wood.

Comparing Three 2D Software Packages for Modeling Highway Drainage Structures

2018 ASFPM Conference Phoenix, Arizona, June 20, 2018

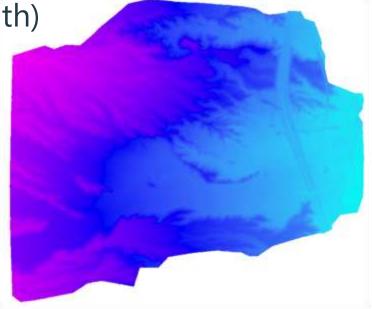
woodplc.com

Agenda

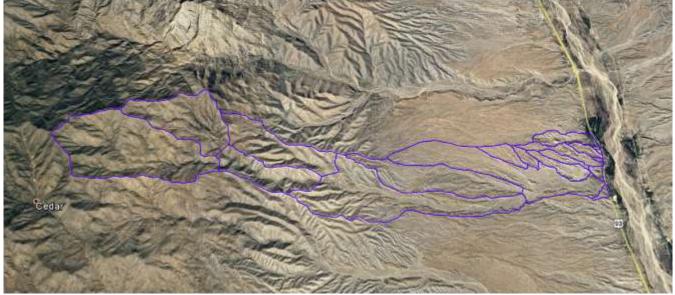
- Project Background
- Pilot Study Area Gunsight Canyon
- When is 2D Modeling Appropriate?
- Modeling Software Overview
- Results and Comparisons
- Recommendations and Guidance

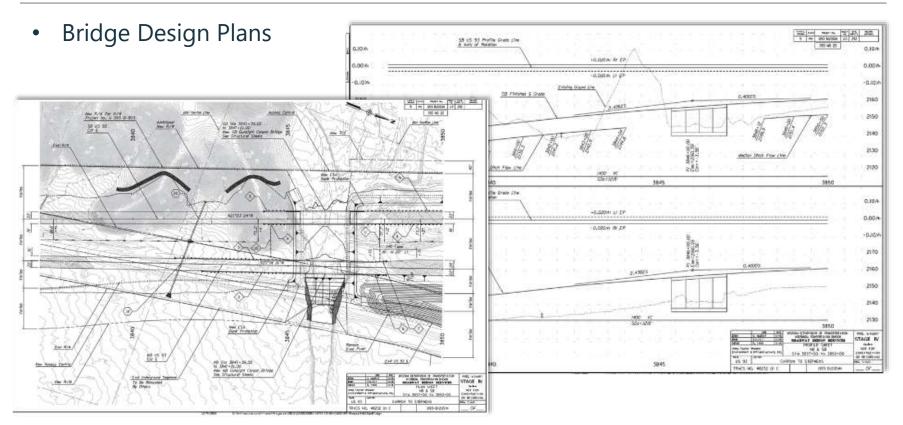
Project Background

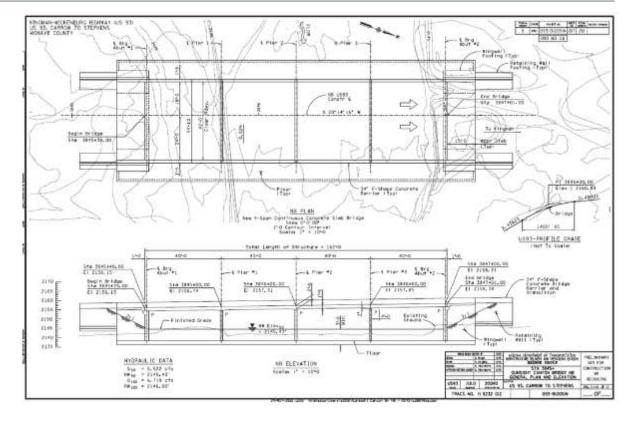
EDC-4 CHANGE Program Adoption


- Steven Olmsted, ADOT, Group Manager, Environmental Planning
- ADOT's Rotation Towards Asset Management, Risk Based, \$1B 5-yr Construction Program:
 - Better Adaptation of Technology, Science, & Engineering
 - Aligns with advancements in point cloud and 3D use
 - Adaptation of extreme weather / climate resilience engineering

- Rural
- Braided Flow Condition
- Design Cross-Culvert



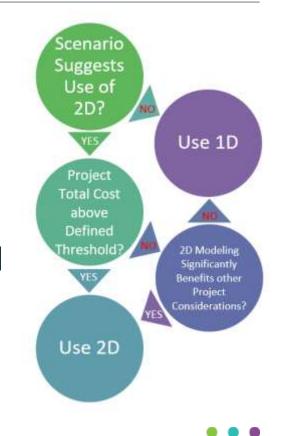

- Define Survey Requirements
- ADOT typically provides strip topographic mapping (limited width)
- Mapping
 - USGS Existing Surface Raster
 - Combined Raster with
 Proposed Roadway


- Hydrology HEC-1
 - $Q_{100} = 6,719 \text{ cfs}$ Drainage Area = ~11 mi²

Input Data

• Bridge Design Plans

When is 2D Modeling Appropriate?


- 1D Vs. 2D Hydraulic Modeling
 - 1D Cross Sections Vs. 2D Domain
 - 1D modeling generally provides one flow depth and one flow velocity in an assumed direction.
 - 2D modeling allows for prediction of flow depth, direction, and velocity at any given modeling node.

When is 2D Modeling Appropriate?

– Better Data Improves Project Design

Better Tools for Communicating Results

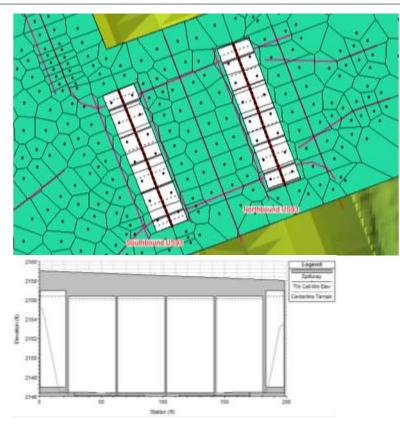
 Streamlined Delivery – Improved collaboration can reduce environmental and regulatory delays

	Software	Developed/ Supported By	Numerical Method	Cost	Primary GUI	
			Numerical Method			
HEC-RAS		USACE	Finite Volume	Free	RASMapper	
		Aquaveo		\$3,100 (Riverine Pro)	CMC	
SRH-2D	AQUAVL	FHWA USBR	Finite Volume	Free (Community)	SMS	
FLO-2D	5020	FLO-2D	Finite Difference	\$995/year (Pro)	QGIS	
FLO-2D	55330	Riada		Free (Basic)	GDS	

Modeling Software Overview - HEC-RAS

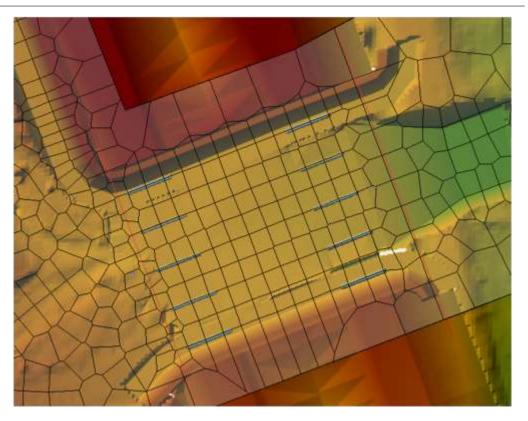
Input

Boundary Conditions Topographic Mapping N values Mesh Network

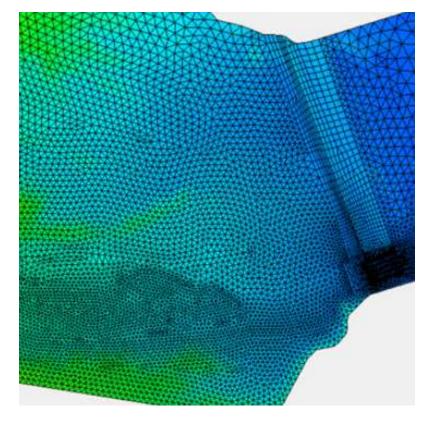

Bridge Modeling Options Approximated as Culvert Modeled in Terrain

Modeling Software Overview - HEC-RAS

Culvert Method


- Considerations
- -Simplified Input
- -Approximation of Opening
- -Pressure Flow
- -Flow Direction X

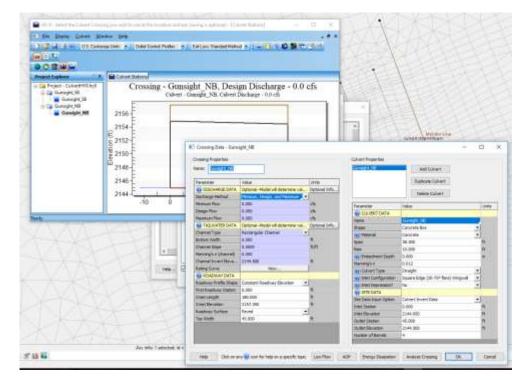
Modeling Software Overview - HEC-RAS


DTM Piers

- Considerations:
- -DTM Modeling
- -Cell Boundary Alignment
- -Pressure Flow X
- -Flow Direction

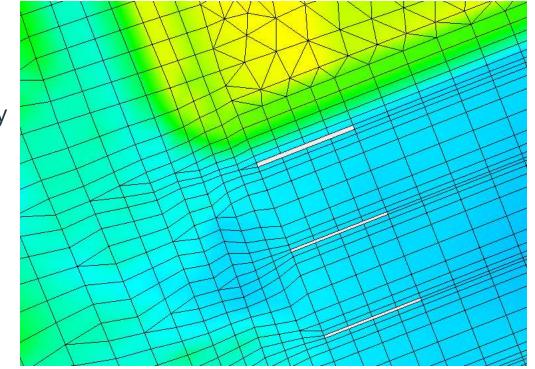
Input

Boundary Conditions Topographic Mapping N values Mesh Network Bridge Modeling Options **Culvert Equations** HY-8 Piers Modeled as Holes in Mesh **Obstructions**

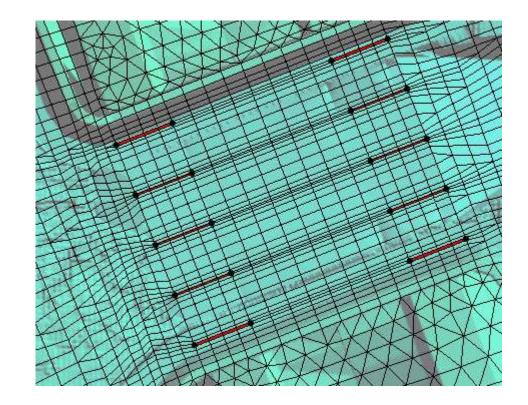

Culvert Equations

- Considerations
- -Simplified Input
- -Approximation of Opening
- -Pressure Flow ✓
- -Flow Direction X

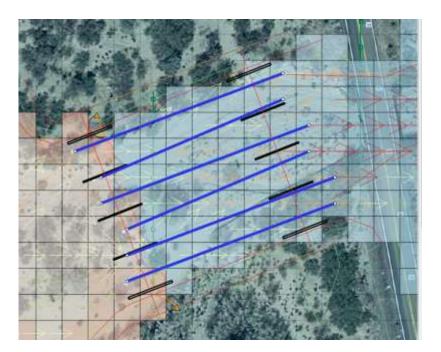
2D Linear BC		X Units:
		ft *
oundary Conditi	on Options	Number of identical barrels:
Type:		5
Culvert	•	Entrance type (m_in):
Culvert Option	4	non-mitered *
Object Id		Culvert inlet coefficients (Xp, M, cp, Y):
4	culvert upstream •	Concrete - Rectangular - Headwall; 3/4 in chamfes
5	culvert downstream	Entrance loss coeff Ke:
2	Carver Coowna e carri -	0.5
		Manning roughness coefficient in barrel (Nc):
Upstream in	vert elevation (21):	0.012
5664.5		Use total head (velocity and water surface):
Interior heig	ht of barrel (Dc):	Total head
6		Crest elevation:
Length of b	orrei (Lc):	5672
85		Length of Wer over Culvert:
Area of ban	rel (Ac):	40
48		Type:
Hydraulic ra	dus of barrel (Rh):	paved *
1.714		<
Slope of bar	rel (Sp):	
0.0176		Hep OK


Culvert Method using HY-8

- Considerations
- -Simplified Input
- -Approximation of Opening
- -Zero Velocity at Inlet
- -Pressure Flow
- -Flow Direction X


Holes in Mesh

- Considerations
- -Mesh Modification
- -Vertical Walls at Boundary
- -Most Accurate
- -Pressure Flow
- -Flow Direction


Obstructions

- Considerations
- -No Mesh Modification
- -Simplified Head Loss
- -Pressure Flow
- -Flow Direction \checkmark

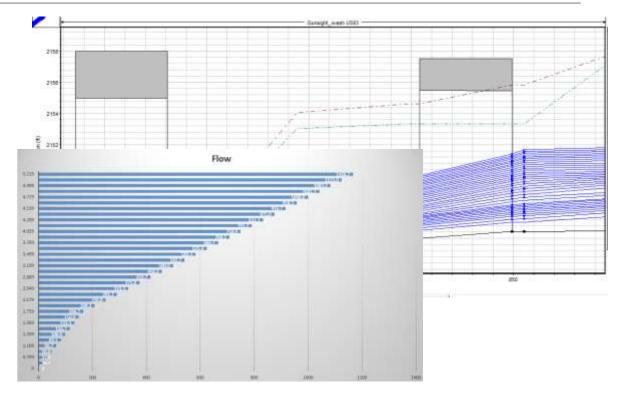
Input

Boundary Conditions Topographic Mapping N values Grid Element Size Bridge Modeling Options **Culvert Equations** Structure Rating Table Open Channel / Grid Only

Culvert Equations

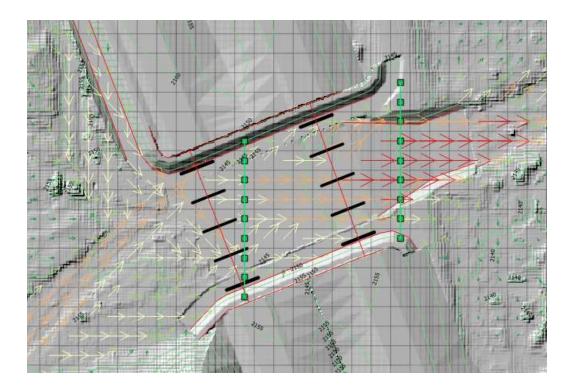
- Considerations
- -Simplified Input
- -Approximation of Opening
- -Pressure Flow ✓
- -Flow Direction X

HYSTI												
S	GC	BR	CELL 1	0	2	45437	46199	0	0.0	212.0	10.0	
F	1	1	0.025	0.50	27.	.0						
S	GC	BR	CELL 1	A (2	45537	46200	0	0.0	212.0	10.0	
F	1	1	0.025	0.50	27.	.0						
S	GC	BR	CELL 2	0	2	45538	46294	0	0.0	212.0	10.0	
F	1	1	0.025	0.50	27.	. 0						
S	GC	BR	CELL 2	A (2	45637	46295	0	0.0	212.0	10.0	
F	1	1	0.025	0.50	27.	. 0						
S	GC	BR	CELL 3	0	2	45638	46389	0	0.0	212.0	10.0	
F	1	1	0.025	0.50	27.	. 0						
S	GC	BR	CELL 4	0	2	45639	46390	0	0.0	212.0	10.0	
F	1	1	0.025	0.50	27.	.0						
												-
												Þ.
						1	1 . 1 -	. 1	- 1	ock Svnc		

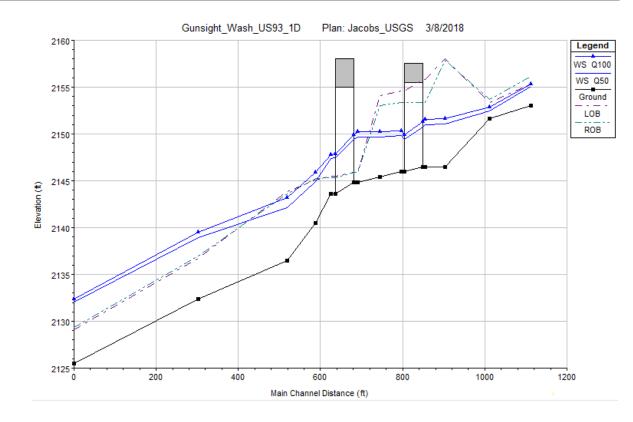

Structure Rating Table

Considerations

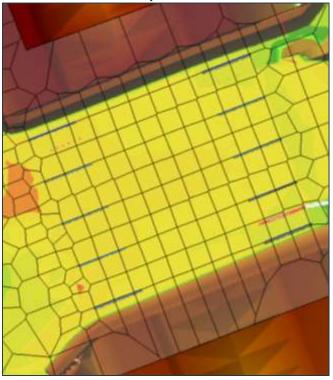
- -Simplified Input
- -Rating Development


X

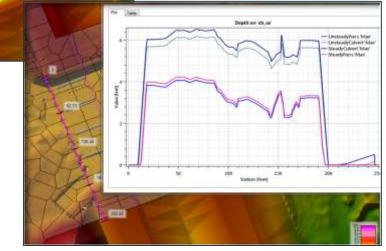
- -Pressure Flow
- -Flow Direction


Open Channel / Grid Only

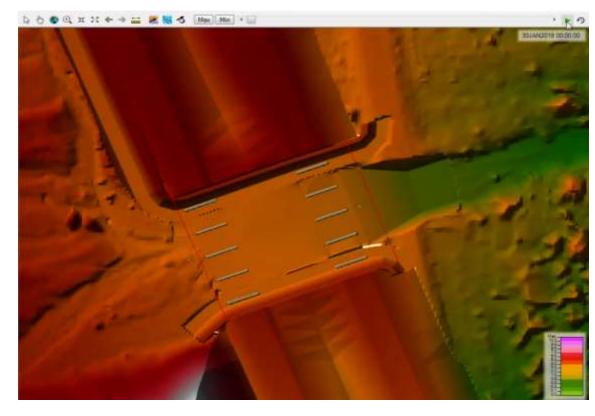
- Considerations
- -Simplified Input
- -Area Reduction Factor
- -Pressure Flow X
- -Flow Direction


Results - HEC-RAS 1D

-Upstream WSEL -Max Velocity

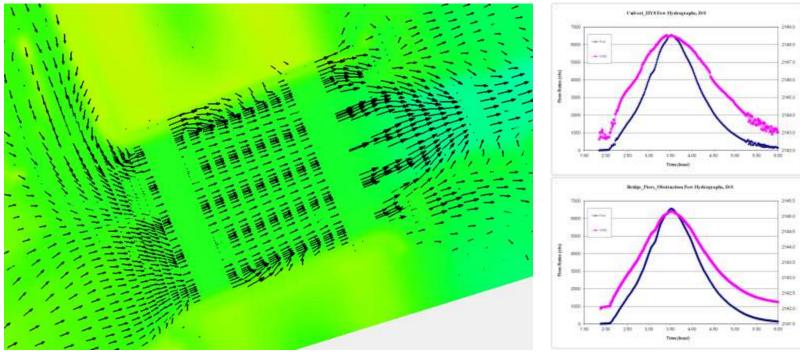

Results - HEC-RAS 2D

Max Flow Depth


Velocity with Flow-Tracing

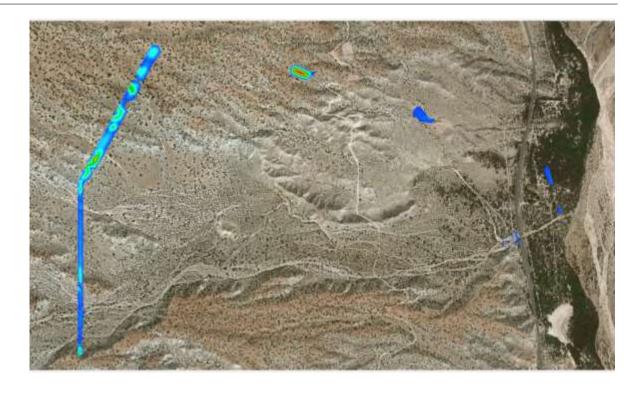
Profile Lines

Results - HEC-RAS 2D


• Animation

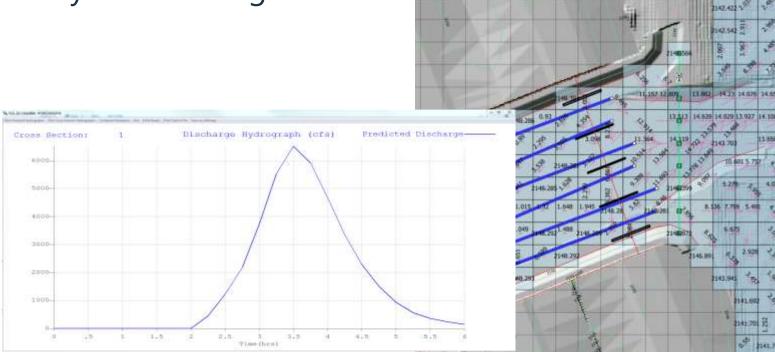
HEC-RAS Results - (100 Year)								
Bridge	Culvert	DTM Piers						
10	Ctoo du c	WSEL (ft)	2151.7	N/A				
1D	Steady	Vel (ft/s)	9.1	N/A				
		WSEL (ft)	2152.8	2150.4				
	Steady	Vel (ft/s)	9.7	12.7				
2D		WSEL (ft)	2152.4	2150.2				
	Unsteady	Vel (ft/s)	8.1	11.3				

Results – SRH-2D


Velocity

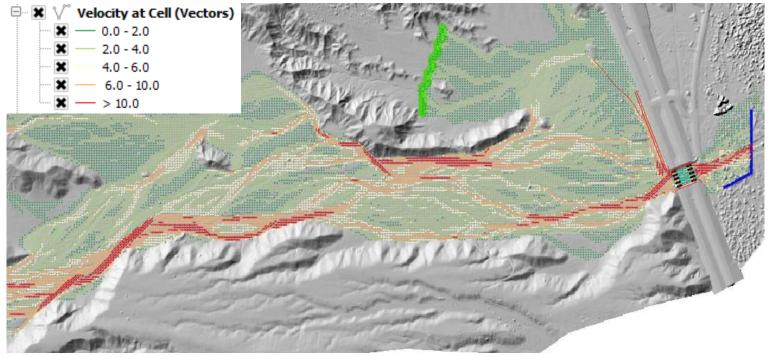
Observation Lines

Results – SRH-2D


Animation

SRH-2D Results - (100 Year)							
Bridge Modeling Method HY-8 Holes Obstruct							
Chandra	WSEL (ft)	2153.3	2151.1	2151.0			
Steady	Vel (ft/s)	8.0	13.1	13.3			
	WSEL (ft)	2152.9	2150.8	2150.7			
Unsteady	Vel (ft/s)	7.9	12.9	13.1			

Results – FLO-2D


• Summary of Modeling Results

1142-124 1.381

Results – FLO-2D

• Summary of Modeling Results

FLO-2D Modeling Summary Table for Gunsight Wash Bridge								
FLO-2D	Bridge Modeling	Method	Culvert Equations	Rating Table	Open Channel / Grid Only			
	Steady	WSEL (ft)	2153.4	2151.8	2151.0			
2D	Unsteady	Vel (ft/s)	9.4	12.5	13.5			
20		WSEL (ft)	2153.3	2151.5	2150.8			
		Vel (ft/s)	8.9	12.1	13.0			

Comparison

Overall Comparison (100 Year)									
HEC-RAS 1D HEC-RAS 2D SRH-2D FLO-2D									
Recommended Option	Culvert	DTM Piers	Holes	Rating Table					
WSEL (ft)	2151.6	2151.3	2150.8	2151.5					
Vel (ft/s)	9.1	11.1	12.9	12.1					
Input Data	Simple	Complex	Medium	Medium					

Modeling Recommendations								
Applications		HEC-RAS 1D	HEC-RAS 2D	SRH-2D	FLO-2D			
Existing Bridge/Culvert Hydraulics	1	Applicable	Applicable	Recommended	Applicable			
New Bridge/Culvert Design	2	Applicable	Applicable	Recommended	Not Recommended			
Simple Wash/Channel Hydraulics	3	Recommended	Not Recommended	Not Recommended	Not Recommended			
Multiple Openings	4	Not Recommended	Applicable	Recommended	Applicable			
Complex Flow Patterns/Braided Flow	5	Not Recommended	Recommended	Applicable	Applicable			
Basin System Hydraulics	6	Applicable	Recommended	Not Recommended	Applicable			
FEMA FIS/CLOMR/LOMR	7	Recommended	Applicable	Applicable	Applicable			
Bridge Scour Evaluation	8	Applicable	Applicable	Recommended	Applicable			
Urbanized/Stormdrain	9	Not Recommended	Applicable	Applicable	Recommended			

woodplc.com