzene ¹	0.0021	7.12E-06	3.12E-05	8.54E-05	3.74E-04		
Toluene ¹	0.0034	1.15E-05	5.05E-05	1.38E-04	6.06E-04		
Formaldehyde ¹	0.075	2.54E-04	1.11E-03	3.05E-03	1.34E-02		
SO ₂ ²	0.6	2.03E-03	8.91E-03	2.44E-02	1.07E-01		
NOx ³	-	-	-	3.88	16.99		
CO ³	-	-	-	2.70	11.82		
VOC ⁴	5.5	0.02	0.08	0.22	0.98		

tons/year - tons per year

CO - carbon monoxide

aerodynamic diameter

aerodynamic diameter SO_2 - sulfur dioxide

VOC - volatile organic compounds NO_x - nitrogen oxides

PM₁₀ - Particulate Matter less than 10 micron

PM_{2.5} Particulate Matter less than 2.5 micron

38.25

3.88

Notes:

RCTO - Rotor Concentrator Thermal Oxidizer Fab - Semiconductor Manufacturing (Fabrication) Plant

All RCTOs NOx Molar Flow Rate (mol/hr):

All RCTOs NOx Molar Flow Rate (lb/hr):

m³/hr - cubic meters per hour

MMscf/hr - million standard cubic feet per hour

MMscf/yr - million standard cubic feet per year

MMBTU/hr - One Million British Thermal Units per hour

hr/yr - hours per year

BTU/scf - British Thermal Units per standard cubic foot

lb/MMscf - pounds per million standard cubic feet

lb/hr - pounds per hour

¹ Emission factors from AP-42, Chapter 1, Tables 1.4-1, 1.4-2, and 1.4-3, Natural Gas Combustion.

Units are in lb/MMscf: Benzene = 0.0021, Toluene = 0.0034, Formaldehyde = 0.075.

² Sulfur Factor from AP-42, Table 1.4-2

 $^{\rm 3}$ NOx and CO include both combustion and process emissions

 $^{\rm 4}$ VOC from combustion using emission factors from AP-42

Rotor Concentrator Thermal Oxidizer PM and SO₂ Emissions from Process Chemicals TSMC Phoenix Project Maricopa County, Arizona

General Calculation Parameters	
Number of RCTOs per FAB building:	6
Number of FAB buildings per project:	2
Number of RCTOs per project:	12
Total Exhaust Flow (m ³ /hr) for one FAB:	800,000
Total Exhaust Flow (m ³ /hr) for two FABs:	1,600,000
PM Exhaust Concentration (µg/m ³)	1,000
Exhaust Temperature (°C):	83.90
Hours of Operation (hr/yr):	8,760
Standard Molecular Volume (L/mol at 0°C):	22.4

Final Calculation Summary

,,	Per RCTO - Process			RCTOs
Pollutant	lb/hr	tons/year	lb/hr	tons/year
PM ₁₀	0.29	1.29	3.53	15.45
PM _{2.5}	0.29	1.29	3.53	15.45
SO ₂ ¹	0.02	0.09	0.24	1.07
VOC ²	0.13	0.58	1.59	6.95
HF ³	0.02	0.08	0.23	1.00

Notes:

RCTO - Rotor Concentrator Thermal Oxidizer FAB - Semiconductor Manufacturing (Fabrication) Plant m³/hr - cubic meters per hour ppm - parts per million °C - degrees Celsius L/mol - liters per mole g/mol - grams per mole L/hr - liters per hour nol/hr - moles per hour lb/hr - pounds per hour tons/year - tons per year PM₁₀ - Particulate Matter less than 10 micron aerodynamic diameter PM_{2.5} Particulate Matter less than 2.5 micron aerodynamic diameter SO₂ - sulfur dioxide VOC - Volatile Organic Compounds

 1 SO_2 emission based on RCTO-Combustion emission multiply by a factor of 10

² VOC emission based on stack test results, including both combustion and process emission for a conversative estimate

³ HF emission based on facility chemical usage

Hot Water Boiler Emissions Calculations TSMC Phoenix Project Maricopa County, Arizona

Number of Boilers per FAB building:	3
Number of FAB buildings per project:	2
Number of Boilers per project:	6
Hot Water Boiler Rating (kW):	1,500
Boiler Rating (MMBTU/hr):	5.12
Maximum Expected Hours of Operation (hr/yr):	300
Hourly Natural Gas Consumption for All Units (MMscf/hr):	0.03
Annual Natural Gas Consumption for All Units (MMscf/yr):	9.03
Fuel Type:	Natural Gas
Fuel Heat Value (BTU/scf):	1,020

	AP-42 Emission		
	Factor ¹	All B	oilers
Pollutant	lb/MMscf	lb/hr	tons/year
VOC	5.5	0.166	0.025
NO _x	100	3.011	0.452
СО	84	2.529	0.379
PM ₁₀	7.6	0.229	0.034
PM _{2.5}	7.6	0.229	0.034
Benzene	0.0021	6.32E-05	9.48E-06
Toluene	0.0034	1.02E-04	1.54E-05
Formaldehyde	0.075	2.26E-03	3.39E-04
SO ₂ ²	2.25	0.068	0.010

Notes:

Fab - Semiconductor Manufacturing (Fabrication) Plant

kW - killowatt

MMBTU/hr - One Million British Thermal Units per hour

hr/yr - hours per year

BTU/scf - British thermal units per standard cubic foot

lb/MMscf - pounds per million standard cubic feet

lb/hr - pounds per hour

tons/year - tons per year

VOC - volatile organic compounds

 NO_x - nitrogen oxides

CO - carbon monoxide

 $\ensuremath{\text{PM}_{10}}\xspace$ - Particulate Matter less than 10 micron aerodynamic diameter

 $\ensuremath{\text{PM}_{2.5}}\xspace$ Particulate Matter less than 2.5 micron aerodynamic diameter

 SO_2 - sulfur dioxide

¹ Emission Factors from AP-42, Chapter 1, Tables 1.4-1, 1.4-2, and 1.4-3, Natural Gas Combustion.

² Sulfur Factor from AP-42, Table 1.4-2 adjusted from 0.2 gr/100scf to 0.75 gr/100scf (expected Sulfur content in fuel gas).

Emergency Engine Emissions Calculations TSMC Phoenix Project Maricopa County, Arizona

Proposed Engines in P1	22
Proposed Engines in P2	0
Number of EnginesTotal:	22
Engine Manufacturer / Model:	KOHLER / Mitsubishi, S16R-T2PTAW2-1
Engine Type:	4-Cycle, 16-V Cylinder
Emission Control Device:	Turbocharger and after cooler
Fuel Type :	No. 2 Diesel
Fuel Sulfur Content:	15 ppm
Engine Rating (kW):	2,180
Engine Rating (hp):	2,923
Engine Rating (MMBTU/hr):	7.44
Hours of Operation (hr/yr):	18

	Manufacturer Emission	AP-42 Emission	AP-42 Emission				
	Factor ¹	Factor ²	Factor ³	Per I	Engine	All Er	ngines
Pollutant	g/kWh	lb/hp-hr	lb/MMBTU	lb/hr	tons/year	lb/hr	tons/year
VOC	0.560	-	-	2.69	0.02	59.21	0.53
NOx	5.36	-	-	25.76	0.23	566.74	5.10
СО	0.6	-	-	2.88	0.03	63.44	0.57
PM ₁₀	0.17	-	-	0.82	0.01	17.97	0.16
PM _{2.5}	0.17	-	-	0.82	0.01	17.97	0.16
SO ₂	-	1.2135E-05	-	0.035	0.00032	0.78	0.007
Formaldehyde	-	-	7.89E-05	0.0006	5.28E-06	0.01	0.000
Benzene	-	-	7.76E-04	0.0058	5.19E-05	0.13	0.001
Toluene	-	-	2.81E-04	0.0021	1.88E-05	0.05	0.000
Xylenes	-	-	1.93E-04	0.0014	1.29E-05	0.03	0.000

Notes:

Fab - Semiconductor Manufacturing (Fabrication) Plant	tons/year - tons per year
ppm - parts per million	VOC - volatile organic compounds
kW - killowatt	NO _x - nitrogen oxides
hp - horsepower	CO - carbon monoxide
MMBTU/hr - One Million British Thermal Units per hour	PM_{10} - Particulate Matter less than 10 micron
hr/yr - hours per year	aerodynamic diameter
g/kWh - grams per kilowatt-hour	$PM_{2.5}$ Particulate Matter less than 2.5 micron
lb/hp-hr - pounds per hporsepower-hour	aerodynamic diameter
Ib/MMBTU - pounds per Million British Thermal Units	SO ₂ - sulfur dioxide
lb/hr - pounds per hour	

¹ Emission factor of Interim Tier 4 Engines, 40 CFR 1039.102 Table 7 (g/kWh)

² Emission factor from AP-42 Table 3.4-1 (lb/hp-hr)

³ Emission factor from AP-42 Table 3.4-3 (lb/MMBtu)

Fire Pump Engine Emissions Calculations TSMC Phoenix Project Maricopa County, Arizona

Number of Engines per FAB building:	1
Number of FAB buildings per project:	2
Number of Engines per project:	2
Engine Manufacturer / Model:	CLARKE, Model DQ6H-UFAA88
Engine Type :	4-Cycle, 6 Cylinder, 2 Valves per Cylinder, In-Line
Fuel Type :	No. 2 Diesel
Fuel Sulfur Content:	15 ppm
Engine Rating (kW):	268
Engine Rating (HP):	360
Engine Rating (MMBTU/hr):	0.92
Hours of Operation (hr/yr):	18

	NSPS IIII Emission	AP-42 Emission	AP-42 Emission				
	Factor ¹	Factor ²	Factor ³	Per I	Engine	All E	Ingines
Pollutant	g/hp-hr	lb/hp-hr	Ib/MMBTU	lb/hr	tons/year	lb/hr	tons/year
VOC		7.05E-04	-	0.254	0.00	0.51	0.00
NO _x	3	0.24	-	2.381	0.02	4.76	0.04
СО	2.6	1.16	-	2.064	0.02	4.13	0.04
PM ₁₀	0.15	0.0007	-	0.119	0.001	0.24	0.00
PM _{2.5}	0.15	0.0007	-	0.119	0.001	0.24	0.00
SO ₂		1.21E-05	-	0.004	0.000039	0.01	0.000
Formaldehyde		-	7.89E-05	0.0001	6.50E-07	0.00	0.000
Benzene		-	7.76E-04	0.0007	6.40E-06	0.00	0.000
Toluene		-	2.81E-04	0.0003	2.32E-06	0.00	0.000
Xylenes		-	1.93E-04	0.0002	1.59E-06	0.00	0.000

Notes:

Fab - Semiconductor Manufacturing (Fabrication) Plant ppm - parts per million kW - killowatt hp - horsepower MMBTU/hr - One Million British Thermal Units per hour hr/yr - hours per year g/kWh - grams per kilowatt-hour lb/hp-hr - pounds per horsepower-hour lb/MMBTU - pounds per Million British Thermal Units lb/hr - pounds per hour ¹ Emission factor from manufacturer specifications (g/kWh)

² Emission factor from AP-42 Table 3.4-1 (lb/hp-hr)

³ Emission factor from AP-42 Table 3.4-3 (lb/MMBtu)

tons/year - tons per year VOC - volatile organic compounds NO_x - nitrogen oxides CO - carbon monoxide PM_{10} - Particulate Matter less than 10 micron aerodynamic diameter $PM_{2.5}$ Particulate Matter less than 2.5 micron aerodynamic diameter

SO₂ - sulfur dioxide

Cooling Tower Emissions Calculations TSMC Phoenix Project Maricopa County, Arizona

16,120 gpm
0.0005% of circulating water flow rate
2,000 mg/L
14
2
28
31.5% Percentage of Total PM that is PM_{10}
60.0% Percentage of PM ₁₀ that is PM _{2.5}
8,760 hr/year
Flowrate (gpm) * TDS/10^6 * 8.34 (lb/gal) * Drift Rate (%) * 60 (min/hr) * PM ₁₀ % * #Coolingtower Pumps
= 2.26 lb PM/hr
= 0.71 lb PM ₁₀ /hr
= 0.43 lb PM _{2.5} /hr
Hourly PM ₁₀ emissions (lb/hr) * Operating Hours (hr/yr) / 2000 (lb/ton)
= 3.12 tons PM ₁₀ /yr
= 1.87 tons PM _{2.5} /yr

Notes:

- ¹ Maximum TDSs based on a conservative maximum TDS value of 2,000 parts per million
- ² Per correspondence with Maricopa County Air Quality Department for previous permitting actions
- ³ Per South Coast Air Quality Management District guidance document, Appendix A Updated CEIDARS Table with PM2.5 Fraction
- gpm gallons per minute
- mg/L milligrams per liter
- Fab Semiconductor Manufacturing (Fabrication) Plant
- PM₁₀ Particulate Matter less than 10 micron aerodynamic diameter
- PM_{2.5} Particulate Matter less than 2.5 micron aerodynamic diameter
- hr/yr hours per year
- lb/hr pounds per hour
- min/hr minutes per hour
- PM Particulate Matter per hour
- tons/year tons per year

Fugitive VOC Emissions Calculations TSMC Phoenix Project Maricopa County, Arizona

Total	of	Fahe	2
TOLAI	UI.	гарь.	4

V	Vipe Cleaning		
Components	Evaporation Losses per fab (g/quarter)	Evaporation Losses per fab (ton/yr)	Mass Fraction (%)
Isopropyl Alcohol	21902.4	0.10	100%
Isopropyl Alcohol (10%)	8938.6	0.00	10%
Ethanol	104083.8	0.46	100%
Ethanol (10%)	6526.2	0.00	10%
VOC Total for 1 Fab		0.57	
VOC Total for 2 Fabs		1.13	

Appendix B TSMC Phoenix Project Tank Emissions Calculations Maricopa County, Arizona

Prom	ax Tank Loss	Stencil Input				
Number of Tanks per Fab		4	4	4	4	
Tank Contents		IPA	Thinner-1	Thinner-3	DP001	
Size	Gallons	7,925	7,925	7,925	7,925	
Tank Color		Tan	Tan	Tan	Tan	
Location			Phoenix, AZ			
Shell Height	ŧ	15.5	15.5	15.5	15.5	
Shell Diameter	ŧ	10	10	10	10	
Breather Vent Pressure	psig	0.03	0.03	0.03	0.03	
Breather Vac Pressure	psig	-0.03	-0.03	-0.03	-0.03	
Operating Pressure	psig	0	0	0	0	
Avg. Percent Liquid	%	50	50	50	50	
Max Percent Liquid	%	90	90	90	90	
Operating Hours	Hours	8760	8760	8760	8760	
Net Throughput	tons/day	13	15	1.3	1.1	
Atmospheric Pressure	psia	14.70	14.70	14.70	14.70	
Max Liq Surface Temperature	÷	95.00	95.00	95.00	95.00	
Capture Efficiency	%	100%	100%	100%	100%	
Captured Emissions Control Efficiency	%	95%	95%	96%	95%	
			IPA Tanks			
Components	Working Losses	Breathing	Total Losses	Total Losses	Mass Fraction	Working
	(ton/vr)	(ton/vr)	(lb/hr)	(ton/yr)	(%)	(ton/vr)

	Working	Breathing	Total Losse	Total Lossas	Mass Fraction	Working	Breathing	Total Losses	Total Losses	Mass Eraction	Working	Breathing 7	Total Lossee T	atal lossas	Mass	Vorking B	Breathing T	otal Losses T	otal Lossas	Mass	
Components	Losses	Losses	(lb/hr)	(ton/yr)	(%)	Losses	Losses	(lb/hr)	(ton/yr)	(%)	Losses	Losses	(lb/hr)	(ton/yr) F	raction	Losses	Losses	(lb/hr)	(ton/yr)	Fraction	
-	(ton/yr)	(ton/yr)				(ton/yr)	(ton/yr)				(ton/vr)	(ton/yr)			(%)	(ton/yr)	(ton/yr)			(%)	
Isopropyl Alcohol	0.694	0.363	0.24	1.057	100%					•							•		'		
Propylene Glycol Monomethyl Ether		•				0.210	0.102	0.07	0.312	83%		•					•		'		
Propylene Glycol 1-Monomethyl Ether Acetate			•			0.042	0.021	0.01	0.063	17%	0.015	0.067	0.02	0.082	100%		•		'		
Butyl Acetate		-		1												0.036	0.173	0.05	0.209	100%	
TOTAL UNCONTROLLED LOSSES FOR 1 FAB:	0.69	0.36	0.24	1.06		0.25	0.12	0.09	0.37		0.01	0.07	0.02	0.08		0.04	0.17	0.05	0.21		
TOTAL UNCONTROLLED VOC LOSSES FOR 1 FAB:																					
TOTAL CONTROLLED VOC LOSSES FOR 1 FAB:	0.03	0.02	0.01	0.05		0.01	<0.01	<0.01	0.02		<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	< 0.01	0.01		
TOTAL CONTROLLED VOC LOSSES FOR 2 FABS:	0.07	0.04	0.02	0.11		0.03	0.01	<0.01	0.04		<0.01	<0.01	<0.01	<0.01		<0.01	0.02	< 0.01	0.02		

DP001 Tanks

Thinner-3 Tanks

Thinner-1 Tanks

¹Tank emissions simulated in Promax. Report available upon request.

Facility HAPs Usage TSMC Phoenix Project Maricopa County, Arizona

	_	_				_		_				_	_		_		_
HAPs Emission (ton/yr)	0.7	0.5	0.7	0.0003	0.007	0.002	0.094	0.002					0.0007				
HAPs Emission (lb/hr)	0.2	0.1	0.2	0.0001	0.0016	0.0004	0.0215	0.000					0.0002				
HAPs	ETHYLENE GLYCOL	HYDROGEN FLUORIDE	ETHYLENE GLYCOL	PHOSPHINE	PHOSPHINE	ETHYLENE GLYCOL	TRIETHYLAMINE	ETHYLENE GLYCOL	Cobalt compound								
Scrubber Systems	AEX	VEX (RCTO)	AEX	SEX	SEX	SEX	SEX	SEX	SEX	SEX	SEX	SEX	SEX	SEX	SEX	SEX	SEX
Chemical Used - Public	Component A	Component B	Component C	PH3 SDS3 JY VCR	PH3,5N7,44L,40LB,DISS632	Pura Leveler, 4L/BT	TEA,10KG/BT	Viaform Extreme Leveler, 4L/BT(NOWPak)	Component D	Component E	Component F	Component G	Component H	Component I	Component J	Component K	Component L

Notes:

HAP emissions are quantified in Scrubber Emissions summary table.

Projected chemical usage is based on 2020 usage by a sister plant.

In the absence of stack test data, emissions are conservatively based on maximum anticipated solution concentration and 100% loss.

Appendix C

Specification Sheets

Emergency Engines Fire Pump Engines Hot Water Boilers

KOHLER

Model: 2000REOZMD

380-4160 V

Diesel

Tier 2 EPA-Certified for Stationary Emergency Applications

Ratings Range

Standby:	kW	1
otanaby.	kVA	1
Prime:	kW	1
	kVΔ	1

60 Hz 590-2000 988-2500 440-1820 1800-2275

Standard Features

- Kohler Co. provides one-source responsibility for the generating system and accessories.
- The generator set and its components are prototype-tested, factory-built, and production-tested.
- The 60 Hz generator set offers a UL 2200 listing.
- The generator set accepts rated load in one step. •
- The 60 Hz generator set meets NFPA 110, Level 1, when • equipped with the necessary accessories and installed per NFPA standards.
- A standard one-year limited warranty covers all generator set systems and components. Two-, five-, and ten-year extended limited warranties are also available.
- Alternator features:
 - The pilot-excited, permanent magnet (PM) alternator provides superior short-circuit capability.
 - Additional alternator voltages are available including 12.47 kV, 13.2 kV, and 13.8 kV medium voltages. Contact your local distributor for more detailed information.
 - The brushless, rotating-field alternator has broadrange reconnectability.
- Other features:
 - Kohler designed controllers for one-source system integration and remote communication. See Controllers on page 3.
 - The low coolant level shutdown prevents overheating (standard on radiator models only).
 - An electronic, isochronous governor delivers precise 0 frequency regulation.
 - Multiple circuit breaker configurations.

				150°C Standby	Rise Rating	130°C Standby	Rise Rating	125°C Prime R	Rise lating	105°C Prime R	Rise lating
Alternator	Voltage	Ph	Hz	kW/kVA	Amps	kW/kVA	Amps	kW/kVA	Amps	kW/kVA	Amps
	220/380	3	60	1590/1988	3020	1590/1988	3020	1440/1800	2735	1440/1800	2735
7M4054	240/416	3	60	1840/2300	3192	1840/2300	3192	1800/2250	3123	1680/2100	2915
	277/480	3	60	2000/2500	3007	2000/2500	3007	1820/2275	2736	1820/2275	2736
	220/380	3	60	1850/2313	3513	1790/2238	3400	1750/2188	3324	1650/2063	3134
7M4056	240/416	3	60	2000/2500	3470	1950/2438	3383	1820/2275	3157	1780/2225	3088
	277/480	3	60	2000/2500	3007	2000/2500	3007	1820/2275	2736	1820/2275	2736
	220/380	3	60	2000/2500	3798	1950/2438	3703	1820/2275	3457	1790/2238	3400
7M4058	240/416	3	60	2000/2500	3470	2000/2500	3470	1820/2275	3157	1820/2275	3157
	277/480	3	60	2000/2500	3007	2000/2500	3007	1820/2275	2736	1820/2275	2736
7M4176	220/380	3	60	2000/2500	3798	2000/2500	3798	1820/2275	3457	1820/2275	3457
7M4292	347/600	3	60	2000/2500	2406	2000/2500	2406	1820/2275	2189	1820/2275	2189
7M4374	2400/4160	3	60	2000/2500	347	2000/2500	347	1820/2275	316	1820/2275	316

RATINGS: All three-phase units are rated at 0.8 power factor. Standby Ratings: The standby rating is applicable to varying loads for the duration of a power outage. There is no overload capability for this rating. Prime Power Ratings: At varying load, the number of generator set operating hours is unlimited. A 10% overload capacity is available for one hour in twelve. Ratings are in accordance with ISO-8528-1 and ISO-3046-1. For limited running time and continuous ratings, consult the factory. Obtain technical information bulletin (TIB-101) for ratings guidelines, complete ratings definitions, and site condition derates. The generator set manufacturer reserves the right to change the design or specifications without notice and without any obligation or liability whatsoever.

Generator Set Ratings

Alternator Specifications

Specification	ns	Alternator		
Туре		4-Pole, Rotating-Field		
Exciter type		Brushless, Permanent- Magnet Pilot Exciter		
Voltage regul	ator	Solid State, Volts/Hz		
Insulation:		NEMA MG1		
Material		Class H, Synthetic, Nonhygroscopic		
Tempera	ature rise	130°C, 150°C Standby		
Bearing: quar	ntity, type	1, Sealed		
Coupling		Flexible Disc		
Amortisseur v	windings	Full		
Rotor balanci	ng	125%		
Voltage regul	ation, no-load to full-load	Controller Dependent		
One-step load	d acceptance	100% of Rating		
Unbalanced I	oad capability	100% of Rated Standby Current		
Peak motor s	tarting kVA:	(35% dip for voltages below)		
480 V	7M4054 (4 bus bar)	7000		
480 V	7M4056 (4 bus bar)	7200		
480 V	7M4058 (4 bus bar)	11000		
380 V	7M4176 (4 bus bar)	5400		
600 V	7M4292 (4 bus bar)	4250		

6200

7M4374 (6 lead)

- NEMA MG1, IEEE, and ANSI standards compliance for temperature rise and motor starting.
- Sustained short-circuit current of up to 300% of the rated current for up to 10 seconds.
- Sustained short-circuit current enabling downstream circuit breakers to trip without collapsing the alternator field.
- Self-ventilated and dripproof construction.
- Superior voltage waveform from two-thirds pitch windings and skewed stator.
- Digital solid-state, volts-per-hertz voltage regulator with ±0.25% no-load to full-load regulation.
- Brushless alternator with brushless pilot exciter for excellent load response.

Engine

4160 V

Application Data

Engine Electrical

Engine Specifications	
Manufacturer	Mitsubishi
Engine model	S16R-Y2PTAW2-1
Engine type	4-Cycle, Turbocharged
Cylinder arrangement	16 V
Displacement, L (cu. in.)	65.4 (3989)
Bore and stroke, mm (in.)	170 x 180 (6.69 x 7.09)
Compression ratio	14.0:1
Piston speed, m/min. (ft./min.)	648 (2126)
Main bearings: quantity, type	9, Precision Half-Shell
Rated rpm	1800
Max. power at rated rpm, kWm (BHP)	2180 (2923)
Cylinder head material	Cast Iron
Crankshaft material	Forged Steel
Governor type	Electronic
Frequency regulation, no-load to full-load	Isochronous
Frequency regulation, steady state	±0.25%
Frequency	Fixed
Air cleaner type, all models	Dry

Exhaust

Exhaust System	
Exhaust manifold type	Dry
Exhaust flow at rated kW, m ³ /min. (cfm)	544 (19209)
Exhaust temperature at rated kW, dry exhaust, °C (°F)	526 (979)
Maximum allowable back pressure, kPa (in. Hg)	5.1 (1.5)
Exhaust outlet size at engine hookup, mm (in.)	See ADV drawing

Engine Electrical System	
Battery charging alternator:	
Ground (negative/positive)	Negative
Volts (DC)	24
Ampere rating	30
Starter motor rated voltage (DC)	Dual, 24
Battery, recommended cold cranking amps (CCA):	
Quantity, CCA rating each	Four, 1150
Battery voltage (DC)	12

Fuel

Fuel System	
Fuel supply line, min. ID, mm (in.)	19 (0.75)
Fuel return line, min. ID, mm (in.)	19 (0.75)
Max. lift, engine-driven fuel pump, m (ft.)	1.0 (3.0)
Max. fuel flow, Lph (gph)	660 (174)
Max. fuel pump restriction, kPa (in. Hg)	10 (3.0)
Max. return line restriction, kPa (in. Hg)	20 (5.9)
Fuel filter: quantity, type	4, Secondary
Recommended fuel	#2 Diesel

Lubrication

Lubricating System			
Туре	Full Pressure		
Oil pan capacity, L (qt.) §	200 (211)		
Oil pan capacity with filter, L (qt.) \S	230 (243)		
Oil filter: quantity, type §	4, Cartridge		
Oil cooler	Water-Cooled		
§ Kohler recommends the use of Kohler Genuine oil and filters.			

G5-369 (2000REOZMD) 9/19g

Application Data

Cooling

Radiator System	
Ambient temperature, °C (°F)*	40 (104)
Engine jacket water capacity, L (gal.)	170 (44.9)
Radiator system capacity, including engine, L (gal.)	367 (96.9)
Engine jacket water flow, Lpm (gpm)	1850 (489)
Charge cooler water flow, Lpm (gpm)	920 (243)
Heat rejected to cooling water at rated kW, dry exhaust, kW (Btu/min.)	780 (44374)
Heat rejected to charge cooler water at rated kW, dry exhaust, kW (Btu/min.)	780 (44374)
Water pump type	Centrifugal
Fan diameter, including blades, mm (in.)	2057 (81)
Fan kWm (HP)	81 (109)
Max. restriction of cooling air, intake and discharge side of radiator, kPa (in. H_2O)	0.125 (0.5)
High Ambient Radiator System	
Ambient temperature, °C (°F)*	50 (122)
Engine jacket water capacity, L (gal.)	170 (44.9)
Radiator system capacity, including engine, L (gal.)	386 (102)
Engine jacket water flow, Lpm (gpm)	1850 (489)
Charge cooler water flow, Lpm (gpm)	920 (243)
Heat rejected to cooling water at rated kW, dry exhaust, kW (Btu/min.)	780 (44374)
Heat rejected to charge cooler water at	

rated kW, dry exhaust, kW (Btu/min.)780 (44374)Water pump typeCentrifugalFan diameter, including blades, mm (in.)2362 (93)Fan kWm (HP)63 (84)Max. restriction of cooling air, intake and
discharge side of radiator, kPa (in. H2O)0.125 (0.5)

 * Enclosure with enclosed silencer reduces ambient temperature capability by 5°C (9°F).

Remote Radiator System ⁺		
Exhaust manifold type	Dry	
Connection sizes:		
Jacket water engine inlet, mm (in.)	95 (3.75)	
Jacket water engine outlet, mm (in.)	95 (3.75)	
Intercooler water engine inlet, mm (in.)	83 (3.25)	
Intercooler water engine outlet, mm (in.)	83 (3.25)	
Static head allowable		
above engine, kPa (ft. H ₂ O)	98 (32.8)	
* Contact your local distributor for cooling syste	m options and	

Contact your local distributor for cooling system options and specifications based on your specific requirements.

Operation Requirements

Air Requirements	
Radiator-cooled cooling air, m ³ /min. (scfm)‡	2209 (78000)
High ambient radiator-cooled cooling air, m ³ /min. (scfm)‡	2718 (96000)
Cooling air required for generator set when equipped with city water cooling or remote radiator, based on 14°C (25°F) rise, m^3/min (cofm):	991 (35100)
	331 (33100)
Combustion air, m ³ /min. (cfm)	206 (7274)
Heat rejected to ambient air:	
Engine, kW (Btu/min.)	180 (10240)
Alternator, kW (Btu/min.)	97 (5516)
\pm Air density = 1.20 kg/m ³ (0.075 lbm/ft ³)	

Fuel Consumption Diesel, Lph (gph) at % load Standby Rating 606 (160.1) 100% 75% 442 (116.8) 50% 299 (79.0) 25% 164 (43.2)Diesel, Lph (gph) at % load **Prime Rating** 100% 536 (141.6) 75% 403 (106.6) 50% 271 (71.6)25% (40.6)154

Controllers

Decision-Maker[®] 550 Controller

Provides advanced control, system monitoring, and system diagnostics with remote monitoring capabilities.

- Digital display and keypad provide easy local data access
- Measurements are selectable in metric or English units
- Remote communication thru a PC via network or modem configuration
- Controller supports Modbus® protocol
- Integrated voltage regulator with ±0.25% regulation
- Built-in alternator thermal overload protection
- NFPA 110 Level 1 capability

Refer to G6-46 for additional controller features and accessories.

Decision-Maker® 6000 Paralleling Controller

Provides advanced control, system monitoring, and system diagnostics with remote monitoring capabilities for paralleling multiple generator sets.

- Paralleling capability to control up to 8 generators on an isolated bus with first-on logic, synchronizer, kW and kVAR load sharing, and protective relays
- Note: Parallel with other Decision-Maker® 6000 controllers only
- Digital display and keypad provide easy local data access
- Measurements are selectable in metric or English units
 Demote communication thrue DC via petwork or
- Remote communication thru a PC via network or modem configuration
- Controller supports Modbus® protocol
- Integrated voltage regulator with ±0.25% regulation
- Built-in alternator thermal overload protection
- NFPA 110 Level 1 capability

Refer to G6-107 for additional controller features and accessories.

Modbus® is a registered trademark of Schneider Electric.

KOHLER

Standard Features

- Alternator Protection
- Alternator Strip Heater (standard on 3300 volt and above)
- Customer Connection (Decision-Maker® 6000 controller only)
- Local Emergency Stop Switch
- Oil Drain Extension
- Operation and Installation Literature
- Radiator Core Guard

Available Options

Approvals and Listings

- California OSHPD Approval
- CSA Certified
- IBC Seismic Certification
- UL 2200 Listing

Enclosed Unit

- Sound Enclosure/Fuel Tank Package
- U Weather Enclosure/Fuel Tank Package

Open Unit

- Exhaust Silencer, Hospital (kit: PA-361627)
- Exhaust Silencer, Critical (kit: PA-361625)
- Flexible Exhaust Connector, Stainless Steel

Fuel System

- Flexible Fuel Lines
- Fuel Pressure Gauge
- G Fuel/Water Separator

Controller

- Common Failure Relay
- Communication Products and PC Software
- Customer Connection (Decision-Maker® 550 controller only)
- Dry Contact (isolated alarm)
- Prime Power Switch
- Remote Audiovisual Alarm Panel (Decision-Maker® 550 controller only)
- Remote Emergency Stop
- Remote Mounting Cable
- Remote Serial Annunciator Panel
- Run Relay
- Manual Speed Adjustment (Decision-Maker® 550 and APM402 controllers only)

Cooling System

- Block Heater; 9000 W, 208 V, 1 Ph
- Block Heater; 9000 W, 240 V, (Select 1 Ph or 3 Ph)
- Block Heater; 9000 W, 380 V, 3 Ph
- □ Block Heater; 9000 W, 480 V, (Select 1 Ph or 3 Ph) Required for Ambient Temperatures Below 0°C (32°F)
- High Ambient Radiator
- Remote Radiator Cooling Setup

Electrical System

- Alternator Strip Heater (available up to 600 volt)
- Battery
- Battery Charger, Equalize/Float Type
- Battery Heater
- Battery Rack and Cables
- Line Circuit Breaker (NEMA type 1 enclosure)
- Line Circuit Breaker with Shunt Trip (NEMA type 1 enclosure)

Paralleling System

- Remote Voltage Adjustment Control
- Voltage Sensing (Decision-Maker® 6000 controller only)

Miscellaneous

- Air Cleaner, Heavy Duty
- Air Cleaner Restriction Indicator
- Crankcase Emission Canister
- Engine Fluids (oil and coolant) Added
- Oil Temperature Gauge
- Rated Power Factor Testing
- Spring Isolators

Literature

- General Maintenance
- NFPA 110
- Overhaul
- Production

Warranty

- 2-Year Basic Limited Warranty
- 2-Year Prime Limited Warranty
- 5-Year Basic Limited Warranty
- 5-Year Comprehensive Limited Warranty
- 10-Year Major Components Limited Warranty

Other Options

© _____

Dimensions and Weights

Note: This drawing is provided for reference only and should not be used for planning the installation. Contact your local distributor for more detailed information.

DISTRIBUTED BY:

© 2011, 2012, 2013, 2016, 2018, 2019 by Kohler Co. All rights reserved.

KOHLER CO., Kohler, Wisconsin 53044 USA Phone 920-457-4441, Fax 920-459-1646 For the nearest sales and service outlet in the US and Canada, phone 1-800-544-2444 KOHLERPower.com

MODELS

FM-UL-cUL APPROVED RATINGS BHP/KW

DQ6H	RATED SPEED					
MODEL ♦λ	1470		1760		2100	
DQ6H-UFAA48	240	179				
DQ6H-UFAA4G			290	216		
DQ6H-UFAA40					310	231
DQ6H-UFAA50					340	254
DQ6H-UFAA60			345	257	360	269
DQ6H-UFAA88			375	280		
DQ6H-UFAA98	300	224	410	306		

♦ All Models are available for Export

 λ = Non-Emissionized

SPECIFICATIONS

				DQ6H MODELS	3		
ITEM	UFAA48	UFAA4G	UFAA40	UFAA50	UFAA60	UFAA88	UFAA98
Number of Cylinders				6			
Aspiration				TRWA			
Rotation*				CW			
Weight – Ib (kg)				2500 (1134)			
Compression Ratio	17:1						
Displacement – cu. in. (l)	674 (11.1)						
Engine Type			4 Cycle,	2 Valves per Cylinde	er, In-Line		
Bore & Stroke – in. (mm)				4.84 x 6.1 (123 x 155)		
Installation Drawing				D658			
Wiring Diagram AC				C07651			
Wiring Diagram DC				C071842			
Engine Series				126 Series			
Speed Interpolation				Optional			

Abbreviations: CW – Clockwise TRWA – Turbocharged with Raw Water Aftercooling

*Rotation viewed from Heat Exchanger / Front of engine

CERTIFIED POWER RATING

• Each engine is factory tested to verify power and performance.

ENGINE RATINGS BASELINES

- Engines are to be used for stationary emergency standby fire pump service only. Engines are to be tested in accordance with NFPA 25.
- Engines are rated at standard SAE conditions of 29.61 in. (752.1 mm) Hg barometer and 77°F (25°C) inlet air temperature [approximates 300 ft. (91.4 m) above sea level] by the testing laboratory (see SAE Standard J 1349).
- A deduction of 3 percent from engine horsepower rating at standard SAE conditions shall be made for diesel engines for each 1000 ft. (305 m) altitude above 300 ft. (91.4 m)
- A deduction of 1 percent from engine horsepower rating as corrected to standard SAE conditions shall be made for diesel engines for every 10°F (5.6°C) above 77°F (25°C) ambient temperature.

DQ6H-UFAA4G DQ6H-UFAA60 DQ6H-UFAA40 DQ6H-UFAA88 DQ6H-UFAA48 DQ6H-UFAA50 DQ6H-UFAA98

MODELS DQ6H-UFAA60

ENGINE EQUIPMENT

EQUIPMENT	STANDARD	OPTIONAL
Air Cleaner	Direct Mounted, Washable, Indoor Service with Drip Shield	Disposable, Drip Proof, Indoor Service Outdoor Type, Single or Two Stage
Alternator	24V-DC, 45 Amps with Dual (2) V-Belt Drive with Guard	
Exhaust Protection	Blankets	
Coupling	Bare Flywheel	Listed Driveshaft CDS50-SC; Vertical Turbine Drivedisc
Exhaust Flex Connection	Stainless Steel Flex, 150# Flange Connection, 6"	Stainless Steel Flex, 150# Flange Connection, 8"
Flywheel Housing	SAE #1	
Flywheel Power Take Off	14.0" Industrial Flywheel Connection	
Fuel Connections	Fire Resistant, Flexible, USA Coast Guard Approved, Supply and Return Lines	
Fuel Filter	Primary and Secondary	
Fuel Injection System	Direct Injection, Inline Pump	
Engine Heater	230V-AC, 2000 Watt	115V-AC, 2000 Watt
Governor, Speed	Variable Speed, Mechanical	
Heat Exchanger	Tube and Shell Type, 60 PSI (4 BAR), NPT(F) Connections	Sea/Salt Water Compatible
Instrument Panel	Tachometer, Hourmeter, Water Temperature, Oil Pressure and	
	Two (2) Voltmeters, Front Opening	
Junction Box	Integral with Instrument Panel; For DC Wiring Interconnection to Engine Controller	
Lube Oil Cooler	Engine Water Cooled, Plate Type	
Lube Oil Filter	Full Flow with By-Pass Valve	
Lube Oil Pump	Gear Driven, Gear Type	
Manual Start Control	On Instrument Panel with Control Position Warning Light	
Overspeed Control	Electronic with Reset and Test on Instrument Panel	
Raw Water Solenoid Operation	Automatic from Fire Pump Controller and from Engine Instrument Panel	
Run – Stop Control	On Instrument Panel with Control Position Warning Light	
Run Solenoid	24V-DC Energized to Stop	
Starters	One (1) 24V-DC with Two (2) Start Contactors	
Throttle Control	Adjustable Speed Control, Tamper Proof	
Water Pump	Centrifugal Type, Dual (2) V-Belt Drive with Guard	

Abbreviations: DC – Direct Current, AC – Alternating Current, SAE – Society of Automotive Engineers, NPT(F) – National Pipe Tapered Thread (Female)

MODEL NOMENCLATURE (10 Digit	Models)
DQ 6 H	UF A A 60
Base Engine – 126 Series – 6 Cylinder – Heat Exchanger Cooled –	Power Curve Number Non-Emissionized Built in USA UL Listed and FM Approved

CLARKE Fire Protection Products, Inc. 3133 E. Kemper Rd., Cincinnati, Ohio 45241 United States of America Tel +1-513-475-(FIRE)3473 Fax +1-513-771-0726 www.clarkefire.com CLARKE UK, Ltd. Grange Works, Lomond Rd., Coatbridge, ML5-2NN United Kingdom Tel +44-1236-429946 Fax +44-1236-427274 www.clarkefire.com

C133912 revG 14JAN13 Specifications and information contained in this brochure subject to change without notice.

DQ6H-UFAA4G INSTALLATION & OPERATION DATA (I&O Data) USA Produced

Basic Engine Description

Engine Manufacturer	PU126TI
Ignition Type	Compression (Diesel)
Number of Cylinders	6
Bore and Stroke - in (mm)	4.84 (123) X 6.1 (155)
Displacement - in ³ (L)	674.5 (11.1)
Compression Ratio	17:1
Valves per cylinder	
Intake	1
Exhaust	1
Combustion System	Direct Injection
Engine Type	In-Line, 4 Stroke Cycle
Fuel Management Control	Mechanical, Inline Pump
Firing Order (CW Rotation)	1-5-3-6-2-4
Aspiration	Turbocharged
Charge Air Cooling Type	Raw Water
Rotation, viewed from front of engine, Clockwise (CW)	Standard
Engine Crankcase Vent System	Open
Installation Drawing	D658
Weight - Ib (kg)	2500 (1130)
	1700
Power Rating	<u>1760</u>
Nameplate Power - HP $(KW)^{(1)}$	290 (216)
Cooling System - [C051529]	1760
Engine Coolant Heat - Btu/sec (kW)	139 (147)
Engine Radiated Heat - Btu/sec (kW)	19.6 (20.7)
Heat Exchanger Minimum Flow	
60° F (15°C) Raw H ₂ 0 - gal/min (L/min)	25 (94.6)
100°F (37°C) Raw H ₂ 0 - gal/min (L/min)	30 (114)
Heat Exchanger Maximum Cooling Raw Water	
Inlet Pressure - psi (bar)	60 (4.1)
Flow - gal/min (L/min)	80 (303)
Typical Engine H ₂ 0 Operating Temp - °F (°C)	170 (76.7) - 190 (87.8)
Thermostat	
Start to Open - °F (°C)	181 (82.8)
Fully Opened - °F (°C)	203 (95)
Engine Coolant Capacity - qt (L)	36 (34.1)
Coolant Pressure Cap - Ib/in² (kPa)	10 (68.9)
Maximum Engine Coolant Temperature - °F (°C)	203 (95)
Minimum Engine Coolant Temperature - °F (°C)	160 (71.1)
High Coolant Temp Alarm Switch - °F (°C)	205 (96.1)

Electric System - DC	Standard	
System Voltage (Nominal)	24	
Battery Capacity for Ambients Above 32°F (0°C) Voltage (Nominal)	12	{C07633}
Qty. Per Battery Bank	2	
SAE size per J537	8D	
CCA @ 0°F (-18°C)	1400	
Reserve Capacity - Minutes	430	
Battery Cable Circuit, Max Resistance - ohm	0.0012	
Battery Cable Minimum Size 0-120 in. Circuit Length ^[2]	00	
121-160 in. Circuit Length ^[2]	000	
161-200 in. Circuit Length ^[2]	0000	
Charging Alternator Maximum Output - Amp,	45	{65.26101-7153C}
Starter Cranking Amps, Rolling - @60°F (15°C)	250	{65.26101-7070D}

NOTE: This engine is intended for indoor installation or in a weatherproof enclosure. ¹Derate 3% per every 1000 ft. [304.8 m] above 300 ft. [91.4 m] and derate 1% for every 10 °F [5.55 °C] above 77° [25°C]. ²Positive and Negative Cables Combined Length. Page 1 of 2

INSTALLATION & OPERATION DATA (I&O Data)

USA Produced

Exhaust System (Single Exhaust Outlet)	<u>1760</u>	
Exhaust Flow - ft. ³ /min (m ³ /min)	1427 (40.4)	
Exhaust Temperature - °F (°C)	796 (424)	
Maximum Allowable Back Pressure - in H ₂ 0 (kPa)	30 (7.5)	
Minimum Exhaust Pipe Dia in (mm) ^[3]	6 (152)	
Fuel System	<u>1760</u>	
Fuel Consumption - gal/hr (L/hr)	22 (83.3)	
Fuel Return - gal/hr (L/hr)		
Fuel Supply - gal/hr (L/hr)		
Fuel Pressure - lb/in² (kPa)	25 (172) - 35 (241)	
Minimum Line Size - Supply - in.	50 Schedule 40 Steel Pipe	
Pipe Outer Diameter - in (mm)	0.848 (21.5)	
Minimum Line Size - Return - in.	375 Schedule 40 Steel Pipe	
Pipe Outer Diameter - in (mm)	0.675 (17.1)	
Maximum Allowable Fuel Pump Suction Lift	× ,	
with clean Filter - in H_20 (m H_20)	31 (0.8)	
Maximum Allowable Fuel Head above Fuel pump, Supply or Return	n - ft (m)_ 9 (2.7)	
Fuel Filter Micron Size	5	
Heater System	<u>Standard</u>	Optional
Engine Coolant Heater		
Wattage (Nominal)	2000	2000
Voltage - AC, 1 Phase	230 (+5%, -10%)	115 (+5%, -10%)
Part Number	{C122193}	{C122189}
<u>Air System</u>		
Combustion Air Flow - ft. ³ /min (m ³ /min)	610 (17.3)	
Air Cleaner	<u>Standard</u>	Optional
Part Number	{C03244}	{C03330}
Туре	Indoor Service Only,	Canister,
	with Shield	Single-Stage
Cleaning method	Washable	Disposable
Dirty Air Cleaner - in H ₂ 0 (kPa)	14 (3.5)	14 (3.5)
Clean Air Cleaner - in H ₂ 0 (kPa)	7 (1.7)	7 (1.7)
Maximum Allowable Temperature - °F (°C)	130 (54.4)	
,	× ,	
Lubrication System		
Oil Pressure - normal - lb/in² (kPa)	65 (448) - 77 (531)	
Low Oil Pressure Alarm Switch - Ib/in² (kPa)	20 (138)	
In Pan Oil Temperature - °F (°C)	180 (82.2) - 248 (120)	
Total Oil Capacity with Filter - qt (L)	24.4 (23.1)	
Lube Oil Heater	Optional	Optional
Wattage (Nominal)	150	150
Voltage	240V (+5%, -10%)	120V (+5%, -10%)
Part Number	C04430	C04431
Devformence	4700	
	<u>1/60</u>	
BIVIEY - ID/IN ⁺ (KYa)	193 (1330)	
Piston Speed - tt/min (m/min)	1 <i>1</i> 89 (545)	
Mechanical Noise - dB(A) @ 1m	C133939	
Power Curve	C133846	

³Minimum Exhaust Pipe Diameter is based on: 15 feet of pipe, one 90° elbow, and one Industrial silencer. A Back-pressure flow analysis must be performed on the actual field installed exhaust system to assure engine maximum allowable back pressure is not exceeded. See Exhaust Sizing Calculator on www.clarkefire.com. { } indicates component reference part number.

> Page 2 of 2 C134032 Rev F DSP 01FEB18

DQ6H ENGINE MATERIALS AND CONSTRUCTION

Air Cleaner

Туре	Indoor Usage Only
	Oiled Fabric Pleats
Material	Surgical Cotton
	Aluminum Mesh

Air Cleaner - Optiona

Туре	Canister
Material	Pleated Paper
Housing	Enclosed

Camshaft

Material	Carbon Steel
	Induction Hardening
Location	In Block
Drive	Gear, Spur
Type of Cam	Ground

Charge Air Cooler

Туре	Raw Water Cooled
Materials (in contact with raw	/ water)
Tubes	90/10 CU/NI
Headers	36500 Muntz
Covers	83600 Red Brass
Plumbing	316 Stainless Steel/ Brass
	90/10 Silicone

Coolant Pump

Туре	Centrifuga
Drive	Gear

Coolant Thermostat

Type..... Full Blocking Qty.....2

Cooling Loop (Galvanized)

Tees, Elbows, Pipe..... Galvanized Steel Ball Valves..... Brass ASTM B 124 Solenoid Valve..... Brass Pressure Regulator..... Bronze Strainer.....Cast Iron (1/2"- 1" Loops) or Bronze (1.25" - 2" Loops)

Cooling Loop (Sea Water)

Ball Valves...... 316 Stainless Steel Solenoid Valve...... 316 Stainless Steel Pressure Regulator/Strainer. Cast Brass ASTM B176 C87800

Cooling Loop (316SS)

Tees, Elbows, Pipe	316	Stainless	Steel
Ball Valves	316	Stainless	Steel
Solenoid Valve	316	Stainless	Steel
Pressure Regulator/Strainer.	316	Stainless	Steel

Connecting Rod

Туре	Diagonally Split
Material	Die Forged Steel

Crank Pin Bearings

Type..... One Piece Material..... Steel backed, Lead Bronze

Crankshaft

Material	Forged Steel
Type of Balance	Dynamic

Cylinder Block

Туре	One Piece with
	Non-Siamese Cylinders
Material	Cast Iron Alloy

Cylinder Head

Туре	 3 Cyl. Slab
Material	 Cast Iron

Cylinder Liners	
Туре	Centrifugal Cast, Dry Liner
Material	Alloy Iron Plateau, Honed

Material	A

Valves

Туре	Poppet
Arrangement	Overhead Valve
Number/Cylinder	1 intake
	1 exhaust
Operating Mechanism	Mechanical Rocker Arm
Valve Seat Insert	Replaceable

Fuel Pump

Type..... Piston Drive..... Cam Lobe

Heat Exchanger - Standard (Non-Sea Water Compatible)

Туре	Tube & Shell
Materials (in contact with ra	aw water)
Tubes	Copper
Headers	Rubber
Shell	Aluminum
Housings	Cast Iron
Electrode	Zinc

Heat Exchanger - Optional (Sea Water Compatible

Туре	Tube & Shell
Materials (in contact with raw water	r)
Tubes	Copper
Headers	Copper
Shell	Copper
Electrode	Zinc

Injection Pump

Туре	In-Line
Drive	Gear

Lubrication Cooler Type.....Plate

ļ	Lubrication Pump	
	Туре	Gear
1	Drive	Gear

Main Bearings

Туре	Precision Half	Shells
Material	Steel Backed,	Lead Bronze

Piston d Matarial

Type and Material	Aluminum Allov with Reinforced
Type and material	Top Ring Groove
Cooling	Oil Jet Through Drive

Piston Pin

Type.....Fixed

Piston Rings

Number/Piston	3
Тор	Keystone Barrel Faced
	Gas Nitride Coated
Second	Tapered Cast Iron
	Hard Chrome Coated
Third	Double Rail Type
	w/Expander Spring

Fire Protection Products

DQ6H-UFAA4G FIRE PUMP DRIVER NOISE DATA

Mechanical Engine Noise *

	Octave Band											
RPM	BHP	OVERALL	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1k Hz	2k Hz	4k Hz	8k Hz	16k Hz
		dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
1760	290	109.2	67	69.2	82.6	89.2	97.1	99.7	104.9	103.4	101.7	101.7

Raw Exhaust Engine Noise **

			Octave Band									
RPM	BHP	OVERALL	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1k Hz	2k Hz	4k Hz	8k Hz	16k Hz
		dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
1760												

* Values above are provided at 3.3ft (1m) from engine block and do not include the raw exhaust noise.

** Values above are provided at 23ft (7m), 90° horizontal, from a vertical exhaust outlet and does not include noise created mechanically by the engine.

The above data reflects values for a typical engine of this model, speed and power in a free-field environment.

Installation specifics such as background noise level and amplification of noise levels from reflecting off of surrounding objects, will affect the overall noise levels observed. As a result of this, Clarke makes no guarantees to the above levels in an actual installation.

DQ6H-UFAA60 DQ6H-UFAA88 DQ6H-UFAA98

MODELS

FM-UL-cUL APPROVED RATINGS BHP/KW

DQ6H	RATED SPEED										
MODEL ♦λ	14	70	17	60	21	00					
DQ6H-UFAA48	240	179									
DQ6H-UFAA4G			290	216							
DQ6H-UFAA40					310	231					
DQ6H-UFAA50					340	254					
DQ6H-UFAA60			345	257	360	269					
DQ6H-UFAA88			375	280							
DQ6H-UFAA98	300	224	410	306							

♦ All Models are available for Export

 λ = Non-Emissionized

SPECIFICATIONS

	DQ6H MODELS						
ITEM	UFAA48	UFAA4G	UFAA40	UFAA50	UFAA60	UFAA88	UFAA98
Number of Cylinders				6			
Aspiration	TRWA						
Rotation*	CW						
Weight – Ib (kg)	2500 (1134)						
Compression Ratio	17:1						
Displacement – cu. in. (I)	674 (11.1)						
Engine Type	4 Cycle, 2 Valves per Cylinder, In-Line						
Bore & Stroke – in. (mm)	4.84 x 6.1 (123 x 155)						
Installation Drawing	D658						
Wiring Diagram AC	C07651						
Wiring Diagram DC	C071842						
Engine Series	126 Series						
Speed Interpolation	Optional						

Abbreviations: CW – Clockwise TRWA – Turbocharged with Raw Water Aftercooling

*Rotation viewed from Heat Exchanger / Front of engine

CERTIFIED POWER RATING

• Each engine is factory tested to verify power and performance.

ENGINE RATINGS BASELINES

- Engines are to be used for stationary emergency standby fire pump service only. Engines are to be tested in accordance with NFPA 25.
- Engines are rated at standard SAE conditions of 29.61 in. (752.1 mm) Hg barometer and 77°F (25°C) inlet air temperature [approximates 300 ft. (91.4 m) above sea level] by the testing laboratory (see SAE Standard J 1349).
- A deduction of 3 percent from engine horsepower rating at standard SAE conditions shall be made for diesel engines for each 1000 ft. (305 m) altitude above 300 ft. (91.4 m)
- A deduction of 1 percent from engine horsepower rating as corrected to standard SAE conditions shall be made for diesel engines for every 10°F (5.6°C) above 77°F (25°C) ambient temperature.

DQ6H-UFAA4G DQ6H-UFAA60 DQ6H-UFAA40 DQ6H-UFAA88 DQ6H-UFAA48 DQ6H-UFAA50 DQ6H-UFAA98

MODELS

ENGINE EQUIPMENT

EQUIPMENT	STANDARD	OPTIONAL
Air Cleaner	Direct Mounted, Washable, Indoor Service with Drip Shield	Disposable, Drip Proof, Indoor Service Outdoor Type, Single or Two Stage
Alternator	24V-DC, 45 Amps with Dual (2) V-Belt Drive with Guard	
Exhaust Protection	Blankets	
Coupling	Bare Flywheel	Listed Driveshaft CDS50-SC; Vertical Turbine Drivedisc
Exhaust Flex Connection	Stainless Steel Flex, 150# Flange Connection, 6"	Stainless Steel Flex, 150# Flange Connection, 8"
Flywheel Housing	SAE #1	
Flywheel Power Take Off	14.0" Industrial Flywheel Connection	
Fuel Connections	Fire Resistant, Flexible, USA Coast Guard Approved, Supply and Return Lines	
Fuel Filter	Primary and Secondary	
Fuel Injection System	Direct Injection, Inline Pump	
Engine Heater	230V-AC, 2000 Watt	115V-AC, 2000 Watt
Governor, Speed	Variable Speed, Mechanical	
Heat Exchanger	Tube and Shell Type, 60 PSI (4 BAR), NPT(F) Connections	Sea/Salt Water Compatible
Instrument Panel	Tachometer, Hourmeter, Water Temperature, Oil Pressure and Two (2) Voltmeters. Front Opening	
Junction Box	Integral with Instrument Panel; For DC Wiring Interconnection to Engine Controller	
Lube Oil Cooler	Engine Water Cooled, Plate Type	
Lube Oil Filter	Full Flow with By-Pass Valve	
Lube Oil Pump	Gear Driven, Gear Type	
Manual Start Control	On Instrument Panel with Control Position Warning Light	
Overspeed Control	Electronic with Reset and Test on Instrument Panel	
Raw Water Solenoid Operation	Automatic from Fire Pump Controller and from Engine Instrument Panel	
Run – Stop Control	On Instrument Panel with Control Position Warning Light	
Run Solenoid	24V-DC Energized to Stop	
Starters	One (1) 24V-DC with Two (2) Start Contactors	
Throttle Control	Adjustable Speed Control, Tamper Proof	
Water Pump	Centrifugal Type, Dual (2) V-Belt Drive with Guard	

Abbreviations: DC – Direct Current, AC – Alternating Current, SAE – Society of Automotive Engineers, NPT(F) – National Pipe Tapered Thread (Female)

MODEL NOMENCLATURE (10 Digit	Models)
DQ 6 H	UF A A 60
Base Engine – 126 Series – 6 Cylinder – Heat Exchanger Cooled –	Power Curve Number Non-Emissionized Built in USA UL Listed and FM Approved

CLARKE Fire Protection Products, Inc. 3133 E. Kemper Rd., Cincinnati, Ohio 45241 United States of America Tel +1-513-475-(FIRE)3473 Fax +1-513-771-0726 www.clarkefire.com CLARKE UK, Ltd. Grange Works, Lomond Rd., Coatbridge, ML5-2NN United Kingdom Tel +44-1236-429946 Fax +44-1236-427274 www.clarkefire.com

C133912 revG 14JAN13 Specifications and information contained in this brochure subject to change without notice.

GLOBAL No.1-13

Low Temperature Hot Water Boiler High Temperature Hot Water Boiler

For exact measures: Please consult the Arrangement drawing

	Nr.	1	2	3	4	5	6	7	8	9	10	11	12	13
Heat Output	kW	1000	1250	1500	2000	2500	3000	3500	4250	5000	6000	7500	8500	10000
А	mm	3200	3350	3500	3900	4075	4350	4500	4850	5150	5450	5750	5950	6700
A og H (16 bar-g boilers)	mm	+350	+350	+350	+350	+350	+400	+400	+400	+400	+450	+450	+450	+450
В	mm	1690	1840	1840	1970	2040	2200	2290	2370	2480	2660	2830	2900	2980
C	mm	2020	2170	2170	2300	2370	2530	2630	2710	2820	3000	3170	3240	3320
D	mm	1805	1960	1960	2095	2165	2330	2400	2490	2595	2760	2940	3010	3095
E	mm	1920	2070	2070	2200	2270	2430	2520	2600	2710	2890	3060	3130	3210
F	mm	680	735	735	775	800	862	895	935	964	1030	1081	1113	1140
G	mm	945	1020	1020	1085	1120	1200	1245	1285	1340	1430	1515	1550	1590
Н	mm	550	550	550	550	550	550	550	550	550	600	600	600	600
I	mm	1500	1650	1800	2200	2375	2575	2700	3050	3350	3500	3700	3800	4550
J	mm	1150	1150	1150	1150	1150	1225	1250	1250	1250	1350	1450	1550	1550
K	mm	1235	1345	1345	1440	1490	1610	1675	1730	1810	1940	2065	2120	2160
L1	mm	385	385	385	385	385	385	450	450	450	450	520	520	520
L2	mm	1520	1645	1645	1750	1795	1930	2020	2075	2160	2315	2460	2505	2560
Mø (inside diameter)	mm	250	300	300	350	400	450	450	500	550	600	650	700	750
N	mm	750	900	1050	1450	1625	1625	1600	1950	2100	2400	2600	2700	3450
NP	mm	1900	2030	2200	2580	2750	2930	3050	3400	3700	3900	4100	4200	4950
0	mm	875	875	875	875	875	1075	1075	1075	1175	1175	1175	1175	1175
Length furnace excl. VK	mm	2350	2500	2650	3050	3225	3425	3550	3900	4200	4450	4650	4750	5500
Lengts furnace incl. VK	mm	2725	2875	3025	3425	3600	3800	3950	4300	4600	4850	5150	5350	6100
Diameter furnace	mm	660	760	760	830	900	960	1022	1080	1130	1208	1310	1360	1410
Flue gas resistance (🛚)	mbar	5,0	4,5	6,0	6,5	7,0	7,5	8,0	8,0	8,0	8,0	10,0	11,0	12,5
Flue gas temp (🕸)	°C	205/2	205/	205/	205/	205/2	205/	205/	205/	205/	205/	205/	205/	205/
		40	240	240	240	40	240	240	240	240	240	240	240	240
Pressuredrop waterside @	mbar	35	25	30	25	35	50	35	50	25	30	50	25	35
Δt 30 C	3													
Water content	m	2,71	3,35	3,55	4,71	5,2	6,8	7,45	8,55	10,2	12,6	14,9	15,1	19,0
Flue gas volume	m°	2,0	2,5	2,6	3,3	4,0	4,6	5,6	6,9	7,7	9,3	11,5	12,3	15,5
Weight 4,0 bar-g	ton	3,1	3,8	3,9	4,7	5,2	6,3	7,0	8,5	9,0	10,9	13,2	14,0	16,6
Weight 6,0 bar-g	ton	3,2	3,9	4,0	4,8	5,4	6,6	7,6	8,7	9,8	11,8	13,7	15,2	18,1
Weight 10,0 bar-g	ton	3,8	4,5	4,7	5,6	6,3	7,7	8,9	10,2	11,5	13,8	16,1	18,9	21,2
Weight 16,0 bar-g	ton	4,6	5,6	5,9	6,9	7,8	9,8	11,1	12,8	13,9	16,9	19,4	20,8	27,0

(♠) @ N-gas / gasolie $O_{2 \text{ tor}} = 2,1\%$, t: 75/60 °C / 130/100 °C,

The manufacture reserves the right to make alterations. 06-09-10

GLOBAL No.1-13

Low Temperature Hot Water Boiler High Temperature Hot Water Boiler

		1	1												
		Nr.	1	2	3	4	5	6	7	8	9	10	11	12	13
	Heat Output	kW	1000	1250	1500	2000	2500	3000	3500	4250	5000	6000	7500	8500	10000
Pos	Branch														
1	Flow	DN	80	100	100	125	125	125	150	150	200	200	200	250	250
2	Return	DN	80	100	100	125	125	125	150	150	200	200	200	250	250
3	Safety valve	DN	2 x	2 x	2 x	2 x	2 x 65	2 x	2 x	2 x	2 x	2 x	2 x	2 x	2 x
	4,0 Bar-g		32	40	40	50		65	65	80	80	80	100	100	125
3	Safety valve	DN	2 x	2 x	2 x	2 x	2 x	2 x	2 x	2 x	2 x	2 x	2 x	2 x	2 x
	6,0 Bar-g		32	32	40	40	50	50	65	65	65	80	80	100	100
3	Safety valve	DN	2 x	2 x	2 x	2 x	2 x	2 x	2 x	2 x	2 x	2 x	2 x	2 x	2 x
	10,0 Bar-g		25	25	32	32	40	40	50	50	50	65	65	65	85
3	Safety valve	DN	2 x	2 x	2 x	2 x	2 x	2 x	2 x	2 x	2 x	2 x	2 x	2 x	2 x
	16,0 Bar-g		25	25	25	32	32	32	40	40	40	50	50	65	65
4	Measuring	RG	3/4"	3/4"	3⁄4"	3⁄4"	3/4"	3/4"	3⁄4"	3/4"	3⁄4"	3/4"	3/4"	3/4"	3/4"
	4 x														
5	Measuring	RG	1/4"	1/4"	1/4"	1/4"	1/4"	1/4"	1/4"	1/4"	1/4"	1/4"	1/4"	1/4"	1/4"
6	Standstill	RG	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"
	shunt														
7	Drain	RG	2"	2"	2"	2"	2"	2"	2"	2"	2"	2"	2"	2"	2"

Pos		Pos	
8	Head hole 220 x 320 mm	12	Lifting Eyes (2 pcs.)
9	Man hole 320 x 420 mm	13	Handling Brackets
10	Access door (Inspection)	14	Cleaning Covers
11	Inspection hole		

The manufacture reserves the right to make alterations.

Appendix D BACT Calculations

PTE Calculations

Please refer to Baseine Emission Calculations

Potential emissions for the existing engine are based on manufacturer guarantees.

NO _X emissions (existing), tons	5.10
NO _x Emissions associated with replacement units, tons	0.51
NO _X emissions reduction, tons	4.59
Net Emissions Reduction, tons	4.59

Pollutant	NO _X	% red.
Existing PTE (tons/yr)	5.10	~
Tier 4 Engines PTE (tons/yr)	0.51	90%

Tons of emissions potentially saved per year by purchasing new engines:

Emission reduction - cost per ton:

\$207,133.98

4.59

Tier 4 Engine

interest

Preferred Commercial Lending Rate (i)		6.00%	
Project Duration in Years (n)		20	
Capital Recovery Factor			
$(A/P, i\%, n) = \frac{i(1+i)^{n}}{(1+i)^{n}-1}$	(A/P, 6.00%, 1)	0.0872	

Description of Cost	
Capital Cost	

Equipment Installation Costs		Estimate
Quoted cost for a Tier 4 engine, 100	00 kW	\$9,263,157.89
Additional capital cost to accommod transport, etc. (15%)	date tax,	\$1,389,473.68
	Capital Cost Summary	\$10,652,631.58
Additional Annual Cost		\$22,000.00
	Annual Cost Summary	\$22,000.00
ANNUALIZED COST C	OF CONTROL*	\$950,744.96

(Capital Cost*Capital Recovery Factor) + Annual Cost

*Equipment capital costs, installation costs, and annual maintenance costs were taken from manufacturer quotes. Emissions reduction % is based on the difference between manufacturer emission guaranteers for the existing generator and Tier 4 emission standards for a comparably-sized new generator.

Appendix E Air Dispersion Modeling Analysis Report

Air Dispersion Modeling Report – Revision 2

TSMC Phoenix Project Phoenix, Maricopa County, Arizona MCAQD Permit No. To Be Assigned

TSMC Arizona Corp

March 08, 2022

Contents

1.	Introd	uction	1
	1.1	Project Information	1
	1.2	Project Overview	1
2.	Model	ling Methods	1
	2.1	General Modeling Approaches	1
	2.2	Dispersion Model	2
	2.3	Air Pollutants Modeled	2
	2.4	Emission Units and Source Types	3
	2.5	Meteorological Data Set and Processing	3
	2.6	Receptor Arrays	3
	2.7	Terrain Processing	4
	2.8	Operating Schedule	4
	2.9	Building Downwash	4
	2.10	Background Pollutant Concentrations	4
	2.11	Effects of Nearby Facilities	5
	2.12	Secondary Formation of PM _{2.5}	5
3.	Model	ing Results and Compliance Demonstration	6
	3.1	NAAQS Impact Evaluation	6
	3.2	HAP Results Evaluation	6
	3.3	Model Input and Output Files	7

Figure index

- Figure 2A Facility Plan
- Figure 2B Facility Plan with Sources

Table index

Table 1	Project Information	1
Table 2	Facility Criteria Air Pollutants Modeled	2
Table 3	Facility Emission Units and Source Types	3
Table 4	Facility Receptor Grid	4
Table 5	Background Concentrations	4
Table 6	Worst Case MERP Values and Emissions for Secondary PM _{2.5} (tpy)	5
Table 7	Modeling Results and Compliance Demonstration	6
Table 8	HAP Modeling Results and Compliance Demonstration	6

Appendices

Appendix A Modeling Input Supplemental Information

1. Introduction

1.1 **Project Information**

Table 1 Project Information

Item	Information
Owner/Operator	TSMC
Facility Name	TSMC Arizona – Fab 21
Facility Address	NW corner of 43rd Avenue and State Route 303 Phoenix, AZ 85084
Contact Person Name, Title, Email, Phone Number	Qi Zhang, Senior Air Quality Specialist qi.zhang@ghd.com, (832) 380-7633
Facility Classification	Non-Title V
Application Type	New Source

1.2 **Project Overview**

Taiwan Semiconductor Manufacturing Co., Ltd. (TSMC) has submitted a minor source Non-Title V (NTV) air permit application for a new semiconductor manufacturing plant located in Maricopa County. The facility will consist of two Fabrication Facilities (Fab1 and Fab2) in which semiconductor chips are manufactured. Both fabs will have support equipment including natural gas fired boilers, diesel fired emergency generators, fire pump engines, rotor concentrator thermal oxidizers and cooling towers.

Due to emissions above modeling thresholds, an air dispersion analysis is required as a part of the NTV air permit application. This modeling report outlines the approach and results for the dispersion modeling analysis of site wide emission sources using AERMOD in accordance with Maricopa County Air Quality Department (MCAQD) modeling guidance.

Please note that this Air Dispersion Modeling Report – Revision 2 replaces the modeling report that was initially submitted with the NTV application, as several model inputs have been revised.

2. Modeling Methods

2.1 General Modeling Approaches

This modeling analysis follows the general modeling approaches as outlined in the following guidance documents:

- Minor New Source Review Air Dispersion Modeling Guideline, Maricopa County Air Quality Department, June 27, 2016.
- Air Dispersion Modeling Guidelines for Arizona Air Quality Permits, Air Quality Permit Section, Air Quality Division, Arizona Department of Environmental Quality, December 1, 2015.
- ADEQ Guidance on How to Comply with the Arizona State Hazardous Air Pollutant Program, Air Quality Permit Section, Air Quality Division, Arizona Department of Environmental Quality, August 29, 2007.
- Appendix W to 40 CFR Part 51, Guideline on Air Quality Models, the United States Environmental Protection Agency, January 17, 2017.

Any modeling techniques deviating from the guidance documents were not encountered in this modeling analysis.

2.2 Dispersion Model

AERMOD and associated programs are used in this air dispersion modeling analysis. Versions of the modeling suites are listed as follows:

- AERMOD v21112
- AERMAP v18081
- Building Profile Input Program (BPIP) plume rise model enhancements (PRIME) v04274

Based on review of aerial imagery, the site is located in and surrounded by rural areas. Therefore, rural dispersion parameters were used in this modeling evaluation.

Additionally, no schools were identified within two (2) miles of the facility. A site plan with facility boundary and 2-mile buffer are shown on **Figure 1**.

2.3 Air Pollutants Modeled

Criteria pollutants evaluated in this air dispersion modeling analysis include carbon monoxide (CO), nitrogen dioxide (NO₂), particulate matter less than 10 micron aerodynamic diameter (PM₁₀), particulate matter less than 2.5 micron aerodynamic diameter (PM_{2.5}) and sulfur dioxide (SO₂).

The following table summarizes the averaging period, primary National Ambient Air Quality Standards (NAAQS), Significant Impact Level (SIL), and attainment status of criteria pollutants included in the modeling evaluation.

Pollutant	Averaging Period	Primary NAAQS (µg/m3)	SIL (µg/m3)	Attainment or Non- Attainment Pollutant
СО	1-hr	40,000	2,000	Attainment
СО	8-hr	10,000	500	Attainment
NO ₂	1-hr	188	7.5	Attainment
NO ₂	Annual	100	1.0	Attainment
PM ₁₀	24-hr	150	5	Non-Attainment
PM _{2.5}	24-hr	35	1.2	Attainment
PM _{2.5}	Annual	12	0.2	Attainment
SO ₂	1-hr	196	7.8	Attainment
SO ₂	3-hr	1,300	25	Attainment
Notes:	'			

Table 2 Facility Criteria Air Pollutants Modeled

μg/m³ - micrograms per cubic meter hr - hour

The updated Ambient Ratio Method (ARM2) was used to characterize the nitrogen oxide (NO_x) to NO₂ conversion in this project. The ARM2 method is a Tier 2 default regulatory option that replaced the original ambient ratio method (ARM) in the latest updates to the Guideline in Air Quality Models (Appendix W). The regulatory default minimum NO_2/NO_x in stack ratio of 0.5 was used in this evaluation.

In addition to the criteria pollutants listed above, hazardous air pollutants (HAPs) with emission rates above the de minimis rates in Table 1 of the ADEQ 2007 HAP guidance were included in this modeling evaluation. Below are the HAPs evaluated:

- Hydrofluoric Acid (HF)
- Hydrochloric Acid (HCI)
- Arsine (AsH₃)
- Benzene (C₆H₆)
- Formaldehyde (HCHO)

- Ethylene Glycol (C₂H₆O₂)
- Cobalt (Co)

2.4 Emission Units and Source Types

The emission units and source types at the TSMC Facility modeled are in the table below.

Emission Point Number	Source Description	Source Type	Release Type	Source Quantity
1A101 through 1A118	AAS_SEX (Acid) Scrubbers	Point	Vertical	18
1A131 through 1A139	AAS_SEX-Bench Scrubbers	Point	Vertical	9
1A201 through 1A206	AAS_AEX (Ammonia) Scrubbers	Point	Vertical	6
1A301 through 1A306	Zeolite Roter Oxidizers	Point	Vertical	6
1A401 through 1A403	Wastewater (Acid) Scrubbers	Point	Vertical	3
1B501 through 1B503	1,500 kilowatt Hot Water Boilers	Point	Capped	3
1C601 through 1C614	Cooling Towers	Point	Vertical	14
1G701 through 1G738	Generators	Point	Vertical	22
1FP	Fire Water Pump	Point	Capped	1
2A101 through 2A118	AAS_SEX (Acid) Scrubbers	Point	Vertical	18
2A131 through 2A139	AAS_SEX-Bench Scrubbers	Point	Vertical	9
2A201 through 2A206	AAS_AEX (Ammonia) Scrubbers	Point	Vertical	6
2A301 through 2A306	Zeolite Roter Oxidizers	Point	Vertical	6
2A401 through 2A403	Wastewater (Acid) Scrubbers	Point	Vertical	3
2B501 through 2B503	1,500 kilowatt Hot Water Boilers	Point	Capped	3
2C601 through 2C614	Cooling Towers	Point	Vertical	14
2G701 through 2G738	Generators	Point	Vertical	0
2FP	Fire Water Pump	Point	Capped	1

Table 3 Facility Emission Units and Source Types

Locations of the sources are shown in **Figure 2A** and **Figure 2B**, and detailed stack parameters are summarized in **Appendix A**.

2.5 Meteorological Data Set and Processing

Pre-processed meteorological data from the Arizona Department of Environmental Quality was used in this modeling evaluation. The meteorological data includes years 2014 through 2018 processed with AERMET version 19191 and the adjusted u star option using the Phoenix Airport surface station (WBAN# 23183) and the Tucson International Airport upper air station (WBAN# 23160).

2.6 Receptor Arrays

This modeling evaluation used receptor grid recommendations described in MCAQD's Minor Source NTV Air Dispersion Modeling Guidelines. The proposed grid spacing is included in the table below.

Table 4 Facility Receptor Grid

Distance from All Emission Sources (m)	Receptor Spacing (m)
Fence Line	25
300	25
1,000	100
5,000	500
10,000	1,000
Note: m - meters	·

2.7 Terrain Processing

The project was modeled using the Elevated Terrain Mode. Elevations for the project were obtained from National Elevation Dataset (NED) GeoTIFF files from the United States Geological Survey (USGS) with a resolution of 1/3 arc (~10 m) for the modeling domain. The AERMAP processor version 18081 was used to process the NED files and generate source, building, and receptor and hill height elevations, as applicable.

2.8 Operating Schedule

Routine manufacturing equipment is represented as operating 24 hours per day, 365 days per year, and therefore, no operating schedule adjustment is used in AERMOD.

Functional testing of emergency generators and fire pump engines are represented no more than eighteen (18) hours per year, and are limited to no more than one test per day; therefore, the following modeling techniques are used:

- One hour NO₂ and SO₂ Intermittent emission source guidance are used to model annual average emissions for the short term analyses
- Twenty-four hour PM₁₀ and PM_{2.5} A scaler of maximum 1-hour of operation in any 24-hour period is used

2.9 Building Downwash

Building downwash effects were included using BPIP to calculate inputs to the PRIME in AERMOD. Building input information is provided in **Appendix A**.

2.10 Background Pollutant Concentrations

Background concentrations are added to modeling results to determine compliance with the NAAQS. The available background concentration data for the closest monitors to the site in Maricopa County are presented in Table 5. :

Pollutant	Averaging Period	AQS Monitor Code, Name	Description of Value	Background Concentration (µg/m³)
NO ₂	1-hr	04-013-9997, JLG Supersite	1-hr 98 percentile, 3-year average from 2018 to 2020	91
NO ₂	Annual	04-013-9997, JLG Supersite	2020 concentration (most recent year)	25
PM ₁₀	24-hr	04-013-4016, Zuni Hills	Highest concentration from 2018 to 2020 (2018 value), excluding exceptional events	131
PM _{2.5}	24-hr	04-013-2001, Glendale	24-hr 98 percentile, 3-year average from 2018 to 2020	17.87

Table 5 Background Concentrations

Pollutant	Averaging Period	AQS Monitor Code, Name	Description of Value	Background Concentration (µg/m³)
PM _{2.5}	Annual	04-013-2001, Glendale	3-year average from 2018 to 2020	7.1
SO ₂	1-hr	04-013-9997, JLG Supersite	1-hr 99 percentile, 3-year average from 2018 to 2020	12
SO ₂	3-hr	04-013-9997, JLG Supersite	2020 concentration (most recent year)	20
СО	1-hr	04-013-9997, JLG Supersite	2020 concentration (most recent year)	2,444
CO	8-hr	04-013-9997, JLG Supersite	2020 concentration (most recent year)	1,948

The main monitor selection criteria used in this modeling analysis is based on proximity of the monitor to the proposed site. Availability of data is also considered when selecting the monitor. Based on a cursory review of the land use surrounding the site and the monitor, the monitors selected to represent the site are located in larger population and more densely industrial areas than the proposed site location. Therefore, we believe that the selected monitors provide a conservative representation of the background concentrations around the site.

Background concentration calculations are provided in **Appendix A**.

2.11 Effects of Nearby Facilities

Based on communication with MCAQD, no nearby sources are necessary for this modeling evaluation. It is assumed that the effect from nearby sources is included in the background value used.

2.12 Secondary Formation of PM_{2.5}

In the ambient air, PM_{2.5} is not only directly emitted from industrial sources, but also formed secondarily due to photochemical reactions of precursor pollutants including NO_x and SO₂.

The complex chemistry of secondarily formed PM_{2.5} is well documented and has historically presented significant challenges with the identification and establishment of particular models for assessing the impacts of individual stationary sources on the secondary formation of PM_{2.5}. AERMOD can be used to simulate the dispersion of direct PM_{2.5} emissions but not the contribution from secondary formation of PM_{2.5}. As part of the revisions made to the Appendix W (January 17, 2017), the EPA promulgated a two-tiered demonstration approach for addressing single source impacts on secondary PM_{2.5}.

The first tier involves the use of technically credible relationships between precursor emissions and a source's impact in combination with other supportive information and analysis for the purpose of estimating secondary impacts from a particular source. The EPA developed a Tier I demonstration tool for secondary PM_{2.5} precursor emissions called Modeled Emission Rates for Precursors (MERPs). As precursors of secondary PM_{2.5} formation, NO_x, and SO₂ emissions are not expected to be significant enough to result in quantifiable secondary formation of PM_{2.5}. Therefore, TSMC proposes to use the worst case MERP value for the entire state of Arizona for this analysis. The worst case MERP values and project emissions are shown in the table below.

Precursor	MERP 24-Hour PM _{2.5}	MERP Annual PM _{2.5}	Project Emissions
NOx	15,260	105,871	86.8*
SO ₂	1,918	31,245	1.2

 Table 6
 Worst Case MERP Values and Emissions for Secondary PM_{2.5} (tpy)

3. Modeling Results and Compliance Demonstration

3.1 NAAQS Impact Evaluation

Criteria pollutants were modeled according to methods described in Section 2 of this report. As a conservative approach, the High 1st High (H1H) values of all short-term analyses are reported as the modeling results. Modeling results are presented in the table below.

Pollutant	Averaging Period	Site-Wide Impact (µg/m³)	SIL (De Minimis Level) (µg/m³)	Background (µg/m³)	Total Site + Background (µg/m³)	NAAQS (µg/m³)	Pass? (Yes/No)
CO	1-Hour	362.91	2,000	-	-	-	Yes
CO	8-Hour	228.87	500	-	-	-	Yes
NO ₂	1-Hour	48.79	7.5	91	140	188	Yes
NO ₂	Annual	2.88	1	25	28	100	Yes
PM ₁₀	24-Hour	8.86	5	131	140	150	Yes
PM _{2.5}	24-Hour	8.05	1.2	17.87	26	35	Yes
PM _{2.5}	Annual	2.68	0.2	7.1	9.8	12	Yes
SO ₂	1-Hour	1.25	7.8	-	-	-	Yes
SO ₂	3-Hour	3.58	25	-	-	-	Yes
Notes: PM _{2.5} impact res	sults include seco	ondary formation	from precursors.				

 Table 7
 Modeling Results and Compliance Demonstration

µg/m³ - micrograms per cubic meter

Site-wide impacts for CO 1-Hour, CO 8-Hour, and SO₂ 3-Hour were below each of their respective SIL de minimis levels and therefore NAAQS compliance was not evaluated for these pollutants and averaging periods.

Site-wide impacts for NO₂ 1-Hour, NO₂ Annual, SO₂ 1-Hour, PM₁₀ 24-Hour, PM_{2.5} 24-Hour and PM_{2.5} Annual were each summed with their respective background concentration and then compared with their respective NAAQS. Site-wide impacts plus background totals are below the NAAQS for each of these pollutants and averaging periods and therefore do not cause nor contribute to an exceedance of the NAAQS.

3.2 HAP Results Evaluation

HAPs were modeled according to methods described in Section 2 of this report. Modeling results are presented in the table below.

Pollutant	Averaging Period	Site-Wide Impact (µg/m³)	Acute AAC (µg/m³)	Chronic AAC (µg/m³)	Pass? (Yes/No)
HF	1-Hour	2.37	9,800	-	Yes
HF	Annual	0.16	-	14.6	Yes
HCI	1-Hour	4.52	16,000	-	Yes
HCI	Annual	0.23	-	20.9	Yes
AsH ₃	1-Hour	5.48E-03	2500	-	Yes
AsH ₃	Annual	1.70E-04	-	4.41E-04	Yes
Benzene	1-Hour	0.71	1,276,000	-	Yes

Table 8 HAP Modeling Results and Compliance Demonstration

Pollutant	Averaging Period	Site-Wide Impact (µg/m³)	Acute AAC (µg/m³)	Chronic AAC (µg/m³)	Pass? (Yes/No)
Benzene	Annual	1.10E-04	-	0.243	Yes
Formaldehyde	1-Hour	0.07	17,000	-	Yes
Formaldehyde	Annual	3.40E-04	-	0.146	Yes
Ethylene Glycol	Annual	8.38E-02	-	417	Yes
Cobalt	Annual	4.00E-05	-	6.86E-04	Yes

Notes:

Acute and chronic ambient air concentration (AAC) standards from Table 3 of ADEQ HAP modeling guidance, August 2007. µg/m³ - micrograms per cubic meter

Site-wide impacts for each HAP modeled are below their respective acute (1-Hour averaging period) and chronic (Annual averaging period) ambient air concentration (AAC) standards.

3.3 Model Input and Output Files

Digital copies of all files relating to the modeling evaluation will be provided to MCAQD including:

- AERMOD Input and Output files
- SFC and .PFL meteorological files
- Terrain files (National Elevation Dataset GeoTIFF files from the USGS)
- BPIP Building Downwash files

Figures

Appendix A Modeling Input Supplemental Information

Appendix A

Modeling Input Supplemental Information - Buildings TSMC Phoenix Project Maricopa County, Arizona

Building ID	Description	Tier Number	Tier Height	Diameter	X Length	Y Length	Rotation Angle	UTM X1	UTM Y1
			(m)	(m)	(m)	(m)	(deg)	(m)	(m)
FAB_1	Fabrication Building 1	-	30.25		225	225	270	392690.02	3738054.1
FAB_2	Fabrication Building 2	-	30.25		225	225	270	392689.01	3738302.1
WWT	Wastewater Treatment Unit	-	15.27		255.51	93.7	270	393146.7	3738190.3
CHEM1_1	Chemical Storage Building 1.1	-	8.97		96.84	36.99	270	392935.13	3738192.72
CHEM1_2	Chemical Storage Building 1.2	-	8.97		96.84	36.99	270	392935.13	3738301.7
ΗM	Warehouse	-	23.93		59.35	223.29	90	392910.32	3738335.82
CUP_1	Central Utility Building 1	-	20.73		70.71	109.73	180	393065.78	3737945.6
CUP_2	Central Utility Building 2	-	20.73		70.71	109.73	180	393061.64	3738187.7
ELE_1	Electrical Building 1	-	11.23		121.92	54.86	180	393245.84	3738286.3
VEND	Vendor Building	-	10.06		109.73	60.96	90	392992.71	3738537.64
OFFBLD	Office Building	-	25.3	192.02				392426.99	3737759.09
BSGS1_1	BSGS structure 1.1	-	6.4		73.15	18.29	270	393011.5	3738045.25
BSGS1_2	BSGS structure 1.2	-	6.4		79.25	20.12	270	393043.94	3738045.3
GOWN	Gown Building	-	29.41		60.96	91.44	90	392641.54	3737914.51
BSGS2_1	BSGS structure 2.1	-	6.4		73.15	18.29	270	393011.5	3738288.63
BSGS2_2	BSGS structure 2.2	-	6.4		79.25	20.12	270	393043.94	3738289.32

Notes: m - meters deg - degrees

		Jehryde Annual Zhronic)	\$6 																		04 3.20E-05	04 3.20E-05	04 3.20E-05			05 1.62E-06									06 1.52E-07	06 152E-07	06 1.52E-07	06 1.52E-07 06 1.52E-07	06 1.52E-07 06 1.52E-07	06 1.52E-07 06 1.52E-07	06 1.52E-07 06 1.52E-07	06 1.52E-07	06 1.52E-07	06 1.52E-07	06 1.52E-07 06 1.52E-07	06 1.52E-07 06 1.52E-07									
		our Formato	- Ibhr	• •	• •				• •	• •	• •	• •	• •	• •		• •	• •	•	•••	-05 2.54E-I	-05 2.54E-i	-05 2.54E-i	-05 2.54E-i	• •	. 1.20E-	8 1 28 1			• •	• •	• •	•			-05 1.21E-	- 121E-	-05 1.21E- -05 1.21E-	46 1215 46 1215	46 1215- 46 1215-	-05 1.21E- -05 1.21E-	46 121E- 46 121E-	-05 1.21E4	05 121E	- 121E- 68 121E-	-05 1.21E- -05 1.21E-	-05 1.21E-i		• •	• •	• •		• •	• •		
		aldehyde 1-h (Aarte)	56 · ·										• •							E-04 3.20E	E-04 3.20E	E-04 3.20E	E-04 3.20E			E-04 4.74E			•••						E-04 7.39E	EO4 739E	E-04 7.39E	E-04 7.39E	E-04 7.39E	E-04 7.39E E-04 7.39E	E-04 7.39E	E-04 7.39E	E-04 7.39E	E-04 7.39E	E-04 7.39E E-04 7.39E	E-04 7.39E				• •		•••			
		Jal Form	g																	E-07 2.54	E-07 2.54	E-07 2.54	E-07 2.54		- 04 F	2.22 2.22 2.22 2.22 2.22 2.22	8.								5.87 1.23 1.23	222 222 223 223 223 223	E-06 5.87 E-06 5.87	E-06 5.87 E-06 5.87	E-06 5.87 E-06 5.87	E-06 5.87 E-06 5.87	E-06 5.87 E-06 5.87	E-06 5.87	E-06 5.87	E-06 5.87	E-06 5.87 E-06 5.87	E-06 5.87									
		Benzene Anni (Chronic)	5 July 1																	ZE-06 8.97	2E-06 8.97 2E-06 8.97	2E-06 8.97	ZE-06 8.97			1E-07 4.55									9E-05 1.49	9E-05 1.49 9E-05 1.49	9E-05 1.49 9E-05 1.49	9E-05 1.49 9E-05 1.49	9E-05 1.49 9E-05 1.49	9E-05 1.49 9E-05 1.49	9E-05 1.49 9E-05 1.49	9E-05 1.49	96-05 1.49	9E-05 1.49 9E-05 1.49	9E-05 1.49 9E-05 1.49	9E-05 1.49 9E-05 1.49									
		hour	\$6 · ·																	- 97E-07 7.	97E-07 7.	97E-07 7.	97E-07 7.		-	33E-06 34									27E-04 1.	27E-04 1.	27E-04 1. 27E-04 1.	27E-04 1. 27E-04 1.	27E-04 1. 27E-04 1.	27E-04 1. 27E-04 1.	27E-04 1: 27E-04 1:	27E-04 1.	27E-04 1	27E-04 1.	27E-04 1: 27E-04 1:	27E-04 1. 27F-04 1.									
		Benzene 1 (Acute	nhur																	7.12E-06 8	7.12E-06 8 7.12E-06 8	7.12E-06 8	7.12E-06 8		1.065.05	1.05E-05									6.77E-03 7	5.77E-03 7	5.77E-03 7 5.77E-03 7	5.77E-03 7 5.77E-03 7	5.77E-03 7 5.77E-03 7	5.77E-03 7 5.77E-03 7	5.77E-03 7 5.77E-03 7	5.77E-03 7	5.77E-03 7	5.77E-03 7	5.77E-03 7 5.77E-03 7	5.77E-03 7 5.77E-03 7									
		balt	g/s 1.28E-06 1.28E-06	1.28E-06 1.28E-06	1.28E-06 1.28E-06	1286-06	1.266-06	1.286-06	1.28E-06 1.28E-06	1.28E-06 1.28E-06	1.28E-06 1.28E-06																																				1.28E-06	1.286-06	1.28E-06 1.28E-06	1.28E-06 1.28E-06	1.28E-06	1.28E-06 1.28E-06	1.28E-06 1.28E-06	1286-06	
		8	1.01E-05 1.01E-05	1.01E-05 1.01E-05	1.01E-05 1.01E-05	1.01E-05 1.01E-05	1.01E-05	1.01E-05	1.01E-05 1.01E-05	1.01E-05 1.01E-05	1.01E-05 1.01E-05					• •			• •											• •	• •										• •				• •		1.01E-05	1.01E-05	1.01E-05 1.01E-05	1.01E-05	1.01E-05	1.01E-05 1.01E-05	1.01E-05 1.01E-05	1.01E-05	-
		ene Glycol	9/s 5 6.98E-06 5 6.98E-06	6 6.98E-06	6 6.98E-06 5 6.98E-06	6 6.98E-06	6 6.96E-06	5 6.98E-06	6 6.98E-06 6 6.98E-06	6 6.98E-06 6 6.98E-06	6 6.98E-06 6 6.98E-06	• •				• •	02 8.03E-03	02 8.03E-03	02 8.00E.03	02 8.03E-03		•		• •	•		• •			• •			• •		• •	• •	• •	• •	• •		• •				• •	• •	6 6.96E-06	5 6.96E-06	6 6.96E-06 5 6.96E-06	6 6.96E-06	6 6.96E-06	6 6.98E-06 6 6.98E-06	6 6.98E-06	6 6.98E-06	
		Ethyl	b/hr 06 5.54E-0 06 5.54E-0	06 5.54E-C 06 5.54E-C	06 5.54E-C	00 554E-0	8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		00 554E-0	06 5.54E-C 06 5.54E-C	06 5.54E-0 06 5.54E-0	 88		 	 88	 88	6.376E-i	6.376E-I	6.376E-i 6.376E-i	6.376E-i		•	• •	• •	•			• •	• •	• •	• •						• •	• •	• •	• •	• •	•		• •	• •	• •	06 6.54E-0	06 5.54E-C	06 5.54E-0 06 5.54E-0	06 5.54E-0 06 5.54E-0	06 5.54E-0	06 5.54E-C 06 5.54E-C	06 5.54E-C	2246-0	j
		AsH ₅	hr gla E-05 3.97E4 E-05 3.97E4	E-05 3.97E4 E-05 3.97E4	E-05 3.97E4 E-05 3.97E4	E-05 3.97E-	E-05 3.97E-	E-05 3.97E-	E-05 3.97E4	E-05 3.97E4 E-05 3.97E4	E-05 3.97E4	E-05 3.97E4	E-05 3.97E4	E-05 3.97E-	EOS 397E4	E-05 3.97E4 E-05 3.97E4	• •	•	•••	•••		•		•••	•				•••	• •					•••			•••	•••	•••	• •	•		•••	•••	• •	E-05 3.97E4	E-05 3.97E4	E-05 3.97E4 E-05 3.97E4	E-05 3.97E4	E-05 3.97E4	E-05 3.97E4 E-05 3.97E4	E-05 3.97E4	E-05 3.97E4	j
			95 Ib/ 06-03 3.15 06-03 3.15	8E-03 3.15 8E-03 3.15	E-03 3.15 E-03 3.15	E-03 3.15 E-03 3.15	2003 3.15 203 3.15 203 3.15	#403 3.15 #603 3.15	8E-03 3.15 8E-03 3.15	E-03 3.15 E-03 3.15	0E-03 3.15 0E-03 3.15	0E-03 3.15 0E-03 3.15	E-03 3.15 F=03 3.15	E-03 3.151	6-03 3.15	E-03 3.15 E-03 3.15		Ĵ						88	89)E-03 3.15	#-03 3.15 @=03 3.15	85-03 3.15 85-03 3.15	0E-03 3.15 0E-03 3.15	8E-03 3.15	0E-03 3.15 0E-03 3.15	E-03 3.15 E-03 3.15	E-03 3.15 E-03 3.15 E-03 3.15	-
		Н	bhr 54E-02 3.15 54E-02 3.15	54E-02 3.15 54E-02 3.15	54E-02 3.15 54E-02 3.15	54E-02 3.15 54E-02 3.15	64E-02 3.15	54E-02 3.15	54E-02 3.15 54E-02 3.15	54E-02 3.15 54E-02 3.15	54E-02 3.15 54E-02 3.15	54E-02 3.15 54E-02 3.15	54E-02 3.19 54E-02 3.19	54E-02 3.15	S4E-02 3.15	54E-02 3.15 54E-02 3.15								54E-02 3.15 54E-02 3.15	54E-02 3.15																						54E-02 3.15	54E-02 3.15	54E-02 3.19 54E-02 3.19	54E-02 3.15 54E-07 3.15	54E-02 3.15	54E-02 3.15 54E-02 3.15	54E-02 3.15 54E-02 3.15	54E-02 3.15 54E-02 3.15	
			9% .11E-03 2 11E-03 2	.11E-03 2 .11E-03 2	.11E-03 2 .11E-03 2	11E-03 2	11E03 2	116.03	11E.03 2	11E-03 2 11E-03 2	11E-03 2 11E-03 2	72E-04 2	72E-04 2	72E-04 2	72E-04 2	72E-04 2				39E-03	39E-03 39E-03	396-03	396-03	39E-03 2 39E-03 2	396-03 2																						.11E-03 2	.11E-03 2	.11E-03 2 .11E-03 2	.11E-03 2 11E-03 2	11E-03 2	.11E-03 2 .11E-03 2	11E-03 2	116.03	
		H	15/15-02 2 1.67E-02 2	1.67E-02 2	1.67E-02 2	1.67E-02 2	1.67E-02 2	167E-02 2	1.67E-02 2 1.67E-02 2	1.67E-02 2	1.67E-02 2	1.54E-03 5 1.54E-03 5	1.54E-03 5	154E-03	1.54E-03 5	L54E-03 5 L54E-03 5				895E-02 2	895E-02 2 895E-02 2	895E-02 2	895E-02 2	1.896-02 2	1.896-02 2																						1.67E-02 2	1.67E-02 2	1.67E-02 2 1.67E-02 2	1.67E-02 2	167E-02 2	1.67E-02 2 1.67E-02 2	1.67E-02 2	167E-02 2	
		ei	9% 30E-02 1 30E-02 1	30E-02 1 30E-02 1	30E-02 30E-02	20E-02	20EGC		206.02	30E-02	30E-02 30E-02	76E-02 4	76E-02 4		10E-02	76E-02 4	05E-03	05E-03	055-03	05E-03 06E-02 1	06E-02 1 06E-02 1	06E-02	065-02	30E-02	30E-02 1	50E-04	00E-03	82E-03	87E-03	02E-03 92E-03	82E-03	20E-03	00=00	5 - C2	00E-07	126.04	12E-04	125-01	126-04	12E-04 12E-04	12E-04 12E-04	12E-04	126-04	126-04	12E-04 12E-04	12E-04	30E-02	30E-02 1	30E-02 30E-02	30E-02 1	30E-02	306-02	30E-02 1	0000	
		PM _{2.5} Arm.	Ibhr 83E-01 2. 83E-01 2.	SSE-01 2.1	83E-01 2.	83501 2 83501 2	80E-01 2	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	836-01 2: 836-01 2: 2:	83E-01 21	83E-01 21 83E-01 21	196-01 21 196-01 21	19E-01 2.1 10E-01 2.1	196-01	19E-01 2.1	19E-01 21 19E-01 21	37E-03 1.0 37E-03 1.0	37E-03 1.0	37E-03 1.0 37E-03 1.0	37E-03 1.0 84E-01 8.0	04E-01 8.0	94E-01 8.0	84E-01 8.0	25E-01 21 25E-01 21	25E-01 23 06E-01 23		22E-02	22E-02 1.	25E-02 1.	25E-02 1. 25E-02 1.	25E-02 1.1	25E-02	226602 1	22EG0	79E-03 2	79E-03 2	79E-03 2	73E-03 2. 73E-03 2.	79E-03 2. 79E-03 2.	79E-03 2.	79E-03 2. 79E-03 2.	79E-03 2.	79E-03 2	79E-03 2.	79E-03 2. 79E-03 2.	79E-03 2	83E-01 2	53E-01 2.	53E-01 2. 53E-01 2.	83E-01 2.1	83E01 2	836-01 2.1 836-01 2.1	83E-01 21	836-01 21	
		ır	3/8 00E-02 11 00E-02 11	0E-02 1	05-02	2 2 3 2 8 8 8 8 8			 0.00 0.00 0.00	05.02 06.02 0	05.02	0E-02 2 0E-02 2	05.02 2 05.02 2	1 2 2 2	06-02 2	0E-02 2 0E-02 2	4E03 8	4E-03 8:	458	HE-03 8. 7E-02 6.3	7E-02 6.3 7E-02 6.3	7E-02 6.3	75-02 6.3	0E42 18 0E42 18	05.02 1.8 ME.02 1.8	2 E C C C C C C C C C C C C C C C C C C	51	21E-03 12	21E-03 1/2 21E-03 1/2	21E-03 1/5 21E-03 1/5	21E-03 1.5 21E-03 1.5	21E-03					9E-03 10 9E-03 10	36-03 36-03 36-03 16	SE-03 16 SE-03 16	59E-03 1.6 59E-03 1.6	SE-03 16 SE-03 16	SE-03 1.6	SE-03	26-03 16 26-03 16	SE-03 16 SE-03 16	9E-03 1.6	0E-02	00E402	00E-02 00E-02	06-02	00-02	00-00 00-00	05-02	1 1 1	
		PM _{2.5} 24ho	b/hr 36-01 2.3 36-01 2.3	GE-01 23	GE-01 2.3 GE-01 2.3	36-01 28-01 23	0E-01 23	5	3E-01 2.3 3E-01 2.3	GE-01 2.3 GE-01 2.3	GE-01 23 GE-01 23	9E-01 2.77 9E-01 2.77	9E-01 2.70 9E-01 2.70	2	96-01 2.7	9E-01 2.7 9E-01 2.7	7E-03 1.0 7E-03 1.0	7E-03 1.01	7E-03 1.0 7E-03 1.0	77E-03 1.00 94E-01 8.00	94E-01 8.00	94E-01 8.01	94E-01 8.00	25E-01 2.3 25E-01 2.3	25E-01 2.30 11E-02 4 81	136-02 48	25E-02 19	25E-02 19.	25E-02 1.9. 25E-02 1.9.	25E-02 19: 25E-02 19:	26E-02 1.9: 26E-07 1.9:	25E-02 19	26-02 266-02 266-02	20E-02	04E-02 4.22	04E-02 4.2	04E-02 4.2	04502 42 04502 42	04502 42) 04502 42)	04502 420 04502 420	04E-02 4.2 04E-02 4.2	04502 420 04500 420	045.02 42	34502 42 34502 42	04E-02 4.21 04E-02 4.21	04E-02 4.20 04E-07 4.20	3E-01 2.3	SE-01 2.3	3E-01 2.3 3E-01 2.3	0E-01 2.30	3E-01 2.3	ISE-01 2.30 ISE-01 2.30	GE-01 2.3 GE-01 2.3	3E-01 2.3	-
			0E-02 1.8 0E-02 1.8 0E-02 1.8	0E-02 1.8 0E-02 1.8	0E402 1.8 0E402 1.8	0 E 02 0 E 02 1 8 1 8 1 8		05.02	05.02 05.02 1.8 1.8	05.02 1.8 05.02 1.8	0502 18 0502 18	06-02 21 06-02 21	06-02 2.1 06-02 2.1	122	0E-02 2.1	0502 21 0502 21	4E-03 8.3 4E-03 8.3	4E-03 8.3	6-03 6-03 8:3	4E-03 8.3 7E-02 6.31	7E-02 6.3 7E-02 6.3	76-02 6.3	75-02 6.3	06-02 06-02 18 18	0E-02 1.85		15.0	15.02 15.15 15.15	15-03 15-03 1-52 1-52	15:00 15: 15:00 15:	15:03 1.57 15:01	15		2 22 1 2 22 1 2 22 1	940 940 940 940	946 86 86 94 86 94	96-03 34 96-03 34	8503 9503 9403	96.03 96.03 94.03 94.03	9E-03 3.40 9E-03 3.40	9E-03 3.40 9E-03 3.40	9E-03 3.40	34	9E-03 3.40 9E-03 3.40	9E-03 3.40 9E-03 3.40	9E-03 3.40 9F-03 3.40	0E-02 1.8	0E-02 1.8	0E-02 18 0E-02 18	0E-02 1.8 15.00 1.8	06.02	0E-02 1.8 0E-02 1.8	0E-02 1.8 0E-02 1.8	05.02 18 18 18	
- Stacks		PM ₁₀ 24-hou	XIN 5 3E-01 2:30 3E-01 2:30	3E-01 2.30 3E-01 2.30	3E-01 2.30 3E-01 2.30	8-01 2-30 2-30 2-30 2-30	5 2 3 3 5 4 5	5 2 3	85-01 230 85-01 230	3E-01 2.30 3E-01 2.30	3E-01 230 3E-01 230	36-01 2.76 36-01 2.76	3E-01 2.76 3E-01 2.76	2.76 2.76 2.76 2.76	9E-01 2.76	3E-01 2.76 3E-01 2.76	7E-03 1.05 7E-03 1.05	7E-03 1.05	7E-03 1.05 7E-03 1.05	7E-03 1.05 ME-01 8.05	4E-01 8.05 4E-01 8.05	4E-01 8.05	4E-01 8.05	5E-01 2.30 5E-01 2.30	5E-01 2.30 7E-07 4.80	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	1E-02 3.20	1E-02 3.20	1E-02 3.20 1E-02 3.20	1E-02 3.20 1E-02 3.20	1E-02 3.20 1E-07 3.20	1E-02 3.20	1E-02 3.20 1E-02 3.20	1E-02 3.20	4E-02 4.28	4E-02 4.28	4E-02 4.28 4E-02 4.28	4E-02 4.28 4E-02 4.28	4E-02 4.28 4E-02 4.28	4E-02 4.28 4E-02 4.28	4E-02 4.28 4E-02 4.28	ME-02 4.28	4E-02	HE-02 4.28 HE-02 4.28	4E-02 4.28 4E-02 4.28	4E-02 4.28	3E-01 2.30	3E-01 2.30 3E-01 2.30	3E-01 2.30 3E-01 2.30	3E-01 2.30 7E-01 2.30	3E-01 2.30	3E-01 2.30 3E-01 2.30	3E-01 2.30 3E-01 2.30	230 230 230 230	-
A Information	Arizona		* * 82 8	 5 5	 5 5		<u> </u>		 ž ž	 5 5	 8 8	212	2.15	1 61 6	212	215		8.3		€-03 6.39	€-03 6.39 €-03 6.39	E-03	8-8 8-8 8-8		- 1.82	331	5		5 5	254	2.54	254	5 2 2	5 15 1	340		ECG 340	ECC 340	E03 340	E-03 3.40 E-03 3.40	E-03 3.40 E-03 3.40	E-03 3.40	340	E-03 340	E-03 3.40 E-03 3.40	E-03 3.40	÷.	 	 8 8		. 12	 8 8	 20 20	12 2	
Appendix	MC Proentx copa County	SO ₂ 3-hour	۹۲																	- 5E-02 5.638	5E-02 5.630 5E-02 5.630	SE-02 5.63	3E-02 5.63		- 	142									86-02 0.00	25-02 447 26-02 4477	5E-02 4477 5E-02 4477	85-02 447 85-02 4477	8E-02 4.477 8E-02 4.477	5E-02 4.477 5E-02 4.477	8E-02 4.477 8E-02 4.477	SE-02 4.470	SE-02 4477	2E-02 4.470 2E-02 4.470	8E-02 4.477 8E-02 4.477	5E-02 4.470 9E-07 4.470									
eling Input S	Mark		a *																	E-03 4.47	E-03 4.47	E-03 4.47	E-03 4.47		6.00 110		3							-	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8	E-06 3.54 E-06 3.54	E-06 354	E-06 354	E-06 3.54 E-06 3.54	E-06 354	E-06 3.54	E-06 354	E-06 354	E-06 3.54 E-06 3.54	E-06 3.54									
pow		SO ₂ 1-hour	۰. ۲																	E-02 5.638	E-02 5.638 E-07 5.638	E-02 5.638	E-02 5.638		E.00 1400										E-U0 1.131 E-05 9.185	E-U5 9.185 E-05 9.185	E-05 9.185 E-05 9.185	E-05 9.185 E-05 9.185	E-05 9.185 E-05 9.185	E-05 9.185 E-05 9.185	E-05 9.185 E-05 9.185	E-05 9.185	E-05 9.185	E-05 9.185 E-05 9.185	E-05 9.185 E-05 9.185	E-05 9.185 E-05 9.185									
			8 8 8	88	8 8 	ន់នំ៖	នុខុខ	ខ្ខុ	8 8	55	 65 65							·		-02 4.476	502 4.475	02 4.475	502 4.475		. at 1	88									10212	5 2 2 2	120	128	1280	1280	1220	101 7.290	01 7290	507	501 7280	101 7.290	8	à à	8 8 	ä s	i ŝ i	8 8 	88	; ; ; ; ; ; ;	;
		1- and 8-hou	101 422E	101 4226	4226	428		5 5	426	422	01 4226	• •				• •	• •		•••	E-01 5.0006	5.01 5.000	-01 5.6006	-01 5.000	• •		-01 5.311 -01 5.311				• •					100 2000	+00 3.6538	+00 3.6338	+00 3.633	+00 3.6538 +00 3.6538	+00 3.633	+00 3.6338 +00 3.6338	1400 3.6338	100 3633	7+00 3.633	1+00 3.6338 1+00 3.6338	100 3.633	-01 4.226	4226	-01 4.22E	101 4.225	-01 4.226	01 4226	101 4226	122	ł
		ual CO	02 3.35E 02 3.35E 02 3.35E	02 3.35E 02 3.35E	02 3.35E 02 3.35E	02 3.356	02 3.366	02 3356	02 3356 02 3356	02 3.356 02 3.356	02 3356	• •					• •		•••	-02 4.49.96	-02 4.4996	02 4.49.98	-02 4.49.96			4 212									-03 2.8845	-12 7 284E	-03 2.8846	-02 2.884E	-03 2.884	-03 2.3846 -03 2.3846	-03 2,8845	-03 2.884E	-03	-02 2.0945	-03 2.884E -03 2.884E	-03 2.8845 -03 2.8845	02 3.35E	02 3.356	02 3.355 02 3.355	02 3.355	02 3.356	02 3.355 02 3.355	02 3355	02 3356	1
		hour and Ann	01 5.13E- 01 5.13E- 01 5.13E-	01 5.13E 01 5.13E	01 5.13E 01 5.13E	9 9 9 9 9 9 9 9 9	5 5 5 5 8 9 9 8 99 9	5 5 5 8 8 9 8 8 9	여 5.1월 이 5.1월	01 5.13E 01 5.13E	01 5.13E	• •	• •		• •	• •	• •		•••	- - 01 8.146E	-01 8.146E	-01 8.146E	201 0.1466		- 	-01 6.322E			• •		• •				-0.0 0.104E	-112 0.000ME	-02 6.000E	-02 6.000E	-02 0.000E	-02 6.000E	-02 6.000E	-02 6.069E	-02 6.000E	-402 0.000ME	-02 0.000E	-02 6.000E	01 5.13E-	01 5136	01 5.13E 01 5.13E	01 5.13E- 01 5.13E-	01 5.136	01 5.13E 01 5.13E	01 5.13E	01 5.1% 01 5.1%	
		ime NO ₂ 1-	10 th 4.07E	4.07E	4.07E 4.07E	4.076	4.076	4.076	4.07E 4.07E	4.07E 4.07E	4.07E 4.07E	• •	• •			• •	• •		•••	- 6.465E	6.465E	6.465E	6.465		- U 165	50186			• •						5.2936	5.2936	5.290E 5.293E	5.293E 5.293E	5.2936	5.2936	5.293E 5.293E	5.293E	5.2936	5.2936	5.293E 5.293E	5.29.36	4.07E	4.076	4.07E 4.07E	4.07E	4.07E	4.07E	4.07E	4.07E	1
		Operation T	hrs/yr 8,760 8,760	8,760 8,760	8,760 8,760	8,760	8,760 9,700	8,780	8,760 8,760	8,760 8,760	8,760 8,760	8,760 8,760	8,760 8,760	8,760	8,700	8,760 8,760	8,760	8,760	8,760	8,760	8,760 8,760	8,760	8,760	8,760 8,760	8,760	888	8,760	8,760	8,760	8.760	8,760	8,760	8,760	8,760	2 22 1	2 22 3	8 6	e e	82 82	88	8 8	ę ș	2 42 1	2 22	6 6	ę ę	8,760	8,760	8,760 8,760	8,760	8,760	8,760 8,760	8,760	8,760	ļ
		elease Type	VERTICAL VERTICAL	VERTICAL VERTICAL	VERTICAL VERTICAL	VERTICAL	VERTICAL	VERTICAL	VERTICAL VERTICAL	VER TICAL VER TICAL	VERTICAL VERTICAL	/ERTICAL	VERTICAL VERTICAL	/ERTICAL	VERTICAL	VERTICAL VERTICAL	JERTICAL	/ERTICAL	/ERTICAL	/ERTICAL /ERTICAL	/ERTICAL	JER TICAL	JER TICAL	/ERTICAL	/ER TICAL	CAPPED	VERTICAL	VERTICAL	VERTICAL	VERTICAL	VERTICAL VERTICAL	VERTICAL	VERTICAL VERTICAL	VERTICAL	VERTICAL	VERTICAL	VERTICAL	VERTICAL VERTICAL	VERTICAL	VERTICAL	VERTICAL	VERTICAL	VERTICAL	VERTICAL	VERTICAL VERTICAL	VERTICAL	VERTICAL	VERTICAL	VERTICAL	VERTICAL	VERTICAL	VERTICAL	VERTICAL VERTICAL	VERTICAL	Mark House
		Diameter R	() ()	22	22	22:	123	12	22	22	22	22	22	12:	12	22	880	660	88	88	818	8	1	55	114	80	3 2 3	3 2	2 S S	33	585	123	្លះ	2 12 1	8 5 6	5 5 5	5 6 6	5 5	5 5	0.41	5 6	0.41	5	5 5	19 0	0.41	2	5 2	22	÷ ;	2	22	22	122	5
		Exit Veloaity	(m/s) 21.65 21.65	21.65 21.65	21.65 21.65	21.65	21.85	518	21.65	21.65 21.65	21.65 21.65	21.05 21.05	21.65	518	21.85	21.65 21.65	21.3178 21.3178	21.3178	21.3178 21.3178	21.3178 16.93	16.93 16.93	16.93	16.93	21.77	21.77	513	2.50	282	280	7.50	2.50	120	8 8 2	8 8 2	61.42	61.42	61.42 61.42	61.42	61.42 61.42	61.42 61.42	61.42	61.42	61.42	61.42	61.42 61.42	61.42 61.42	21.65	21.88 21.88	21.05	21.65	21.65	21.65	21.65	2168	1
		Temperature	(K) 206.05 206.05	296.65 296.65	295.65	286.65	206.05	20010	286.65	295.05	295.65	295.05 295.05	295.65	296.65	299.962	295.65	205.65	296.65	295.65	295.65 310.15	310.15	310.15	310.15	286.65	295.65	478.15	308.15	308.15 308.15	308.15 308.15	308.15 308.15	308.15	308.15	308.15	308.15	792.15	782.15	792.15	792.15	792.15	792.15	792.15	792.15	792.15	792.15	792.15	792.15 792.15	205.65	200.00	205.05	295.65	296.65	295.05	205.05	206.05	
		Height	(m) 46.49 46.49	46.49 46.49	46.49	46.49	46.49	46.49	46.49	46.49 46.49	46.49 46.49	46.49 46.49	46.49	46.49	46.49	46.49 46.49	46.49	46.49	46.49	46.49	46.49	46.49	46.49	17.81	17.81	21.43	45.67	45.67	45.67 45.67	45.67 45.67	45.67	45.67	45.67	45.67	13.00	2 2 3 2 2 3	13 8 13 8	13.00 13.00	13 8 13 8	13.00	13.00	13.00	13.0	13.00	13.00	13.00	46.49	46.49	46.49 46.49	46.49	46.49	46.49	46.49	46.49	į
		¥	(m) 3738025.4 3738025.4	3738025.3 3738025.3	3738025.3 3738014.6	3738014.6 3738014.6	37 37862 2	3737872.1	3737872.1 3737872	37 37862 2 37 37862 2	37 37862 2 37 37862 2	3737911.4 3737974.7	3737974.7	3737974.7	3737911.4	3737911.4 3737911.4	3737976.7 3737976.7	3737976.7	3737907.5 3737907.5	3737975.20	3737969.00	373 7923.10	3737910.60	3738035.00 3738030.00	3738025.00 9737041.67	3737942.57	3737850.18	37.37877.48 37.37877.48	3737891.08	3737918.38 3737932.08	37 37850.18	37 37877 48	37.37904.78	37 37 932 08	37 37835.05	37 37835.05	3737835.05	3737835.05 3737835.05	3737835.05 3737835.05	3737835.05 3737835.05	3737835.05 3737835.05	3737835.05	3737882.00	3737874.00	3737870.00 3737866.00	3737862.00	3738025.4	3738025.3	3738025.3 3738025.3	3738014.6	3738014.6	3738014.6 37378622	3737872.1 3737872.1	3737872.1 3737872.1	
		X1	(m) 9289.8.06 9289.035	9288 1.32 9287 3.59	92804.63 92897.49	92889.37	92903.82	001 CE020	92870.56	92885.67 92887.93	71-122878.91	92777.53 92768.77	92761.03 92752 0.1	92744.27	16.62759	92750.88 92743.15	92854.09	92837.33	92853.96 92844.94	92869.60	92869.61	92870.24	02201020	93145.00 93145.00	93145.00	93063.90 93063.90	0045.36	50045.36 50045.36	93045.36 93045.36	93045.36 93045.36	90034.64	93034.64	80004 PH	80004 64	93131.67	00139.00 90139.00	93142.67 93146.33	93150.00 93197.67	90201.33	93208.67	93216.00	90234.33	93246.70	93246.70	93246.70	93246.70	80'8 6926	92268 1.32	92873.59 92904.63	92897.49 92880.37	92661.47	92873.74 92903.82	92895.06	902878.3 90870.56	
			bber 1 32 32 33	bber 3 3 bber 4 36	bber 5 3 bber 6 3	bber 7 3. bber 8 3.	ber 10 3. C	10er11 3	ober 13 : ber 14 3:	ober15 3 ber16 3;	ober17 3 ber18 3%	bber2 3(bber3 3.	ther 5	ther 7 3	bber8 3 bber9 35	rubber 1 3 rubber 2 36	trubber 3 3.	rubber 5 3	er 1 30	1er 2 3	4	er 6 Grad	er 2 3	er3 3.	ioler 2 3	, ei	n 6 	n 6	e 8	8 K	. 6 1	- 0 ·	-, ei i	ා න් i a	-> 85 I	0 8	0 6	0 6	0 8	e 16	00	, स 	-> R	e 16	08	bber 1 3.	bber 2 3	tibber 4 3. tibber 5 3.	bber 6 3 Vher 7 34	bber8 3.	bber9 3 ber10 35	bleer 11 3. bleer 12 36	ber 13 5. 5	
		c	Scrut.	Scrul	Scru	Scrut	Scat	Scut	Scrub	Scrub	Scrub	h Scrul	h Scn.	h Scru	th Scru	ich Scn.	norria) Su norria) Sc	norria) Sc	moria) Sr. moria) So	monia) Sk Mer Oxidizi	oter Oxidiz-	der Oxidiz	ter Oxidiz.	er Scrubt. er Scrubb	er Scrubb	t Water B	g Tower 1	ng Tower 3 ng Tower 3	13 Tower - 13 Tower 5	g Tower (g Tower &	g Tower 11	g Tower 1.	g Tower 1-	nerator 1	erator 3	nerator 4 nerator 5	verator 6 erator 19	verator 20 verator 21	erator 23 erator 23	erator 24 erator 28	erator 29	erator 31	wator 32 wator 33	rator 34 rator 35	ration 3.6 ration 3.7	id) Scru.	d) Schul	d) Scru d) Scrul	(d) Scrub	d) Scrut	.cid)Scrub cid)Scrub	Acid) Scrub Acid) Scrub	(Acid) Scrub	feer
		Description	X (Acid)	EX (Acid) X (Acid)	EX (Acid X (Acid	X (Acid	X (Acid)	X (Acid)	X (Acid) X (Acid)	X (Acid) X (Acid)	X (Acid) X (Acid)	X-Bend X-Bend	X.Benc	X-Beno	X-Berx	X-Ber X-Ber	(Amn	(Amr	8 8	£ %	66	e e	22	wet	device 1	÷ ; ;	÷ 🛓 :	88	등 등	10	- lo	19	i i i	55	580	5 8 6	88	88	88	8 <u>8</u>	26	81	88.	ş g	Gene Jene	Gene	X (Ac	EX (Aci	EX (Aci 'X (Aci	X (Ac	X (Ac	⊴.≷ Xi ×	XX	$(\times \times)$	5
		Description	1 AAS_SEX (Acid)	3 AAS_SEX (Acid) 1 AAS_SEX (Acid)	5 AAS_SEX (Acid 3 AAS_SEX (Acid	7 AAS_SEX (Acid 3 AAS_SEX (Acid	9 AMS_SEX (Acid) 7 AAS_SEX (Acid)	2 AAS_SEX (Acid)	3 AAS_SEX (Acid) 1 AAS_SEX (Acid)	5 AAS_SEX (Acid) 3 AAS_SEX (Acid)	7 AAS_SEX (Acid) 1 AAS_SEX (Acid)	1 AAS_SEX-Bend ? AAS_SEX-Bend	3 AAS_SEXBend	5 AAS_SEXBeno	7 AAS_SEX-Benc	8 AAS_SEX-Bor 1 AAS_SEX-Bor	1 AAS AEX (Amn	3 AAS_AEX (Am	4 AAS_AEX(Am 5 AAS_AEX(Am	6 AAS_AEX (An 2 Zeolite R	2 Zeolite R	4 Zeolite Re	5 Zeolite Ro	1 Wastewat ? Wastewat	3 Wastewah	2 1,500 kWHk	Coolir	2 Codi	4 Coolir 5 Coolir	6 Coolir Coolir	6 Coolir Coolir	Coolin	2 Codin	2 4 Coolin	1 File 1	2 C C	4 S Ge	8 9 Ger	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 Gen Gen	4 Ger	Ger		2 Cen	4 Gene 5 Gene	6 Gener	AAS_SEX (Ac	2 AAS_SEX (Ad) 3 AAS_SEX (Ad)	4 AAS_SEX (Act i AAS_SEX (Act	6 AAS_SEX (Ac	9 AAS SEX (Ac)	9 AAS_SEX (A	1 AAS_SEX(3 AAS SEX	di vone a la construcción de

														-	Aodeling Input Ti Mar	Supplemental Inf MC Phoenix Proj icopa County, Ari	ect sona zona	2																	
Type ID	D escription	X1	7	Height	Exit Temperature	Velodity	Diam otor 6	Release Type (peration Time	NO ₂ 1-hours	and Annual	00 1- ar	18-hour	SO ₂ 1410	5	SO ₂ 3 hour	PM ₁₀	24-hour	PM _{2.5} 24-hour	М	Azs Armuel		¥	Ħ		AsH ₅	Ethylene (lycol	Cobalt	Benzene 1-ho (Acute)	ur Benzen (Chr	s Annual Fom onic)	eldehyde 1-hour (Aoute)	Formaldehyde A (Chronic)	mual
		(m)	(m)	(u)	8	(s,m)	ίψ,		hrs/yr	15thr	5,6	1944	5,6	1bftvr	5,6	ahr gʻs	IN/Hr	5,6	10 July 0/	s lbhr	\$,6	Ibhr	5,6	bhr	dl 86	14 g/s	b/hr	98 lbfr	9/8	1bhr 9	A Ibhr	9/s lb	hr 95	5 J44	50
POINT 24115 AM	SEX (Acid) Scrubber 15 SEX (Acid) Scrubber 16	392887.50 392887.50	3737862.2	46.49	59982 29982	51.8	22	VERTICAL	8.760	4.07E-01	5.13E-02	3.356-01	4.22E-02				1.83E-01	2.300E-02	1.63E-01 2.300.	E-02 1.83E-0	11 2.30E-0	2 1.67E-00	2.11E-03	2.54E-02 3	s.19E-03 3.15E	105 397E-06	5.54E-05	36E-06 1.01E- 36E-06 1.01E-	05 128E-05		•••				
POINT 2A117 AAS	SEX (Acid) Scrubber 17	392878.91	3737862.2	46.49	295.65	21.65	1.4	VERTICAL	8,760	4.07E-01	5.13E-02	3.35E-01	4.22E-02			•	1.83E-01	2.300E-02	1.83E-01 2.300	E-02 1.83E-0	01 2.30E-0	2 1.67E-00	2.11E-03	2.54E-02 3	0.19E-03 3.15t	5-05 3.97E-06	5.54E-05 6	98E-06 1.01E-	05 1.28E-06				•		
POINT 2A118 AA5	SEX (Acid) Scrubber 18	392871.17	3737862.2	46.49	295.65	21.65	1.4	VERTICAL	8,760	4.07E-01	5.13E-02	3.35E-01	4.22E-02			•	1.83E-01	2.300E-02	1.83E-01 2.300	E-02 1.83E4	01 2.30E-0	2 1.67E-00	2.11E-03	2.54E-02	R.19E-03 3.15.	5-05 3.97E-06	5.54E-05 6	96E-06 1.01E-	05 1.28E-06		•		•		
POINT 2A131 AA	SEX-Bench Scrubber 1	392777.53	3737911.4	46.49	295.65	21.65	1.4	VERTICAL	8,760							•	2.19E-01	2.760E-02	2.19E-01 2.760.	E-02 2.19E-0	01 2.76E-0	2 4.54E-00	8 6.72E-04	2.54E-02	3.15E-03 3.15,	E-05 3.97E-06					•		•		
POINT 2A132 AA	SEX-Bench Scrubber 2	392768.77	3737974.7	46.49	295.65	21.65	14	VERTICAL	8,760								2.19E-01	2.760E-02	2.19E-01 2.760.	E-02 2.19E-L	01 2.76E-0	2 4.54E-00	5.72E-04	2.54E-02	3.19E-03 3.15	5-05 3.97E-06					•		•		
POINT 2A133 AA.	SEX-Bench Scrubber 3	392761.03	3737974.7	46.49	296.65	21.65	14	VERTICAL	8,760								2.19E-01	2.760E-02	2.19E-01 2.760	E-02 2.19E-1	01 2.76E-0	2 4.54E-00	5.72E-04	2.54E-02	1.19E-03 3.15	E-05 3.97 E-06							•		
POINT 2A134 AA.	SEX-Bench Scrubber 4	392752.01	3737974.7	46.49	295.65	21.68	4	VERTICAL	8,760								2.196-01	2.760E-02	2.19E-01 2.760	E-02 2:19E-1	01 2.76E-0	2 4.54E-00	5.72E-04	2.54E-02	1.19E-03 3.15	E-05 3.97E-06							•		
POINT 2A135 AA.	SEX-Bench Scrubber 5	392744.27	3737974.7	46.49	295.65	21.68	14	VERTICAL	8,760							•	2.196-01	2.760E-02	2.19E-01 2.760	E-02 2.19E-L	01 2.766-0	2 4.54E-00	5.72E-04	2.54E-02 3	1.19E-03 3.15	E-05 3.97E-06							•		
POINT 2A136 AA	SEX Bench Scrubber 6	392767.64	3737911.4	46.49	295.05	21.68	2:	VERTICAL	8,700								2.196-01	2.760E-02	2.19E-01 2.760	E-02 2:19E-1	01 2.76E-0	2 4.54E-0	5.72E-04	2.545-02	1196-03 3.15	E-05 3.97 E-06							•		
POINT 2A137 AA.	SEX-Bench Scrubber 7	302750.91	3737911.4	46.49	299.02	12	\$:	VERTICAL	8,760							•	2.196-01	2.760E-02	2.19E-01 2.760	E-02 2:19E-1	01 2.76E-0	2 4.546-00	5.72E-04	2.54E-02 3	196-03 3.15	E-05 3.97E-06							•		
POINT ZA138 AM	SEX-Bench Scrubber 8	2017/2012	3/3/2114	40.49	202002	8 8	5	VER ICAL	0.700				,				2.136-01	2.1608-02	2.136-01 2.760	F02 219E-(7 2/05/0	2 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4	10/20/0	2.546-02	1086403 3.15 100100 0.101	101 33/E408									
POINT 24159 AM	SEA-BETICI SCILLODET 9 FY (Ammonia) Scripbler 1	392/43.10 302/854.00	3/3/911.4	40.49	200.05	21.000	4 8	VERTICAL	0,/00 8.780								2.13E-01	2.700E-02 1.054E-03	2.18E-01 2.700. 8.37E-03 1.0546	T-02 Z-19E-0	1 2.10E-U	2 4.04E-UL	10-27/7C 0	2.046-02	1.19E-00 0.10	00-3/RC 00-3	6 376E.07 8								
POINT 24201 MMS	FX (Ammonia) Scripher 2	202946.07	37379767	46.49	200.05	213178	8 00	VERTICAL	8,760								8 375-03	1.0545-03	8.37F.03 1.0545	TIN BATFLO	23 106FD						6.37ME.CO 8								
POINT 2A203 AAS	EX (Ammoria) Scrubber 3	392837.33	3737976.7	46.49	295.65	21.3178	650	VERTICAL	8,760							•	8.37E-03	1.054E-03	8.37E-03 1.054t	7-03 8.37E-C	3 1.05E-0						6.376E-02 8	00E-03			•		•		
POINT 2A204 AAS_	EX (Ammoria) Scrubber 4	392853.96	3737907.5	46.49	295.65	21.3178	080	VERTICAL	8,760				,	,	,	•	8.37E-03	1.054E-03	8.37E-03 1.054t	5-03 8.37E-0	3 1.05E-0		,	,			6.376E-02 8	03E-03 -	,				•	,	
POINT 2A205 AAS_	EX (Ammoria) Scrubber 5	392844.94	3737907.5	46.49	295.65	21.3178	0.99	VERTICAL	8,760							•	8.37E-03	1.054E-03	8.37E-03 1.054k	E-03 8.37E-0	33 1.05E-0						6.376E-02 8	00E-03 -			•		•		
POINT 2A206 AAS_	EX (Ammoria) Scrubber 6	392837.2	3737907.5	46.49	295.65	21.3178	0.99	VERTICAL	8,760							•	8.37E-03	1.054E-03	8.37E-03 1.054L	E-03 8.37E-0	3 1.05E-0				•		6.376E-02 8	00E-03 -					•		
POINT 2A301 2	solite Roter Oxidizer 1	392869.60	3737975.20	46.49	310.15	16.93	8	VERTICAL	8,760	6.465E-01	8.14 6E-02	4.499E-01	5.6 69E-02	1.47.6E-02 5.1	536E-03 4.4	6E-02 5.638E-0	3 6.394E-01	8.057E-02	6.394E-01 8.057/	E-02 6.394E-	01 8.06E-0	2 1.895E-0	2 239E-03		,	•				7.12E-06 8.97	E-07 7.12E-06	8.97E-07 2.54	E-04 3.20E-05	2.54E-04 3.20	8
POINT 2A302 k	solite Roter Oxidizer 2 Alte Boter Oxidizer 2	3 9/2809.61 3 0/2860 6 7	3737969.00	46.49	310.15	10.52 10.52	8 9	VERTICAL	8,760 e 760	6.465E-01	8.14.0E-02 e-14.6E-02	4.459E-01	5.609E-02	1470E-02 5.1	536E-03 4.4	VE-02 5.636E-0	3 6.394E-01	8.05/E-02	6.394E-01 8.057. 3.304E-01 0.0576	E-02 6.394E-	01 8.06E-0	2 1.895E-0	2 239E03							7.12E-06 8.97	E-07 7.12E-06	8.97E-07 2.54	E-04 3.20E-05	2546-04 3.20	8 8
POINT 2A304 Z	olite Roter Oxidizer 4	392870.24	3737923.10	46.49	310.15	6.8 8.91	3 8	VERTICAL	8,760	6.465E-01	8.146E-02	4.499E-01	5.660E-02	1475E-02 5.1	5385-03 4.4	SE-02 5.638E-0	3 6.394E-01	8.057E-02	5.394E-01 8.057k	7-02 6.394E-1	01 8.06E-0	2 1.895E-0	2 239E-03							7.12E-06 8.97	E-07 7.12E-06	8.97E-07 2.54	E-04 3.20E-05	254E-04 3.20	38
POINT 2A305 Z	volite Roter Oxidizer 5	392870.25	3737916.90	46.49	310.15	16.93	1.50	VERTICAL	8,760	6.465E-01	8.14 6E-02	4.499E-01	5.669E-02	1.47.5E-02 5.1	S38E-03 4.4	SE-02 5.638E-(3 6.394E-01	8.057E-02 (5.394E-01 8.057L	5-02 6.394E-t	01 8.06E-0	2 1.895E-0	2 2.39E-03				,			7.12E-06 8.971	E-07 7.12E-06	8.97E-07 2.54	E-04 3.20E-05	2.54E-04 3.20	8
POINT 2A306 2	volite Roter Oxidizer 6	392870.26	3737910.60	46.49	310.15	16.93	1.50	VERTICAL	8,760	6.465E-01	8.146E-02	4.4 99E-01	5.069E-02	1.475E-02 5J	S38E-03 4.4	5E-02 5.638E-0	3 6.394E-01	8.057E-02 (6.394E-01 8.057.	E-02 6.394E-	01 8.06E-0	2 1.895E-0	2 2.39E-03							7.12E-06 8.97	E-07 7.12E-06	8.97E-07 2.54	E-04 3.20E-05	2.54E-04 3.20	8
POINT 2A401 V	'astewater Scrubber 1	393145.00	37 38035.00	17.81	295.65	21.77	1.14	VERTICAL	8,760							•	1.825E-01	2.300E-02	1.825E-01 2.300	E-02 1.825E-	01 2.30E-0	2 1.89E-00	2.39E-03	2.54E-02	3.19E-03			•			•		•		
POINT 2A402 \	astewater Scrubber 2	393145.00	37 38030.00	17.81	295.65	21.77	1.14	VERTICAL	8,760							•	1.825E-01	2.300E-02	1.825E-01 2.300.	E-02 1.825E-	01 2.30E-0	2 1.89E-00	2.39E-03	2.54E-02	119E-03	•					•		•		
POINT 2A403 \	Vastewa ter Scrubber 3	393145.00 30306.2 00	37 38025.00	17.81	205.65	21.77	1.14	VERTICAL	8,760		- 200E.00	1 2462.04			- 		1.825E-01	2.300E-02	1.825E-01 2.306 2.615E-01 2.306	E-02 1.825E	01 2.30E-0	2 1.89E-00	2.30E-03	2.54E-02	3.19E-03							1 5 5 00 3 70		1.00E.0E 1.00	. 8
POINT 28502 1.50	3 kW Hot Water Boiler 2	353063.90	3737942.57	27.43	478.15	5.19	635	CAPPED	8	5.018E-01	6.322E-02	4.215E-01	5.311E-02	1.1296-02 1.	422E-03 1.1	9E-02 1.422E(3 3.813E-02	4.805E-03	3.813E-02 4.805	E-03 1.306E4	03 1.65E-0									1.05E-05 1.33	E-06 3.61E-07	4.55E-08 3.76	E-04 4.74E-05	129E-05 1.62	88
POINT 28503 1,51	3 kW Hot Water Boller 3	353063.90	3737943.57	27.43	478.15	5.19	0.35	CAPPED	300	5.018E-01	6.322E-02	4.216E-01	6.311E-02	L129E-02 1	422E-03 1.1	SE-02 1.422E(3 3.813E-02	4.805E-03	3.813E-02 4.805	E-03 1.306E4	03 1.65E-0				•					1.05E-05 1.33	E-06 3.61E-07	4.55E-08 3.76	E-04 4.74E-05	1.29E-05 1.62	8
POINT 2C601	Cooling Tower 1	363045.36	3737850.18	45.67	308.15	7.50	8.5	VERTICAL	8,760							•	2.541E-02	3.201E-03	1.525E-02 1.921.	E-03 1.525E-	02 1.92E-0				•						•		•		
POINT 2C602	Cooling Tower 2	363045.36	37 37863.78	45.67	308.15	2.50	8.5	VERTICAL	8,760							•	2.541E-02	3.201E-03	1.525E-02 1.921	E-03 1.525E-	02 1.92E-0										•		•		
POINT 2C603	Cooling Tower 3	30045.36	3737877.48	45.67	308.15	180	3	VERTICAL	8,760								2.541E-02	3.201E-03	1.525E-02 1.921	E-03 1.525E-	1.926-0					•							•		
POINT 20005	Cooling Tower 4 Cooling Tower 5	360045.36	37.3790A.78	45.67	308.15	2.50	3 5	VERTICAL	0,/00 8,760								2.5MIE-02	3.201E-03	1.525E-02 1.921b	5-03 1525E4	02 1.90E-0														
POINT 2C606	Cooling Tower 6	363045.36	3737918.38	45.67	308.15	7.50	8.5	VERTICAL	8,760							•	2.541E-02	3.201E-03	1.525E-02 1.921	E-03 1.525E4	02 1.92E-0				•								•		
POINT 2C607	Cooling Tower 7	363045.36	3737932.08	45.67	308.15	7.50	8.5	VERTICAL	8,760							•	2.541E-02	3.201E-03	1.525E-02 1.921.	E-03 1.525E-	02 1.92E-0				•						•		•		
POINT 2C608	Cooling Tower 8	393034.64	3737850.18	45.67	308.15	7.50	8.5	VERTICAL	8,760							•	2.541E-02	3.201E-03	1.525E-02 1.921.	E-03 1.525E-	02 1.92E-0		•			•		•			•		•		
POINT 2C 609	Cooling Tower 9	393034.64	37 37 863.78	45.67	308.15	2.50	8.5	VERTICAL	8,760				,	,			2.541E-02	3.201E-03	1.525E-02 1.921	E-03 1.525E-	02 1.92E-0		,		•	•	,				•		•	,	
POINT 2C610	Cooling Tower 10	300034.64	3737877.48	45.67	308.15	82	3	VERTICAL	8,760								2.541E-02	3.201E-03	1.525E-02 1.921	E-03 1.525E-	02 1.92E-0					•							•		
POINT 20611	Cooling Tower 11	360034.64	3737891.08	45.67	308.15	82	28 s	VERTICAL	8,760								2.541E-02	3.201E-03	1.525E-02 1.921	E-03 1.025E	02 1.92E-0												•		
POINT 20012	Cooling Lower 12 Cooling Towar 13	Source 64	3737018.38	45.67	308.15	8.2	3 2	VERTICAL	8,760								2.04 IE-02	3.201E-03	1.020E-02 1.921	-162651	02 1 02F.0														
POINT 20614	Cooling Tower 14	300034.64	37 37932 06	45.67	308.15	150	53	VERTICAL	8,760								2.541E-02	3.201E-03	1.525E-02 1.921L	5-03 1.525E4	02 1.92E-0														
POINT 2FP 1	Fire Water Pump	393185.00	3737906.17	17.98	697.15	36.91	070	CAPPED	9	4.892E-03	6.164E-04	2.064E+00	2.600E-01	3.977E-06 1.	131E-06 4.3	8E-03 5.504E-0	4 4.960E-03	6.250E-04 4	4.960E-03 6.250	E-04 1.191E-	01 1.50E-0	- 2								7.11E-04 8.96	E-05 6.40E-06	8.06E-07 7.23	E-05 9.11E-06	6.50E-07 8.20	89
Network																																			
Sources consider lass h	an 100 hours ner vear lemer	r seujoue noues.	and first und are to	and many factors	maked an indeed	and and a second	res for 1, he N	O. and 1.hr SO.	moduling																										

Appendix A

Scores of contrast har. 10 You have a fire of processing of a processing of the proc

Appendix A

Modeling Input Supplemental Information - Monitor Maricopa County, Arizona **TSMC Phoenix Project**

Pollutant:

AQS ID: Link to Data Source:	04-013-9997 https://ags.epa.gov/agsweb/airdat	a/download files html	Street Address and City:	4530 N 17th Avenue, Phoenix Maricona
Metrics for averaging time: 1-hr 98 percentile Annual Average	1st Year Concentration (µg/m ³) 94.00	2nd Year Concentration (µg/m³) 91.00	3rd Year (most recent) Concentration (µg/m ³) 89.00 25.00	Calculated Background Concentration (µg/m ³) 91 25
Pollutant:	PM _{2.5} 04.013.2004		Stroot Address and City.	ROM W Olive Ave Cleared
Link to Data Source:	https://aqs.epa.gov/aqsweb/airdat	a/download_files.html	outet Audress and City. County:	ouou w Onve Ave, Gienuale Maricopa
Metrics for averaging time: 24-hr 98 percentile	1st Year Concentration (μg/m³) 19.50	2nd Year Concentration (μg/m³) 15.10	3rd Year (most recent) Concentration ($\mu g/m^3)$ 19.00	Calculated Background Concentration ($\mu g/m^3$) 17.87
Annual Average	7.30	6.40	7.60	7.1

PM ¹⁰

Pollutant:

AQS ID:

Metrics for averaging time:

H2H 24-hr Avg

Link to Data Source:

Calculated Background Concentration (µg/m³) 10851 W Williams Rd, Sun City 131 Maricopa 1st Year Concentration (µg/m³) 2nd Year Concentration (µg/m³) 3rd Year (most recent) Concentration (µg/m³) 88 Address: County: https://aqs.epa.gov/aqsweb/airdata/download_files.html 59 131 04-013-4016

04-013-9997 <u>8</u>

Metrics for averaging time: Link to Data Source: H1H 1-hr Avg H1H 8-hr Avg Pollutant: AQS ID:

Pollutant:

Metrics for averaging time: Link to Data Source: 1-hr 99 percentile H1H 3-hr Avg AQS ID:

Calculated Background Concentration (µg/m³) 4530 N 17th Avenue, Phoenix 12 20 Maricopa 1st Year Concentration (μg/m³) 2nd Year Concentration (μg/m³) 3rd Year (most recent) Concentration (μg/m³) 13 Address: County: https://aqs.epa.gov/aqsweb/airdata/download_files.html ω 16 04-013-9997 S02

Calculated Background Concentration (µg/m³)

1,948 2,444

4530 N 17th Avenue, Phoenix

Maricopa

1st Year Concentration ($\mu g/m^3$) 2nd Year Concentration ($\mu g/m^3$) 3rd Year (most recent) Concentration ($\mu g/m^3$)

Address:

County:

https://aqs.epa.gov/aqsweb/airdata/download_files.html

2,444 1,948

Notes:

NO₂ - nitrogen dioxide

 PM_{10} - Particulate Matter less than 10 micron aerodynamic diameter

 $\mathsf{PM}_{2.5}$ - Particulate Matter less than 2.5 micron aerodynamic diameter

CO - carbon monoxide

SO2 - sulfur dioxide

µg/m³ - micrograms per cubic meter

ghd.com

Appendix F Chemical Summary

Appendix F Chemical Summary TSMC Phoenix Project Maricopa County, Arizona

Chemical Used	2020 F18P1 Usage	Unit	Scrubber Systems
Component A	67,392	L	AEX
Component B	154,008	L	VEX (RCTO)
Component C	116,064	L	AEX
PH3 SDS3 JY VCR	19	KG	SEX
PH3,5N7,44L,40LB,DISS632	454	KG	SEX
Pura Leveler, 4L/BT	300	L	SEX
TEA,10KG/BT	265	kg	SEX
Viaform Extreme Leveler, 4L/BT(NOWPak)	376	L	SEX
Component D	83	KG	SEX
Component E	5	KG	SEX
Component F	10	KG	SEX
Component G	47	KG	SEX
Component H	92	KG	SEX
Component I	148,000	L	SEX
Component J	8,388	L	SEX
Component K	21,600	L	SEX
Component L	1,595	L	SEX

ghd.com

NON-TITLE V TECHNICAL SUPPORT DOCUMENT

FACILITY #:	F041443		LEGACY PERMIT #:	N/A
BUSINESS NAME:	Taiwan Se Manufactu (TSMC)	miconductor uring Company	IMPACT PERMIT #:	P0008497
SOURCE TYPE:	Semicondu	actor Fabrication	REVISION TYPE(S):	New Permit
PERMIT ENGINEER:	Ryan Dalr	ymple	DATE PREPARED:	03/21/2022
BACT: Yes MAC	T: No	NSPS: Yes	SYNTH MINOR: Yes	AIRS: Yes
DUST PLAN REQUIRED:	No	DUST PLAN I	RECEIVED: No	
O&M PLAN REQUIRE	D: Yes	O&M PLAN R	RECEIVED: No	
PORTABLE SOURCE:	No	SITE VISIT: V	Waived	PUBLIC NOTICE: Yes

PROCESS DESCRIPTION:

Taiwan Semiconductor Manufacturing Co., Ltd. (TSMC) proposes to construct a semiconductor facility on an approximate 1,000-acre parcel near the City of Phoenix, Maricopa County, Arizona.

The proposed project includes two Fab buildings where semiconductor chips will be manufactured; and buildings containing support equipment, including natural gas fired boilers, diesel fired emergency generators, fire pump engines, and cooling towers. Supporting equipment will reside in the Wastewater Treatment Plant (WWTP), Chemical Storage, Bulk Specialty Gas System, and Central Utility Plant buildings. Criteria pollutant emissions from these sources include Volatile Organic Compounds (VOC), Nitrogen Oxides (NOx), Particulate Matter (PM2.5 and PM10), Sulfur Oxides (SOx), and Hazardous Air Pollutants (HAPs).

Process Overview

The semiconductor manufacturing process starts with thin disks of high purity silicon called wafers, which undergo various processes, including diffusion, ion implantation, photolithography, etching, layering, and oxidizing. These are cyclical processes; the sequence and the number of cycles will vary depending on the requirements of the integrated circuit design.

The manufacturing process of integrated circuits utilizes silicon wafers as the base material. The silicon wafers are exposed to oxygen at high temperatures to form a layer of silicon dioxide on the wafer surface. After the surface oxide film is formed, the photosensitive agent is coated to the wafers. After a wafer has been coated with photoresist and the photoresist has cured, the wafer is exposed to a light source and developed in combination with a photomask to form various types of circuits on the wafer. After etching, removing photoresist liquids, and doping, the wafer is deposited to form the circuits and electrodes for final testing.

Doping

A semiconductor is a material whose conductivity is between that of a conductor and a Non-conductor. Its ability to conduct electricity depends not only on the energy gap characteristics of its own material, but also is affected by foreign impurities. The energy levels generated by the donor and the acceptor increase the original conductivity of silicon. This action of adding a small amount of specific impurities to the semiconductor is called doping. Doping methods include ion implantation and diffusion.

The ion implantation method first ionizes the dopants (e.g., Arsine [AsH3]), and then with the use of an accelerator, the ionized dopants are directly injected into the silicon wafer to pre-set the dopants to form various N type or P type semiconductor regions. This method can accurately adjust the content (concentration) and distribution of the dopants

in the wafer.

The diffusion method utilizes the dopants' mobility along its own concentration gradient at high temperatures (above about 800 degrees Celsius) to realize the doping of silicon wafers. Because it is not easy to control the concentration distribution of dopants by heat diffusion in hot furnace tubes, this method is mainly used to perform the distribution correction of dopants after implantation and restore the single crystal structure of the surface atoms at the silicon wafer

Layering (Thin Film)

The formation of a thin film of material on the wafer is due to the gas molecules or other particles spread on the surface of the wafer. These particles may be solidified due to the chemical reactions and deposit on the surface of the wafer, or they may lose part of their kinetic energy after undergoing surface diffusion and be adsorbed on the surface of the wafer and then deposited. Therefore, layering methods include physical and chemical vapor deposition.

Physical Vapor Deposition (PVD) is a technology that forms a thin film through physical processes, including evaporation and sputtering. In the evaporation process, the deposition material is evaporated by heating. Once the deposition material saturates in the vapor phase, it is then condensed and deposited to form a thin film on the wafer surface. The sputtering process uses the ions generated by the plasma to bombard the electrode of the deposition material, emitting particles of the deposition material to the vapor phase and then depositing a thin film on the wafer surface.

Chemical Vapor Deposition (CVD) is a thin film deposition technology that uses chemical reactions to generate solid products from gaseous reactants in the reactor that deposit on the surface of the wafer. Because it involves chemical reactions, it is called CVD. At present, it is the most important and the main thin film deposition technology in the semiconductor manufacturing process. It can deposit materials with precise composition and has better step coverage. Main CVD technologies include atmospheric pressure CVD, low pressure CVD, and plasma CVD.

Photolithography

Photolithography is the most important step in the entire semiconductor manufacturing process. Anything related to the metal oxide semiconductor device structure, such as the pattern of each layer of film and the area of impurities, are determined by this step. The basic procedure consists of three steps: photoresist coating, exposure, and development.

Photoresist is mainly composed of resin, photosensitizer, solvent, and several other different compositions. Negative photoresists produce chains when exposed to light and cannot dissolve in the developer, while positive photoresists themselves are difficult to dissolve in the developer, but dissociate into the developer solution when exposed to light.

Parallel light from the light source passes through the glass body photomask with a desired pattern and reaches the photoresist coated wafer. The projected light inherits the same pattern from the photomask, and therefore, exposes the photosensitive materials on the wafer surface. The exact same pattern on the photomask is transferred onto the wafer surface in this manner. During the development process, the exposed photoresist on the wafer surface is removed via a neutralization reaction, and then the desired pattern is retained on the wafer.

Etching

The etching process removes the deposited film material not coated and protected by the photoresist during the photolithography process. This is done via chemical reactions or physical processes to complete the final goal of transferring the mask pattern onto the film. The film developed and etched by photolithography will become a part of the semiconductor. Etching techniques including wet etching and dry etching.

Wet etching uses a chemical reaction between the film and a specific solution to remove the film not coated by the photoresist.

Dry etching uses plasma to etch the films. As the process does not involve any solution, it is called dry etching.

Planarization

Chemical Mechanical Planarization (or Polishing, CMP) is the process of injecting abrasive particles into the polishing

pad of the polishing machine to remove varying types of materials from the wafer. The purpose is to smooth the dielectric layer and the metal layer on the integrated circuit wafer to flatten it and achieve three-dimensional wiring or multilayer wiring, increasing the wiring density while reducing defects.

Cleaning Operations

Various organic and inorganic cleaners are used in enclosed hoods to clean equipment parts and quartz reaction chambers. Organic cleaners can include volatile organic compounds (VOC) emissions. Inorganic cleaners include acids such as hydrogen chloride (HCl), and bases such as ammonium hydroxide solution.

Cleaning operations are sources of both VOC and hazardous air pollutants (HAP) emissions. The enclosed hoods will have a positive pressure and each collection system will have a negative pressure so that the emissions can be collected and sent to an abatement device (i.e., Rotor Concentrator Thermal Oxidizers [RCTO]).

PERMIT HISTORY:

Date Received	Permit Number	Description
08/13/2021	P0008497	Submitted application for new permit for semiconductor fabrication plant.
3/15/2022	P0008947	TSMC submitted a revised application due to design changes in the planned facility.

PURPOSE FOR APPLICATION:

Permittee has submitted a Non-Title V permit application to construct and operate a new semiconductor fabrication facility.

A. APPLICABLE COUNTY REGULATIONS:

- Rule 100: General Provisions and Definitions
- Rule 200: Permit Requirements
- Rule 220: Non-Title V Permit Provisions
- Rule 241: Minor New Source Review the facility is subject to RACT, BACT, and Ambient Air Quality Impact Analysis per Rule 241
- Rule 280: Fees: Table H
 - (Semiconductor manufacturing subject to source testing)
- Rule 300: Visible Emissions
- Rule 320: Odors and Gaseous Contaminants
- Rule 324: Stationary Reciprocating Internal Combustion Engines
- Rule 338: Semiconductor Manufacturing

Best Available Control Technology (BACT) Analysis

County Rule 241 §304 lists the criteria pollutant thresholds for new and existing sources that trigger BACT requirements in Maricopa County. The permit application for the TSMC Phoenix facility has potential to emit BACT for: VOC, NOx, PM10, and PM2.5. A review of the processes at this source, their emissions, and applicable control technology; was completed and the following determinations for BACT and RACT were made.

<u>Emergency Engines</u>

This facility is permitted for 23 emergency compression-ignition engines; 22 of those being rated at 2,923 BHP for providing backup power, and one rated at 360 BHP for the pumping of water in case of fire. As of 12/22/2020, the Bay Area Air Quality Management District (BAAQMD) has set BACT for emergency compression-ignition engines, with a rated power output of $\geq 1,000$ BHP, to be certified to EPA Tier 4 Non-Road Engine Emission Standards.

TSMC submitted a BACT cost analysis with their original permit application prior to design updates (Aug 2021) for 22 backup-power emergency engines using the EPA-approved "Annualized Cost of Control" method which compares the price/ton of NOx emissions for EPA Tier 2 certified engines vs. Tier 4 certified engines, over an estimated 20-year lifespan. This cost analysis was performed assuming a combined 29.22 tpy NOx emissions for the Tier 2 Engines scenario and 15.98 tpy NOx emissions for the Tier 4 Engines scenario (13.24 tpy NOx emission reduction). The results of this annualized cost analysis come to ~\$105,000/ton NOx reduced. An updated cost analysis was provided with the updated application (Mar 2022) which uses the same methodology as the original but has an emission reduction cost per ton of NOx of ~\$207,000 See Appendix D of the permit application for detailed

information on the BACT cost analysis.

The permitted NOx emissions from emergency engines $\geq 1,000$ BHP requested by the Permittee in the *original* application totaled 8.81 tpy. This is due to the limiting of the hours of operation of each of the 38 engines to no more than 18 hrs/yr. The updated permit application (Mar 2022) is permitted for ~5.1 tpy NOx. Due to the relatively small contribution of NOx emissions from emergency engines, which are well under the BACT threshold, it was determined by MCAQD that BACT should not apply to the emergency engines $\geq 1,000$ BHP at this facility.

<u>Cooling Towers</u>

The semiconductor fab will be equipped with 28 total cooling towers (14 per fab) used to dissipate heat generated by fab processes. These cooling towers are open to the atmosphere and generate emissions of PM10/PM2.5 via mist drift carrying dissolved particulates.

The mass of PM emissions released into the atmosphere is determined by the total flow rate of water through cooling towers, the concentration of particulates in water, and the "drift rate;" which is the ratio of the mass of escaped water via mist to total flow throughput. **BACT for cooling towers per the EPA RACT/BACT clearinghouse is a cooling tower system equipped with high efficiency mist eliminators that achieve a maximum allowable drift rate of 0.0005%.** This BACT requirement has been written into the permit as an enforceable condition.

External Combustion Sources

Fuel-burning external combustion sources at this facility include six (6) boilers rated at ~5.12 MMBtu/hr each. The total permitted NOx emissions from these boiler units, using a conservative emission factor of 100 lbs/MMscf and an allowable annual operating limit of 300 hr/yr, comes to ~0.45 tpy. Twelve (12) RCTOs at this source use the same emission factor but are permitted for 24/7 operation and therefore have a potential to emit at ~17.0 tpy NOx. These units have a combined ~17.5 tpy NOx PTE, well below the BACT threshold. Therefore, these units are subject to RACT as opposed to BACT.

Solvent Storage Tanks

This facility is permitted for sixteen total volatile organic liquid storage tanks. Four 7,925 gallon vertical fixed roof tanks exist for each stored liquid mixture; Isopropyl Alcohol (IPA), Thinner-1, Thinner-3, and DP001. Breathing and working losses occur in the tank when VOC-saturated air is displaced during the transfer of organic liquid or from the natural heating and cooling of the tanks.

These VOC emissions from tanks are controlled through a vent to the RCTO units. The tank contents are under a N2 blanket and slight draw to allow any emissions that escape the blanket to be drawn into the VOC exhaust. RCTO units are already required to meet BACT for VOC destruction efficiency and therefore the VOC emissions from organic liquid storage tanks are in compliance with BACT requirements.

Process Emissions

Emissions from semiconductor manufacturing operations (known as *process emissions*) include VOC, NOx, CO, PM2.5, PM10, and HAPs. These process fumes are vented to one of two types of control equipment: scrubbers or thermal oxidizers. Photolithography, etching, and ammonium scrubber effluent gasses are vented to RCTOs for combustion. Etching, diffusion, vapor deposition, and general facility air are vented to acid and bench scrubbers. s. **Process emissions of NOx, VOC, PM2.5, and PM10 are at levels which require BACT.**

RCTO VOC:

Per BAAQMD BACT/TBACT workbook the RCTOs satisfy BACT for the control of VOC from photoresist operations so long as the following destruction efficiencies are achieved:

98.5% if inlet VOC concentration ≥2,000 ppmw 97% if inlet VOC concentration ≥2000 ppmw and <2,000 ppmw 90% if inlet VOC concentration <200 ppmw

Bench Scrubber VOC:

The permit application lists an estimated ~8.08 tpy VOC emissions from bench scrubbers. These scrubbers do not control for VOC emissions. MCAQD inquired as to the source of these VOC emissions and possible control strategies, as VOC is not typically present in large quantities in acid scrubber exhausts from semiconductor manufacturing operations.

According to TSMC, these emissions are carried over from source testing conducted on fabs in Taiwan. VOC emissions in the bench scrubber exhaust stream were so dilute that they were at 'non-detect' levels. Standard procedure for this scenario in the performance testing was to assume VOC emissions at the minimum detection limit. Therefore, according to TSMC, the estimated VOC emissions from bench scrubber units in the permit application are a significant overestimation and they expect similarly dilute streams at this fab. Therefore, BACT for VOC will not apply to bench scrubbers.

POU Combustion and Scrubbers NOx:

The permit application lists an estimated ~64.2 tpy NOx emissions from scrubber stacks. Though this facility is subject to NOx BACT requirements, the Permittee claims that it is technologically infeasible to control this NOx due to the configuration and makeup of tooling exhaust streams. This reasoning was provided to MCAQD by the Permittee in a memo dated July 26th, 2022 (attached below).

Semiconductor process tools use an array of chemicals with different physical properties that exhaust gases which may be flammable, pyrophoric, acidic, caustic, and/or are greenhouse gases. These potentially dangerous and unstable mixtures are routed to a point-of-use (POU) combustion chamber which is integrated directly into the tooling equipment to reduce these emissions for safety purposes. It's during this combustion phase in which the bulk of NOx generated from process tooling occurs. The primary generation arises from nitrogen-containing compounds such as ammonia (NH3), nitrogen trifluoride (NF3), and nitrous oxide (N20) in the exhaust streams which when combusted oxidizes the nitrogen to form NOx. Secondarily, NOx is generated from the combustion of natural gas which is the fuel source for the combustion chamber.

In the 7/26 memo the Permittee states that BACT for NOx generated by the POU combustion of process tools is "good operating practices" and "good engineering design." To provide justification for this BACT determination the Permittee performed a search of the following BACT databases for other semiconductor manufacturing facilities: BAAQMD BACT workbook, SCAQMD BACT guidelines, and SJVAPCD BACT clearinghouse. In addition, recently issued permits for Intel Ocotillo facility in Chandler, AZ; Samsung in Austin, TX; and Samsung in Taylor, TX. This search returned no specific technology which can be substituted for or applied to the POU combustion chambers.

Intel Corporation has previously completed a similar technology review of POU devices for a LAER (lowest achievable emission rate) determination. Intel looked at other technologies which are typically used to control NOx emissions for other source types. Their findings come to a similar conclusion, that NOx control technologies for combustion sources are not technically feasible to control NOx from POU abatement equipment. These technologies are as follows:

Low-NOx burners: low NOx combustion technology has never been applied to burn-wet POUs. Burnwet POUs are defined as a POU combustion chamber followed by a wet scrubber, which is the configuration TSMC and Intel use). This is due to the relatively small size of the natural gas burner in these units (~0.15 − 0.30 MMBtu/hr). Low-NOx burners in other equipment such as boilers are two order of magnitude larger in heating value. In addition, semiconductor fabs use batch processes which have varying chemistries that would affect the control needs.

- 2. SNCR, SCR, NSCR: These acronyms stand for Selective Non-Catalytic Reduction (SNCR), Selective Catalytic Reduction (SCR) and Non-Selective Catalytic Reduction (NSCR). These technologies are all used commercially for the reduction of NOx emissions at the end-point of the stack. In a semiconductor fab this would be after the POU device and wet scrubber. However, these devices operate when the gas streams has temperatures are in the range of 600-850°F, high flow rates, and are fuel rich. Fab wet scrubber exhaust streams are typically around room temperature and have very low flows and concentrations.
- 3. Multi-Stage Wet Scrubbers: In a multiple-stage wet chemical Scrubber, NOx is removed through chemical adsorption in applications that typically are high in NOx concentration and at flowrates well below Intel's requirements. In the first stage of processing, NO in the exhaust is converted to NO2 using an oxidation agent. The NO2 entrained in the Scrubbers liquid is then reduced to a sodium salt using a reducing agent. Multi-stage NOx Scrubbers that are currently commercially operational are not designed to treat low NOx concentration exhaust and would not be practical to achieve significant control.

Scrubber/POU PM

Scrubber stacks at this source are estimated to emit \sim 50.9 tpy of PM. The majority of these PM emissions come from chemical vapor deposition (CVD) process equipment, which utilizes deposition gases to create a thin layer of material on the silicon substrate.

In determining BACT from scrubber units TSMC has referred to an in-depth BACT analysis for similar emissions processes and control technologies at the Intel Title V facility. This BACT analysis was submitted with Intel's 2017 significant permit revision (Legacy Permit No. V15002, Permit Revision 0.2.0.0, TSD Appendix D). The results of this top down BACT analysis with cost analysis are summarized in the paragraphs below.

In the presence of oxygen at high enough temperatures, oxidation will occur leading to the formation of PM in the process chamber. Gases from this process are routed to POU combustion chambers for the destruction of hazardous materials and greenhouse gases. This combustion phase is another much smaller source of PM from scrubber stacks. According to source testing from an Intel fab in Oregon, most of the PM is between 0.1 and 0.4 microns in size.

Wet scrubbers are designed for mass-transfer and not to efficiently abate PM emissions. Therefore, control of PM from scrubber exhaust would have to be done by installing additional control technology at the end of the stack. This control figuration has significant engineering challenges as the pressure drop across scrubbers is generally low, whereas PM control technology is done in a high pressure drop environment.

Step 1: Identify All Control Technologies

The following PM control devices were reviewed in the top-down BACT analysis for the inlet and exhaust of the centralized wet scrubbers at Fab 42, as well as the scrubbers at the existing facility (Fab 12, Fab 32S, and Fab 32). The same control technologies were evaluated as individual add-on controls at the exhaust of the POU abatement device at the Ocotillo Facility

- 1) Ceramic Filters
- 2) Fabric Filters
- 3) HEPA or ULPA Filters
- 4) Venturi Scrubber
- 5) Packed Bed Scrubber
- 6) Electrostaic Precipitator (ESP)

Step 2: Eliminate Technologically infeasible options

Ceramic Filters:

Ceramic filters were considered technologically infeasible since they would plug relatively quickly due to the significant amount of submicron particulate matter in the exhaust of both the POU abatement devices and the centralized wet scrubbers. A standby system would be needed in order to continue to abate the wet scrubbers while the filter media is being replaced. However, the large pressure difference between the offline and online systems would cause pressure sensitive process equipment upstream of the wet scrubbers to shut down, which would result in scrapped wafers

Fabric Filters:

Fabric filters were considered technologically infeasible due to their low removal efficiency of submicron particulate matter less than 0.3 microns in size. The majority of particulate matter in the exhaust of the POU abatement devices and the centralized wet scrubbers is between 0.1 to 0.4 microns.

HEPA or ULPA Filters:

HEPA or ULPA filters were considered technologically infeasible due to the significant amount of submicron size particulate matter exhaust of the POU abatement devices and inlet to centralized wet scrubbers, which would plug the filters relatively quickly requiring a standby system. The pressure drop across the filter media will increase until not enough airflow can from the process equipment can pass. This new pressure drop would be much higher than the pressure of the new filter media, which would result in a substantial pressure fluctuation when switching between the offline and online systems causing pressure sensitive process equipment to shut down and wafers to be scrapped.

Fiber Bed Filters:

Fiber bed filters were considered technologically infeasible since they are not replaced when spent and the significant amount of incondensable particulate matter in the exhaust of both the POU abatement devices and the centralized wet scrubbers will not be removed through self-cleaning. The submicron size particles would not coalesce in order to drain by gravity or be washed with water.

Venturi Scrubber:

Venturi scrubbers were considered technologically infeasible since it was uncertain if incondensable particulate matter exhausted from either the POU abatement devices or the centralized wet scrubbers would be abated due to the inability to induce inertial impaction on submicron and nanometer sized particulate as efficiently as larger size particles.

Packed Bed Scrubber:

Packed bed scrubbers were considered technologically infeasible since they are primarily designed to abate water soluble gases such as hydrogen fluoride (HF) and hydrogen chloride (HCl) and not submicron or nanometer sized particulate matter.

Step 3: Rank Remaining Control Technologies by control effectiveness:

Electrostatic Precipitator: A wet ESP would be the only feasibly control technology that would abate the particulate matter from the exhaust of the centralized wet scrubbers or the exhaust of the POU abatement devices, since they are designed to remove submicron matter as low as 0.2 microns, which are continuously washed off with water eliminating the potential for plugging.

Step 4: Cost Effectiveness Analysis:

Intel performed a cost effective analysis for both a single wet ESP at the exhaust of the centralized wet scrubber and for 240 wet ESPs at the exhausts of the POU abatement devices site-wide. The control cost for each configuration was estimated at:

Configuration	Cost per ton of PM Controlled
One (1) Centralized WESP	\$159,172 / ton
240 WESPs at POU exhaust	\$248,798 / ton
Agencies such as BAAQMD and SJVAPCD have cost effectiveness thresholds between \$5,300/ton to \$5,700/ton for controlling particulate matter, thus all of these control options were considered economically infeasible as BACT for the Ocotillo Facility

Step 5: BACT Selection

Based on the above BACT analysis, add-on control devices for particulate matter at the exhaust of the centralized wet scrubber or the POU abatement devices will not be required as BACT for the existing fabs (Fab 12, 32S, and 32) or Fab 42. Instead, as BACT for particulate matter from the centralized wet scrubbers, Intel will maintain good work practices for operating all fab processes at the Ocotillo Facility.

Enforceable conditions, including performance testing requirements, have been included in the permit to ensure compliance with BACT standards for all applicable emissions processes at this source.

B. MINOR NEW SOURCE REVIEW – Air Quality Impact Assessment Determination:

As required by County Rule 241 an Ambient Air Quality Impact Assessment (AAQIA) for NO2, PM10, PM2.5, and SO2 emissions was submitted as a part of this permit application. The impact assessment consists of an air dispersion model built using the AERMOD program which simulates the plume profile of emissions sources at this facility over a period of time using historical meteorological data.

The model "passes," and the permit may be issued IF: the significant impact level (SIL) for the source is not exceeded for the applicable thresholds. These thresholds are 7.5µm/m³ for 1-hr NO2 and 1.0µm/m³ for annual NO2. If SILs are exceeded then the analysis must progress to modeling with representative background information to compare to the annual and/or 1-hr NO2 National Ambient Air Quality Standards (NAAQS). These standards must not be exceeded by any one receptor in the grid (see *receptor grid* below) for the given design value. The annual NAAQS design value is based off of the highest average annual concentration in any 12-month period while the 1-hr NAAQS design value is based off of the 98th percentile highest average daily 1-hr concentration (high 8th-highest hour).

Methodology

After a review of the modelling protocol, it was found that the Permittee has followed MCAQD and ADEQ modeling guidelines in creating an approved air dispersion model using the AERMOD program. The model was run for a simulated period of five years for each engine separately using pre-processed meteorological data for Phoenix provided by the Arizona Department of Environmental Quality (ADEQ) from years 2014-2018.

EPA and ADEQ guidelines for intermittent sources such as emergency engine testing are permitted to annualize their emissions due to the difficulty of simulating intermittent sources. The Permittee has followed this guidance in their dispersion model for intermittent sources; which include emergency engines and boilers. Other sources of modelled pollutants are already permitted assuming 24/7/365 operation (8,760 hrs/yr).

Buildings located at the site were modelled and input to the program for the purposes of calculating building downwash using the BPIP plugin for AERMOD. Data for buildings may be found in the permit application and the AERMOD input files included in this document.

Elevation data from the USGS website Landfire.gov was used to create elevation points for the buildings, stacks, and receptors.

Background Concentration Data

The Permittee's dispersion models use single-value background data to add to the source emission concentrations. The data is sourced from MCAQD air monitors and uses pre-processed values from 2018-2020 using the US EPA AQS AMP450 report for the corresponding air monitor. CO and SO2 3-hr background concentrations use the most recent year (2020). A full listing of background concentrations can be found in *Table 5* of the modeling report submitted by the consultant as a part of the permit application.

MCAQD uses slightly different background concentration data which is more up to date. The year range for this data

includes 2019-2021 and design values which match the corresponding NAAQS. This data excludes exceptional events. A discussion on the changes from differing background concentrations can be found in the *results* part of this section.

MCAQD Background Concentrations:

2021 Background Concentrations_20220

Permittee's Background Concentrations:

Pollutant	lutant Averaging AQS Monitor Code, Name		Description of Value	Background Concentration	
NO ₂	1-hr	04-013-9997, JLG Supersite	1-hr 98 percentile, 3-year average from 2018 to 2020	91	
NO ₂	Annual	04-013-9997, JLG Supersite	LG Supersite 2020 concentration (most recent year)		
PM ₁₀	24-hr	04-013-4016, Zuni Hills	Highest concentration from 2018 to 2020 (2018 value), excluding exceptional events	131	
PM2.5	24-hr	04-013-2001. Glendale	24-hr 98 percentile, 3-year average from 2018 to 2020	17.87	
PM _{2,5}	Annual	04-013-2001, Glendale	3-year average from 2018 to 2020	7.1	
SO ₂	1-hr	04-013-9997, JLG Supersite	1-hr 99 percentile, 3-year average from 2018 to 2020	12	
SOz	3-hr	04-013-9997, JLG Supersite	2020 concentration (most recent year)	20	
со	:1+hr	04-013-9997, JLG Supersite	2020 concentration (most recent year)	2,444	
со	8-hr	04-013-9997, JLG Supersite	2020 concentration (most recent year)	1,948	

Background concentration design values mirror the NAAQS design values for direct summation with the model results in order to compare to NAAQS standards.

Per the ADEQ modeling guidelines; EPA recommends that all nearby sources that are not adequately represented by background ambient monitoring data should be explicitly modeled as part of the NAAQS analysis. EPA establishes "a significant concentration gradient in the vicinity of the source under consideration" as the sole criterion for this determination. MCAQD determined that facilities collocated *within* the facility boundaries can cause this concentration gradient which is not accurately reflected by background monitor data and must therefore be included in the dispersion model. TSMC included stack emissions and building data for the collocated Linde and Air Liquide plants in their modelling in response to this request to ensure that those emissions would not cause an exceedance in any NAAQS. Emissions from these facilities were found to have no significant impact on the highest design value concentrations for pollutants due to their location on the west side of the TSMC parcel – with the main TSMC plant located on the east side.

NO2 Conversion

Modeling guidance permits the use of three approaches towards simulating NO_2 emissions to ambient air. Each approach is rated by tier with tier 1 being the most conservative approach and tier 3 being the least conservative (but usually more accurate).

The Permittee modeled the annual and 1-hr NO2 emissions using the tier 2 approach: Ambient Ratio Method (ARM2). ARM 2 is based on representative equilibrium ratios of NO2/NOx value that are based on ambient levels of NO2 and NOx derived from national data from the EPA's Air Quality System (AQS). TSMC opted to use the national default for ARM: a minimum ambient NO2/NOx ratio of 0.5 and a maximum ambient ratio of 0.8.

Receptor Grid

Receptors are fixed points in space at ground level in which AERMOD measures the concentration of the pollutant(s). Receptors are placed along the fenceline and in a grid surrounding the facility with receptor density decreasing with distance from the source(s).

Table 1 below shows the Permittee's receptor grid and the MCAQD reproduction receptor grid. The Permittee's grid was found to be inadequately dense in the range of 200m to 800m from the source boundary. During the reproduction simulation done by MCAQD this range of receptors was corrected to be in line with Arizona Department of Environmental Quality (ADEQ) modeling guidelines.

Distance from Boundary	Permittee Model	MCAQD Model
Boundary	25m	25m
Boundary > 300m	25m	25m
300m > 1,000m	100m	100m
1,000m > 5,0000m	500m	500m
5,000m > 10,000m	1,000m	1,000m

Table 1.	Receptor	Grid Spacing	
----------	----------	--------------	--

Stack Information

A total of 138 stacks were modeled for all emission types combined for the TSMC facility and collocated facilities. All sources of process emissions are vented by a stack, with boilers and the fire pump utilizing a capped stack for rain protection. Table 3 of the modeling report below shows a list of all stacks used in this model. Four of these stacks are emergency generators modelled for the Linde hydrogen plant on-site as a part of representative background concentrations.

Results

Both the Permittee's and MCAQD's model demonstrate that the modification to this facility is not likely to cause an exceedance in the NAAQS for any short or long-term NO2, PM10, PM2.5, CO, or SO2 standard.

Even though the MCAQD model used the same source parameters, emissions rates, receptors, met data, and building locations; the results for each model differ slightly (except for PM10, for which the Permittee model is almost double MCAQD's) due primarily to using different background concentrations and modeled design values. MCAQD models use background concentrations over the years 2019-2021 using Source: US EPA AQS Report AMP450 (Quick Look Report). These background concentrations meet the design values and guidelines for use in dispersion modeling. The Permittee's model background concentrations for NO2 annual, PM10 24-hr, PM2.5 24-hr, SO2 3-hr, CO 1-hr, and CO 8-hr are all conservative values using the highest concentration in a one-year period (2020).

The Permittee's model forgoes the standard design values for their short-term modeled concentrations and uses maximum concentrations instead (high 1st high). This results in an overly conservative model output. In contrast, MCAQD followed published EPA design values and guidelines for model outputs. As an example, the NO2 1-hr design value is the 98th percentile of daily maximums (high 8th high).

Due to the conservative nature of the Permittee model, results from their protocol and methodology are deemed to be in compliance with the mNSR process and standards.

The Tables below lists both models' results compared to the NAAQS standard:

Tabl	? 2. AERMOD	results summar	y foi	NO2 emissions

Model Results (µg/m ³)	NAAQS Value Threshold
	$(\mu g/m^3)$

Modeler	1-hr	Annual	1-hr	Annual
Permittee	140.0	28.0	188	100
MCAQD	85.0*	27.9*	188	100

*MCAQD model uses conservative AP-42 emission factors for NOx emission from emergency engines due to the unavailability of site variation data from the manufacturer. Differences between 1-hr results between models due to background concentrations.

Table 3. AERMOD results summary for PM10 emissions

	Model Results (µg/m ³)	NAAQS Value Threshold (µg/m ³)
Modeler	24-hr	24-hr
Permittee	140*	150
MCAQD	64.0	150

Table 4. AERMOD results summary for PM2.5 emissions

	Model Results (µg/m ³)		NAAQS Value Threshold (µg/m ³)		
Modeler	24-hr	24-hr Annual		Annual	
Permittee	26.0	9.8	35	12	
MCAQD	25.4	9.7	35	12	

Table 5. AERMOD results summary for CO emissions

	Model Results (µg/m ³)		NAAQS Value Threshold (µg/m ³)		
Modeler	1-hr	1-hr 8-hr		8-hr	
Permittee	362.9	228.9	40,075	10,305	
MCAQD	349.2	211.8	40,075	10,305	

Table 6. AERMOD results summary for SO2 emissions

	Model Res	sults (µg/m ³)	NAAQS Value Threshold (µg/m³)		
Modeler	1-hr	1-hr 3-hr		3-hr	
Permittee	13.2	15.6	196.5	1,310	
MCAQD	11.5	14.1	196.5	1,310	

Figure 1. PM2.5 24-hr NAAQS model run at TSMC facility.

Figure 1 above shows the dispersion for the 24-hr PM2.5 MCAQD model run. The concentration profile shows that particulate matter concentrations are expected to peak on the eastern border of the facility boundary. Background concentrations are not added to mapped results.

Figure 2. NO2 NAAQS model run at TSMC facility.

Figure 2 above shows the dispersion model for the NO2 MCAQD model runs. The concentration profile shows NO2 concentrations expected on the northern border of the facility boundary. Background concentrations are not added to mapped results.

C. APPLICABLE FEDERAL REGULATIONS:

40 CFR 60 Subpart IIII: Standards of Performance for Stationary Compression Ignition Internal Combustion Engines

NSPS Subpart IIII applied to owners and operators of stationary compression ignition internal combustion engines that commenced construction or were modified/reconstructed after 07/11/2005. The stationary compression ignition ICEs that will be used at this facility are model year 2019 and therefore must **MEET** the requirements of 40 CFR 60

40 CFR 60 Subpart Dc: Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units

Per 40 CFR §60.40c this subpart applies to each steam generating unit for which construction, modification, or reconstruction is commenced after June 9, 1989; and that has a maximum design heat input capacity of 29 megawatts (MW) (100 million British thermal units per hour (MMBtu/hr)) or less, but greater than or equal to 2.9 MW (10 MMBtu/hr). The proposed steam generating units at this source are rated at a maximum capacity of ~5.12 MMBtu/hr and therefore are **EXEMPT** from 40 CFR 60 Subpart Dc.

40 CFR 63 Subpart BBBBB: NESHAP for Semiconductor Manufacturing

40 CFR 63 Subpart BBBBB establishes national emission standards for hazardous air pollutants (NESHAP) for semiconductor manufacturing facilities. Per §63.7181 this NESHAP applies only to semiconductor manufacturing facilities which are a major source of HAP. A major source a HAP is any facility which emits 10 tpy of any single HAP or 25 tpy of combined HAP. Enforceable limits in the permit keep this facility under the major source threshold and therefore this source is **EXEMPT** from the requirement of Subpart BBBBB.

D. AIR POLLUTION CONTROL EQUIPMENT/EMISSION CONTROL SYSTEM(s):

System description	Quantity	Comments:
Rotor Concentrator Thermal	12 (6 per	Controls VOC emissions vented from Fab operations.
Oxidizers (RCTO), 3.458 MMBtu/hr	fab)	
Acid Scrubbers	36 (18 per fab)	Acid, bench, wastewater, and ammonia scrubbers which control primarily inorganic acids hydrogen fluoride (HF), nitric acid (HNO3), hydrogen chloride (HCl), and sulfuric acid (H2SO4), as well as other compounds such as chlorine (Cl2), acetonitrile (C2H3N), carbonyl sulfide (COS), and titanium tetrachloride (TiCl4).
Bench Scrubbers	18 (9 per fab)	Bench Scrubbers consist of two scrubbers in series to control high concentration acid emissions.
		Wastewater treatment scrubbers neutralize acid waste contained in process water as part of the wastewater treatment plant which recycles process water.
		Ammonia scrubbers are alkaline and treat NH3 in exhaust streams prior to emission to ambient air.
Ammonia Scrubbers	12 (6 per fab)	Emissions of Arsine (AsH3) are routed to an absorption bed prior to the acid scrubber. The absorption bed is estimated to control ~99.5% of arsine emissions.
Wastewater Treatment Scrubbers	6 (3 per fab)	

E. EMISSIONS:

Semiconductor Fabrication

Fab operations are vented to RCTOs and wet scrubbers which control pollutant emissions. Emissions from these fabrication operations can then be estimated based on previous stack testing of similar equipment, material balances, and engineering estimations for this facility.

A full detailed breakdown of semiconductor fabrication emission estimates is included with the permit application. MCAQD requires on-site performance testing of this air pollution control equipment once it is fully operational in order to establish emission factors for the enforcement of the requested emission limits based on the estimations (see: section G of this document).

Emergency Engines

Diesel engine emissions are calculated using the emission factors provided by the manufacturer. SO_X emissions are based on a sulfur content limit of 0.0015% by weight, in accordance with Rule 324 and NSPS Subpart IIII.

The operating limit, 18 hours per engine per consecutive 12-month period, was taken from the application and is written into the permit as an enforceable limit.

Fuel Burning Equipment

The burning of natural gas is a source of emissions of products of combustion. Emission factors from AP-42 Tables 1.4-1 and 1.4-2 are used to estimate emissions from fuel burning equipment which includes the boilers and RCTOs at this facility. It is assumed that all fuel burning equipment operates at full capacity 8,760 hrs/year

Cooling Towers

Emissions of particulate matter (PM) to ambient air occur from cooling towers due to water vapor escaping into the atmosphere which contains PM molecules. US EPA Chapter 13.4 contains emission factors and a method to calculate these PM emissions when given known values for water circulation rate and total dissolved solids (TDS) content of the water. Assumed parameters include a 0.0005% drift rate, 2000 ppm TDS, 16,120 gal/min flow rate for reach tower, and 31.3% of drift mass from cooling towers escaping by atmospheric dispersion. A total of 14 cooling towers are permitted for this source. See the appendix for detailed emission calculations.

$$PM\left(\frac{lbs}{hr}\right) = Water Circ. Rate (gpm) \times \frac{8.345lb}{gal} \times \frac{Drift Rate(\%)}{100} \times \frac{TDS(ppmw)}{1,000,000} \times \frac{60 \min}{hr} \times 0.313$$

Storage Tanks

Storage of volatile components results in emission of those volatiles to the atmosphere from working and breathing losses. Working losses are emissions from vapors generated by the volatile material being transferred into or out of the storage tank. Breathing losses are generated when the vapors in the tank undergo a pressure rise due to the tank temperature rising from ambient heat and then escape through the tank vents.

This facility is permitted for sixteen total vertical, fixed-roof, 7,925 gallon capacity volatile organic liquid storage tanks. Four tanks exist for each stored liquid mixture; Isopropyl Alcohol (IPA), Thinner-1, Thinner-3, and DP001. Detailed speciation for these tanks can be found in the emission calculations spreadsheets attached in this document section. As part of the permit application TSMC simulated these losses using Promax, a chemical process simulator, which takes input parameters such as the physical tank makeup, liquid makeup, and internal/external temperatures; to determine emissions. These breathing and working loss emissions are vented to RCTOs for control of VOCs.

Pollutants	Boilers	Emergency Engines	Cooling Towers	Storage Tanks	RCTO's	Scrubbers	Facility wide Annual Emissions
CO:	0.56	3.37			11.8	52.8	90*
NOx:	0.67	5.85			17.0	64.2	90.0*
PM10:	0.051	0.19	3.10		16.8	50.9	63.0*
PM2.5:	0.051	0.19	1.86		16.8	50.9	63.0*
VOC:	0.037	0.31		0.2	7.93	11.82	90*
SOX:	0.004	0.01			1.2		1.2
Total HAPs							22.5*
Benzene							0.002
Toluene							0.001
Xylenes							0.000
Formaldehyde							0.01
HF							3.94
HCl							6.66

Facility-Wide Permitted Emissions [Tons/Year]

Cl ₂				6.66
Acetonitrile				0.25
COS				1.28
TiCl ₄				0.77
Arsine				0.01
Ethylene Glycol				3.36
Phosphine				0.02
Trimethylamine				0.22
Cobalt				0.00

* Facility-wide annual emissions may not exactly add up to the individual source-type contributions. They instead represent the enforceable emission limit written into the permit for the respective pollutant as requested by the source.

F041443_P0008497_E missionCalcs.xlsx

F. HAP EMISSION IMPACTS:

Dispersion modeling using BREEZE AERMOD software was performed on atmospheric HAP emissions from this facility based on calculated hourly HAP emission rates assuming uniform emissions over 8760 hours per year at the estimated HAP PTE at the permitted emissions level. The results of this modeling were then compared to acute and chronic ambient air concentration (AAAC, CAAC) thresholds to see if the concentration of any one HAP may be in an amount to cause short and/or long term damage to public health.

MCAQD policy is to use SCREEN modeling for HAPs that are emitted by a source at a minimum hourly threshold. The AERMOD dispersion modeling software used by the Permittee is the same as used for the mNSR ambient air quality assessment and is a more accurate, less conservative way to model HAP concentrations. After review of the modeling protocol MCAQD has accepted the Permittee's HAP dispersion model for comparisons to acute and chronic ambient air concentrations.

Emissions were modelled using site data from the mNSR ambient air quality analysis which is discussed in detail in section B of this document.

		Screen Model Results (µg/m3)		Ambient Air Conc. (µg/m3)	
Pollutant	Emissions (lbs/hr)	Max 1-hr Conc.	Annual Conc.	Acute	Chronic
Hydrofluoric Acid	7,880	2.37	0.16	9.80E+03	1.46E+01
Hydrochloric Acid	13,320	4.52	0.23	1.6E+04	2.09E+1
Arsine	20	5.48E-03	1.70E-04	2.50E+03	4.41E-04
Benzene	2.0	0.71	1.10E-04	-	2.43E-01
Formaldehyde	0.23	0.07	3.40E-04	1.7E+04	1.46E-01
Ethylene Glycol	6,720	-	8.38E-02	-	4.17E+02
Cobalt	0.0	_	4.00E-05	_	6.86E-04

Table 3. AERSCREEN HAPs Modeling Concentrations at the Ambient Air Boundary

Table 3 above shows the results of the dispersion modeling analysis. AAC thresholds that are crossed by the concentration of emitted HAPs at the ambient air boundary at this source are shown in bold. The modeling results show that this facility does not emit HAPs at a rate that are likely to cause short or long-term damage to public health.

G. PERFORMANCE TESTING:

The Permittee shall conduct performance tests on all Rotor Concentrator Thermal Oxidizers (RCTO), all Acid Scrubbers, and all Bench (Acid) Scrubbers once per year from the date of the most recent test (no later than 14 months). Annual testing was chosen in lieu of 5-year testing due emission limits being so close to Title V thresholds and no material limitations being written into the permit as an enforceable condition.

RCTO parameters to be tested:

VOC concentration in the RCTO inlet and exhaust streams to demonstrate compliance with the removal efficiency or outlet concentrations of the Permit Conditions. Testing shall establish a control efficiency which shall be used for mass balance calculations to maintain compliance with the permitted emission limit. Testing shall be done on both the concentrator and oxidizer exhausts.

NOx concentration in the RCTO exhaust stream. Testing shall establish an emission factor to be used for compliance with the permitted emission limit.

CO Concentration in the RCTO exhaust stream. Testing shall establish an emission factor to be used for compliance with the permitted emission limit.

PM10 and PM2.5 concentrations in the RCTO exhaust stream. Testing shall establish an emission factor to be used for compliance with the permitted emission limit.

The combustion chamber temperature shall be recorded by the Permittee during the performance test. Following the performance test, the RCTO shall be operated at or above the combustion chamber temperature used to demonstrate compliance.

Estimated uncontrolled stack emissions of VOC from the six RCTOs at this facility trigger the requirement for best available control technology (BACT). Per the Bay Area Air Quality Management District (BAAQMD) BACT/TBACT Workbook the following control efficiencies/outlet concentration satisfy BACT:

98.5% when the inlet VOC concentration is greater than or equal to 2,000 ppmv measured as methane; or

97% when the inlet VOC concentration is greater than or equal to 200 but less than 2,000 ppmv measured as methane; or

90% when the inlet VOC concentration is less than 200ppmv measured as methane.

As an alternative to the destruction efficiency requirements the Permiteee may opt to have an RCTO outlet concentration of less than or equal to 10 ppmv VOC measured as methane.

Scrubber Parameters to be tested:

Hydrofluoric Acid (HF) concentration in the scrubber exhaust streams. Testing shall establish an emission factor to be used for compliance with the permitted emission limit.

Hydrochloric Acid (HCl) concentration in the scrubber exhaust streams. Testing shall establish an emission factor to be used for compliance with the permitted emission limit.

 PM_{10} and $PM_{2.5}$ concentration in the scrubber exhaust streams. Testing shall establish an emission factor to be used for compliance with the permitted emission limit.

NOx concentrations in the scrubber exhaust streams. Testing shall establish an emission factor to be used for compliance with the permitted emission limit.

CO concentrations in the scrubber exhaust streams. Testing shall establish an emission factor to be used for compliance with the permitted emission limit.

H. REGULATORY REQUIREMENTS AND MONITORING:

Permit Conditions 1 thru 5 contain site-wide compliance duties for this source. Total permitted emissions are listed in Condition 1 and the enforceable calculations methodologies are listed in Condition 2. Condition 4 contains visible emissions compliance duties subject to County Rule 300.

Condition 4 contains bi-annual reporting requirements for emissions of VOC, PM10, NOx, and Total HAP due to the Permittee taking an enforceable and voluntary limit on these criteria pollutants to avoid triggering Title V permitting requirements.

Permit Conditions 6 thru 15 contain regulations and compliance duties for semiconductor fabrication operations at this source subject to County Rule 338 and performance testing conditions for the associated emission control systems per County Rule 270.

Condition 7 contains the O&M plan requirements which must be submitted within 45 days of initial permit issuance OR within 45 days of the equipment receiving exhaust; whichever comes last. RCTOs and wet acid scrubbers, and POU combustion devices are required to be included in O&M Plan.

Condition 8 contains the AMC demonstration requirements for interlocked POU devices. This section was written using the MCAQD Permitting Handbook, Section 6, "Guidelines for the Semiconductor Industry."

Condition 13 contains the performance testing duties and requirements for the RCTOs and Scrubbers at this facility which are required to be tested for various criteria pollutant emissions. See section E of this document for a detailed breakdown of performance testing requirements for this source.

Permit Conditions 16 thru 22 contain regulations and compliance duties for this source's emergency engines subject to County Rule 324 and Federal Regulation 40 CFR 60 Subpart IIII.

Condition 16 contains the annual hourly operation limit per engine of 18 hrs for the purposes of maintenance and readiness checks.

Condition 20 contains NSPS Subpart IIII requirements including the certified EPA tier standard for each engine model. These standards satisfy RACT requirements for emergency engines at this source.

Permit Conditions 23 and 24 contain regulations and compliance duties for this source's cooling towers. Cooling tower conditions are taken from County Rule 322 to satisfy to apply as RACT.

Condition 23.c contains the drift rate efficiency requirement of 0.0005% which satisfies BACT requirements for particulate emissions from cooling towers (see: section A of this document for more detail).

Permit Conditions 25 and 26 contain regulations and compliance duties for fuel burning equipment (boilers) located at this source.

Permit Conditions 27 thru 31 contain regulations and compliance duties for 16 organic liquid storage tanks and all waste solvent tanks at this facility subject to RACT Requirements. Language in this permit section was taken from County Rule 350.

VOC from tank vents is required to be vented to and controlled by the RCTO at a minimum control efficiency of 95%.

Permit Conditions 32 and 33 contain regulations and compliance duties for this source's wastewater treatment plant subject to County Rule 320.

Permit Conditions 34 thru 40 contain general Non-Title V Permit Conditions.

APPENDIX

Model Input Files:

EMISSION CALCULATION WORKSHEET FOR DIESEL FIRED ENGINES

Business Name: TSMC

Permit: P0008497

Equipment and Emission Fa	0.001645						
	BHP	Operating	Operating Emission Factors (lbs/hp-hr)			Emission Factor	
Equipment	Rating	Hours/Yr	CO	NOX	PM ₁₀	VOC	Source
Kohler/Mitsubishi S16R-	2,923	396	5.76E-03	0.01	3.29E-04	5.26E-04	Tier 2
CLARKE DQ6H-UFAA88	360	36	5.76E-03	1.00E-02	3.29E-04	5.26E-04	Tier 2

Emission Calculation:

Allowable Emissions

CO	6,739 lbs/yr	3.37 tons/yr
NOX	11,705 lbs/yr	5.85 tons/yr
SOX	15 lbs/yr	0.01 tons/yr
PM10	386 lbs/yr	0.19 tons/yr
PM _{2.5} ³	383 lbs/yr	0.19 tons/yr
VOC	617 lbs/yr	0.31 tons/yr

¹Based on an enforceable sulfur limit of 0.0015% by weight for diesel fuel.

 $^3\text{PM}_{2.5}$ = 0.991(PM_{10}) per SCAQMD Methodology to Calculate Particulate Matter (PM) 2.5

EMISSION CALCULATION WORKSHEET FOR COOLING TOWERS

Business Name: TSMC

Permit: P0008497

Operating Hours: 8760 hrs/yr

Emission Calculation

 $PM\left(\frac{lbs}{hr}\right) = Water\ Circ. Rate\ (gpm) \times \frac{9.345lb}{gal} \times \frac{Drift\ Rate(\%)}{100} \times \frac{TDS(ppmw)}{1,000,000} \times \frac{60\ min}{hr} x\ 0.313$

Where: 0.313 is the fraction of solids-carrying drift that reaches the atmosphere¹.

PM_{10} Fraction of PM^2 =	1.00
$PM_{2.5}$ Fraction of PM_{10}^3 =	0.60

¹EPA report: "Effects of Pathogenic and Toxic Materials Transported Via Cooling Device Drift - Vol 1." November 1979. Figure ²All PM emissions are assumed to be 10 microns or smaller (PM₄₁)

³SCAQMD: Final –Methodology to Calculate Particulate Matter (PM) 2.5 and PM 2.5 Significance Thresholds" October 2006

Emissions:

	Water Circulation		TDS	Drift	PM
Cooling Tower ID	Rate (gpm)	Quantity	(ppmw)	Rate ^{1,2}	lbs/hr
Cooling Towers	16,120	28	2000	0.0005%	0.71
					0.00
					0.00
					0.00
					0.00
Total:					0.71

¹The drift rate was obtained from the manufacturer's data sheet.

Total Emissions:

PM:	6,197 lbs/yr	3.10 tons/yr
PM10:	6,197 lbs/yr	3.10 tons/yr
PM _{2.5} :	3,718 lbs/yr	1.86 tons/yr

EMISSION CALCULATION WORKSHEET FOR NATURAL GAS FUEL BURNING EQUIPMENT (SMALL BOILERS < 100 MMBTU/HR)

E	Busi	ness Name:	TSMC		Permit: P0008497
Input Ra	ting	of Equipme	nt, Btu/hr		
	1)	30,720,000	5.12 MMBtu/hr * 6 units	Operating Time:	1.216666 hr/day
	2)				365 day/yr
	3)				300 hr/yr
	4)				
	5)				
Totals		30,720,000	Btu/hr		

Emission Factors (AP-42 Chapter 1.4: Natural Gas Combustion)

Table 1.4-1: Emission factors for nitrogen oxides (NOx) and carbon monoxide (CO) from natural gas combustion Table 1.4-2: Emission factors for criteria pollutants and greenhouse gases from natural gas combustion

CO:	84 1b/10 ⁶ scf
NO _X :	100 lb/10 ⁶ scf
SO _X :	0.6 lb/10 ⁶ scf
PM10:	7.6 lb/10 ⁶ scf
PM2.5:	7.6 lb/10 ⁶ scf
VOC:	5.5 lb/10 ⁶ scf

<u>Constants</u>	
1,020	Btu/scf for Natural Gas

Emission Calculation:

$Emission\left(\frac{lbs}{yr}\right) =$	$\frac{Total Input Rating (\frac{Btu}{hr})}{1,020 Btu/scf} \times$	$\frac{Emission \ Factor \ (\frac{lb}{10^{\circ}scf})}{1,000,000} x \ Operating \ time$	$\left(\frac{hrs}{yr}\right)$
---	--	---	-------------------------------

Emissions

CO:	1,123 lbs/yr
NO _X :	1,337 lbs/yr
SO _X :	8 lbs/yr
PM10:	102 lbs/yr
PM2.5:	102 lbs/yr
VOC:	74 lbs/yr

PUBLIC NOTICE

Facility ID:	F041443
Permit Number:	P0008947
Company Name:	TSMC Arizona Corporation
Facility Address:	32200 North 43 rd St.
	Phoenix, AZ 85083
Facility Type:	Semiconductor Fabrication
Air Contaminants:	Products of Combustion, Particulate Matter, Volatile Organic
	Compounds, Nitrogen Oxides, Sulfur Oxides, Carbon Monoxide,
	Hazardous Air Pollutants
Begin Posting Date:	
Site Contact Name and Email	Robert Sandoval (sandoval@tsmc.com)
Address:	Joy Jones (joyjones@tsmc.com)

NON-TITLE V COMPLETENESS DETERMINATION CHECKLIST

Items 1-15 Front page: Items 1 to 15 (14 for Renewals) must be completed.

Notes to engineer:

- For renewal applications the source must either answer 'No' to questions 2-5 or submit an application for a permit modification.
- Item 8: Many applicants do not know the SIC code or NAICS code for their industry. For a new application the code can be obtained by doing an on-line search. http://www.osha.gov/pls/imis/sicsearch.html
- *Items 5, 7 and 14: These may be the same for many applicants.*

	Com	plete: X Inco	omplete:	
Item 16: A simple site diagram has been included, preferably on a standard size paper. Detailed blueprints or construction drawings are not required.				
	Complete: X	Incomplete:	N/A:	
Item 17 : A simple process flow diagram on a standard size paper is preferred. A process flow diagram may not be needed for some small businesses.			ram may not	
	Complete: X	Incomplete:	N/A:	
Item 18 : An O&M plan is required only for a control device. An O&M plan is not required for a spray booth. Instead of including the O&M plan with the application, an applicant may submit it after receiving the permit.				
	Complete:	Incomplete: X	N/A:	
Item 19 : A dust control plan, if required, must accompany the approved by the dust compliance group.	permit application	. The plan will be r	eviewed and	
	Complete:	Incomplete:	N/A: X	
Item 20 : The applicant needs to complete only those sections of	of the permit applic Complete: X	ation that are application Incomplete:	able. N/A:	
 Notes to engineer: Concerning Section Z: Many applicants will not be able to perform these engineering calculations. We will accept the permit application with a blank Section Z. 				
Instructions for completing Sections A, B, C, D, E-1, E-2, F, G, H, I, J, K-1, K-2, K-3, K-4, L, M, X-1, X-2, Y and Z of the permit application are included at the beginning of each section and are self-explanatory.				
In general, a material safety data sheet (MSDS) is required for each chemical used, stored or processed at the facility. Exceptions are for very common materials, such as gasoline, diesel, acetone, etc.				

Business name:	TSMC	
Permit number:	P0008947	
Completeness revi	ew completed. Application determined to be:	Complete: X Incomplete:
Permit Engineer:	Ryan Dalrymple	Date: 3/21/2022